Staci DeSchryver: Boobies, Wedgies, and the Neurolinguistic Re-Programming of a TAS, July 21, 2017

NOAA Teacher At Sea

Staci DeSchryver

Aboard Oscar Elton Sette

July 6 – August 2, 2017

 

Mission:  HICEAS Cetacean Study

Geographic Area:  French Frigate Shoals, Northwest Hawaiian Islands

Date:  July 21, 2017

Weather Data from the Bridge:

 

Science and Personal Log

I’m putting both the science and personal log together this time around for a very special reason.

See, I have a confession to make.  Many of my friends from home know this about me, but I have a secret I’ve kept under wraps for the vast majority of this trip, and it’s time to officially reveal it now, because it just seems to fit so well.  Ready?  True confessions from a Teacher At Sea:

I have an irrational fear of birds.

There.  I said it.  It stems from a wayward trip to London in the Study Abroad program and involves me, innocently consuming an over-priced deli sandwich on a bench outside of the Museum of Natural History when I was suddenly accosted by a one-footed pigeon who made away with my lunch – but not before attacking my face full-force with every wing, beak, and claw it had.  My lunch then became a free sidewalk hoagie, available for all nearby pigeons (you know, like every pigeon from London to France) to feast upon as I sat helplessly watching the gnashing of beaks and flyings of feathers in a ruthless battle to the end for over-processed deli ham and havarti on rye.  I was mortified.  From that moment forth, I was certain every bird wanted a piece of my soul and I was darned if I was going to let them have it.

After many years of active bird-avoidance, my first Teacher At Sea experience allowed me to remove Puffin from the exhaustive list of these ruthless prehistoric killers.  After all, Puffins are not much more than flying footballs, and generally only consume food of the underwater persuasion, so I felt relatively sheltered from their wrath.  Plus they’re kind of cute.  The following year, a Great Horned Owl met its demise by colliding face-first into one of our tall glass windows at the school. When the Biology teachers brought him inside, I felt oddly curious about this beast who hunts with stunning accuracy in the black of night, and yet couldn’t manage to drive himself around a window.  I felt myself incongruously empathetic at the sight of him – he was such a majestic creature, his lifeless body frozen in time from the moment he met his untimely ending.   I couldn’t help but wish him alive again; if not for his ability to hunt rodents, but simply because nothing that beautiful should have to meet its maker in such a ridiculous manner.  And so, I cautiously removed Owls from the list, so long as I didn’t have to look much at their claws.

This has suited me well over the years – fear all birds except for Puffin and Owl, and as a side note Penguin, too, since they can’t do much damage without being able to fly and all.  Plus, you know, Antarctica.  But when I found out that the cetacean study also happened to have bird observers on the trip, I felt momentarily paralyzed by the whole ordeal.  I had (incorrectly) assumed that we wouldn’t see birds on this trip.  I mean, what kind of bird makes its way to the middle of the Pacific Ocean?  Well, it turns out there are a lot that do, and it’s birders Dawn and Chris who are responsible for sighting and cataloging them alongside the efforts of the marine mammal observers.  I promise I’ll come back to my story on bird fear, but for now, let’s take a look at how our birders do their job.

DES_4224
NOAA bird observer Dawn scans the horizon from her seat on the flying bridge

The birders follow a similar protocol to the marine mammal observers.  Each birder takes a two-hour shift in a front seat on the flying bridge.  While the marine mammal observers use big eyes to see out as far as they possibly can out onto the horizon, the birders only watch and catalog birds that come within 300m of the ship.

DES_4623
You can find the distance a bird is from the ship using a basic pencil with lines marked on the side. Each line is mathematically calculated using your height, the ship’s height, and the distance to the horizon.

How do they know how far away the 300m mark is?  Over the years they just become great visual judges of the distance, but they also have a handy “range finder” that they use.  The range finder is just a plain, unsharpened pencil with marks ticked off at 100m intervals.  By holding the pencil up to the horizon and looking past it, they can easily find the distance the bird is from the ship. They divide this 300m range into “zones” – the 200-300m zone, the 100-200m zone, and the less than 100m zone from the bow of the ship.  Anything further than 300m or outside of the zero to 90 degree field of vision can still be catalogued if it is an uncommon species, or a flock of birds.  (More on flocks in a moment.)

They choose which side of the ship has the best visibility, either the port or starboard side, and like the mammal observers, birders take only the directional space from zero (directly in front of the ship) to 90 degrees on the side of their choosing.  If the visibility switches in quality from one side to the other during a shift, he or she can change sides without issue.

DES_4579
A sooty tern soars high above the ship. We’ve seen many sooty terns this trip!

The bird team also records information such as wind speed and direction (with respect to the ship), the Beaufort Sea State, visibility, observation conditions, and the ship’s course.  Observation conditions are a critical component of the birder’s tool bag.  They mark the observation conditions on a five-point scale, with 1 being extremely bad conditions and 5 being very good conditions.  What defines good conditions for a birder? The best way to make an observation about the conditions is to think about what size and species of smaller birds an observer might not be able to see in the outermost range. Therefore, the condition is based on species and distance from the ship.  Some birds are larger than others, and could be easier to spot farther out from the ship.  The smallest birds (like petrels) might not be observable in even slightly less than ideal conditions. Therefore, if a birder records that the conditions are not favorable for small birds at a distance of 200m (in other words, they wouldn’t be able to see a small bird 200m away), the data processing team can vary the density estimates for smaller birds when observers are in poor visibility.

DES_4568
White terns look like they belong on holiday cards! A new favorite of mine.

If a bird flies into the designated “zone”, the species is identified and recorded on a computer program that will place a time stamp on the GPS location of the sighting. These data are stored on the ship for review at a later time.  Ever wonder where the maps of migration patterns for birds originate?  It is from this collected data.  Up until this point, I had always taken most of these kinds of maps for granted, never thinking that in order to figure out where a particular animal lives let alone its migratory pattern must come from someone actually going out and observing those animals in those particular areas.

DES_4703
An albatross glides behind the ship, looking for fish.

The birder will record other information about the bird sighting like age, sex (if able to identify by sight) and what the lil’ fella or gal is up to when observed.  Birds on the open ocean do a lot more than just fly, and their behaviors are important to document for studies on bird behavior.  There are 9 different codes for these behaviors, ranging from things like directional flight (think, it has a place to go and it’s trying to get there), sitting on the water, or “ship attracted.”  There are certain species like juvenile Red-Footed and Brown boobies and Tropic Birds that are known to be “ship attracted.”  In other words, it could be out flying along a particular path until it sees this super cool giant white thing floating on the water, and decides to go and check it out.  This is how I wound up with that fun photo of the Booby on the bridge wing, and the other snapshot of the juvenile that hung out on the jackstaff for two full days.  These birds would not normally have otherwise come into the range to be detected and recorded, so their density estimates can be skewed if they are counted the same way as all other birds.

DES_4491
This Brown Booby wants in on the food action near the ship. Boobies are ship attracted, and we’ve had a few hang out with us while they take a rest on the mast. This is not the exact booby that made me change my bird ways, but he’s a close cousin (at least genetically speaking) of the one who did.

Any groups of five or more birds within one “reticle” (a measuring tool on the glass of the big eyes seen when looking through them) can be flagged by the marine mammal observers for the birders.  While many flocks are found miles away and might be difficult to see in the big eyes by species, the birders know the flight and feeding behaviors of the birds, and can usually identify the different species within the flock. They have a special designation in their computer program to catalog flocks and their behavior, as well.

I sat with Dawn on a few different occasions to learn how she quickly identifies and catalogs each bird species.  At first, it seems like all the birds look fairly similar, but after a few hours of identification practice, I can’t imagine that any of them look the same. The first bird Dawn taught me to identify was a Wedge-Tailed White Shearwater, more affectionately known as a “Wedgie White.”  To me, they were much more easily characterized by behavior than anything else.  Shearwaters are called “Shearwaters” because they…you guessed it… shear the water!  They are easy to spot as they glide effortlessly just above the water’s surface, almost dipping their wings in the cool blue Pacific.

I then continued my bird observation rotation learning all kinds of fun facts about common sea birds – how plumages change as different species grow, identifying characteristics (which I’m still trying to sort out because there are so many!), stories of how the birds got their names, migration patterns, population densities, breeding grounds, and what species we could expect to see as we approached different islands on the Northwest Hawaiian Island Chain.  Dawn knows countless identifiers when it comes to birds, and if she can’t describe it exactly the way she wants to, she has multiple books with photos, drawings, and paragraphs of information cataloging the time the bird is born to every iteration of its markings and behaviors as it grows.  To be a birder means having an astounding bank of knowledge to tap into as they have a limited time to spot and properly identify many species before they continue on their journey across the Pacific.

DES_4517
This Great Frigate Bird was flying about fifteen feet overhead, with a mast directly in front of him as he flew. He’s looking around for birds to steal food from. The Hawaiian term for Frigate Bird is ‘Iwa, meaning “thief.”

After two weeks of watching for birds with Dawn and Chris, I feel like I can properly identify a few different species – Wedgies, Frigate Birds (these are the klepto-parasite birds that steal other birds’ dinners), Tropic Birds, two types of Terns, and boobies, though I can only best ID boobies when they are not in flight.  I find myself up on the flying bridge on independent observation rotations calling forward to the birder on rotation, “Was that a tern?”  And now, my identifying skills have vastly improved over the last few days as I have engaged in the process of this very important data collection.

So, what has become of my irrational bird fear?  Well, I have to be honest; much like Puffin and Owl, the Red-Footed Booby melted my heart.  There he was, perched on the bridge’s shade railing, a lonely little fellow staring up at me with no reservation about my presence or expectation of a sandwich.  There we were in the middle of a vast ocean, and he was all alone – simply looking for a place to rest his wings or search more earnestly for the hint of a delicious flying fish escaping the water.  I spent a fair amount of time photographing the little guy, working with my new camera to find some fun angles and depth of field, and playing with the lighting.  He was a willing and I daresay friendly participant in the whole process (in fact I wondered if he had seen a few episodes of America’s Next Top Model), and I felt myself softening my stance on placing the Red Footed Booby amongst the likes of attack pigeons.  By the end of our encounter, I had mentally noted that the Booby should now be placed on the “safe bird” list.

As I’ve spent more time with Dawn and Chris and learned more about each species, seabirds have one by one slowly migrated over to the safe list – to the point now where there are just too many to recite and I feel it is time after fifteen years to do away with the whole of it entirely.  As soon as I changed my perspective, the beauty of all of them have gradually emerged to the point where I can easily find something to appreciate (even admire) about each of the species we’ve seen.  Terns fight fiercely into the wind as they fly, but when they can catch a thermal or pose for an on-land photograph for an ID book, look dainty and regal in their appearance – as if they should be a staple part of every holiday display.  And baby Terns?  Doc (our Medical Doctor on board) showed me a photo of a tern chick that followed him around Midway Island last year and the lil’ guy was so darn cute it could make you cry glitter tears.  Today near French Frigate Shoals many of the species I’ve seen from afar came right up to the ship and glided effortlessly overhead, allowing me to observe them from a near perspective as they flew.  (None of them pooped on me, so if they weren’t off the list by that point, that act of grace alone should have sealed their fate for the positive.)  Frigate Birds can preen their feathers while they fly.  Watching each species cast their wings once and glide on the air while looking all around themselves was oddly entertaining, certainly peculiar, but also impressive.  I can’t walk on the ship looking anywhere besides exactly where I want to go and yet birds can fly five feet away from a mast and casually have a proper look about.

If this has taught me anything, it has shown me the truth in the statement that fear is just ignorance in disguise.  When I accidentally gave my bird aversion away during our quick stop at French Frigate Shoals (more on this in an upcoming blog post) many of the scientists said, “I’d have never guessed you were scared of birds.  How did you keep it secret?”  The easy answer is “Teacher Game Face.” But, more deeply rooted in that is a respect and admiration for those who enjoy the things that I’m afraid of.  Dawn and Chris have dedicated their entire careers to identifying and cataloging these creatures, and they are both so kind and respectable I find it hard to imagine that they would study anything unequal to the vast extent of their character.  Thankfully I learned this early enough on in the trip that it was easy to trust their judgement when it comes to Procellariiformes.   This experience is once-in-a-lifetime, and how short-sighted would I be to not want to explore every aspect of what goes on during this study because I’m a little (a lot) afraid?

In Colorado, before I ever left, I made a personal commitment to have a little chutzpah and learn what I can about the distant oceanic cousins of the sandwich thieves.  And when it came to that commitment, it meant genuinely digging in to learn as much as I can, not just pretend digging in to learn at little.  I figured if nothing else, simple repeated exposure in short bursts would be enough for me to neurolinguistically reprogram my way into bird world, and as it turns out, I didn’t even really need that.  I just needed to open up my eyes a little and learn it in to appreciation.  Learning from Dawn and Chris, who are both so emphatically enthusiastic about all things ornithology made me curious once again about these little beasts, who over the last two weeks have slowly transformed into beauties.

Sorry, pigeons.  You’re still on the list.

Pop Quiz

What is to date the silliest question or statement Staci has asked/made during her TAS experience?

  1.       In response to a rainy morning, “Yeah, when I woke up it sounded a little more ‘splashy’ than usual outside.”
  2.      “So, if Killer Whales sound like this, then what whale talk was Dory trying to do in Finding Nemo?”
  3.       “So, there is no such thing as a brown-footed booby?”
  4.      After watching an endangered monk seal lounging on the sand, “I kind of wish I had that life.”  (So…you want to be an endangered species? Facepalm.)
  5.       All of the above

If you guessed e, we’re probably related.

 

Staci DeSchryver: When They Go Low, We Go High (Pilot Whales, that Is!): A view of Cetaceans using Drone Technology July 17, 2017

NOAA Teacher At Sea

Staci DeSchryver

Aboard: Oscar Elton Sette

Cruise Dates: July 6 – Aug 2

Mission:  HICEAS Cetacean Study

Geographic Area:  Northeast of Kauai, headed toward Northwestern Hawaiian Islands (NWHI)

Location:  24 deg 41.9 min N, 170 deg 51.2 min W

Date:  July 17, 2017

Weather Data from the Bridge:

Visibility:  10 Nmi

Scattered Clouds

Wind:  11 kts at 90 deg

Pressure: 1018.2mb

Wave height: 1-3 m

Swell at 50 deg, 2-3 ft

Air Temp: 29 degrees

Wet Bulb Temp: 25 degrees

Dewpoint: 28 degrees

 

Science Log

Technology definitely finds its way into every corner of life, and cetacean studies are certainly no exception.   One of the most recent additions to the Cetacean team’s repertoire of technology is a fleet of UAS, or unmanned aerial systems.  (UAS is a fancy term for a drone, in this case a hexacopter.  Yes, we are definitely using drones on this mission.  This seriously cannot get much cooler.)  HICEAS 2017 is utilizing these UAS systems to capture overhead photos of cetaceans in the water as they surface.  And the best part of all of this?  I was selected to be a part of team UAS!  

 

The UAS can only fly under certain atmospheric conditions.  It can’t be too windy and the seas can’t be too rough.  We had the chance to practice flying the hexacopters on one of the few days we were off the Kona coast of the Big Island, where the wind and seas are typically calmer.  Dr. Amanda Bradford is leading the HICEAS 2017 drone operations.  She is involved in securing air clearance that might be required for a hexacopter flight, as well as all of the operations that take place in preparation for deployment – of which there are many. The UAS is launched preferentially from a small boat, although it can be launched from the ship.  So, in order to do boat-based UAS operations, we must first launch a boat off of the side of the ship.  There are four people involved in the small boat UAS operations – the UAS pilot, the UAS ground station operator (Dr. Bradford and scientist Kym Yano alternate these positions), a coxswain to drive the small boat (NOAA crewmember Mills Dunlap) and a visual observer/data keeper (me!)  for each flight the hexacopter makes.

We all load up our gear and equipment onto the small boat, along with the coxswain and one team member, from the side of the ship.  The ship then lowers the boat to the water, the remaining teams members embark, and we are released to move toward the animals we are trying to photograph.  I don’t have any photographs of us loading on to the ship because the operation is technical and requires focus, so taking photos during that time isn’t the best idea.  I will say that the whole process is really exciting, and once I got the hang of getting on and off the ship, pretty seamless.

 

Our first trip out was just to practice the procedure of getting into the small boat, flying the UAS on some test flights, and returning back to the ship.  The goal was to eventually fly the hexacopter over a group of cetaceans and use the camera docked on the hexacopter to take photogrammetric measurements of the size and condition  of the animals.

Launching a hexacopter from a boat is quite different from launching one on land.  Imagine what would happen if the battery died before you brought it back to the boat!  This is why numerous ground tests and calibrations took place before ever bringing this equipment out over water.  The batteries on the hexacopter are good, but as a security measure, the hexacopter must be brought back well before the batteries die out, otherwise we have a hexacopter in the water, and probably a lot emails from higher ups to answer as a result.  Each time the hexacopter flies and returns back to the small boat, the battery is changed out as a precaution.  Each battery is noted and an initial voltage is taken on the battery before liftoff.  The flights we made lasted around10 minutes.  As soon as the battery voltage hits a certain low level, the pilot brings the hexacopter back toward the boat to be caught.  My job as the note taker was to watch the battery voltage as the hexacopter comes back to the small boat and record the lowest voltage to keep track of battery performance.

 

The UAS has two parts, one for each scientist – the pilot (who directs the hexacopter over the animals), and a ground station operator.  This person watches a computer-like screen from the boat that has two parts – a dashboard with information like altitude, time spent in flight, battery voltage, distance, and GPS coverage.  The bottom portion of the ground station shows a monitor that is linked to the camera on the hexacopter in real time.

The pilot has remote control of the hexacopter and the camera, and the ground station operator is responsible for telling the pilot when to snap a photo (only she can see from the monitor when the animals are in view), watching the battery voltage, and the hand launching and landing of the drone.  As the hexacopter is in flight, it is the coxswain’s and my responsibility to watch for obstacles like other boats, animals, or other obstructions that might interfere with the work or our safety.

 

To start a flight, the hexacopter is hooked up to a battery and the camera settings (things like shutter speed, ISO, and F-stop for the photographers out there) are selected. 

The ground station operator stands up while holding the hexacopter over her head.  The pilot then begins the takeoff procedures.  Once the drone is ready to fly, the ground station operator lets go of the drone and begins monitoring the ground station.  One important criterion that must be met is that the animals must never come within 75 overhead feet of the drone.  This is so that the drone doesn’t interfere with the animals or cause them to change their behavior.  Just imagine how difficult it is to find an animal in a camera frame being held by a drone and flown by someone else while looking on a monitor to take a photo from a minimum of 75 feet from sea level!  But Amanda and Kym accomplished this task multiple times during the course of our flights, and got some great snapshots to show for it.

 

On the first day of UAS testing, we took two trips out – one in the morning, and one in the afternoon.  On our morning trip, Kym and Amanda took 5 practice flights, launching and catching the hexacopter and changing between piloting and ground station monitoring.  In the afternoon, we were just getting ready to pack up and head back to the ship when out of the corner of my eye I saw a series of splashes at the ocean surface.  Team.  I had a sighting of spinner dolphins!   I barely stuttered out the words, “Oh my God, guys!  There are dolphin friends right over there!!!!”  (Side note:  this is probably not how you announce a sighting in a professional marine mammal observer scenario, but I was just too excited to spit anything else out.  I mean, they were Right. There.  And right when we needed some mammals to practice on, too!)  They were headed right past the boat, and we were in a prime position to capture some photos of them.  We launched the hexacopter and had our first trial run of aerial cetacean photography.  

OLYMPUS DIGITAL CAMERA

 

On the second day, we had a pilot whale sighting, and the call came over the radio to launch the small boat.  Things move really fast on a sighting when there is a small boat launch.  One minute I was up on the flying bridge trying to get some snapshots, and the next I was grabbing my camera and my hard hat and making a speedy break for the boat launch.  We spent a good portion of the morning working the pilot whale group, taking photos of the whales using the hexacopter system.  We were lucky in that these whales were very cooperative with us.  Many species of whales are not good candidates for hexacopter operations because they tend to be skittish and will move away from the noise of a small boat (or a large one for that matter).  These little fellas seemed to be willing participants, as if they knew what we were trying to accomplish would be good for them as a species.  They put on quite a show of logging (just hanging out at the surface), spyhopping, and swimming in tight subgroups for us to get some pretty incredible overhead photographs.  I also had the chance to take some great snapshots of dorsal fins up close, as well.

These side-long photos of dorsal fins help the scientific team to identify individuals.  There were times when the whales were less than twenty yards from the boat, not because we went to them, but because they were interested in us.  Or they were interested in swimming in our general direction because they were following a delicious fish, and I’d be happy with either, but I’d like to think they wanted to know what exactly we were up to.

OLYMPUS DIGITAL CAMERA

 

 

While photographing the whales a couple of interesting “other” things happened.  I had a brief reminder that I was definitely not at the top of the food chain when Mills pointed out the presence of two whitetip sharks skimming beneath the surface of the water.  Apparently these sharks know that pilot whales can find delicious fish and sort of hang out around pilot whale groups hoping to capitalize.  I wondered if this was maybe my spirit animal as I am following a group of scientists and capitalizing on their great adventures in the Pacific Ocean, as well.

Another “other” thing that happened was some impromptu outreach.  While working on the small boat, other boats approached the whales hoping to get some up close snapshots and hang out with them for a bit, as well.  Two were commercial operations that appeared to be taking tour groups either snorkeling or whale watching, and one was just a boat of vacationers out enjoying the day.  The scientific team took the opportunity to approach these boats, introduce us, and explain what we were doing over the whale groups.  They also took the opportunity to answer questions and mention the HICEAS 2017 mission to spread the word about our study.  It was a unique opportunity in that fieldwork, apart from internet connections, is done in relative isolation in this particular setting.  Real-time outreach is difficult to accomplish in a face-to-face environment.  In this case, the team made friendly contacts with approximately 45 people right out on the water.  Congenial smiles and waves were passed between the passengers on the boats and the scientific team, and I even saw a few cell phones taking pictures of us.  Imagine the potential impact of one school-aged child seeing us working with the whales on the small boats and thinking, “I want to do that for a career someday.”  What a cool thing to be a part of.

OLYMPUS DIGITAL CAMERA

 

 

Personal Log

Over the last couple of days, the ship was near the coast of the Big Island, Hawai’i.  One morning, we approached on the Hilo side, which is where Mauna Loa is spewing forth her new basaltic earth.  It treks down the side of the volcano, red-hot and caustic, only to be tempered immediately as soon as it strikes the anesthetic waters of the Pacific.  Having never seen real lava before, I was hoping to capitalize on the big eyes and catch a glimpse of it as it splashed into the ocean’s cool recesses, forming solid rock and real estate on the side of the mountain.  Unfortunately, I failed to account for the laws of thermodynamics – forgetting that hot things make water evaporate and re-condense into steam.  I suppose I was just romanticizing the idea that I could possibly see this phenomenon from an angle that not many get to see it from – miles out on the Pacific Ocean. And the truth is, I did, just not in the way I had imagined.   I did get to see large plumes of steam extending up from the shoreline as the lava met its inevitable demise.  While I didn’t get to see actual real lava, there was definitely hard evidence that it was there, hidden underneath the plumes of white-hot condensation.  I took a few photos that turned out horribly, so you’ll just have to take my word for it that I almost sort of saw lava.  (I know, I know.  Cool story, bro.)  If you can’t believe that fish tale, surely you won’t believe what I’m about to tell you next – I didn’t see the lava – but I heard it.

Starting in the wee hours of the morning, the acoustics team deployed the array only to find an unidentified noise – a loud, sharp, almost cracking or popping noise.  They tried to localize the noise only to find out that it was coming from the shores of the big island.  Sure enough, when they figured it out, the acoustics lab was a popular place to be wearing headphones.  The snapping and cracking they were hearing was the lava cooling and cracking just beneath the ocean surface on the lava bench.  So, I didn’t see the lava, but I heard it solidifying and contracting on the acoustics system.  How cool is that?

 

Ship Quiz:

Why do the head stalls (AKA bathroom stalls) lock on both sides of the door?

  1.       So that you can lock your friends in the bathroom as a mean prank
  2.      Extra protection from pirates
  3.       To give yourself one extra step to complete to get to the toilet when you really gotta go
  4.      To keep the doors from slamming with the natural movement of the ship

If you said “D”, you are correct!  The bathrooms lock on both sides because if left to their own devices, they would swing and bang open and shut with the constant motions of the ship.  So, when you use the bathroom, you have to lock it back when you finish.  Now you know!

 

 

Staci DeSchryver: Listening with Your Eyes – How the Acoustics Team “Sees” in Sound, July 10, 2017

NOAA Teacher at Sea

Staci DeSchryver

Aboard NOAA Ship Oscar Elton Sette

July 6 – August 2, 2017

Mission:  HICEAS Cetacean Study

Geographic Area:  Kona Coast, Hawaii

Date:  July 10, 2017

Weather Data from the Bridge:

TAS DeScrhryver_weather data
Location and Weather Data

 

Science Log

While the visual team is working hard on the flying bridge, scanning the waters for our elusive cetacean friends, acoustics is down in the lab listening for any clues that there might be “something” out there.

TAS DeSchryver array
The hydrophone array is a long microphone pulled behind the ship

At any given time, two acousticians are listening to the sounds of the ocean via a hydrophone array. This array is a long microphone pulled behind the ship as she cuts through the water.  When the acousticians hear a click or a whistle, a special computer program localizes (or determines the distance to) the whistle or the click.

But it’s not quite as simple as that. There’s a lot of noise in the ocean.  The array will pick up other ship noise, cavitation (or bubbles from the propeller) on our ship, or anything it “thinks” might be a cetacean.  The acoustics team must determine which sounds are noise and which sounds belong to a mammal.  What the acousticians are looking for is something called a “click train.” These are sound produced by dolphins when they are foraging or socializing and are a good indicator of a nearby cetacean. On the computer screen, any ambient noise shows up as a plotted point on an on-screen graph.  When the plotted points show up in a fixed or predictable pattern, then it could be a nearby cetacean.

The acousticians are also listening to the sounds on headphones.  When they hear a whistle or a click, they can find the sound they’ve heard on the plotted graph.  On the graphical representation of the sounds coming in to the hydrophone, the x-axis of the graph is time, and the y-axis is a “bearing” angle.  It will tell which angle off the ship from the front the noise is coming from.  For example, if the animal is right in front of the bow of the ship, the reading would be 0 degrees.  If it were directly behind the ship, then the plotted point would come in at 180 degrees.  With these two pieces of information, acousticians can narrow the location of the animal in question down to two spots on either side of the ship.  When they think they have a significant sound, the acousticians will use the information from the graph to localize the sound and plot it on a map.  Often times they can identify the sound directly to the species, which is an extraordinary skill.

Here’s where things go a little “Fight Club.”  (First rule of fight club?  Don’t talk about fight club.)  Once the acousticians localize an animal, they must determine if it is ahead of the ship or behind it.   Let’s say for example an acoustician hears a Pilot Whale.  He or she will draw a line on a computerized map to determine the distance the whale is to the ship using the data from the graph.

DeSchryver HICEAS-AC20
This is a “clean” localization of a marine mammal. Notice the two spots where the lines cross – those are the two possible locations of the mammal we are tracking. The ship is the red dot, the blue dots are the hydrophone as it is towed behind the ship.

Because the hydrophones are in a line, the location provided from the array shows on the left and the right sides.  So, the map plots both of those potential spots.  The two straight lines from the ship to the animal make a “V” shape.  As the ship passes the animal, the angle of the V opens up until it becomes a straight line, much like opening a book to lay it flat on the table and viewing how the pages change from the side.  As long as the animal or animal group is ahead of the ship, the acousticians will alert no one except the lead scientist, and especially not the marine observers.  If a crew member or another scientist who is not observing mammals just so happens to be in the acoustics lab when the localization happens, we are sworn to secrecy, as well.  Sometimes an acoustician will send a runner to get the lead scientist to discreetly tell her that there is something out there.

TAS DeSchryver HICEAS-AC25
The screenshot on the left shows a series of spotted dolphin “click trains.” Notice the marks all in a line along the graph. The right photo shows the various localizations that the acoustics team has picked up from the click train graph. The red dot is the ship, the gray line is the “track line”, and the two blue dots behind the ship are the hydrophone arrays. Notice the V shape gradually goes to a straight line and then turns in the opposite direction.

 

This way, the lead scientist can begin the planning stages for a chase on the mammals to do a biopsy, or send the UAS out to get photos with the Hexacopter.  (More on this later.)

As the mammals “pass the beam” (the signal is perfectly on either side of the ship, and starting to make an upside down V from the ship), the acousticians can alert the visual team of the sighting.  As soon as everyone is aware the mammals are out there, either by sight or sound, the whole scientific group goes “off effort,” meaning we funnel our energy in to counting and sighting the mammals we have found.  When this happens, communication is “open” between the acoustics team and the visual team.  The visual team can direct the bridge to head in any direction, and as long as it’s safe to do so, the bridge will aid in the pursuit of the mammals to put us in the best position to get close enough to hopefully identify the species.  Today, one mammal observer had a sighting almost 6 miles away from the ship, and she could identify the species from that distance, as well!  Even cooler is that it was a beaked whale, which is an elusive whale that isn’t often sighted.   They have the capability of diving to 1000m to forage for food!

When the visual team has a sighting, the three visual observers who are on shift have the responsibility to estimate the group size.

TAS DeSchryver chris takes photos
Chris captures photos of Melon Headed Whales for Photo ID.

 

Here we go with Fight Club again – no one can talk to one another about the group sizes.  Each mammal observer keeps their totals to themselves.  This is so that no one can sway any other person’s opinion on group size and adds an extra element of control to the study.  It is off limits to talk about group sizes among one another even after the sighting is over. We must always be vigilant of not reviewing counts with one another, even after the day is done.  The scientific team really holds solid to this protocol.

Once the sighting is over, all parties resume “on effort” sightings, and the whole process starts all over again.

Now, you might be thinking, “Why don’t they just wait until acoustics has an animal localized before sending the mammal team up to look for it?

TAS DeSchryver ernesto big eyes
Ernesto on the “Big Eyes” during a Melon Headed Whale Visual Chase

Surely if acoustics isn’t hearing anything, then there must not be anything out there.”  As I am writing this post, the visual team is closing in on a spotted dolphin sighting about 6.5 miles away.  The acoustics did not pick up any vocalizations from this group.

TAS DeSchryver acoustics lab 2
Shannon and Jen in the acoustics lab “seeing” the sounds of the ocean.

This also happened this morning with the beaked whale.  Both teams really do need one another in this process of documenting cetaceans.  Further, the acoustics team in some cases can’t determine group sizes from the vocals alone.  They need the visual team to do that.  Each group relies on and complements one another with their own talents and abilities to conduct a completely comprehensive search.  When adding in the hexacopter drone to do aerial photography, we now have three components working in tandem – a group that uses their eyes to see the surface, a group that uses the ocean to “see” the sounds, and a group that uses the air to capture identifying photographs.  It truly is an interconnected effort.

 

Personal Log

I haven’t gotten the chance to discuss just how beautiful Hawai’i is.  I would think that it is generally understood that Hawai’i is beautiful – it’s a famed tourist destination in an exotic corner of the Pacific Ocean. But you have to see it to believe it.

TAS DeSchryver melon-headed whales
Melon-Headed Whales take an evening ride alongside the starboard side of Sette.

I’ve been lucky enough to see the islands from a unique perspective as an observer from the outside looking inland, and I just can’t let the beauty of this place pass without mention and homage to its stunning features.

Hawai’i truly is her own artist.  Her geologic features create the rain that builds her famed rainbows, which in turn gives her the full color palate she uses to create her own landscape.  The ocean surrounding the shores of Hawai’i are not just blue – they are cerulean with notes of turquoise, royal, and sage.  She will not forget to add her contrasting crimson and scarlet in the hibiscus and bromeliads that dot the landscape. At night when the moon shines on the waters, the ocean turns to gunmetal and ink, with wide swaths of brass and silver tracing the way back up to the moon that lights our path to the sea.  With time, all of her colors come out to dance along the landscape – including the sharp titanium white foam that crashes against the black cliffs along Kona.  And if a hue is errantly missed in her construction of the landscape, early morning showers sprout wide rainbows as a sign of good fortune, and as a reminder that she forgets no tones of color as she creates.

It is our responsibility to protect these waters, this landscape – this perfect artistry.  It is critically important to protect the animals that live in the ocean’s depths and the ones that cling to the island surface in their own corner of paradise.  I like to think that this study takes on this exact work.  By giving each of these species a name and identifying them to each individual group, we share with the world that these cetaceans are a family of their own with a habitat and a purpose.  When we “re-sight” whales that the team has seen in past studies, we further solidify that those animals have families and a home amongst themselves.   The photo identification team counts every new scar, marking, and change in these animals to piece together the story of their lives since they last met with the scientists.  Everyone on Oscar Elton Sette  talks about the new calves as if we were at the hospital with them on the day of their birth, celebrating the new life they’ve brought forth to continue their generations.  I like to think we all make a little room in the corner of our hearts for them as a part of our family, as well.

Did you know?

The Frigate bird has a Hawaiian name, “Iwa”, which means “thief.”  They call this bird “thief” because they steal prey right from the mouths of other birds!

 

“Spyhopping” is the act of a whale poking his head out of the water and bobbing along the surface.

 

It is legal for research ships to fish off the ship, so long as we eat what we catch while underway.  This led to the shared consumption of some delicious mahi mahi, fresh from the depths for lunch today.  Yes.  It was as good as it sounds.

 

Oscar Elton Sette knows how to celebrate!  Yesterday was Adam’s birthday, a marine mammal observer.  They decorated the mess in birthday theme, cranked up the dinnertime music, and the stewards made Adam his favorite – blueberry cheesecake for dessert!

 

Much of the crew likes to pitch in with food preparation.  The on ship doctor, “Doc”, makes authentic eastern dishes, and the crew made barbeque for everyone a few nights ago at dinner.

Suzanne Acord: Teamwork Is a Must While at Sea, March 25, 2014

NOAA Teacher at Sea
Suzanne Acord
Aboard NOAA Ship Oscar Elton Sette
March 17 – 28, 2014

Mission: Kona Area Integrated Ecosystems Assessment Project
Geographical area of cruise: Hawaiian Islands
Date: March 25, 2014

Weather Data from the Bridge at 14:00
Wind: 7 knots
Visibility: 10 nautical miles
Weather: Hazy
Depth in fathoms: 577
Depth in feet: 3,462
Temperature: 27.0˚ Celsius

Science and Technology Log

Teamwork

Kona cruise map
2014 Kona IEA Cruise Map. Locate H1 and H2 to determine where our HARPs are retrieved and deployed.

Throughout the past week, it has become obvious that all operations aboard the Sette require team work. Scientific projects and deployments require the assistance of the Bridge, engineers, and heavy equipment operators. This was clear during our recent deployment of our HARP or High-frequency Acoustic Recording Package (see my earlier posts to learn why we use the HARP). Marine Mammal Operations lead, Ali Bayless, leads our morning HARP retrieval and deployment operations. We first prepare to retrieve a HARP that has completed its duty on the floor of the ocean. At least a dozen scientists and crew members attempt to locate it using binoculars. It is spotted soon after it is triggered by our team. Crew members head to the port side of the ship once the HARP at station H2 surfaces. H2 is very close to the Kona Coast. A fresh HARP is deployed from the stern of the ship later in the morning. Both the retrieval and deployment of the HARPs take immaculate positioning skills at the Bridge. Hence, the Bridge and the HARP crew communicate non-stop through radios. The coordinates of the drop are recorded so the new HARP can be retrieved in a year.

A Conversation with Commanding Officer (CO) Koes

A selfie with CO Koes
A selfie with CO Koes

Morale is high and teamwork is strong aboard the Sette. These characteristics are often attributed to excellent leadership. CO Koes’ presence is positive and supportive. CO Koes has served with NOAA for the past thirteen years. She came aboard the Sette January 4, 2013. She is now back in her home state of Hawaii after serving with NOAA in California and Oregon. She is a graduate of Kalani High School in Hawaii and earned a BA in chemical engineering at Arizona State University.

As CO of the Sette, Koes believes it is important to create trust amongst crew members and to delegate rather than to dictate. She provides support and guidance to her crew twenty-four hours a day, seven days a week. She is the CO of all ship operations such as navigation, science operations, deck activities, trawling, and engineering. She is highly visible on board and is genuinely interested in the well-being of her crew and ship. She does not hesitate to start a conversation or pep talk in the mess or on the deck. When asked what she enjoys most about her job, she states that she “likes to see the lights go on in the eyes of junior officers when they learn something new.” Koes goes on to state that her goal as CO is to have fun and make a difference in the lives of her officers and crew.

Personal Log

Ship Life

Bunkmate and scientist, Beth Lumsden, and I during an abandon ship drill on the Texas deck.
Bunkmate and scientist, Beth Lumsden, and I during an abandon ship drill on the Texas deck.

I have found that one can acclimate to life aboard a ship quite quickly if willing to laugh at oneself. The first couple of days on board the Sette were fun, but shaky. We had some rough weather on our way to the Kona Coast from Oahu. I truly felt like I was being rocked to sleep at night. Showering, walking, and standing during the rocking were a challenge and surely gave me stronger legs. Regardless of the weather, we must be sure to completely close all doors. We even lock the bathroom stall doors from the outside so they don’t fly open. The conditions quickly improved once we hit the Kona Coast, but conditions change frequently depending on our location. When up in the flying bridge for Marine Mammal Observation, we can easily observe the change in the wave and wind patterns. It is difficult to spot our dolphins and whales once the water is choppy. It is these changes in the weather and the sea that help me understand the complexity of our oceans.

Meal time on board is tasty and social. Everyone knows when lunchtime is approaching and you are sure to see smiles in the mess. All meals are served buffet style so we are able to choose exactly what we want to eat. We can go back to the buffet line numerous times, but most folks pile their plates pretty high during their first trip through the line. After our meals, we empty our scraps into the slop bucket and then rinse our dishes off in the sink. This gives us the chance to compliment our stewards on the great food. If we would like, we can eat our meals in the TV room, which is next door to the mess. It has a TV, couches, a few computers, a soda machine, and a freezer filled with ice-cream.

Chain of command is important when performing our science operations, when net fishing, when in the engineering room, and even when entering the Bridge. Essentially, if someone tells me to put on a hard hat, I do it with no questions asked. Everyone on board must wear closed toed shoes unless they are in their living quarters. Ear plugs are required on the engineering floor. Safety is key on the decks, in our rooms, in the halls, and especially during operations. I have never felt so safe and well fed!

Dr. Tran is always smiling.
Dr. Tran is always smiling.

“Doc” Tran

Did you know that we have a doctor on board who is on call 24/7? The Sette is fortunate to have “Doc” Tran on board. He is a commander with the United States Public Health Service. Doc Tran has served on the Sette for four years. He is our doctor, our cheerleader, our store manager, and our coach! When not on duty, he can be seen riding an exercise bike on the deck or making healthy smoothies for anyone willing to partake. He also operates the ship store, which sells shirts, treats, hats, and toiletries at very reasonable prices. He truly enjoys his service on the Sette. He loves to travel, enjoys working with diverse groups of people, and appreciates our oceans. He is a perfect match for the Sette and is well respected by the crew.

 

 

Suzanne Acord: Preparing to Embark! March 12, 2014

NOAA Teacher at Sea
Suzanne Acord
(Almost) On board NOAA Ship Oscar Elton Sette
March 17 – 28, 2014

Mission: Kona Area Integrated Ecosystems Assessment Project
Geographical area of cruise: Hawaiian Islands
Date: March 12, 2014

Personal Log

Aloha, from Honolulu, Hawaii! My name is Suzanne Acord. I teach high school social studies with Mid-Pacific Institute in Honolulu, Hawaii. More specifically, I teach Asian Studies, World History, and IB History. I also teach one Pacific Island History course with Chaminade University. In addition to teaching, I advise our Model United Nations delegation and coordinate our school’s History Day efforts.

Prior to teaching in Hawaii, I served as a Peace Corps volunteer in Yap, Micronesia. Two years of living a subsistence lifestyle in Yap helped me to understand our intimate and reciprocal relationship with our earth. Yap State Legislator, Henry Falan, sums up this relationship by stating, “In Micronesia, land is life.” Both man-made and naturally occurring disasters can be felt throughout the Pacific. World War II, El Nino, tsunamis, and nuclear testing are just a few world events that have left their mark on the Pacific Ocean. Their impacts on the reefs, the fish supplies, and the water quality are apparent daily.

Peace Corps hut
My first hut in Yap, Micronesia. I lived here while serving in the Peace Corps.

I applied for the NOAA Teacher at Sea program to gain a better understanding of the human relationship with our oceans. My history students frequently determine how our relationship with the ocean changes as a result of environmental change, political change, economic change, and cultural change. My experiences during this cruise will allow my educational community to consider real world solutions for the environmental challenges we face and will face in the future.

I couldn’t be happier to set sail on NOAA Ship Oscar Elton Sette on March 17, 2014. We will travel from Ford Island (a WWII place of interest) to the Big Island of Hawaii, which is also known as Hawaii Island. The Big Island is the largest of the Hawaiian Islands and is the home of Volcanoes National Park. Most of our time will be spent on the Kona coast of the island.  One of the many goals of the Kona Area Integrated Ecosystems Assessment Project is to gain “a complete understanding of the Kona ecosystem, from the land to the ocean…to provide scientific advice used in making informed decisions in the Kona area.”

Suzanne at desk
Anticipating the adventure in my classroom.
Photo credit: Scot Allen

The thorough NOAA Teacher at Sea training has given me peace of mind. I feel much better prepared for the TAS journey now that I have read the official requirements and the tips from past Teachers at Sea. The videos helped me to visualize the experience. Don Kobayashi, our Chief Scientist, has kept all members of the scientific expedition in the loop throughout the planning process. I was excited to see my name listed on the “science party” document and amused when I learned that my daily shift would span from 3 am to noon daily. I will surely experience amazing sunrises over the Pacific. This will definitely be an intellectually stimulating adventure!

My next blog will be written aboard the Sette. Aloha for now.

Richard Jones & Art Bangert, January 20, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Mission: Oceanographic Survey
Geographical Area: Hawaiian Islands
Date: January 20, 2010

Science Log

Steaming and dreaming, that was the order of the day. We had the opportunity to spend a little more time on the bridge today. Here you can see three of the Ensign’s standing watch. While on the bridge we learn about how the radar works.
Learning about radar on the bridge
Learning about radar on the bridge
Most people in Montana are familiar with the concept of radar since that is the basic method used to measure our speed.What do you think is similar about the radar on the ship? What is different?
Radar screen
Radar screen
We also took a look at the ship’s wheel.Like most people we envisioned the wheel to be like one you would see in an old movie or perhaps like those on the tall ships of old. The wheel of the KA is smaller than the average steering wheel, but it gets the job done.
Steering the ship
Steering the ship
 We participated in several meetings to prepare us for our stay in Samoa.One presentation, made by Joe our Electronics Technician was focused on customs and taboos that we need to be aware of as guests and representatives of the US government. Joe has a unique and useful understanding of Samoa since his wife is from Western Samoa and he has lived here so he knows what we can and can’t do.
Laundry at sea
Laundry at sea
We also decided we better do laundry today! The washers and dryers will be secured tonight for our arrival in Samoa tomorrow morning. While the crew visits the island, the engineers will need to purge the sewage system of gray water – water from cooking, showers, toilets etc. The ship will also take on water from the port at Apia, Samoa were we are docking. The ship has great laundry facilities and also very nice exercise equipment. Even though we are seeing the pacific, we still have to take of our chores!
Joe, the electronics technician
Joe, the electronics technician
Land tomorrow! Until then happy sailing and calm seas.

Richard Jones & Art Bangert, January 19, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Art with the line gun
Art with the line gun

Mission: Oceanographic Survey
Geographical Area: Hawaiian Islands
Date: January 19, 2010

Science Log

Safety Drills and an island on the horizon were the highlights of the day.Today we had quite the rainstorm, it came in gray sheets that pounded the deck and boiled the sea surface, like we were running the ship through a car wash back home..We also had gusts that cooled the air for the first time in several days. It was pleasant while it lasted but when the sun came out the air was steamy.
Fixing a pipe
Fixing a pipe

Safety is a big issue on a ship. We have regular weekly drills including Man Overboard, Abandon Ship and Fire Drills. In addition, today after lunch we participated in what is called a safety stand down where we observed several safety demos including using a line gun. You can see Art prepping the gun under the watchful eye of Chris the Chief Bosun and Rick firing the gun. The line gun uses 3000 psi of air pressure to shoot a small rocket with a line out to 750 feet. This tool is used when it is necessary to get a line to another ship or land facility when the ship can’t be close enough for a safe hand toss. After our time on the firing line we learned about fixing ruptured or leaking pipes and how to shore up a sagging upper deck with telescopic metal vertical braces.

When a safety drill is called, a general alarm bell (see picture) is rung notifying all of the ships’ crew, scientists and others to muster (or go) to their assigned stations. The stations are different positions on the ship such as the buoy deck (man overboard station), the top deck by the RHIB (abandon ship) and the mess – cafeteria (fire). The positions in parentheses are my stations for this cruise – they differ for other participants. When practicing the drill for abandon ship, we are shown where the inflatable life boats (see pictures for life boats) are stored and to know to bring as much water as possible from the water locker.

Fire alarm
Fire alarm

We have begun a series of video interviews of the different NOAA corps crew. We began yesterday with the three new Ensigns. Today we interviewed the oiler, Mike Robinson and the Lieutenant Commander Helen “Doc” Ballantyne (Ship’s Nurse/PA ). Our tour of the engine room was fascinating in addition to being very noisy and very warm. This area can really be considered the heart of the ship. The diesel engines, generators, propulsion mechanism, sewage disposal system, and filters for producing fresh water are all located here.  L

t.Cmdr. Ballantyne or “Doc” is not only a nurse who takes care of sick crew members but is also responsible for procedures for handling and storing hazardous materials, disaster care, and other safety related issues. NOAA is always looking for good nurse practitioners, so if you want adventure on the high seas, give NOAA a call!

DSC02156

As we were on deck for the man overboard we passed Nassau a small island in the Cook Islands located close to 11 degrees 40 minutes South and 165 degrees 24 minutes West. Another day of sailing and we should be close enough to see the Samoan Islands.
Small island in the Cook Islands chain
Small island in the Cook Islands chain
Touring the engine room
Touring the engine room
DSC02158

Richard Jones & Art Bangert, January 18, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Mission: Oceanographic Survey
Geographical Area: Hawaiian Islands
Date: January 18, 2010

Science Log

Painting in the morning, painting in the afternoon.We had a time change this morning, we set our clocks back (retarded) them one hour so we are now four hours earlier than Montana or 11 hours earlier than GMT (Greenwich Mean Time) or Zulu. This means that we are almost half way around the world from the Prime Meridian that runs through Greenwich England.

Ensigns onboard
Ensigns onboard
You might notice that it looks like Rick is in a fog, well he is. The difference between the inside of the ship and the outside of the ship in regards to temperature and humidity is huge. The ship is generally around 21 degrees c or close to 70 degrees F with low humidity and outside has been close to 31 degrees c or about 87 degrees F with high humidity. When you bring something like a camera outside from the cooler interior of the ship the moisture in the humid outside air condenses on the camera and instant fog.
More buoy maintenance
More buoy maintenance
We painted the international yellow on the top half of the four tolroids and now all the buoys will be the new color scheme, no more orange and white top half’s anymore.
Hitch hiking onboard
TAS Rick hitch hiking onboard
You may have noticed that the sky is gray and the sea is fairly calm. We are in the Doldrums, an area of low pressure and often very little wind. This area is also known as the “Horse Latitudes”. Do you know why?
Small cups
Small cups
While we were waiting for the paint to dry we watched Alen refresh the sonic releases that connect the anchor to the nylon anchor line. Each of these releases costs about $12,000 and it is essential to use them over and over so replacing the battery, the rubber “O” rings and filling them with argon is a must after they are recovered with the anchor line Nilspin and nylon, pretty much ever thing that can be re-used is reused in order to minimize the cost of the project. Because we are able to use the acoustical releases only the iron anchor and some chain are left on the bottom of the ocean where they rust away eventually. It is hard to see but just before the releases are approved for re-deployment Argon is put into the body of the refreshed unit to provide and inert environment for the electronics. By removing the air, the risk of oxidation to the components is reduced.

Cleaning up the lab
Cleaning up the lab
After lunch the paint was dry enough that we taped in prep for painting the black waterline and we put the TAO on the donuts.Now these are ready for deployment on the next two legs of the cruise. We also had some time today to interview some of the crew on the KA. Today we chatted with three of the four young Ensign’s who are stationed on this ship. We asked them a variety of questions about life in NOAA and the types of degrees that they have and their interests. We discovered that one of the Ensign Rose (white shirt) is from Wyoming and that Rick went to school with one of her uncles and that she is distantly related to his wife through a cousin. Weird how small the world really is.

DSC02155
Two days ago, on 1/16/10, we conducted the last deep CTD at about 3,000 meters (about 2 miles). Rick had about 130 cups to send down and Art ran an experiment with control for Rossiter School in Helena. Just to review, this operation sends down a large, round instrument with tubes that collect water samples at different depths up to 3,000 meters. The intent of this procedure is to measure the salinity, Temperature and Pressure at different depths of the Ocean. As the depth of the ocean increases, so does the pressure of the water. An experiment that we can do to see the strength of the pressure is to attach a bag of Styrofoam cups to the CTD instrument. As the instrument sinks, what do you think would happen to the Styrofoam cups? Look at the picture of the cups before being sunk into the ocean depths and after. How would you describe the pressure of the ocean waters at 3,000 meters?
The batch of cups, back from the depths
The batch of cups, back from the depths

Richard Jones & Art Bangert, January 17, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Mission: Oceanographic Survey
Geographical Area: Hawaiian Islands
Date: January 17, 2010

Science Log

Today was not all that physically demanding which is good since it was 30.5 degrees Celsius by 9:30 AM ship time.My students should be able to figure out the temperature in temperature units they are more familiar with.While it was still fairly cool this morning Art and Rick helped Alen paint the anti fouling paint on the bottom of each of the three tolroids that needed it. Once the deck crew flipped them back to top side up, Alen discovered that one of the buoys had been hit and was cracked and so he needed to do some grinding and patching before painting the yellow. So we are going to finish the paint job early tomorrow after the patch has time to cure.

TAS Art painting
TAS Art painting
Land Ho! Later in the day we sighted land for the first time since we lost sight on Hawaii on the 6th. We came upon Tautua Island, which is part of the Cook Islands. If you take a look on Google Earth around 9 degrees: 13 minutes South and 157 degrees: 58 minutes West you can see the

island and the village on the island. We weren’t very close, so we couldn’t actually see the village, but it was nice to see land after 10 days of the vast expanse of the Pacific in every direction to the horizon.

Rick painting the buoy
Rick painting the buoy
Tautua
Tautua

Richard Jones & Art Bangert, January 16, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

flipping_2
Donut buoy

Mission: Oceanographic Survey
Geographical Area: Hawaiian Islands
Date: January 16, 2010

Science Log

Today was a day of odds and ends.We had planned to paint first thing after breakfast and Art and Rick got started masking off the water line on one of the orange and white buoys that needs to be painted. This one was chosen to do first because it only needed a coat of yellow and not a complete repaint. The other three buoy floats need the rust colored anti-fouling paint and the yellow. Just about the time we got the tape on, it was determined that all the buoys

would have the anti- fouling paint first so we had to wait while the tolroids or “donuts” were

flipped. In the process of turning them we discovered that a couple of the buoys were partially full of water and Alen had to drill them out to allow the water to pour out. While these were draining and drying we were put on hold for painting until tomorrow. Alen had to carefully look over the donuts and fix any cracks in the fiberglass hull and reseal the mounting brackets where they pass through the hull.

ThroughtheDonut_2

Since painting was sidetracked for a day, we got to participate in one of the necessary, but less exciting aspects of scientific research…inventory. As we mentioned yesterday, science is hard work and hopping a buoy or working on the fantail doing fairings with the ocean breaking over the deck has an element of risk and can be exciting. In order to do the exciting parts of the research safely and efficiently means that you have to have the right equipment and the right number of parts to make the instruments work and the science happen.

Flipping the buoy
Flipping the buoy
So today we counted bolts, and paintbrushes, screwdrivers, nylon zip ties and even pencils and post-it notes, everything that allows us to do the science. Today was a reminder that even the most exciting job in the world, like climbing up a swaying mast on a ship, might have to be done because you need to get the serial number off an antenna, an antenna that allows you to communicate the fruit of your research back to those who can use it to understand the world’s climate a little better.

Doing inventory
Doing inventory
About 4:30 pm today we approached a TAO buoy that needed to be visually checked for any damage. Prior to this check, the ship makes several close passes to the buoy for examinination and more importantly so the crew can fish! Six long lines were in the water as we past the buoy on four separate occasions. No one caught any fish. However, Alen speculated that this was because the buoy had been deployed fairly recently and there was not enough time for it to form a food chain of small microorganisms that eventually attract top level carnivores like Ono, Tuna and Mahi Mahi. Bummer!
Searching for the antenna serial number
Searching for the antenna serial number
The last order of business today was to deploy the last deep (3000 meter) CTD at 8 South on the 155 West Longitude line. Rick sent the remainder of the Styrofoam cups from his school, cups for Art’s wife’s school in Helena (Rossiter Elementary) and a couple for his grand kids plus two extras he had for the Ensigns down in mesh bags attached to the instrument.
Deploying the CTD
Deploying the CTD

Soon we say farewell to the 155 West line as we make our way toward Apia, Samoa and the end of our experiences aboard the Ka’Imimoana.

Richard Jones & Art Bangert, January 15, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Mission: Oceanographic Survey
Geographical Area: Hawaiian Islands
Date: January 15, 2010

Science Log

We have our last buoy of the 155 West line in the water and the anchor is set. Today began with a ride for Rick over the old buoy where he was responsible for removing an old loop of rope in order to put on the shackle and line that the tow line would be attached to.

Readying to retrieve the buoy
Readying to retrieve the buoy
You would think that cutting a three-eights nylon line would be pretty easy, and you would be right if that line wasn’t attached to a rocking, slime covered buoy floating in the middle of an ocean that is over 5000 meters deep.
Teamwork is essential
Teamwork is essential
It would also have helped if my knock-off Leatherman had a sharper blade.Anyway, Al and I went out the buoy on the RHIB and got a pretty good spray here and there as you can see from the water drops on some of the images.
Reeling it back in
Reeling it back in

Once we were on the buoy Al removed the ‘Bird” and handed to the support crew in the RHIB.If it weren’t for these men and women we (the scientists) would not be able to collect the data.This is science on the front lines and it takes a dedicated and well-trained crew to make the endeavor of science one that produces meaningful, valid, and important data.

Barnacles and all!
Barnacles and all!

Once the ‘Bird’ is off the buoy and the towline is attached it is time to go back to the KA to pick-up the towline so that the buoy can be recovered and the next phase of the process can begin, deployment of the new buoy that will replace this one.

Zodiak returning to the ship
Zodiak returning to the ship
During the recovery Art and Rick often work as a team spooling the nylon because it takes two people to re-spool the line in a way to prevent tangles, one person to provide the turning and another to be the ‘fair lead’.
The fair lead actually has the harder job because they have to keep constant eye on the line as it spools.With seven spools of nylon all over 500 meters and the 700 meters of Nilspin recovery is a team effort by everyone.
KA from RHIB_1
Like the recovery, the deployment is a team effort and many hands make the work easier for everyone.But at this point of the cruise Art and Rick can pretty much handle the nylon line individually, but work as a team to move the empty spools and reload the spool lift with full spools. Deployment of this buoy ended just about 4:30 PM with the anchor splashing and some deck clean up then it was out of the sun and into the air-conditioned comfort of the ship for some clean clothes and good food.
Deployment is also a team effort
Deployment is also a team effort

Richard Jones & Art Bangert, January 14, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Making fish lures
Making fish lures

Mission: Oceanographic Survey
Geographical Area: Hawaiian Islands
Date: January 14, 2010

Science Log

After the buoy deployment yesterday, I spent the afternoon, contributing to our blog, setting up my online courses for this semester and building fishing lures. Yes, building fishing lures. I mean we are in the middle of the Pacific Ocean – why not fish? This type of fishing is very different from what we typically think of when fishing in the rivers and lakes of Montana. Most of the fish are big and require heavy tackle. I had the opportunity to help Jonathan and Doc (Helen) build a lure using multicolored rubber skits tied onto a large metal head.

These lures are then attached to a nylon line that is about 200 feet long and attached to the rear of the boat.
Fishing off the back of the boat
Fishing off the back of the boat
Catch of the day
Catch of the day

The prized fish is the yellow fin tuna (Ahi) that the crew likes to make Sashimi and Poke (Sushi). Other fish caught include Whaoo (Ono) and Mahi Mahi (Dorado). The Chief Stewart even deep fat fried the Ono to produce delicious, firm chunks of fish to supplement on of our dinner meals and tonight we had Ono baked in chili sauce that Rick said was…Ono, which is Hawaiian for ‘good’. After lunch today I launched the Rossiter/MSU Atlantic Oceanographic Meteorological Laboratory (AOML) drifting buoy. These buoys collect surface sea surface temperature and air temperature data and send this information to the Argos satellite system. The data is downloaded and used by agencies such as the National Weather Service to produce models that are used to predict weather patterns. The satellites also track the AOML buoy’s drifting path. These buoys will collect this data for approximately the next three years. You can track the Rossiter/MSU drifting buoy as soon as the information from the deployment is registered with the proper agency.

Rick had a fairly relaxed day today, preparing the
next batch of cups for the 3000 meter CTD cast at 8S: 155W and doing odd jobs on the buoy deck getting ready for our recovery-deploytomorrow at 5S: 155W and future deployments scheduled later in the cruise.

With the drifter buoy
With the drifter buoy
Cups ready for the depths
Cups ready for the depths
Continuing south
Continuing south
As you can see by the GPS, at 4:54 Hawaiian Standard time (7:54 Mountain Standard Time) we continue to move south toward our next buoy recovery and deployment at 5 latitude South and 155 West longitude.
Stay Tuned for More!

Richard Jones & Art Bangert, January 13, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

At the controls
At the controls

Mission: Oceanographic Survey
Geographical Area: Hawaiian Islands
Date: January 13, 2010

Science Log

Bronc Buoy Day! By 8 this morning ship time we were running out the Nielspin and slapping on the fairings from the recovery yesterday.Some of these were pretty clean, but the majority of them, the ones that the teachers got to help with were pretty slimy and even had barnacles stuck to them. The fairings are added to help the reduce shake on the wire that can be produced by currents close to the equator.

We put these airfoil shaped fairings on the first 250 meters, after that it was smooth sailing.Because the Bronc-Bobcat buoy at 0: 155W is a TAO-CO2 buoy it needed a little extra weight on the anchor, 6200 pounds of steel. Once the anchor was off the fantail and sinking we noticed that there was a ship close to the location of the buoy. The science crew commented that this must be a new record for fishermen finding one of the buoys. It seems that fishermen love the TAO buoys since they attract fish.One of the scientists said, “A buoy for these guys is like having your own private fishing hole”. It will be interesting to see if this ship leaves, or just steams away and waits for us to be clear of the area and then comes back.

Broncs buoy deployed!
Broncs buoy deployed!

Around 12:15 today, actually Rick and Art were just finishing up lunch when the call came from Survey, “Teacher’s at Sea report to the CTD deck”. The first order of business was to lower an Argo buoy over the side of the ship and then to release the buoy using a quick release. According the home page for Argo, Argo is a global array of 3,000 (3199 on Jan 13) free-drifting profiling floats that measure the temperature and salinity of the upper 2000 m of the ocean.

These buoys are unique because the sink to between 1000 and 2000 meters and then on regular intervals, generally 10 days the Argo returns to the surface to transmit and the data it has collected. This allows, for the first time, continuous monitoring of the temperature, salinity, and velocity of the upper ocean, with all data being relayed and made publicly available within hours after collection. Once the Argo was on its own a call was made to the bridge for the crew to help with the deployment of the Bronc Buoy. This AOML drifter’s data will be available in a few days from the Adopt-A-Drifter website. It will be interesting to follow the Bronc Buoy and see where it goes over the next several years.

Our afternoon will be spent sailing south, in the Southern Hemisphere for the first time this trip and devoted to teardown of the old 0: 155W buoy and set-up of our next buoy.

After the deployment of the new CObuoy we crossed the equator and entered the southern hemisphere. Our new position put us in the southern hemisphere and we officially went from the winter to the summer season. Currently (at 6:15 pm MST) we are approximately 28.5 miles (at 6:19 MST) miles south of the equator.
Minding the lines
Minding the lines
Reeling it in
Reeling it in

Those of you in Montana today experienced temperatures ranging from 30 to 40 degrees while the temperatures around the equator (regardless of north – winter or south- summer) are staying at about 84 degrees Fahrenheit. Quite a warm temperature when considering the area north of the equator is technically in the Winter season. Regardless, of your position just north or south of the equator, the deck work required to recover and deploy TAO buoys is demanding. An air temperature of 84 degrees seems mild but is really very hot when working on a deck that is painted dark gray. Everyone has to be careful to make sure they drink enough water to stay hydrated. This operation is certainly a team effort. Everyone works together to make sure the job gets done by checking to make sure those participating in deployments or recoveries are safe. This means checking for life jackets, hardhats, application of sunscreen, the need for water etc. Higher education could take a lesson from the way that this crew collaborates and works together!

The anchor sinks to the depths
The anchor sinks to the depths
Decorative spirit
Decorative spirit
The team
The team
How the buoy gathers and sends data
How the buoy gathers and sends data
Crossed the equator!
Crossed the equator!

Richard Jones & Art Bangert, January 12, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Sunrise
Sunrise

Mission: Survey
Geographical Area: Hawaiian Islands
Date: January 12, 2010

Science Log

We are almost there! We are holding station at 0 degrees 3 minutes North and 154 degrees 58 minutes West while we conduct out second deep (3000 meter) CTD. This cast began at 9:13 AM ship time (19:13 Zulu) and made it to depth at 10:10 AM ship time. The depth is 4650 meters at this location.

This cast has significance to Rick’s students (and his Daughter) because this is the first cup cast the cruise.
Rick spent about 30 minutes making sure that the mesh bags with 172 cups (a record for a single cast on the KA) and the bag with the Styrofoam head were attached on the instrument cage securely and in a way that would not interfere with the operation of the instruments on the CTD. As you can see from these pictures the results were profound.
CTD ready to go
CTD ready to go

When Rick returns to the classroom he will return all the cups to their rightful owners. The kids will then recalculate the volume, mass, height and diameter (if they can) and determine the rate of compression for the styrofoam cups. And of course the famous shrunken head his Daughter provided.

After recovery of the CTD Rick and Art spent about a 45 minutes getting the mesh bags off the CTD, untied and for a few of the cups that had nested, carefully pulling them apart so that they would dry as individual “mini-cups”. As soon as this task was completed we moved to the TAO-CO2 Buoy that we are going to replace.The new buoy will be the Bobcat-Bronc Buoy and will be deployed tomorrow since the recovery started around 2 PM and wasn’t complete until just about dark. Tonight we will remaining on station through the night, making five mile loops around the position of the new buoy so there is a very good chance that we will cross the equator 10 or more times tonight.

Cups returned from the depth
Cups returned from the depth

As Rick wrote, today we recovered a buoy designed to measure the amount of COin ocean water in addition to typical data (i.e., temperature, wind speed, humidity, rain and salinity). During the recovery I had the opportunity to ride the RHIB out to the CO2buoy to help the Chief Scientist remove some equipment before pulling the buoy onto the ship. Our ride to the buoy was phenomenal! We were told by the Coxswain to “hold on tight” to the ropes surrounding the top of the RHIB. As we pushed through the indigo waves of the ocean at the equator, I felt like a Montana bull rider holding on for dear life. While Brian was removing the anemometer and the rain gauge, I attached a short rope with a coupling to one leg of the buoy that a larger rope could be attached and bring the buoy aboard the ship. While on the buoy, I realized that the only other thing in site for miles was our mother ship, the Ka’Imimoana!

Out in the zodiak
Out in the zodiak
The RHIB returned to pick us up and then went back to the ship to retrieve the rope that would be attached to the buoy. After some concern that the anchor did not release, the buoy was hauled aboard and stowed for future use. Tomorrow the new CObuoy will be deployed.

This morning we were at 3 minutes North (3 nautical miles) of the equator, about a half hour ago we were only 3/10th of a mile North, we are really getting close. On to the Southern Hemisphere!

Retrieving the buoy
Retrieving the buoy

gettingclose_2

Richard Jones & Art Bangert, January 11, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Successfully deployed
Successfully deployed

Mission: Survey
Geographical Area: Hawaiian Islands
Date: January 11, 2010

Science Log

“Science isn’t pretty…” Dexter from the cartoon Dexter’s Laboratory tells his sister. What he really needs to say is that science is hard work, work that takes a team of scientists, technical specialists, and in this case the dedicated crew from the NOAA ship Ka’Imimoana. Yesterday was our first real taste of what it takes to get the data needed to understand the role of the tropical ocean in modifying the world’s climate. We began out day with a shallow cast of the CTD at 6N:155W that ended around 7AM. A shallow cast still goes to a depth of 1000 meters (how many feet is that?) and takes about two to three hours to complete. The Survey Technician, a couple of the deck crew and several officers worked though heavy winds (35knots) and seas of around 18 feet and intermittent downpours of rain to make the data from the TAO Buoy array more solid.

Mahi mahi
Mahi mahi

Once the CTD was back on the ship and secured we headed toward our first recovery/deploy at 5N:155W. Our next task was to recover a TAO buoy that had been sending climate data for the past 8 months. The recovery began with a pass by the buoy to make sure that everything was still attached and that the buoy would be safe to “hop” and then come aboard. During these “fly-bys” or passes to view the condition of the old buoy the crew had an opportunity to fish. The Doc caught a nice Mahi Mahi as you can see in the image. Two Ahi (Yellow fin tuna…fresh poke and sashimi…yum) were caught, a Wahoo or Ono, and a small Galapagos shark that was released back in to the ocean.

After our successful fishing the RHIB was sent over to the buoy to secure the ‘bird’ (how we refer to the anemometer) and attach a line for hauling in the buoy to the ship. Once the winch line is attached the RHIB was brought back onboard and we started the recovery.Retrieving the buoy produced a steady rhythm of line in, filling spools, and switching to empty spools.Even the Ensign’s got in on the deck action running in a spool and scraping the barnacles off the old buoy.

Recovering the buoy
Recovering the buoy

Once the buoy was completely recovered (about 4 hours) we set the deck for deployment of the new buoy and broke for dinner. After dinner we began the deployment which took about 3 hours and ended in the dark around 8PM. Deployment of buoys is basically the opposite of the recovery process: Nielspin, plastic coated steel cable, with its sensors attached are then attached to the buoy with its electronics.

This line along with thousands of meters of braided line feed out into the water until the buoy’s anchor position is reached.Once the buoy was anchored in the water we waited for about a half an hour then swung by the buoy to check that it was operational. Once the buoy was confirmed as successful, the crew began to prepare for the 5N CTD and our first drifter buoy deployment.

Rick helped with this CTD to continue his training for his solo CTD’s coming in a day or so.The 5N CTD, like the 6N was a shallow cast and took about 2 hours and once the CTD was stowed Rick, the Survey Technician and two Ensign’s bid farewell to the first drifter and the day was pau (“done”) as the Hawaiians say.

Reeling in the line
Reeling in the line

Today was our opportunity to take it a little easier as compared to yesterday’s long day of buoy recovery and deployment that did not end until after dark. We had an opportunity to catch-up on some email and work on an article that is due on the 15th of January. Nothing like being under a time crunch to get you motivated. The day is filled with sun and winds are “fresh” as it is called by some. The first order of business was to help with the 3N: 155W shallow cast CTD. It is still had to grasp that shallow is over 3000 feet down into the ocean. When the pressure of the water increases the equivalent of 1 atmosphere each 10 meters that is a lot of pressure when something goes down 1000 meters like the shallow CTD does. When we make our deep cast (3000 meters) at the equator the pressure on the instruments is staggering. What would it be in pounds per square inch? Once the CTD was back on the ship and we resumed our course south along the 155W longitude line we worked on getting the Atlantic Oceanographic and Meteorological Laboratory (AOML) drifter prepared for its deployment as the Bronc Buoy at the Equator along the 155W line.

Hard at work
Hard at work

If followers look back to a post from October they can see the stickers that the students at Billings Senior High Freshman Academy prepared for the drifter they were adopting through NOAA’s Adopt-A-Drifter Program. If you are interested in adopting a drifter you can find information about the program in the “links to learning a little more” area of this Blog. After lunch we helped the Brian, Jim and Alan to put together a specialized TAO buoy that collects information about the amount of dissolved Carbon Dioxide in the ocean in addition to the typical temperature, salinity, humidity and rain data that is gathered. These buoys appear to be easy to build.

On the lookout
On the lookout

However, standing on top of a TAO buoy anchored to the ship’s deck while trying to hold on with one hand and attach electronic sensors with the other can be daunting as the ship pitches to and fro considering the seas we had today. One gains a whole new perspective and respect for the power of the Ocean and the scientists who routinely build these buoys so that good data can be collected to help mankind. One added benefit of working on the buoys is that occasionally we have the chance to do a little personalizing. Art painted MSU CATS on one side since he works at MSU and since I just graduated from Bozeman last May. On the other side Rick put in a plug for Billings Senior Broncs. So now the Broncs and the Cats will be part of the TAO array at 155W at the equator for the next year.

We also had our first fresh sashimi and poke.Rick for one can’t wait! It is great that we have a crew with diverse skills and hobbies. Deck crew who prepare top notch sashimi and a doc who makes poke with his help.

Adopted buoy
Adopted buoy

BroncCO2Buoy_1MakingPoke

Richard Jones & Art Bangert, January 9, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Mission: Survey
Geographical Area: Hawaiian Islands
Date: January 9, 2010

Sunrise
Sunrise

Science Log

Today was a busy day. We were up before dawn so we could check on an existing buoy close to the location of our new deployment. We made what was called a ‘fly-by’. The ship closed on the buoy and at about a mile it was vaguely visible in the early dawn. The first buoy deployment of our mission began about 7:30 AM and we had the anchor in the water about 11AM and everything went smooth. The new generation TAO buoy was deployed at 155 W longitude and 8 N latitude in a depth of 5200 meters(about 3.2 miles deep!). The TAO buoys, also called moorings, are anchored to the ocean floor using plastic coated steel cable and heavy rope. We have a drawing of the standard buoy to give you some idea what the whole package looks like, at the surface as well as below. The adjacent image is of the actual buoy that we deployed today.As you can see the color scheme has change to a solid International Yellow above the waterline.

Buoy mooring up close
Buoy mooring up close

During the initial deployment electronic sensors are placed at specific depths on a special coated steal wire. These sensors are designed to by induction and send information about conductivity (salinity), temperature and sometimes depth to the instrument tube in the buoy.This image shows two of the science team placing one of these sensors on the line.

The information provided by these sensors, and those on the buoy that measure surface conditions, help climate scientists better model the behavior of the ocean atmosphere interface and understand what patterns are more representative of El Nino, La Nina, or Neutral conditions.

In addition to the deploy of this first buoy on our trip, the ship was also engaged in the deployment and recovery of the first deep CTD. This 3000-meter (about 9750 feet or slightly over 1 3/4thmiles down) cast went fairly smoothly until it was on its way back to the surface. The winch

controller overheated and the CTD had to rest

for about one hour while the instrument package sat at 2000 meters.After the control circuits had a chance to cool we were able to continue the recovery of the CTD and resume or course south on the 155 W to our next station at 7N for a 1000 meter CTD cast. There is a good chance that we will do the CTD later this evening since it will take about six hours for the ship to transit one degree depending on sea conditions.

Deployment
Deployment
Sensors monitor the ocean conditions
Sensors monitor the ocean conditions
CTDs being deployed
CTDs being deployed

Richard Jones & Art Bangert, January 7, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Mission: Oceanographic Survey
Geographical Area: Hawaiian Islands
Date: January 7, 2010

Cups heading to the depths
Cups heading to the depths

Science Log

Today was a day of transit. We did a lot of work on the buoys, preparing them for deployment and Rick, with the help of Tonya our Chief Survey Technician, got about half of the cups that his students decorated for ‘shrinking’ into the mesh bags to attach to the deep CTD when we do one . The CTD is a rosette of bottles that are sent to depth, in this case 3000 meters (how many feet is that and how many atmospheres of pressure?) where water samples and a record of the Conductivity (salinity), Temperature, and Depth are taken. These CTD’s will help provide a double check for the electronic data that our buoys collect and add to the data used to model El Nino/La Nina. One of the side activities of the CTD is to send down the cups to be squeezed by the pressure. We also have a cup of similar size that will be used as a control so that students will be able to see the changes that the cups undergo. Rick also has brought along a Styrofoam wig head from his daughter Teri to see the effect on a larger scale.

In addition to our work on the buoys we had our first at sea drills including an abandon ship drill.But since we had a similar drill in port we only were required to muster to our stations with our exposure suits, long sleeve shirt, head cover, and long pants and wear our personal flotation device.

Ship safety drill
Ship safety drill

A wee bit rocky today.We have a swell that seems to be coming from the starboard (right) aft quarter, which gives the ship a strange movement that has made some of the folks a little queasy.Ships tend to roll (movement around an imaginary line running bow to stern) pitch (movement up and down around an imaginary line running 90 degrees to the direction of roll) and yaw (movement left or right of the imaginary line running bow to stern).Today the KA is doing all three at the same time which is why we are encouraged to take Meclizine HCL (Dramamine) for a few days prior to the trip and for the first few days at sea. Taking this makes it easier for the crew to function in an environment that has un-natural motion without getting ‘seasick’. Even with the weird motion of the ship, we still have work to do and for us “newbies” things to learn before we are allowed to do them, like learn how to set the ‘painter line’ for the RHIB so that we will stay attached to the ship in the advent that the engine of the RIHB doesn’t start or other various bad things that can happen to a little boat in a big ocean. We didn’t actually ride in the RHIB today, we simply learned how to enter the boat, where to sit , where the emergency items are located, and how to start and steer the boat.

Out on the deck
Out on the deck

One of the tasks that needs to be done prior to the deployment of our first Buoy at 8N:155W is to determine (as close as possible) the ideal position for the buoy’s anchor. To do this it is essential to know the true depth of the ocean and the topography (collectively called bathymetry) of the area within a few miles of the target latitude and longitude for the buoy.Brian, our Chief Scientist, will determine the depth and location for the anchor by using both satellite sea surface heights and actual sonar depth data from ships that have been in the area. In reality, there really isn’t much hard data, physical sonar tracks, for much of the ocean and much of the depth is determined by the actually height of the sea surface as measured by satellite. These measurements take into account variables, such as orbit of the satellite, atmospheric effects on radar, and tides and compare the computer result to a mathematical ellipsoid model of the Earth’s shape. Sounds pretty complicated, and it is, but we can use this calculated sea surface to help determine the depth of the ocean since the surface mirrors the actual topography of the ocean floor. For Academy students, you will have the opportunity to do two activities from the American Meteorological Society (AMS) that will help you understand what it is that we are attempting to do.

Bathymetric map
Bathymetric map
Catch of the day!
Catch of the day!

 

Richard Jones & Art Bangert, January 6, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Mission: Survey
Geographical Area: Hawaiian Islands
Date: January 6, 2010

Science Log

The KA is under her own steam, well actually diesel and electric, and we are making 10 knots (you should figure out how fast that is in miles per hour) at a heading of 173 degrees. The KA uses diesel generators to create the current to drive here electric propulsion motors. She is a vey quit ship because of this configuration which was part of her original deign…to be quite. The KA is a former Navy antisubmarine warfare ship and needed to be quiet to play her role listening for submarines that might have been lurking around the oceans. Now that quiet nature makes it nice for those of us about to have our first night at sea.

Our current position was 157degrees 51 minutes and 7 seconds west longitude (157:51:07 W) and 22 degrees 55 minutes and 8 seconds north latitude (22:55:09N) at 19:30 lcl on the 5th of January. At that time we had been at sea for about five hours and have many more to go on our way to work the 155 W Buoy line. Sunset was fantastic, but very short. It seems to take almost no time to go from day to night here in the tropics. You can see how it looks behind some of the “birds” (anemometers) that will measure windspeed and direction on the buoys. We are now (09:10 lcl) about 40 nautical miles south of the Big Island and can just see it in the distance. It will be some time before we see land again.

Since we are running a little slow on the internet I will simply post a few images from our first day rather than a video. I will attempt to post a video or two later on but currently we are limited on our bandwidth to about 128K.

For two days I have been overwhelmed as I observed all of the aspects of the crew’s preparation for the TAO mission to Samoa. I am fascinated with everything about this operation – watching the crew load the ship, observing the ship being fueled, viewing the massive nuclear submarines located in Pearl Harbor, and assembling the sensors that collect climate data from each of the buoys we will deploy. Yesterday, in preparation for our voyage, we continued to calibrate instruments and assemble sensors.Last night was our first night at sea, I slept like a baby -the gentle rocking of the boat was like being in a giant cradle.

Richard Jones & Art Bangert, January 5, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Mission: Survey
Geographical Area: Hawaiian Islands
Date: January 5, 2010

Science Log

The ship has been in port at Pearl Harbor most of the day. We got underway about ten to ten this morning to transit to the fuel pier. We have been loading fuel and getting the various instruments ready for deployment. One of the more memorable things for me was passing by the USS Arizona Memorial and thinking about all the history that has gone on here. It makes one pause and think of the value of our freedom and the price paid for that freedom.

One of the more mundane, but important tasks today has been to check all the sensors and to make sure that the electrical connections are all correct. I even had the opportunity to crawl under the test bench to make sure the connections for the long wave and short wave UV sensors were connected to the correct test leads.

Richard Jones & Art Bangert, January 4, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Mission: Survey
Geographical Area: Hawaiian Islands
Date: January 4, 2010

The ship is underway
The ship is underway

Personal Log

Art and I arrived at Pearl at 7AM today at the Visitor Check-in and ID office. We were a half hour early and were still 12th and 13th in line. The process was pretty slow, but we got picked up by one of the science crew (James) when we got our passes around 8:15AM. We then went the ship and came on board durning the first of three drills for the day. Within in a few minutes of getting to the ship we were already involved in the ship board fire drill. Both Art and I were shlepping fire fighting equipment to the “fire scene”, I had a ventilation hose and Art a really big, and nasty looking, pry bar. It looked like a pry bar on steroids. After the fire drill it was the abandon ship drill, where we all put on our “gumby” suits ( I wish I had thought to have my camera ready first thing) and exchanged our old whistles for new ones without cork balls. After the abandon ship drill, it was man overboard and then we were able to stand down by about 10AM. Once the drills were done it was time to get with moving the equipment to the ship and setting up the instruments. The process of meeting the crew, loading the equipment and stores, and setting up the science stuff took until almost 6PM.

Patricia Kassis, June 10, 2008

NOAA Teacher at Sea
Patricia Kassis
Onboard Research Vessel Kilo Moana
May 23 – June 10, 2009

Mission: Woods Hole and Hawaii Ocean Time Series
Geographic Region: Hawaiian Islands
Date: June 10, 2008

Science Log

We have remained at the buoy site today. We continue to do the meteorological measurements from the bow (sea surface temperature and humidity), we did a single CTD cast just to test that the instruments were working right for the next cruise, and we’ve been monitoring the data from the new buoy and comparing them to data the ship is collecting.

The mooring data we’ve been watching especially closely is the wind direction, which was off before we replaced the anemometer yesterday. And it turns out… the wind direction is still off. The two anemometers still record a difference of about 30 degrees. Although it took a few hours to get the first readings, we were immediately skeptical that the fix had worked because the old “broken” anemometer seemed to be in good working condition when it was brought back on board. The trouble is directional (the instrument’s speed measurements are consistent), and it turns out that the compass in each anemometer is influenced by the magnetic field created by the bird wire. Why didn’t they think of this? Well, they did, but the bird wire was not supposed to be magnetic. It turns out that we can deflect a compass by bringing it close to some bird wire. This also means that the other anemometer is probably reading an erroneous direction too, as it is surrounded by bird wire also. So the big wigs are bustling around now trying to make an algorithm to correct the wind direction data. In short, we hope the wind direction readings are always deflected by some predictable amount, so we should be able to adjust the data before using it. Shipboard wind measurements will help calculate the errors.

By request, here’s a close-up of the meteorological instruments on top of the buoy.

met_closeup

From left to right, they are:
Temp and Humidity sensor (white cylinder with horizontal stripes)
Rain Gauge (white cylinder with opening at the top, black inside; also associated metal cylinder)
Anemometer (with propellers, in the back)
GPS unit for location data (orange)
GPS unit that transmits via Iridium connection (while cylinder)
Barometer for measuring atmospheric pressure (metal cylinder)
A light that flashes orange at night – in the back, here it is covered with black plastic
Four sunlight radiation detectors in the middle (two long-wave, two short-wave)
Second Barometer (metal cylinder)
Second anemometer
Iridium antenna (cylinder with larger diameter)
battery pack (metal cylinder)
second rain gauge
second temp/humidity sensor

The data that these instruments collect are available in nearly real time for the public to see. Right now, the website is still picking up info from the old buoy, which is sitting on deck and, therefore, not making sense. But if you check this WHOI website later on, you should be able to see graphs of barometric pressure (BPR), air temperature (ATMP), water temperature (STMP), wind speed (WSPD), wind direction (WDIR), relative humidity (RH) and so on. Each quantity is measured by two instruments, so each graph has two lines – hopefully they are close; often they are so close it looks like one curve. But let’s keep an eye on that WDIR – a good algorithm will place the two curves close together.

Personal Log
Tonight will be our last night at sea. We’ll leave the buoy area around sunset tonight and head toward Honolulu. We’ll enter the harbor around daybreak and spend the day unloading equipment.

Patricia Kassis, June 8, 2008

NOAA Teacher at Sea
Patricia Kassis
Onboard Research Vessel Kilo Moana
May 23 – June 10, 2009

Mission: Woods Hole and Hawaii Ocean Time Series
Geographic Region: Hawaiian Islands
Date: June 8, 2008

Buoy alongside the ship
Buoy alongside the ship

Science Log

These couple of days have been relatively calm science-wise, but the seas are the biggest we’ve seen. It’s not stormy or choppy, but big swells rock the ship with a low frequency, especially yesterday. Accordingly, the small boat mission to fix a wind instrument (anemometer, not flute) on the buoy was postponed until today, and it went pretty smoothly despite, in my opinion, pretty big swells. Here are a couple of shots of the mission. The first shows the launch. After the occupants pile in, the boat is lowered from a height of 15 or 20 feet. You can see the buoy (a speck just above the green arm of the crane), and the captain above – in a t-shirt and jeans.

The second photo shows Sean (only his legs are visible) climbing on the buoy while the boat circles. I don’t think these stills convey how the seas are moving, which I’d estimate as 7 foot high faces and wavelengths of about 300 feet. Even tough guy Sean quietly requested some food to help settle his stomach afterwards. The last CTD cast wrapped up yesterday.

We continue to collect more science data. We’re constantly monitoring data from the new buoy; a job powered mainly by computers and overseen by capable experts. Additionally, all along we’ve been doing some low-tech data collection. I’m actually surprised that this data is even taken, and I’m not sure of the extent to which these numbers influence science findings. Here is the psychrometer, a gadget with a fan (on the right, encased in metal) to rush air over two thermometers, one bare “dry” one, and a “wet” one with a thin wet sock covering its bulb (hidden by a metal sleeve). We record the two temperatures, and then use an equation or table to compute the relative humidity.

Here's a picture of some helpers like me "tagging" the lines - that is, steadying the rosette on its way back on board.
Here’s a picture of some helpers like me “tagging” the lines – that is, steadying the rosette on its way back on board.

The whole contraption is lowered into the upper ocean using a rope, brought back up without spilling (luckily, the geometry makes this easy), and the sea surface temperature is read off of the thermometer before the water is dumped out. This is pretty unsophisticated stuff, but it is the most reliable method we have for measuring the sea surface temperature. (CTD’s are too deep and satellites can be fooled by a slightly different temperature in a skin atop the surface.)

Here is the thermometer we use to measure sea surface temperature. It is a small PVC bucket with a fixed thermometer suspended in it.
Here is the thermometer we use to measure sea surface temperature. It is a small PVC bucket with a fixed thermometer suspended in it.

Personal Log

I am on watch from 7 to 11 in the morning, and again from 19 to 23 at night. So I’ve had a lot of free time in the middle of the day. I bug some scientists and technicians to show me the data they were playing with, but I also got laundry done and have enjoyed some ice water and a good book. I actually picked up a little sunburn – was my sunscreen too little, too late or too infrequent?

SST_bucket

Patricia Kassis, June 6, 2008

NOAA Teacher at Sea
Patricia Kassis
Onboard Research Vessel Kilo Moana
May 23 – June 10, 2009

Mission: Woods Hole and Hawaii Ocean Time Series
Geographic Region: Hawaiian Islands
Date: June 6, 2008

Downloading data from the CTDs
Downloading data from the CTDs

Science Log

Science efforts today seem to be split between removing things from the recovered buoy and collecting more data with CTD’s. Part of what we’re getting off of the buoy is that data stored in the CTD’s that hung beneath it. Here’s Jeff (with a corny look on his face) downloading this data. He’s got 6 CTD’s going at once, and the process takes hours.

Also coming off the buoy are the atmospheric instruments on top. Here’s a shot of Sean working on that while Jim moves cable from the winch that pulled it on board onto the spools where it is stored. My roommate Tenley is operating the winch.

The CTD casts have started back up (we took a break from that to recover the buoy), which means I’m on a work shift – about 4 hours on and 8 hours off. I start tonight at 7 pm. I’ve done 2 casts so far, and I’m already getting to be more helpful, successfully steadying the CTD rosette from the deck.

tenleyWinch

Personal Log

Buoy on deck
Buoy on deck

I got to do laundry yesterday. This was a real treat since I arrived at this cruise directly from another trip, already with a sack of dirty clothes. There are two washers and two dryers on the ship and about 35 people on board, so there’s a restriction on when someone can use the machines. For the science party, of which I’m a member, the laundry is available Friday, Saturday and Sunday. That means tomorrow will be my last chance before jetting off on another trip, so I’ll be visiting the laundry room again. We had filet mignon for supper last night and I’m not even kidding.
Hey Parker ‘Ohana, is anyone reading this? When people on the ship find out what I’m doing here, they keep asking what feedback I’m getting from my students and my school. I’m sad to report “none!” So if you’re reading this, and you’re a Parker person, drop me a comment or a line (mrskassis@hotmail.com) so I know I’m not just talking to myself (or typing to myself, I guess.) If you have any questions, or if there’s anything you want me to photograph, I’m happy to accommodate.

Patricia Kassis, June 5, 2008

NOAA Teacher at Sea
Patricia Kassis
Onboard Research Vessel Kilo Moana
May 23 – June 10, 2009

Glass balls
Glass balls

Mission: Woods Hole and Hawaii Ocean Time Series
Geographic Region: Hawaiian Islands
Date: June 5, 2008

Science Log

The old buoy came back on board today. First, an acoustic signal was sent to a device located just above the anchor, which released, severing the connection between the anchor and the 80 glass balls above. These glass balls (encased in yellow plastic) are buoyant, but they live deep underwater. They keep the bottom of the rope off of the sea floor and the anchor, and they aid in recovery. The balls come speeding up, but since they have such a long trip, it takes them 40 minutes or so. I guess sometimes balls get crushed on descent, and others on ascent, so the pile of recovered glass balls includes some that are destroyed. One is shown here. Then came miles of nylon and synthetic line, enough to refill those empty boxes, and then the instruments began coming aboard (CTDs and current meters). First came the deepest instruments, looking shiny and new. At slightly shallower depths, we began to see some biology – some nice clean mussel-ish thingies as big as your thumb.

Things growing on the buoy
Things growing on the buoy

Then the buoy itself came aboard. While it is floating, you can’t remove all the instruments below it or it becomes unstable, without that weight pulling it down. So before the last submerged instruments came up, the buoy came aboard. This was a rocking, dangerous, awkward event, with the buoy slamming against the ship. When I asked if this buoy recovery was typical, I was told, in the nautical style of curt understatements, that this was “not a good one”. The buoy itself was covered with barnacle-like things, crabs, slime and, on top, bird droppings. If you got sick in the zoo’s bird house, cleaning this baby is not a job for you. (Cleaning this baby was, by the way, a job for pretty much every science person on board, from chief scientists and technicians on down to lowly observers like me.)

After the buoy was on deck, we recovered the shallowest, and thereby most biologically covered instruments. These had critters and slime. The sticker on this one says “25 meters”. Can you read it? Can you find it? I was on watch until 4 am this morning, so I actually slept through the early stages of buoy recovery, specifically the glass balls ascending. I woke up for lunch (beef pot pie – the beef bearing significant resemblance to last night’s prime rib. I’m not complaining, leftover prime rib is a-okay with me!)

The area around the old buoy was fertile fishing ground, but the scientists require everyone to wait until everything is recovered before casting. This is to avoid tangling fishing lines around science tools. During the nearly daylong recovery operation, the fishermen aboard were salivating over the mahimahi and ahi they saw circling. Finally, they got two lines in and quickly caught two small ahi. Here’s Paul, who gets the award for catching the first.

He was a little embarrassed to strike a pose with a relatively small fish, so I promised him I’d throw this picture away once he catches a bigger one. As of press time, he’s had no such luck.

Buoy comes aboard
Buoy comes aboard
Barnacles!
Barnacles!
Shallow instruments have the most growth
Shallow instruments have the most growth
Catch of the day!
Catch of the day!

Patricia Kassis, June 4, 2008

NOAA Teacher at Sea
Patricia Kassis
Onboard Research Vessel Kilo Moana
May 23 – June 10, 2009

Mission: Woods Hole and Hawaii Ocean Time Series
Geographic Region: Hawaiian Islands
Date: June 4, 2008

Spools
Spools

Science Log

The deployment of the buoy went fine yesterday, and now we’re monitoring data from both buoys while we take some extra measurements of the water in the neighborhood of the buoy. The new buoy has two of everything, and for the most part duplicate pairs agree. The only exception is wind direction, where the two devices disagree by 45 degrees or so. It is thought that a rope got caught slightly for a second on the little spinning instrument during deployment. At present, the planned solution for that is to send Sean out in a boat to climb aboard and replace it. This sounds rough for Sean but might make a good photo op for you and me. Stay tuned. The extra measurements I mentioned involve lowering a rosette with a CTD (remember? it determines salinity and temperature at different depths) and some bottles for collecting water directly. Here’s me in front of the suite of instruments.

The gray vertical cylinders on top are the bottles, and the black and silver cylinder strapped on lower is the CTD. The whole contraption is lowered by a crane, with me providing some sloppy assistance in steadying it, and it then yo-yos (scientific term) up and down through the top of the water column collecting CTD data, which we can see in real time on a computer inside. On its last trip up, the bottles are closed by a technician’s command, and my awkward self helps get the thing back on board. The operation is very controlled (despite my involvement and unlike my yo-yoing experiences) and takes perhaps 45 minutes.

I’m involved in a couple more data collection projects, too. One is taking humidity measurements on the bow with an old fashioned psychrometer (Did I spell that right, Proofreader Jim?), and the other is taking water samples from an indoor tap that they assure me draws directly from the ocean. Do you think they are making up chores to keep me busy?

CTDme

Personal Log
Remember yesterday’s question? Where do you store 7 miles of rope and cable? Most of it lives in these boxes and on these spools. I helped drag it out of the boxes, which was tedious and tiring, and I’m assured putting the old buoy line back in the boxes is no picnic. Breeze, an incoming UH student and a guy on my CDT team, is in one for scale. We’ve got a Massachusetts contingency here rooting for the Celtics and coveting a cable connection.

Technician Kuhio has started fishing, but reports no bites yet.
Technician Kuhio has started fishing, but reports no bites yet.

Patricia Kassis, June 1, 2008

NOAA Teacher at Sea
Patricia Kassis
Onboard Research Vessel Kilo Moana
May 23 – June 10, 2009

Mission: Woods Hole and Hawaii Ocean Time Series
Geographic Region: Hawaiian Islands
Date: June 1, 2008

buoy_on_deckScience Log

We just got underway yesterday, and today is very exciting. We’re deploying a new buoy a few miles from an old one, and we intend to leave both in for some days, and finally remove the old one before departing the area. The overall concept here is to get a really good dataset about the ocean and the atmosphere in one location over a long period of time. This program has been ongoing since 2004. These data will serve as a piece of the puzzle in the larger question of how global warming works, and what roles the tropical ocean and atmosphere play. The buoy, shown here sitting at the stern of the ship, is loaded with scientific instruments, distributed in three layers.

On top are the meteorological gadgets, which measure air temperature, humidity, solar radiation, wind speed and direction, and barometric pressure. A GPS unit there keeps track of the buoy’s location, elevation and orientation. There’s a fin to keep the buoy facing into the wind (preventing, for example, temperature sensors from being in contact with air that has already passed over other instruments or surfaces), and on the fin is a white capsule-looking object containing instruments to reflect radar from ships to avoid collisions, and a metal box which contains an antenna. With this antenna, all the meteorological instruments can send data to a satellite at regular intervals. You can see this data, graphed in nearly real time, at the website http://uop.whoi.edu/projects/WHOTS/whotsdata.html. On the buoy’s top you can also see bird wire, and I’m told I’ll understand fully the importance of this component when I see how guano-covered the old buoy will be.

buoy_co2A few instruments are located at sea level: carbon dioxide sensors (not shown) and sea surface temperature (SST) sensors. One SST sensor is embedded in foam and moves freely on a vertical rail, going up and down as the buoy bobs, trying to stay just at the surface of the water, and the second is fixed in place and is there for redundancy. The carbon dioxide sensors are important, especially to us in Hawaii. As you probably know, the earth’s carbon budget is intimately tied to questions about global warming, and since a great deal of carbon is in carbon dioxide molecules, and since carbon dioxide dissolves so readily in ocean water, any measured changes in carbon dioxide levels in the surface water are interesting to climate scientists. The carbon dioxide also contributes to carbonic acid, lowering the pH of the ocean water to potentially damage anything that dissolves in acid – like coral reefs and shells. Chief Scientist Bob Weller thinks this rising pH is actually a bigger concern than global warming. Very early data about climate change came from a long term data set of atmospheric carbonic dioxide collected here on Mauna Loa. If you’ve seen Al Gore’s movie, you recall this jagged sawtoothed graph depicting the rising carbon dioxide levels. It is a prime example of how useful a long term dataset from one spot on earth can be. This WHOTS project hopes to create an analogous dataset, but one about ocean conditions instead of about atmospheric conditions, and in this study (as in the Mauna Loa one) carbon dioxide is likely to play a key role.

The third layer consists of instruments hanging below the buoy: CTDs (the bread and butter of physical oceanography) tell us about the temperature and salinity at different depths; and two types of current meters measure how the water moves, one uses little propellers, the other bounces sound off of plankton in the water. These are connected to the buoy and to one another by a segmented strand – including metal chain and cable at depths where sharks would bite through anything weaker, and nylon and synthetic lines to allow some elasticity at depths where sharks aren’t a concern. Nowhere in this length is a communication wire of any kind, and electromagnetic radiation won’t travel through water, so these gadgets can’t communicate with the above water world. Instead, they hoard their data. When we pull up the old buoy, we’ll be able to download a year’s worth of data from each instrument (after we clean off the gunk). We’ll also get to look for shark bites on the chains, cables and lines.

buoy_launchI have the bottom bunk in a stateroom that I share with another observer. She’s a college student interning with Woods Hole. Our room and the one next to it (housing two University of Hawaii students) connect to a shared bathroom. The ship has a wide stance so it is very stable but a little unpredictable. It doesn’t rock much at all, but still you can’t predict in which direction the next rock will tip you. I have no feelings of seasickness yet (the seas are very calm and I don’t know of anyone on board feeling queasy yet), but keep your fingers crossed because I know I’m prone to it.

The food is remarkably good. The cook is fantastic and a hard worker. In fact, the ship seems to be divided between people working really hard (from seamen and cook on up to chief scientist and captain) and people looking for something to do (like me and other observers). I’m hoping to get connected with the guy in charge of CTD stations and water sampling so I can contribute a little more. That type of work will get underway after the new buoy is finished launching. I’m told there is sometimes fishing off the stern, especially when we get near the old buoy, with all its accumulated fish food. No poles yet, but I’ll keep you posted. I have good internet connection, so feel free to write to me at mrskassis@hotmail.com or post a comment on the blog. I’ll answer your questions as quickly as I can.

Picture this:
In total, the ropes, chains and cables connecting the anchor to the buoy is about 7 miles long. How would you store that much thick rope? I’ll show you the empties tomorrow…

Patricia Kassis, May 23, 2008

NOAA Teacher at Sea
Patricia Kassis
Onboard Research Vessel Kilo Moana
October 23 – June 10, 2009

Mission: Woods Hole and Hawaii Ocean Time Series
Geographic Region: Hawaiian Islands
Date: May 23, 2008

ship_pictureScience Log

Aloha. I’m Patricia Kassis, a teacher at Parker School on Hawaii’s big island. I’m preparing to board an oceanographic research vessel, the Kilo Moana, pictured, for a science cruise from the 3rd to the 11th of June. For those with a technical interest, the ship’s statistics are located at this SEOST site. The research is part of the WHOTS project, a collaboration between my alma mater Woods Hole (WHOI) and the University of Hawaii. I got involved in this through the National Oceanic and Atmospheric Administration (NOAA), which has a program, Teacher at Sea, to send teachers out on research cruises. I’ll be working under chief scientist Bob Weller from WHOI, and I understand that the goal of the trip involves maintaining and gathering data from a buoy loaded with instruments (picture at WHOTS). I’m being deliberately vague because I’m clueless, really.

I hope to be able to update this blog regularly from the ship (as I become more clueful, perhaps), but that will depend upon the internet connection quality, so I’ll just wait and see. Check back beginning around the 4th or 5th of June to see if I’ve updated it. If you have questions for me while I’m out there, you can email me at mrskassis@hotmail.com or leave a comment on the blog.

Karolyn Braun, October 28, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 28, 2006

Crewmembers enjoy some tournament games will the ship is in transit.
Crewmembers enjoy some tournament games will the ship is in transit.

Plan of the Day: Transit to 8N/International Date Line and Work on Cruise Report.

I woke up very sleepy. I think I am winding down myself.  My batteries are slowly running out. I started writing my End of Cruise report for the Field Operations Officer and cleaned up the stateroom.

At the day’s end was tournament games all around.  I played sequence and darts, and lost both. Chris, one of the deck hands taught me a short splice and an eye splice.

I assisted the ET guys with updating my Intranet webpage, and I watched a movie with the Chief Scientist, Patrick.  All in all, a pretty uneventful day.

Karolyn Braun, October 27, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii and American Samoa
Date: October 27, 2006

Plan of the Day 

So we have one more TAO buoy to visit to conduct a repair on, and then we are on our way to Kwajalein. Everyone and everything is quieting down some.  We have a bunch of tournaments going on: Backgammon, Darts, Sequence, Scrabble, Poker and Cribbage. I signed up for darts and sequence. Should be

The XO grills dinner for the crew.
The XO grills dinner for the crew.

fun. At least it is something to do during our three-day transit to Kwajalein.

Well after a hot and humid workday, the officers of the KA’IMIMOANA celebrated a successful cruise by having a BBQ for everyone onboard. The Executive Officer was the star chef of the evening, grilling up shrimp kabobs, ribs, steak, chicken and burgers. The stewards made yummy salads.  Overall it was a nice evening out on the fantail—the first real evening where everyone sat, ate and had conversation. Normally in the galley everyone is either tired, in need of a shower, or wants some quiet time.  After dinner I played a game of darts, which I lost but was still fun. And I watched a movie: Yours, Mine and Ours. 

Saw a nice looking shark so today’s lesson: SHARKS!

Sharks are amazing fish that have been around since long before the dinosaurs existed.  They live in waters all over the world, in every ocean, and even in some rivers and lakes.  Unlike bony fish, sharks have no bones; their skeleton is made of cartilage, which is a tough, fibrous substance, not nearly as hard as bone.

There are many different species of sharks that range in size from the size of a person’s hand to bigger than a bus. Fully-grown sharks range in size from 7 inches (18 cm) long (the Spined Pygmy shark), up to 50 feet (15 m) long (the Whale shark).  Most sharks are intermediate in size, and are about the same size as people, 5-7 feet (1.5-2.1 m) long.  Half of the 368 shark species are less than 39 inches (1 m) long.

Enjoying dinner on the fantail of the ship
Enjoying dinner on the fantail of the ship

Sharks may have up to 3,000 teeth at one time. Most sharks do not chew their food, but gulp it down whole in large pieces. The teeth are arranged in rows; when one tooth is damaged or lost, another replaces it.  Most sharks have about five rows of teeth at any time.  The front set is the largest and does most of the work.

When some sharks (like the Great White or the Gray Reef shark) turn aggressive prior to an attack, they arch their back and throw back their head.  This places their mouth in a better position for taking a big bite. They also move their tail more acutely (probably in preparation for a chase). Sharks do not normally attack people, and only about 25 species of sharks have been known to attack people. Sharks attack fewer than 100 people each year.  Many more people are killed by bees or lightning.

The largest sharks are decreasing in numbers around the world because of being hunted by people. The Great White shark, the Basking shark, and the Whale shark are all waning. The Great White is protected along the coast of California and South Africa.

Are you interested in learning more about sharks?  Browse the Internet, there is tons of information out there.  The more you learn, the more you know and knowledge is power!

Karolyn Braun, October 26, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 26, 2006

TAS Braun shows off her eggs benedict
TAS Braun shows off her eggs Benedict

Plan of the Day 

Woke up and was in the kitchen at 5:30 a.m. The Breakfast menu: Pancakes Omelets Sausage Bacon Eggs Benedict Breakfast potatoes Fritata Breakfast Sandwiches.

It was the first time I made Eggs Benedict and I tell you the sauce is a killer. You have to continually whisk the melted butter while adding the egg yolks. If you don’t, the mixture separates and you lose your sauce.  I thought all was lost, but I was able to bring it back and ended up making one mean Eggs Benedict! Everyone seemed happy with his or her breakfast to order.  As soon as breakfast was over we cleaned up and started preparing for lunch.  I thought working with the deck crew was hot and sweaty work but the kitchen blew that out of the water.

Mexican Fiesta Lunch menu: Pork Green Chili Veggie Fajita Refried beans Super Nachos Beef Fajitas  And all the fixings Lunch went well and things slowed up after everyone left. We cleaned the kitchen and started preparing for dinner but it was at a more leisurely pace. For dinner I made garlic chicken with spinach noodles, Steak with Spanish rice and some leftovers from lunch.  I finished my day around 5:30 when I took a much-needed shower and a 20-minute power nap. Woke up to watch them drop the anchor to the TAO buoy at 8N.170W. Is it bedtime yet?

I have to give the stewards of all the NOAA ships lots of credit. They work long hard days, and from my experience, always with a smile.

Some crewmembers of the KA’IMIMOANA enjoy some of TAS Braun’s cooking.
Some crewmembers of the KA’IMIMOANA enjoy some of TAS Braun’s cooking.

Karolyn Braun, October 25, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 25, 2006

TAS Braun enjoys her birthday dinner with the crew.
TAS Braun enjoys her birthday dinner with the crew.

Plan of the Day 

This morning started off with lots of Happy Birthdays! Yes today I am turning another year older….wow. Can’t believe I am leaving my 20’s behind and welcoming the 30’s!  Well today was pretty relaxing. At breakfast the crew gave me the Birthday hat to wear.

I had to wear it all day, so I did. I spooled a few lines when we started the recovery of the 4N TAO buoy then talked to my parents on the phone….Hi mom and dad!  I spent a half hour in the pool. Very nice afternoon for a swim.  After my swim, I got ready for dinner.  The Stewards made my favorite dinner: Pork chops and mashed potatoes with applesauce.  YUMMY! They also sang and made a birthday cake for me.  It was a very nice birthday here on the KAIMIMOANA.

Karolyn Braun, October 24, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 24, 2006

A pilot whale breeches the surface of the water.
A pilot whale breaches the surface of the water.

Plan of the Day 

Well it was a long early morning. I was awoken at 2 a.m. to prepare for the 300 CTD profile. By the time I was finished and all was said and done, it was time for the next one. We sailed by the TAO buoy and all looked well so we went ahead and conducted the CTD and deployed the AOML. My last CTD for the day was the 1230 profile at 2.5N/170W.  Eric from MBARI will be doing the evening one.  I walked on the treadmill for an hour then made a nice salad for lunch.  I honestly don’t eat this much on my own.  It’s easy to eat when every meal is made for you.  One can easily gain weight out here. I did some knot tying and rested a bit but did not want to nap, as I would not sleep tonight.  We saw another pod of Pilot whales off the port bow playing in the water. Snapped a few good photos.

Lets talk about whales shall we?  Whales are mammals, and there are five distinct groups of marine mammals: Pinnepeds, which include seals, sea lions, fur seals and walruses;  Sea Otters; Cetaceans containing whales, dolphins and porpoises; Sirenians which consist of dugongs and manatees; and Polar Bears.  So what does it mean to be a marine mammal?  Well like all mammals, they are warm-blooded, they have at least a few hairs on their bodies, and they nourish their young with milk.  These mammals are protected under the Marine Mammal Protection Act that was enacted in 1979, which made it illegal to “take” any marine mammal.  The term “take” includes harass, hunt, capture, collect, or kill, or attempt to do the same.  “Harass” denotes the act of pursuit, torment, or annoyance that has potential to disturb marine mammals.  In1994 it was amended to strengthen the definition of harass and included feeding.

Pilot whales have been hunted for many centuries, particularly by Japanese whalers.  In the mid-1980s the annual Japanese kill was about 2,300 animals.  This had decreased to about 400 per year by the 1990s. Killing by harpoon is still relatively common in the Lesser Antilles, Indonesia and Sri Lanka. Hundreds or perhaps thousands are killed each year in longline and gillnets.  However, due to poor record-keeping it is not known how many kills are made each year, and what the effect this has on the local population. Female pilot whales mature at 6 years of age and a length of about 3.5 m.  Males mature much later when 12 years old and 5 m in length.  Mature adult males, which are generally larger than females, can weigh as much as 3 tons.  At birth, calves weigh slightly over 200 lbs. They are born after a pregnancy of 16 months, and are weaned at around 20 months of age.

Pilot whales have strong social cohesiveness; it is rare to see a single individual.  Even when being driven ashore by whalers, they would stay together as a group.  Groups typically contain animals of both sexes and many different ages.  The males may compete for breeding privileges, forming a hierarchy that excludes smaller males.  Large assemblages may also be composed of smaller, close-knit groups, which are stable over time.  Pilot whales are some of the noisiest whales in the ocean. Their group structure requires social communication, and they orient to prey objects by echolocation.  Vocalizations include a wide variety of whistles and clicks.

Karolyn Braun, October 23, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 23, 2006

The drifter buoy sets sail for its long journey on the sea.
The drifter buoy sets sail for its long journey on the sea.

Plan of the Day 

Very busy day. Was up bright and early to conduct the 600 CTD profile.  Had some breakfast and did some cleaning around the stateroom.  Around 9 a.m.  I updated my KA’IMIMOANA intranet webpage. I am glad I learned how to use the Frontpage program as it may come in handy. I went and sat in the ‘pool’ for a bit before lunch, but overall had a lazy morning.

After a light lunch we conducted a 4000m CTD cast, which took about 4 hours then deployed the AOML drifter buoy, the third of three that ASCC has adopted. The modern drifter is a high-tech version of the “message in a bottle”.  It consists of a surface buoy and a subsurface drogue (sea anchor), attached by a long, thin tether.  The buoy measures temperature and other properties, and has a transmitter to send the data to passing satellites.  The drogue dominates the total area of the instrument and is centered at a depth of 15 meters beneath the sea surface.  The drifter sensors measure data such as sea surface temperature, average the data over a window (typically 90 seconds), and transmit the sensor data at 401.65 MHz.  Each drifter transmitter is assigned a Platform Terminal Transmitter (PTT) code, often referred to as the drifter ID. These Bouys are deployed by NOAA’s Atlantic Oceanographic and Meteorological Laboratory or AOML.

While Tonya completed the CTD cast, I got to help the ship’s deck crew with a little Bosun Locker Clean-up. There was a pod of about 100 or so Pilot whales that crossed our path. Very cool to see! I got in a workout, then at 6 p.m. it was time to do another CTD profile.

Karolyn Braun, October 22, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 22, 2006

The crew of the KA’IMIMOANA conduct an abandon-ship drill.
The crew conduct an abandon-ship drill.

Science and Technology Log 

We are still a little behind schedule this morning.  We’re preparing the next TAO buoy for deployment later on in the week, and I’m getting ready for my busy schedule of CTD profiles. After our 930 CTD was up and secure on deck, we had an abandon-ship drill.  Those are always fun. Mike and Joe, the ET guys instructed us on the use of the emergency VHF radio, the EPIRB, Emergency Position Indicating Radio Beacons the PEPIRB, Personal Emergency Position Indicating Radio Beacons and the SARTS, Search and Rescue Transponder System.  Our drill was over in time to enjoy a nice lunch, after which we were back outside getting ready to clean one of the lockers when we had a scenario fire drill.  The scenario was that a fire broke out in the paint locker.  We all had to report to muster to be accounted for.  Once we did that, I assisted by bringing out the hose to the grated deck and made sure certain vents were closed.  The drill was definitely adrenaline pumping, but I am glad we haven’t had a real one onboard.

After the drill was said and done, I had to conduct a CTD profile.  It was supposed to be short and sweet but turned out to be a little longer than expected due to something wrong with the winch speed and another fuse blowing.  I don’t think the computer likes me.   The CTD was finally finished and we steamed off towards the next buoy to conduct a dive operation to repair some fittings on the TAO buoy.  I got in a work out and a nap before my late CTD at 2300.  What a day.

Karolyn Braun, October 21, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 21, 2006

braun_log15Plan of the Day 

The alarm went off at 2 a.m. Am I crazy or what?  I pulled myself out of bed to go view the Orionid meteor shower.  What is a meteor you may ask? Well a “meteor shower,” also known as a “meteor storm,” is a celestial event where a large number of meteors are seen within a very short period of time.  These meteors are small fragments of cosmic debris entering Earth’s atmosphere at extremely high speeds, leaving streaks of light that very quickly disappear. Most of the small fragments of cosmic debris are smaller than a grain of sand, so almost all fragments are burned up and never hit the earth’s surface.  Fragments which do contact earth’s surface are called meteorites.  These events are one of the few astronomical phenomena where everyday people, equipped with only their eyes, can experience the beauty of astronomy at its best.  There are approximately ten mornings each year when the meteor activity is exceptional.  What about the other 355 nights per year?  Well, these are the nights when the activity is so sparse one can barely stay awake. YAWN! The Orionid meteor shower is active throughout October and the first week of November.  This shower is produced by the inbound particles of the famous Halley’s Comet, which last passed through the inner solar system in 1986.  The Earth passes closest to the comet’s orbit on October 21.  At this time the Earth actually only skims the outer fringes of the debris field produced by Halley’s Comet. The Orionids can still produce a very entertaining display of celestial fireworks, especially when viewed from rural locations.  When seen near maximum activity, an observer can count 15 to 25 Orionid meteors per hour.  I was lucky to see 30 or more on my hour observation.  Definitely worth losing sleep over!

The morning came and went and around 1330 as I assisted the Electronic Technicians with the TAS intranet web page.  I learned how to use FrontPage too so it was worth the time and effort.  I also helped spool some of the line for the TAO buoy retrieval and fed the line to deploy it. It was a long day but the work got done.  Today’s Buoy retrieval was last minute so it will make the ship behind schedule.  But only time will tell.

Karolyn Braun, October 20, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 20, 2006

TAS Braun contacts the winch to bring up the CTD carousel.
TAS Braun contacts the winch to bring up the CTD carousel.

Plan of the Day 

Well after a long and fun-filled three-day transit we arrived safely at our new longitude line, 170W, to follow.  The ship was buzzing early with preparations to retrieve the TAO buoy. Mother ocean is VERY calm with a small swell but smooth as velvet.  Why is that you ask? Well, the winds cause waves on the surface of the ocean (and on lakes).  The wind transfers some of its energy to the water, through friction between the air molecules and the water molecules. Stronger winds (like storm surges) cause larger waves.  You can make your own miniature waves by blowing across the surface of a pan of water.

Waves of water do not move horizontally, they only move up and down (a wave does not represent a flow of water).  You can see a demonstration of this by watching a floating buoy or a bird bob up and down with a wave; it does not, however, move horizontally with the wave. So the lack of waves makes things easier on the boat but tough on the fantail spooling, as there is little breeze to keep cool. By 800 the buoy was secured and the spooling fun begun. We finished spooling the line and prepped for the deployment just as lunch was beginning. Perfect timing.  After a full belly and some much needed rest indoors we deployed the “Samoan Legend” buoy and spent the next three and half hours releasing the line before dropping anchor.  We finished conducting a 3000m CTD and released an ARGO when Mr. Moon greeted us.  Another wonderful day in paradise…Good night!

Karolyn Braun, October 19, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 19, 2006

TAS Braun displays her creative buoy artwork.
TAS Braun displays her creative buoy artwork.

Plan of the Day 

Paint designs on TAO buoys; Go for a swim in the “pool”

Today was our last day of transit before we arrived at our destination of 8S/170W. After breakfast I got my paints out and spent literally all day painting the three buoys we will be deploying in the next few weeks. I enjoyed myself.  I created an Aloha Buoy with plumeria flowers; a Samoan Buoy with a Samoan designed fish, turtle, shark, ray and an island scene; and my third one is of a fisherman trying to lure an octopus with a lure made of a large cowry shell that resembles a rat (isumu). The Samoan legend about the octopus (fe’e) and the rat comes into the picture.

TAS Braun relaxes in the KA’IMIMOANA’s “pool.”
TAS Braun relaxes in the KA’IMIMOANA’s “pool.”

Gather round, story time: It all started with a sightseeing canoe trip on the ocean by an owl, a snail and a rat.  Their canoe started to sink, so the owl escaped by flying away, the snail sank with the canoe to the bottom of the ocean (goto uga), and the rat tried to swim to shore but he had a long way to go. He saw an octopus and called for help.  The octopus agreed and swam to shore with the rat on his head. When they got to shore, the rat jumped off and thanked the octopus for saving his life and said that he left a little present on the octopus’s head.  When the octopus realized that there was a rat dropping on his head, he became extremely angry and told the rat, “If I ever see you again, I’ll kill you.”  To this day, the octopus is mad about this and is still looking for the rat.  Whenever a fisherman uses this rat shape lure he is sure to bring an octopus home.

After my lunch break I went to relax in our ‘pool’ on the bow before returning to finish up the painting. It was fun and everyone seemed to get a laugh at my paintings.  I was exhausted by the end of the day but it was worth it.  Tomorrow starts another busy week with buoy ops, CTD’s, late nights and early mornings so I am enjoying the slow pace. OK this is enough for the day.  Till tomorrow.

Karolyn Braun, October 18, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 18, 2006

TAS Braun using the Fluorometer to test CTD water samples.
TAS Braun using the Fluorometer to test CTD water samples.

Plan of the Day 

Transit; TAO buoy painting; Testing CTD samples using the Fluorometer

Woke up at 5am to get a head start on the painting. I’d rather work in the morning before the sun comes up.  I finished painting the white strips before breakfast so the crew could flip the buoys over to paint the red on the bottoms before the end of the day. I spent most of my day in front of the Fluorometer testing the CTD water samples.

Ok Learning time: To calculate chlorophyll you need to use the following equation: Chl (ug 1 ) = F*Ve((Fo-Fa)/S)Vf Where F = fluorometer calibration factor

Fo = total fluorescence

Fa = Fluorescence after acid

Ve = extract volume (acetone extract; 10ml)

Vf = filtration volume (volume of filtered seawater in liters; 0.528L

S = sensitivity To obtain Fo we need to fill the cuvette, a test tube-like glass beaker, and place into the Fluorometer.  Record data. Then add 3 drops of 10% HCL to cuvette while still in the fluorometer.  Re-read the fluorescence at the same sensitivity setting.  Record data. Making sure in between samples the cuvette is cleaned with acetone. In completing the equation, we discovered that out here most of the chlorophyll is deeper than in most places.  Let’s get to the basics. The ocean can be divided into five broad zones according to how far down sunlight penetrates:

  • The epipelagic, or sunlit, zone: the top layer of the ocean where enough sunlight penetrates for plants to carry on photosynthesis.
  • The mesopelagic, or twilight, zone: a dim zone where some light penetrates, but not enough for plants to grow.
  • The bathypelagic, or midnight, zone: the deep ocean layer where no light penetrates.
  • The abyssal zone: the pitch-black bottom layer of the ocean; the water here is almost freezing and its pressure is immense.
  • The hadal zone: the waters found in the ocean’s deepest trenches.

Plants are found where there is enough light for photosynthesis; however, animals are found at all depths of the oceans though their numbers are greater near the surface where food is plentiful.  So why is more chlorophyll found deeper the further you travel away from the equator?  Well my hypothesis is because all the nutrients are found in the deep cold layers of the midnight zone.  Near the equator and near coastlines upwelling occurs so the nutrients are brought up to the sunlit zone. As you go further away from the equator less and less upwelling occurs so the phytoplankton is unable to thrive in this sunlit zone. The phytoplankton will grow deep enough in the twilight zone to obtain the nutrients, yet shallow enough where photosynthesis can occur.  I also think that like land plants, too much sun can reduce the growth of the phytoplankton.

Chlorophyll fluorescence is often reduced in algae experiencing adverse conditions such as stressful temperature, nutrient deficiency, and polluting agents.  Phytoplankton photosynthetic efficiency is one of the biological signals that rapidly reacts to changes in nutrient availability as well as naturally occurring or anthropogenically introduced toxins (contaminants).  The results can be used as an indicator of system wide change or health.  I finally finished the samples around 3 p.m. Got in a work out, watched a movie and was off to bed but not before we retarded our clocks 1 hour.  We are now entering my normal time zone.  So close to American Samoa yet so far away•

Karolyn Braun, October 17, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 17, 2006

TAS Braun paints one of the TAO buoys to ready it for deployment.
TAS Braun paints one of the TAO buoys to ready it for deployment.

Science and Technology Log 

Plan of the Day: Transit TAO buoy painting

Today started our first of a three-day transit to latitude 170W.  In the morning I did some knot tying and research on the theory of active fluorescence.  I will be assisting Eric from the Monterey Bay Aquarium on testing the water samples we have been collecting from the past CTDs using an Active Fluorometer.  Active fluorescence methods utilize the relationship between chlorophyll fluorescence and photosynthesis.  I will go into more detail tomorrow.

I painted the TAO buoys in the afternoon to get them ready for deployment on our next line. I was able to paint all the orange before the rain came but will have to paint the white tomorrow.  The weather couldn’t figure out what it wanted to do.  One minute the sun was blazing hot the next it was overcast the next raining then back to the sun again.  I drank a lot of water but felt really dehydrated, so no work out today.  I am going to drink plenty of water and go to bed early.

Karolyn Braun, October 16, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 16, 2006

Junior Officer Phoebe Woodward and TAS Karolyn Braun show off their ARGO tattoos by the ARGO floats before deployment.
Junior Officer Phoebe Woodward and TAS Karolyn Braun show off their ARGO tattoos by the ARGO floats before deployment.

Science and Technology Log 

Well my morning started with a cloudy sunrise, which quickly turned to a nice rain shower. With very low visibility, the winds and waves picked up again, so the ship was pitching and rolling. More learning: Pitching is where the bow and stern move up and down, and rolling is where the vessel will move from one side to another.

While in transit I practiced my knot tying with Jeff and Chris, two of the deck crew, and Carrie, one of the cooks let me borrow her handbook of knots. I am learning!  We had an on-time arrival to the TAO buoy at 8S/155W. The RHIB was sent out to retrieve it; it was secured on deck and lines were spooled in. We were able to take a half dinner break and then it was back to work. The new buoy was deployed into the water and the lines were fed out. We worked until about 7:15 then conducted a CTD and deployed our ARGO float. I even got a workout in. All in a days work.  

Karolyn Braun, October 15, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 15, 2006

TAS, Karolyn Braun enjoying the fresh air
TAS, Karolyn Braun enjoying the fresh air before deploying a drifter buoy

Plan of the Day 

Well today I woke up at 5 a.m. to watch the sunrise as we sailed past Malden Island. It was only two miles away…Beautiful.  We were so close I could see the waves breaking on its sandy beaches. From doing some research, and thanks to the Chief Scientist, I found that Malden was formerly known as Independence Island. It is a low, arid, uninhabited island in the central Pacific Ocean, about 39 km² in area.  It is one of the Line Islands belonging to Republic of Kiribati. The island is chiefly notable for its “mysterious” prehistoric ruins (of Polynesian origin), its once-extensive deposits of phosphatic guano (exploited by Australian interests from c. 1860-1927), its use as the site of the first British H-bomb tests (Operation Grapple, 1957), and its importance as a protected area for breeding seabirds.

At the time of its discovery, Malden was found to be unoccupied, but the remains of ruined temples and other structures indicated that the island had at one time been inhabited. At various times these remains have been speculatively attributed to “wrecked seamen”, “the buccaneers”, “the South American Incas”, “early Chinese navigators”, etc.  In 1924 the Malden ruins were examined by an archaeologist from the Bishop Museum in Honolulu, K.P. Emory, who concluded that they were the creation of a small Polynesian population, which had resided there for perhaps several generations some centuries earlier.

Screen shot 2013-04-05 at 11.30.41 PMMalden was reserved as a wildlife sanctuary and closed area, officially designated the Malden Island Wildlife Sanctuary, on 29 May 1975, under the 1975 Wildlife Conservation Ordinance. The principal purpose of this reservation was to protect the large breeding populations of seabirds. The Wildlife Conservation Unit of the Ministry of Line and Phoenix Islands Development, headquartered on Kiritimati, administers the sanctuary. There is no resident staff at Malden, and the occasional visits by foreign yachtsmen and fishermen cannot be monitored from Kiritimati.  A fire in 1977, possibly caused by visitors, threatened breeding seabirds, and this remains a potential threat, particularly during periods of drought.  There were 4 small buildings and some telephone poles visible but all looked very desolate.

The ship stopped, we conducted a CTD and were off for our next TAO buoy about five hours away. The winds picked up, so consequently the seas have picked up as well, so we are not traveling as fast—only about 10 knots.  We are leaving the doldrums and entering the trade winds.  Let me explain some. The Earth is a spinning globe where a point at the equator is traveling at around 1100 km/hour, but a point at the poles is not moved by the rotation.  This fact means that projectiles moving across the Earth’s surface are subject to Coriolis forces that cause apparent deflection of the motion.

Since winds are just molecules of air, they are also subject to Coriolis forces.  Winds are basically driven by Solar heating. Solar heating on the Earth has the effect of producing three major convection zones in each hemisphere.  If solar heating were the only thing influencing the weather, we would then expect the prevailing winds along the Earth’s surface to be either from the North or the South, depending on the latitude. However, the Coriolis force deflects these wind flows to the right in the Northern hemisphere and to the left in the Southern hemisphere.  This produces the prevailing surface winds (See figure).

The doldrums occur at the equator as the winds from the N.E. trade winds and the S.E. trade winds cancel each other out and everything becomes calm. Ok enough of the science for now. After we did a TAO visit, a CTD was conducted and I threw in my second Adopt-a-Drifter Buoy. I ended up taking a nap after all was said and done.  With the swell getting bigger, so was my upset stomach.  I woke up in time for dinner but didn’t eat much.  I did some schoolwork and was off to bed.  I am hoping tomorrow is better.

Karolyn Braun, October 14, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

The sun setting on the southern Pacific Ocean.
The sun setting on the southern Pacific Ocean.

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 14, 2006

Plan of the Day 

Today has been a day of much needed rest. I awoke at midnight to conduct the 1 a.m. CTD profile, which went extremely well.  Once my head hit the pillow I was out, awaking around 8 a.m.  I checked my email and tried to read some but fell asleep and woke-up around 11a.m.  I went outside to see if any help was needed and they told me not to worry about it so I decided to complete some schoolwork that needed to be done. I felt like I was at the office without my students.  I miss them a lot; they definitely make my life interesting.  I have been getting several emails from them, which make my day.  I ended my evening with a CTD profile and I was off to bed.

Karolyn Braun, October 13, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 13, 2006

KA’IMIMOANA crewmembers make repairs to a TAO buoy.
KA’IMIMOANA crewmembers make repairs to a TAO buoy.

Science and Technology Log 

Well, last night I had conducted the 9:30 p.m. CTD profile solo.  Everything was running smoothly, I remembered all the steps, and the CTD was in the water.  The winchman was waiting for directions, and then we saw ERROR, ERROR, and the computers froze…. AAHHH! But I remained calm and called the Chief Scientist out of bed who called the Chief Electronic Technician (CET). By the time the CET arrived the XO (Executive Office) Robert, was in the lab as well. Come to find out, a fuse had blown. But the CET changed the fuse, and I completed the CTD profile.  Before I knew it, it was 11 p.m.

I awoke to the Bridge calling me for my 5 a.m. wake-up call to conduct the 1.5N/155W CTD profile. This cast went like clockwork.  I was even ahead of schedule.  I know it’s silly, but I am really excited to sail over the equator.  It’s something I have always wanted to do. I have done it by plane many times, but it’s a lot different sailing over it.

I was asked if I wanted to go on the TAO buoy repair.  So of course I said YES! A chance to get off the ship and cruise in the RHIB boat to climb on a TAO buoy in the middle of know where—who would pass that up? It was a beautiful day and while waiting for my time to assist with the repair, I saw sharks and tons of fish.  Absolutely beautiful! Also while waiting, Jeff, a GVA, or general vessel assistant, taught me how to tie a bowling knot and a Tug bowling knot. Not as easy as it looks, but Jeff made it easy to learn. After the repair, I had some lunch and got in a work out in time for the .5S/155W CTD cast. Everyday is such a blessing out here.

Karolyn Braun, October 12, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 12, 2006

TAS Braun assists in recovering spools of line for a buoy.
TAS Braun assists in recovering spools of line for a buoy.

Science and Technology Log 

What a fabulous night sky! More stars than expected and the ocean is flat and smooth, a small swell of 2ft. Well I didn’t attend the 1 a.m. CTD, but I did do the 5 a.m. CTD profile. I was half asleep; I completed the preparation, the cast and the recovery with no worries, but forgot some steps, so I am thankful that the Chief Scientist was awake to remind me.  A BIG Fa’afetai Lava (“Thank you” in Samoan) to you Patrick.  After the CTD we ate breakfast; I have never had such an assortment of food for breakfast since college, only here the food is better! Hats off to our two cooks, Carrie and Don.  They are in the kitchen all day to provide the crew with balanced and healthy meals.

We arrived at the TAO buoy around 9 a.m. and sent a team out on the RHIB to connect to the buoy and drag it to the stern (back of the ship).  The sun was out, there was very little cloud cover and the ocean was still very calm.  It was beautiful enough just watching over the side of the ship, but while they were bringing it in we saw whales off in the distance. The buoy was recovered, and all hands were back onboard so the spooling began (see photo). Before anything else could happen, we had a man-overboard drill.  I definitely feel safe on the ship as the crew is prepared for anything in a moment’s notice!

After 8 spools of line were recovered, the new buoy could then be set up and released.  If a line needed repairing, it got spliced together; if not, the 8 spools got reconnected and fed into the ocean. At the end of the last line, a huge anchor was attached, and it sank into the ocean to finish the job (around 5 p.m.).  A CTD was completed and everyone was pretty exhausted and ready for a shower and good meal and sleep—not necessarily in that order.

Karolyn Braun, October 11, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 11, 2006

TAS Braun holds up the catch of the day, a mahi mahi!
TAS Braun holds up the catch of the day, a mahi mahi!

Science and Technology Log 

Today has been a busy and exciting one. Last night’s CTD I did on my own but with Tonya, the Chief Survey Tech looking over my shoulder to see if I made any mistakes.  This morning I was on my own—an excellent cast and recovery (if I do say so myself) with no problems occurring. Once the CTD was secure, we prepared the ARGO buoy, which was deployed by slowly lowering it into the water. After the bottom filled with water, we disconnected it from the line and away it went., By the time the AOML buoy was deployed, the CTD cast was finished and the water samples for the chlorophyll project were complete, it was breakfast time.  After having some oatmeal, I tried to nap but it was such a glorious morning I couldn’t bear to be inside.  I stood staring out into what seems like a never-ending ocean thinking how fortunate I am to have been chosen for this program—not only for the experiences I have had already or for the knowledge I am going to go home with, but also for the amazing people I have been able to get to know who work on this vessel day in and day out to ensure all projects run smoothly.

At 11:00 we were preparing for a visit to the TAO buoy at 5N/155W. This buoy did not need to be recovered as it was still in excellent working order.  The Chief Scientist, Patrick, viewed the buoy and no repairs were needed either.  While the boat was sailing around the buoy at a slow pace, some of us tried our hands at fishing off the back for some dinner.  We caught a nice Mahi Mahi…YUM!  The CTD was just about to begin so all lines had to come in and it was down to business.  The CTD went effortlessly, and after that, I deployed my first AOML buoy.  The Marine Science Program at the American Samoa Community College has adopted three Adopt-a-Drifter buoys with this program.  Very exciting!

After all the excitement I got in a nice workout and a much needed shower.  After dinner tonight we have another CTD and the fun will be over until tomorrow morning.

Karolyn Braun, October 10, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 10, 2006

TAS Braun displays what the pressure of water will do to Styrofoam cups!
TAS Braun displays what the pressure of water will do to Styrofoam cups!

Science and Technology Log 
Plan for the day
1:00 Deep CTD 8N/155W
7:30 Early Ops Retrieve and Deploy TAO buoy
23:00 CTD 7N/155W

It has been a rainy, cloudy morning. The swells have been the largest I have seen since the cruise started, so we have been really lucky. It wasn’t due to these waves that I couldn’t sleep, but for fear I wouldn’t wake up in time for the 1 a.m. CTD cast. When preparing the CTD frame and cylinders, I placed a mesh bag with about 25-styrofoam cups in it.  I wrote my students’ names on them and will present them when I make my presentation to my students and colleagues at the American Samoa Community College about my trip.  We were able to go down only to 3000m, as we needed to make up for lost time with the last CTD cast.  But it still made a BIG difference to the Styrofoam cups.  We finished up with the cast around 5 a.m. and took a small nap as the first buoy retrieval and deployment was at 7:30.

The deck crew and scientists work as a team to recover the TAO buoy and place it on deck. After the buoy is secure, the two-mile of line is spooled in which takes a LONG time.  The rain has finally developed into a light drizzle.  This allowed me to go on deck and take a few photos. My mission was to watch and learn from this recovery and deployment so that for the next one I can help where needed.  The new TAO buoy was deployed into the ocean and the two-mile line and anchor followed.  This whole process took up the morning and most of the afternoon.  I ended up helping out with the spooling lines preparation for the deployment.  I am not one to sit around and watch.  Next up, a CTD cast tonight. YIPEE!

Karolyn Braun, October 9, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 9, 2006

TAS Braun helps to cast the CTD off the deck of the KA’IMIMOANA.
TAS Braun helps to cast the CTD off the deck of the KA’IMIMOANA.

Science and Technology Log 

Plan for the day:
2:00 CTD 11N/155.5W
9:30 CTD 10N/155.5W
17:30 CTD 9N/155.5W

A beautiful morning: partly cloudy, calm waters and a wonderful 83 degrees. The day started out busy: laundry, breakfast, getting ready for the 9:30 a.m. CTD cast.  After watching the CTD yesterday and going over the commands, I felt confident to cast the CTD; however, we conducted several practice runs before we actually cast the CTD. That definitely was reassuring as I was new, and so was the crane operator. The CTD was launched successfully—next stop 1000 meters. I helped set up the computers to fire the 24-containers at various depths, from 1000m to surface, and collect salinity, conductivity and temperature readings from the brain of the CTD. After the CTD reached the surface, we secured the CTD back on deck and proceeded to collect water for chlorophyll sampling.

As we were collecting the water, we had a man overboard drill.  That was very unexpected but exciting to watch the crew of the ship work so well together. My afternoon was spent filling 20 five-gallon containers with seawater for use in a chemistry lab off island. Currently I have some down time before the next CTD in a few hours.  I am going to work out in the gym for a bit and get my Styrofoam cups ready for the 4000m CTD cast.

Karolyn Braun, October 8, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 8, 2006

During an orientation, TAS Braun and part of the crew of the KA’IMIMOANA are lowered into the ocean in a RHIB.
During an orientation, TAS Braun and part of the crew of the KA’IMIMOANA are lowered into the ocean in a RHIB.

Science and Technology Log 

Sunday is no day for rest on a ship. The day started out slow. I attended the science meeting where I learned where everyone was from and what projects I will be working on.  The CTD casts will be conducted at each mooring site between 08-degreesN and 08  degrees S. The Monterey Bay Aquarium Research Institute (MBARI) is conducting Chlorophyll and nutrient sampling.  They are using the water obtained in the canisters from the CTD.  The Global Drifter Center at NOAA requests deployment of the Atlantic Oceanographic and Meteorological Laboratory (AOML) Surface Drifters on an ancillary basis.  I am lucky enough to be participating in the Adopt-A-Drifter Program in which my students will be able to follow several buoys to plot which current they are in and where they are positioned.  I will have an update on this when I deploy my first one.  Very excited!  In addition, The Pacific Marine Environmental Laboratory (PMEL) will be deploying Argo profiling CTD Floats.  These conduct similar experiments to the CTD on board.  However, these floats are individual canisters that send the information they collect to satellites.  The ship has no further obligation to the CTD float.

I worked out for an hour and then we had a RHIB (Rigid Hull Inflatable Boat) orientation for when we go out and fix TAO buoys.  This was followed by a CTD cast orientation to get ready for the first CTD that evening.  It was a 1000m depth cast with various cylinders capturing water at various depths from 1000 to surface.  Once the CTD was safely on deck and everything secure, I was able to collect water samples for chlorophyll testing. The water needed for chlorophyll testing was at depths of 200m, 150m, 100m, 80m, 60m, 40m, 20m, 10m and at the surface.  I used small filters and a vacuum funnel to have the allotted amount of water flow over the filter.  Once this was finished the filter was placed in a separate tube with 10ml of acetone for use at a later date.  Stay tuned to find out more!

 

Karolyn Braun, October 7, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 7, 2006

NOAA Ship KA’IMIMOANA docked in Honolulu.
NOAA Ship KA’IMIMOANA docked in Honolulu.

Monday, October 2, 2006 – Wednesday, October 4, 2006 

After a long red-eye flight from American Samoa, NOAA Officer Rebecca Waddington greeted me at the Honolulu International Airport.  As the sun came up, we drove to pier 45. As I made my way onto the ship, I was introduced to the crew: The NOAA officers, the deck crew, the engineer crew, the scientists, and the doctor. The next few days were filled with walking around Honolulu and getting used to ship life.

Thursday, October 5, 2006 

The sun was just above the horizon and already the KA’IMIMOANA was buzzing with movement as the crew was getting ready for an on-time departure. The horn sounded as we sailed out of the harbor. The plan of the day was to conduct a helicopter emergency drill and then return to the fueling dock for a six-hour fueling session. Half way through with fueling, we were informed that our departure was going to be delayed till Friday morning due to some electrical difficultly with the alarm systems.

A helicopter emergency drill.
A helicopter emergency drill.

Friday, October 6, 2006 

All systems were go as we headed out of the fueling harbor at noon. The ocean was calm but there was an uneasiness in some of the crew as it is believed to bad luck to sail on a Friday.

All new hands onboard attended a safety lecture where we learned what to do in case of: man-overboard, fire and collision, or abandoned ship emergency.  A while later an abandoned ship drill was conducted. All hands had to grab their assigned gear and meet at their designated safety boat. Our “gumby suits” had to be put on and whistles checked, after which we were able to dress down without PFDs (Personal Floatation Device) on to await further instructions. As the sunset an amazing full moon rose to fill the night sky. What a wonderful night!

Saturday, October 7, 2006 

The morning started with my assisting one of the researchers with fixing a CTD.  The Conductivity, Temperature & Depth instrument measures the conductivity and temperature of water, which will assist in obtaining the amount of salinity.  Using the salinity and the temperature, the density of the water can be determined.  In turn, knowing the densities of the ocean, scientists can determine currents.  The main CTD instrument is surrounded by 14 or so Niskin Bottles.  These bottles collect water at a certain depth to be used in a variety of other tests on ship or on land. All new hands onboard watched a “HAZMAT: Your Right to Know” video and then the ship’s familiarization video. That afternoon we had a fire drill. All scientists meet in the galley unless the fire is in the galley, and then we meet on the boat deck and act as runners for the ship’s crew; if any vents need to be closed or boundaries need to be checked, it’s all part of a team.

NOAA Teacher at Sea, Karolyn Braun, tries on her “gumby suit.”
NOAA Teacher at Sea, Karolyn Braun, tries on her “Gumby suit.”
Dr. Braun assists in repairing a CTD instrument.
Dr. Braun assists in repairing a CTD instrument.

Jenny Holen, September 20, 2006

NOAA Teacher at Sea
Jenny Holen
Onboard NOAA Ship Oscar Elton Sette
September 17 – 21, 2006

Mission: Hawaiian billfish larval and eggs survey
Geographical Area: Hawaiian Islands
Date: September 20, 2006

Weather Data from Lab 
Location: 2 miles off Keauhou, Hawaii
Depth: 77.75 m or 233 feet
Water Visibility: Clear & gorgeous
Water Temperature: 26.61 C
Salinity: 34.59 PSU
Wind Direction: 223.02, south-west
Wind Speed: 4.01 knots
Air Temperature: 26.5 C
Cloud Cover: rain clouds in distant above islands hills

Vials of preserved mahi-mahi larvae captured with an Isaacs-Kidd net off the Kona coast of the Island of Hawaii, during a plankton research cruise aboard the SETTE.
Vials of preserved mahi-mahi larvae captured with an Isaacs-Kidd net off the Kona coast of the Island of Hawaii, during a plankton research cruise.

Science & Technology Log

Yesterday, the routine was very similar to Monday. The NOAA ship was 45 miles out, performing plankton tows from 6 a.m. to about 7 p.m. We did not catch much billfish larva or eggs, but we did catch a lot, I repeat, a lot of little fish.  We were even catching baby tropical fish that must have got caught on the giant seaward current that runs offshore of the big island. Unfortunately, I got very sea sick “again” mid afternoon, and wasn’t able to do much but take photographs of the plankton.  I did how ever, get some “killer” microscopic photography shots and some very cool, short videos of live plankton species in action.

OSCAR ELTON SETTE traveled through the night and we finally got back to the Kona coastline, about 1-2 miles offshore, where it was calm. I, finally, got to sleep that night without being seasick! In the morning, the island rose out of the mist and exposed beautiful hues of tropical greens against the dashing blue sky and crystal clear turquoise waters. Today, sadly our last day, we are performing plankton tows amongst the coastal “slicks.” Now what is a slick you ask?  Well, according to Russell, one of the lead scientists with us from La Jolla, California, the slicks are formed due to wind currents coming off the island that gently push down on the water’s surface forming a glassy phenomenon amongst a rippling environment.  Here, due to the stillness and protection, millions of larva fish and some human trash harbor.  The fishermen who are catching baitfish usually troll their nets through here.  The interesting aspect that Russell talks about behind these slick communities is that they “are aged.”  Some are very young because the spot has been recently open, and some are more mature and older because nothing has bothered them.

TAS Jenny Holen getting ready to repeat the hourly toss, from sunrise to sunset, of the Isaacs-Kidd net
TAS Jenny Holen getting ready to repeat the hourly toss, from sunrise to sunset, of the Isaacs-Kidd net

Today, we hunt through these slicks in hopes of finding billfish marlin eggs and larva. We hit one slick that gave us a bunch! Then we spent the rest of the day getting nothing, and hunting for that original slick. I got many more photographs with my Olympus Mic-D microscope of which both Bob and Russell got copies. One fun thing the scientist and I did today was “pose” in the laboratory for National Geographic pictures taken by David the author of Archapelago. We were still searching for eggs in the newly caught plankton and doing our work, he just made the station and set-up look good.  It would be SO cool to end up in an article of National Geographic. That I’ll have to show off and frame!  At 3 p.m., I left the ship in view of waving hands and smiling faces from all the crew.  It was sad, but what an unforgettable experience I have had these past four days.

Personal Log 

After being sick for the last 2 days, barely being able to walk through the ship to my room, let alone type on a computer, I finally took some Bonnie medicine from the ships nurse, Sarah. After three days out at sea, doing the same thing every day, every hour, I start to realize the required monotony and dedication of scientific research. In order to accomplish a desired goal of finding out a particular question, such as which billfish eggs and larva turn into which adult species; a lot of repetitive analysis and trials must be done in order to come to a clear consensus or even obtain part of an answer to the overall question. Having been a tall ship sailor for two years, my mind wonders to historical maritime scientific expeditions, such as the three-year voyage of H.M.S. Challenger in the 1800’s; John Steinbeck’s journey through the Sea of Cortez; Darwin’s five-year Galapagos voyage on the H.M.S Beagle; and even to Nathanial Bowditch grasping celestial navigation with no background experience out at sea.  These men not only had to endure environmental changes of heat, wind and rain while trying to collect scientific samples, but also had to compensate research time versus sailing obligations when seas became rough, or duty called. Imagine, instead of simply taking pictures of the plankton found (with your Mic-D microscope), you had to literally draw each organism with only a magnifying glass as an aid.

It is just incredible how far we, as mankind, have come towards uncovering the mysteries of the ocean within only the past 200 or so years.  Yet, it is even more astounding to know how much we have yet to still uncover.  Imagine a plate showing only a 10% sliver of a colorful picture underneath. There is no way we would be able to guess what the picture is displaying. This is our world’s ocean knowledge.  There is so much work to be done and to discover that it is essential for the next generation and the one after that to know that they can still be a Jacques Cousteau or a Charles Darwin, discovering and revealing secrets only the giant whales can see.  Imagine marveling at a newly discovered specimen in admiration of the diversity of the sea.  As with all maritime sailors, ocean goers, and even pirates, the ocean is our home.  I had an opportunity on the NOAA ship OCSAR ELTON SETTE to simply look closer at it and view its secrets for just a brief moment along the great span of time.

TAS Jenny Holen taking a break from the rigorous microscopic search for billfish larva and eggs aboard the SETTE 45 miles out from the Big Island of Hawaii.
TAS Jenny Holen taking a break from the rigorous microscopic search for billfish larva and eggs aboard the SETTE 45 miles out from the Big Island of Hawaii.

Question of the Day 

“How does a Hawaiian sunset make a green flash?”

According to Karl Mangels the Commanding Officer of the NOAA ship OSCAR ELTON SETTE, a green flash is due to an angle refraction of light from the sun as it is setting.  Only to be seen in the tropics during clear skies, the angle at which we are positioned on the earth compared to where the sun is creates a light refraction where we see a green spot were the sun just set. Kind of like the colors of rainbow’s and rain.  In accordance with Hilo’s Bishop Museum, “as our atmosphere bends the sun’s rays, they are also dispersed or broken up into different colors.” Green flashes are thus the result of “colored arcs of light above and below the bright orange disk of the sun.”

Jenny Holen, September 18, 2006

NOAA Teacher at Sea
Jenny Holen
Onboard NOAA Ship Oscar Elton Sette
September 17 – 21, 2006

Mission: Hawaiian billfish larval and eggs survey
Geographical Area: Hawaiian Islands
Date: September 18, 2006

Weather Data From Lab 
Location: 40 miles out from the Big Island of Hawaii
Depth: 4099 meters or 12,297 feet
Water Visibility: Clear
Water Temperature: 27.21 C
Salinity: 34.77 PSU
Wind Direction: 335.29 degrees, West
Wind Speed: 11.54 knots,
Breezy Air Temperature: 26.6 C
Cloud Cover: Cloudy

NOAA researchers aboard the SETTE, cleaning off the residue plankton still attached to the net into a plankton container.
NOAA researchers aboard the SETTE, cleaning off the residue plankton still attached to the net into a plankton container.

Science & Technology Log 

The plankton tows have not been as successful as the chief scientist, Bob Humphreys, would have liked. Few billfish larva and eggs have been found, and more are needed to generate a genetic analysis sample.  Bob believes this might be due to an eddy that is forming about 45 miles off shore, swooping the plankton out there. As we slowly start to migrate offshore, we are still obtaining plankton samples every hour until sunset.  Today, instead of helping to look for billfish eggs, I took microscopic plankton photographs with my Mic-D microscope given to me by NOAA’s South East Plankton Monitoring Network program, in South Carolina.  These individual plankton species photographs will be a get asset to the lesson plans I am generating from this research expedition of which could ultimately be used by teachers all over the world through NOAA’s website.

The plankton samples that we got today were almost the same as they were yesterday, nothing too new. However, I did get some background information on why this particular study is so crucial to the future survival of large billfish, such as Marlin.  Currently, some scientists believe that blue Marlin may be migrating between Hawaii and South America, but others are still not sure. Hawaii is a nursery ground for the larval and probably juvenile stages. Adults are migratory and apparently have a magnetic sense that allows them to migrate across to South America where there may be higher food nutrients. The importance behind obtaining this knowledge is to help conserve the declining population due to commercial and sport fisheries. If we knew where the mothers primarily spawn and if there are resident verses transient populations, than we could gain a better grasp of their overall ecology, life cycle, and habitat range. Unfortunately, the farther away from the island you go to get this valuable data the less protected you are from wind and large waves. Hence, at about lunchtime I got extremely seasick and was out of commission for the rest of the day.  I hope enduring all of the rocking and rolling will give rise to better plankton samples tomorrow!

Recommended books:

G. Wrobel & C. Mills.  1998. Pacific Coast Pelagic Invertebrates.

Monterey Bay  Aquarium Publisher, California.  (ISBN0-930118-23-5)

D.L. Smith.  1977. A Guide to Marine Coastal Plankton and Marine

Invertebrate Larvae. Kendall/Hunt Pub.  Company, Iowa. (ISBN0-8403-1672-0)

Personal Log 

Once again, I am amazed to witness and be part of a science research expedition that portrays through every member of the ship, from the cooks to the deck hands and Bridge Officers, the enthusiasm and positive attitude for the current research at hand.  Everyone here is extremely helpful, especially when I got sea sick and ending up hurling in a bucket in the kitchen. The professionalism is evident by everything they do, which gives an air of importance towards the research being done.  I wish more people, teachers, and high school to college students could participate in an experience like this.  It takes the illusion of scientists being a far away myth to being a regular Joe who cares about the environment and the conservation efforts towards the animals it holds.

Another cool thing about this trip is that the author from the acclaimed book Archipelago (the North West Hawaiian Islands) is here on the ship taking photographs of all the unique plankton we are catching for a National Geographic article.  I think that is amazing to know that not only is this research voyage being documented by NOAA scientists, but that the world will get to see and learn about plankton through journal media.  Education is the key to conservation.

NOAA chief scientist, Bob Humphreys, taking the freshly caught plankton and transferring it from a funnel into quart bottles, to be later filtered again into higher concentrations (less seawater) which will be viewed underneath microscopes aboard the SETTE.
NOAA chief scientist, Bob Humphreys, taking the freshly caught plankton and transferring it from a funnel into quart bottles, to be later filtered again into higher concentrations which will be viewed underneath microscopes.

Interview for the Day 

Today I interviewed one of the head scientists of the plankton cruise.  His name is Michael Musyl working with NOAA through the University of Hawaii in Oahu in conjunction with the Joint Institute for Marine and Atmospheric Research (JIMAR).  Michael had always had an interest in fisheries ever since he was a kid, fishing from a fishing pole. He took his education career after high school to Northern Illinois where he got his B.S. in zoology. After which, Mike did a five-year masters program in fisheries Biology from the University of South Dakota, to then go on and get his PhD from New  England in Freshwater fish population genetics.  He then used his knowledge and experience with the Arizona Fish and Game department for two years and then taught college biology and ecology for one year at the University of New Orleans.

Mike decided to go get a post doctorate from South Carolina in molecular genetics of blue fish tuna and ended up working with NOAA on electric tagging of pelagic fish and sharks through the University of Hawaii.  Mike is currently studying the post release  survivability of these fish through archival tagging which broadcast the information to satellites. He is also studying the post release mortality of fish captured in long line nets, to see how long they live after being rescued.

A typical year of work for Mike is answering emails, collaborating with fellow scientists around the world, developing and maintaining research projects, analyzing data obtained from research expeditions, writing about four to five papers for journal publications, and spending about 50% of his time on ships like OSCAR ELTON SETTE obtaining project data. Life as a scientist is busy, as well as exciting!

Jenny Holen, September 17, 2006

NOAA Teacher at Sea
Jenny Holen
Onboard NOAA Ship Oscar Elton Sette
September 17 – 21, 2006

Mission: Hawaiian billfish larval and eggs survey
Geographical Area: Hawaiian Islands
Date: September 17, 2006

Weather Data from Lab 
Location: 4 miles out, between Kailua-kona and Keahou
Depth: 1266 meters or 3798 feet
Water Visibility: Clear
Water Temperature: 27.15 C
Salinity: 34.62 PSU
Wind Direction: 270 degrees, West
Wind Speed: 6.69 knots,
Breezy Air Temperature: 26.9 C
Cloud Cover: Hazy

NOAA Teacher at Sea, Jenny Holen, getting ready to toss the cod end of the Isaacs-Kidd net overboard in hopes of catching billfish eggs and larvae off the Kona coast of the Island of Hawaii
NOAA Teacher at Sea, Jenny Holen, getting ready to toss the cod end of the Isaacs-Kidd net overboard in hopes of catching billfish eggs and larvae off the Kona coast

Science & Technology Log 

Anything short of “amazing” would not justify the unique beauty and wonder which ocean plankton hold.  Working side by side with professional scientists, Erick, Michael, Bob, and Ryan, brought the prospective of importance and dedication we all must exude in the hunt for rare billfish eggs and larva mixed among the ocean’s nursery.  In a jar, surface plankton simply resembles muck from the bottom of your toilet.  Up close however, the characteristics, colors, and movements planktonic organisms portray immediately demand the respect of awe and wonder. Are they microscopic aliens floating around silently in the vast ocean realm?

Underneath the microscope, in search for the rare billfish eggs and larva, the multitudes of diverse and crazy looking creatures emerge unfathomably from what seems an empty ocean of just water.  “What is this?” “What’s this called?” and “I’ve found a baby crab!” come jutting from my mouth like I was a small child seeing something for the first time.  The excitement of being up close to the species that up-hold the entire ocean food web was exuberating.

The research schedule for the day was simple, unlike what we were looking at: drop the large green plankton net into the water, go back to the “cold” lab and examine the last sample catch under the microscopes, reel in the plankton net, and begin again – all within one hour, every hour, from sunrise to sunset.  At dark, just to spice up things, we would throw over board a super bright light in hopes of attracting more crazy looking phototactic organisms.  Our results for the first night include a poisonous male box puffer fish with bright blue spots, some healthy squid, small larval fish and some crazy little crabs that swirled around the light faster than a merry-go-around.

This is the front end of the Isaacs-Kidd net being towed through the surface water to catch billfish eggs and larvae onboard the SETTE.
The front end of the Isaacs-Kidd net being towed through the surface water to catch billfish eggs and larvae

To compare the microscope analysis for the day revealed much more: salp larva, jellyfish, blue copepods, bright pink krill, hairy polychate worms, snail larva, a lot of circular golden diatoms, many clear gelatinous organisms, a never before seen crab larva with feathers attached to each leg elbow for swimming, shrimp larva with heads like hammerheads, clear fish eggs and larva, but no marlin or billfish eggs or larva. However, the other scientist did find some. It must be experience!

Personal Log 

I got picked up about 11 am on Sunday at the Honokohou harbor fuel dock. It was a beautiful afternoon with a light westerly breeze, shimmering turquoise toned tropical waters, and a warmth that felt like a Northface goose-down jacket in the winter. The small boat ride to the NOAA ship OSCAR ELTON SETTE was bumpy and rough leaving my backside sore for the rest of the day. I met everyone aboard, all of whom generated a true aloha spirit and seem to love what they do.  I was put to work right away underneath a microscope looking at moving plankton on a rolling ship – talk about seasickness!  After working with the scientists and crew for just one day, I’ve realized that this particular research area is still vastly unknown and much help is needed in marine fisheries research.  This leaves many upcoming marine ecology students a big job in the search for plankton knowledge. Hence the age old saying, the ocean is our last undiscovered frontier.  I love this thought because it means there is still so much more work to done and many more people can join in the treasure hunt, which hopefully will inspire those students dreading their biology and chemistry classes.

TAS Jenny Holen, scanning a highly concentrated plankton sample for billfish eggs and larvae in the Wet Lab onboard the SETTE.
TAS Jenny Holen, scanning a highly concentrated plankton sample for billfish eggs and larvae in the Wet Lab

Question of the Day 

“How does one go about getting a job aboard a NOAA research boat?”

1) Small Boat Driver: applied two years ago when he was a full-time fisherman in Hawaii and didn’t get the job, then reapplied a year later and a position opened up for an experienced fisherman.

2) Assistant Scientist: Went to college and studied fish population counts and after working with a similar company for a few years applied when a job positioned open.

Possible NOAA Ship Positions: Bridge Officers, Engineering Officers, Deckhand and crew, Electronics department, Stewards (cooks), Survey department, Scientists, Teacher at Sea. (Note everyone works together and helps towards the success of the current mission).

Moral of the story: Be persistent, dedicated, and determined with a positive view and you can obtain anything you desire, including becoming part of a NOAA research study.

Kazu Kauinana, May 21, 2006

NOAA Teacher at Sea
Kazu Kauinana
Onboard NOAA Ship Oscar Elton Sette
May 9 – 23, 2006

Mission: Fisheries Survey
Geographical Area: Hawaiian Islands
Date: May 21, 2006

Weather Data from Bridge 
Latitude:  22, 34 N
Longitude: 163, 10.46 W
Visibility:  10NM
Wind direction:  070
Wind speed:  25Kts
Sea wave heights: 4-5
Sea swell heights: 7-10
Seawater temperature: 24.7 C
Sea level pressure: 1019.5
Cloud cover: 3/8 Atocumulus, cumulus

Personal Log 

As you could tell by the wave and swell heights, it has been ROUGH! The boat has been rocking like crazy. Things have been falling off of shelves, and if I didn’t have my sea legs, I would be spending most of my time in bed.  In fact, it is even difficult to do that. Anyway, you want to hear something funny? You know the sculpture I’ve been talking about?  Well I finished it today, but just as I was going to put it away because I had considered it PAU, the stool I was sitting on tipped over because of the rocking boat.  I turned around to pick up the stool and the sculpture slid off the table onto the floor and smashed the face like a pancake.  I didn’t know whether to laugh or cry, so I went outside jumped over the rails and tried to drown myself.  No, I’m only kidding, I’m an adult.  I went to the mess hall, got something to eat, and then watched a movie.

Geoff Goodenow, May 24, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 24, 2004

Time: 1615

Lat: 20 09 N
Long: 156 15 W
Sky: Bright and sunny
Air temp: 26.5 C
Barometer: 1014.3
Relative humidity: 57%
Wind: 60 degrees at 28 knots gusting to 35
Sea temp: 26.3 C
Depth: 1227.6 m
Sea: Its really rocking at the moment!

Science and Technology Log

This was the last roundup — and a rather disappointing finish. Four barracuda came up, an escolar and half of an escolar cleanly bitten in half by a shark. A blue shark and a blue marlin were on the line also but, unfortunately, dead. Trolling through early afternoon brought in a yellowfin tuna and a wahoo.

The main mission for the rest of the day is to make way for Honolulu.

In case some of you might be thinking about a Teacher at Sea experience, but wondering if longlining is for you, I thought I’d give you a bit of info related to other missions of the SETTE. Perhaps one of those operations would be of more interest to you. (Of course, there are other ships in other places doing other things for different lengths of time.)

The next cruise for the SETTE is a Protected Species Investigations cruise which takes the crew to the northwestern Hawaiian Islands. These are primarily resupply trips to take scientists and materials to and from temporary camps set up on these remote islands for the study of monk seals and bird populations. I read about these camps and found them quite interesting. For example, in an effort to prevent invasion of (more) exotics to these islands items going assure are placed in a freezer for a time to kill hitchhiking critters.

Debris cruises are another NOAA mission. Yep, that’s right, picking up trash from the island beaches and off of coral reefs. A crewman, John, related to me that the stomach contents of dead chicks are often clogged with plastics fed to them by their parents. He has even found plastic lighters, which to the birds might look like squids, in the stomach remains of these birds. It’s nice to know an effort is being made to reduce the hazards, but sad to note that the negative impact of humans strikes even in the most remote places.

Coral reef surveys are done to monitor health of those systems. Studies of benthic habitats are conducted as well as investigations of planktonic life. Later this year the SETTE will do a lobster cruise to assess those populations. John, our electronics technician, described to me that overharvesting of spiny lobsters which like relatively shallow water opened up their habitat to invasion by the slipper lobster. Slippers typically stayed deep to avoid the spiny, but now that the species are encountering each other a hybrid has developed.

John also pointed out that regardless of the mission of the science teams aboard, the SETTE is constantly collecting and filing data. Wherever the ship is, it is recording weather information and physical characteristics of the seawater and the seafloor. Perhaps you get the idea that this is a busy little platform sailing out here in the big blue sea.

Personal Log

At the time of my weather report we were passing through the channel between Hawaii and Maui. This is where we got blasted by heavy (much more so than today) seas on our first night out. I’m handling this well and would like to boast that I am now seaworthy enough to handle with ease forces as encountered on day 1. But then I don’t want to tempt the sea gods to challenge me with a new test of my endurance. The sea is very pretty in this state (something I was in no condition to say 3 weeks ago). White-capped waves, snow white on a navy blue backdrop and fleeting rainbows of color as wind blown spray catches the light just right fill the gap between the island masses.

The sea calms dramatically as we pass between Maui and islands to its west. We are close enough now to Maui to see the green of the land with its black lava scars and the observatories perched atop 10,000 foot Haleakala glistening white in the late afternoon sun. To our southwest the surf crashes against the shear walls of the neighboring island, Kanoolaweu. Lenai and Molokai lie ahead and frame a beautiful sunset for our last night at sea as several of us enjoy it from the bow.

I will be doing my last edition of the log tomorrow (Tuesday). I think I lose my NOAA address as of tomorrow also. If you have any questions perhaps they will be forwarded to me through the Teacher at Sea website. I look forward to hearing from you.

Geoff

Geoff Goodenow, May 23, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 23, 2004

Time: 1600

Lat: 19 35 N
Long: 156 08 W
Sky: Hazy, bright sunshine; mostly cloudy by evening. No green flash or stars tonight.
Air temp: 26.8 C
Barometer: 1014.4
Relative humidity: 53.7%
Wind: 282 degrees at 6 knots
Sea temp: 27.3 C
Depth: 2611.9 m
Sea: Very gentle today. Not quite glassy but quite smooth.

Science and Technology Log

Eight fish on the longline this morning including a striped marlin (Tetrapturus audax) which was tagged and released. We had 2 representatives of a species, crocodile shark (Pseudocharcharius kamoharai) not previously caught. Also on the line were an oceanic white tip, a large barracuda, a mahi mahi, a swordfish and (you guessed it) an escolar.

Here are a few facts related to some species new since I reported on fish types previously. My source is the same. Please note that it was published in the 1980’s and that some info could be out of date, but it’s the best I have for you.

Crocodile sharks: There is only one genus and one species in the family. These are not very large sharks attaining about 110cm. Their teeth are long, curved and slender, very sharp (and, I thought, very impressive).

Striped marlin attain 2.9 m.

Blue marlin (Makaira mazara): Males reach about 150 kg but females can grow to 5 meters and weigh over 800 kg.

Tonight is out last set of the longline. Again we are off the coast of Kona.

I asked our electronics technician, John, to tells me about some of the safety systems on the ship. This would have been good to report first thing so as to put my mother’s mind at ease. Anyway, here’s a bit about how we are protected in case our ship encounters some sort of distress. These are all part of the global Maritime Distress Signal System.

We are capable of sending radio distress signals indicating our position. A VHF signal has a range of about 50 miles, and HF signal up to 1500 miles. A satellite connection for the “All Pacific Region” alerts stations from northern Alaska to the tip of South Anmerica and east to west across the Pacific.

Emergency Position Indicating Radio Beacon (EPIRB): This can be activated manually, but is activated automatically if it contacts saltwater. It sends a keycode to a satellite which alerts NOAA where the ship can be identified, its most recent position marked, and direct nearby ships to assist.

Search and Rescue Transponders (SARTs): Our ship as well as others are constantly sending out a signal at a certain frequency. Assume we have lost the ship and are in a boat/raft with our SART. When it detects the signal from a ship in the area it lights up. We would then turn on our SART which sends a signal to that ship’s radar indicating our direction and distance.

I feel pretty confident that someone always knows where we are! John also showed a couple of other pieces of gear on the ship. One is an Accoustic Doppler Current Profiler used to determine current speed and direction at various depths. In another, transducers on the bottom of the ship “ping” the bottom at low and high frequencies. Lower frequency signals travel farther and can give us a profile of the bottom. Higher frequency signals can actually detect schools of fish or concentrations of plankton.

Personal Log

Still on the finger soaks and antibiotics, but finger infection is clearing up. The crocodile shark teeth were so impressive to me and make a great contrast to the blue shark’s jaw that I decided to risk further pain, discomfort and more infection in another jaw cleaning exercise. Small size and previous experience combined to make this a much shorter effort than that with the blue, but nonetheless painful as those needle sharp teeth penetrated gloved hand and found their mark in human epidermis.

Then it was to work on a eye cup from the blue marlin pulled in yesterday. Kylie made the official presentation to me last evening as Kerstin and Eva listened on. I had to finish the cleaning job then apply Kerstin’s newly found hot water bath treatment to complete the removal of the flesh. I feel like a real, official Junior Eye Scientist Club member now that I’ve been awarded my first “medal”.

Questions:

I’m drained; I can’t think of any.

Geoff

Geoff Goodenow, May 22, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 22, 2004

Time: 1600

Lat: 19 24 N
Long: 156 53 W
Sky: Sunny this morning, but brightly overcast at the moment. Clear this evening.
Air temp: 26.5 C
Barometer: 1015.1
Relative humidity: 59.9%
Wind: 144 degrees at 6 knots
Sea temp: 26.7 C
Depth: 3810.4 m
Sea:

Science and Technology Log

Even with our normal start time today we were able to get to our one broadbill swordfish in time to tag and release it. we had a new species on — a 176 cm blue marlin (   ). It looked as though it had been attacked by sharks while on the line. We were also able to tag an oceanic whitetip shark. Also for the first time on the longline we had a shortbill spearfish. The rest of the catch was rounded out by the regular cast of characters: 3 escolar, a snake mackeral, one great barracuda and one mahi mahi.

We trolled lines up to 40 miles away from the big island today but nothing grabbed the lures. Tonight we are setting again offshore of Kona, perhaps 25 miles out (not sure).

A chapter in Wilson’s book and some comments made by Kirsten and Mike a couple days ago are the motivation for this part of today’s log. Should we be looking for ways of expanding aquaculture and reducing our dependence on wild stocks to provide fish protein? Wilson in Diversity of Life (1992) states that 90% of fish consumed worldwide is taken from wild stocks. He further states that while about 300 finfish species are cultured throughout the world, 85% of the yield comes from just a few species, talapias, for example.

Kerstin told me of the southern blue fin tuna, a highly prized species, whose numbers crashed due to overfishing in the 1950’s and 60’s. A moratorium on taking the species was imposed and resulted in an increase in the wild stocks. Now quotas are set to protect the species. Australia meets its quota by capturing animals then towing them live to ocean pens at Port Lincoln. The pens are roughly 40 meters in diameter and 15-20 meters deep with about 2000 fish per enclosure. There the animals are fed a diet of fish over 3-4 months that brings their flesh to a desired quality. Of course, this demands harvesting many tons of feeder fish (from the wild) to support the pen raised stock.

In America and elsewhere we have turned from wild stocks of animals to support our numbers. We raise chickens, pigs, cattle and sheep to provide most of our meat. Hunting of wild game is reduced to controlled recreational seasons designed to protect those resources. Should we be doing much the same for more species of ocean fishes, that is, develop methods to economically raise several desired species and greatly reduce our take from wild stocks? Should some receive total protection?

Check out the question section below for some reading about certain aspects of the issues then decide what you think about the concerns raised.

Personal Log

The doc lanced my finger today and I’m still on the antibiotic and hot water soak routine. Feeling kind of sluggish today and appetite is not quite up to my norm; probably effects of antibiotic.

Sky cleared nicely before sunset providing a clear horizon and our first green flash in many days.

Hope to sit out the line set tonight and perhaps just take in a movie.

Question:

In the June 9, 2003 issue of U.S. News and World Report is an article titled “Fished Out” in which the state of oceanic fish populations is discussed. What is you reaction to the article?

On page 40, there is a reference to a report by scientists Myers and Worm. Rich and Mike have told me that there have been several rebuttals to the Myers and Worm report noting flaws in their methods and conclusions. Find such an article then rethink your attitude toward the US news and World Report article and issues raised above.

Geoff

Geoff Goodenow, May 21, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 21, 2004

Time: 1600

Lat: 19 25 N
Long: 156 54 W
Sky: Overcast today. A bright unthreatening sky but clouds thick enough to prevent casting of shadows.
Air temp: 26.3 C
Relative humidity: 70%
Barometer: 1015.7
Wind: 146 degrees at 14 knots
Sea temp: 26.5 C
Depth: 4738 m (at 1645 hrs)
Sea: Rolling today with 3-5 foot swells but not uncomfortable. Much calmer this evening now that we are nearer the Kona coast.

Science and Technology Log

We began our retrieval of the longline at 0600 today; usually we begin at 0800. This change was made in light of the fact that we have been catching swordfish in this area and that they are dead when we get to them. These are animals (when alive) that we would like to tag. The thought is that if we get to them sooner we will have live animals to work with. I hate to see any of them dead, but it was especially hard to accept the loss of that big guy yesterday.

Did it work? Well, we didn’t lose any swordfish today, but then we didn’t catch any either. It was a very poor catch — several escolar (apparently the most abundant fish in the sea), one snakemackeral, and, the only thing worth getting up for (personal commentary), a bigeye thresher shark. This one was tagged by Rich who harpooned the pop up into its back with one swift and well aimed lunge. He was then cut free of the line — another mobile laboratory.

Tonight we are again off the Kona coast for the line set. I don’t know why the decision was made to come here as opposed to staying over one of the seamounts.

Yesterday I had a tour of the engine room. I thought I’d mention a couple things going on below deck and perhaps a few other tidbits about our floating city of 30-40 people. In an earlier log, I think I mentioned that we make our own fresh water. Waste heat from the engine cooling water heats sea water held in a partial vacuum where it can boil at less than 100 degrees C. then be recondensed to yield our water supply.

Our waste water treatment system is a Class 2 type according to chief engineer, Frank. All human waste and gray water goes to a holding tank. From there it is pumped through a unit to macerated solids. The slurry then passes through an electrical cell that completes the purification process before discharge to the sea.

Our little city generates its share of trash as well. Bins around the ship are marked as to the specific kinds of refuse we may put into each. Here’s is what I understand concerning disposal of sewage and trash. Within 3 miles of shore everything must be held although I think if sewage is treated, as ours is, it is OK to let it go even there. Plastics are never to be dumped. From 3-12 miles out, we can dump trash and food waste ground to less than an inch, but no packaging and such that floats. At 12-25 miles, food wastes can go but again the floating debris is prohibited. Beyond 25 miles, I think all can go but the plastics. Cardboard boxes and paper trash go over the side out here and untreated sewage can be flushed.

And, of course, we have to eat. Todd and Susan are our stewards. Todd insisted that I write that “the second cook (in this case Susan) has the hardest job on the ship.” Susan agrees. For a typical 24 day cruise, Todd (chief steward) spends $5000-$6000. To mention just a few of his purchases for this trip he packed on 48 gallons of milk, six cases of juices, a case being containing 4 three-liter bottles of 4-1 concentrate, and over 80 loaves of bread. Whatever he buys is supplemented by our catch. He noted too that in different areas, crews have different likes. For example, in Hawaii he packs on lots of fruits. In cold Alaska, crews like to have soup everyday whereas here it’s not as welcome because of the heat.

Well, that diversion got me (and you) away from fish science for today. Sorry if anyone is disappointed.

Personal Log

I think the early start jolted everyone’s biorhythms or perhaps just mine. I liked being done with the line by 0830, but I did feel kind of lazy all day afterwards. Perhaps that along with the humid, overcast sky and an antibiotic the doc gave me for an infected finger combined to make napping the desired task of the day for me. So aside doing this log, soaking my finger and a bit of reading that’s about all that happened for me today.

Questions:

Perhaps this should have preceded yesterday’s questions. The Hawaiian Islands are some of the most remote island in the world. How did they originally (before the hands of humans) become inhabited by plants, animals, fungi? What are some of the mechanisms that permit dispersal of life to such isolated places as these?

Geoff

Geoff Goodenow, May 20, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 20, 2004

Time: 1600

Lat: 19 15 N
Long: 157 06 W
Sky: Beautiful day; lots of sunshine with scattered cumulus clouds
Air temp: 26.6 C
Barometer: 1015.2
Wind: 132 degrees at 15 knots
Relative humidity: 62%
Sea temp: 26.7 C
Depth: 3116.6 m
Sea: Swells less than a meter offering up a very smooth and pleasant ride.

Science and Technology Log

Several escolar, 2 snake mackeral, 2 sharks and 2 swordfish on the line today. The sharks were both silky sharks. One was tagged and released. The same treatment was intended for the other but it broke free of the hook before we got it on board. Both swordfish were dead.

The last of the swordfish was the biggest we have seen: 185 cm plus a sword of over 60cm and weighing in at 90kg. A couple skipjack tunas were landed with troll lines.

We are staying in the same area for the longline set tonight. We didn’t even bother to check Cross seamount as things are pretty good here and we would probably have had to turn away from there out of respect for others’ presence.

In reviewing Kylie’s presentation (see personal log), Rich commented that we know what the movements of the animals are, but we don’t know so well why they make various vertical movements nor how they are able to deal with the stresses imposed by those movements. The temperature/cardiac function relationship described yesterday adds a bit to the puzzle as do studies of tolerance to oxygen reduction. I found this quite interesting and hope I can condense the story to something meaningful for you.

At depths reached by bigeye tuna oxygen levels are far lower than levels experienced by skipjack and yellowfin tunas at the depths they are normally found. Tunas characteristically have high metabolic rates which might seem impossible to maintain at low ambient oxygen levels experienced by the bigeye. Fishes tolerant of low oxygen levels are typically very sluggish, have low metabolic rates and have blood with a higher affinity for oxygen than less tolerant species. In exchange for that high oxygen affinity (a benefit at the gills), they sacrifice maximum delivery of that oxygen to their tissues; their blood just doesn’t want to let go of it.

Bigeyes then, as you would expect, have blood that grabs oxygen more readily than blood of skipjacks and yellowfin. So how are bigeyes able to remain so active when their fellow fishes with high oxygen affinities just can’t keep the pace? Recall those heat exchange units we’ve mentioned before??? Bigeyes’ blood loses much of its grasp on the vital gas as it is warmed by those heat exchange units. And remember that at the gills the blood is “cold” again. What a great system — readily grab and hold oxygen at the gills even in low ambient oxygen environments, and readily release it in the muscles. Pretty cool, I think.

To conclude, I quote from the summary section of my source as to the value of these studies. I presume that what is stated here specifically with respect to bigeye applies more broadly. “Understanding the vertical movements and depth distribution of bigeye tuna, as well as the physiological abilities/tolerances and oceanographic conditions controlling them, has been shown to be critical to improve longline catch-per-unit effort analysis and long term population assessments in the Pacific.”

Goodenow 5-20-04 oceanic white tip
Geoff with a small oceanic white tip shark

Personal Log

Following the line retrieval, I managed to get some time on the upper deck in my favorite shady spot with my book. Reading, snoozing and enjoying the view passed the afternoon along with an interruption to assist with a troll line catch. This was very nice after such a gloomy yesterday that was topped off with another late night at the movies (Pirates of the Caribbean).

Just before supper Kylie did a rehearsal of a presentation she will be making in Australia about her vision studies. Rich and Kerstin made comments and suggestions to help her polish the presentation. It was interesting to hear them address content and presentation issues much as I do with my own students.

Kerstin asked me today if it is getting tough coming up with material for the log. I suggested that indeed it is becoming more of a challenge. Perhaps out of sympathy, she called me to her lab early this evening to share with me some details related to the eye socket of a swordfish. Thanks, Kerstin, and keep ’em coming!

Questions:

Many native plants and animals of the Hawaiian Islands have suffered due to the introduction of non-native species to their environment. The green cover of the islands is very different in most places than what Polynesian settlers saw. Mongooses and ginger are two introduced species. See if you can find out how they got here, why they were introduced and specific impacts they have had on native species. (There are others for which you could do the same investigation including many in your home area).

Geoff

Geoff Goodenow, May 19, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 19, 2004

Time: 1615

Lat: 19 15 N
Long: 157 14 W
Sky: Cloudy all day with light to moderate rain showers throughout the day after longline retrieval. Ended by supper time, but the sky remained overcast.

Air temp: 23.6 C
Barometer: 1012.5
Wind: 106 degrees 16 at knots
Relative humidity: 73.4%
Sea temp: 26.2 C
Depth: 3959.8 m
Sea: Swells less than a meter.

Science and Technology Log

Not a big catch today, but everything we did catch came at once resulting in a flurry of activity for a short time. A blue shark was kept, and our largest swordfish so far came up dead. Too bad as it would have been an excellent one to tag.

For today’s in depth science report, I will refer to a couple of papers both coauthored by our chief scientist, Rich, relating to vertical movements of some of the species we have seen. Some fish tend to stay within particular vertical realms while others traverse them. What factors influence the animals’ movements?

One seems to be temperature. In a study of yellowfin tuna, blue marlin and striped marlins, all three were found to descend to depths where water is no more than 8C below surface temperature. Where oxygen levels in the water are not a factor, all three of these species seem to be restricted by the effects of water temperature on cardiac muscle function.

Bigeye tuna as you will recall stay deep (500m) by day and rise to the surface waters at night. At depth the animals are exposing themselves to ambient temperatures that are up to 20C colder and oxygen levels much lower than in the upper layers. Swordfish and bigeye thresher sharks exhibit patterns similar to those of the bigeye tuna.

What about those heat exchange mechanisms described in earlier issues of my log? Shouldn’t they, if present, allow a fish to tolerate a wide temperature range? While indeed they are present in some species, they are not working to keep blood warm as it goes to and through the heart. Any heat left in the blood on its return to the heart is lost as it passes through the gills. Since the heart is “downstream” of the gills, cardiac muscle remains within 1C of ambient temp. Studies show that temp. reductions cause heart rate and output to decrease.

Yellowfin tuna and the marlins seem to have no ability to increase heart rate or cardiac output following sudden temperature reductions. Consequently, they stay within that 8C window of surface temp.

So how do the bigeye tunas and others manage to negotiate these temperature realms with apparent ease? The question remains, the full story unknown so untold. Perhaps by the time you are here as a teacher at sea you can fill us in with the details. I’ll be waiting!

I’ll complete this look at physiology tomorrow with a bit more to relay about the oxygen issue.

Goodenow 5-19-04 bite marks
This was taken to show countershading and nuptial bites. The large bite is obvious but also note the smaller teeth marks below. The bites are made by the males on the females.

Personal Log

I usually have a good start on the log by supper time but not today. In the quiet following the period of intense longline activity, I began the process of securing the jaws of the blue shark for display. This was a female of good size (165cm, 45kg) and with a nice set of choppers. I was being pelted with rain as I worked through lunch and beyond. I thought if I stopped I wouldn’t go back out to deal with it any more so I just kept peeling away the flesh to expose the teeth and reduce future odor issues. Had it pretty well done as chill started to get to me. I headed for the warmth of a stairwell over the engine room pausing momentarily to enjoy the (usually) stifling heat before finishing my route to room and warm shower. I did return to inspect my work. In comparing it to Eva’s similar effort I felt more had to be done to match her high standard. But now it’s done and jaws are held wide apart with crossed chopsticks as nature tends to the final phase.

No longline duties at the start of tonight’s set which I think is in last night’s neighborhood. Perhaps I will be in there as a reliever a bit later.

Question:

For something completely different and to address the history buffs among you:

How long ago is it estimated that Polynesians discovered and settled in the Hawaiian Islands?   When were the islands discovered by European explorers? Why was captain Cook first welcomed by the native people, but not received so well (and eventually killed) when he returned shortly after his departure?

Any subject areas I’ve not touched on yet?

Geoff

Geoff Goodenow, May 17, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 17, 2004

Time: 1600

Lat: 18 24 N
Long: 157 47 W
Sky: Stratus cloud layer shielded us from the sun until longline was in then it started to break up by 1030. Sun for awhile then clouded over again by midafternoon. Thinning by evening but still a good blanket on us.

Air temp: 27.3 C
Barometer: 1011.24
Wind: 35 degrees at 7 knots
Relative humidity: 54.5%
Sea temp: 26.8 C
Depth: 4489.2 m

Sea: 2-3 foot swells; no problems

Science and Technical Log

Yesterday after picking up the line we began a westward passage toward Swordfish Seamount. It was a long way off and there was no hope of getting there last night. The line was set along our course at 18 34 N and 156 47 W at no particular oceanographic feature that I am aware of. Perhaps that is why out haul today was none too exciting — a couple escolar, a snake mackeral and two blue sharks. Only one of the blues was brought on board. We will be at Swordfish to set tonight and look forward to a more interesting catch tomorrow.

I have covered each of the areas of research going on by the science teams aboard for this cruise. Today, my focus will be on sharks. We have caught 4 species so far and that has aroused my interest in these animals. I’ll provide some general info as well as some specifics for the species we have caught. For those of you interested in more, my information comes from two sources: Smiths’ Sea Fishes by Margaret Smith and Phillip Heemstra, and Diversity of Life by E.O. Wilson.

Sharks along with skates and rays are among 700-800 species in the subclass Elasmobranchii of the Class Chondrichthyes. Like all members of the class, their skeletons are entirely cartilaginous, but Elasmobranchs are distinguished by an upper jaw that is not fused to the skull and 5-7 pairs of gill slits.

There are about 350 species of sharks ranging in adult size from the 23 cm green lanternshark to whale sharks, the largest of all fishes, which reach 13 meters. Sharks lack a swim bladder, but produce large amounts of lipids which are stored as oils in the liver for buoyancy. The liver can account for up to 25% of the animal’s total weight. Sharks maintain osmotic (water) balance by maintaining a high concentration of urea (so high as to be deadly to most fishes) in their blood and tissues thereby reducing water loss to their salty environment.

All sharks we have caught (except the bigeye thresher, Order Lamniform) belong to the Order Carchariniform. This is the largest group of sharks; it includes about 200 species. These two orders are distinguished from one another in the following ways:

Carchariniforms: purse-like egg cases or live bearing; a movable nictitating membrane (eye covering).

Lamniforms: bear live young with uterine cannibalism (now there’s an interesting bit) evident in some; no movable nictitating membrane. There are also differences between the orders in the internal structure of their intestines — very interesting but I won’t go into description.

Specifics about each species of shark we have taken follow.

Blue sharks: the most fecund of all sharks; viviparous and bear 35-135 pups per litter; 50 cm at birth; attain 3.5 m; widespread in all oceans; favor water 12-16 C.

Oceanic white tip: in all oceans; away from continental shelves; viviparous bearing 6-8 pups usually; 60-65 cm at birth; up to 3 m; abundant in tropical seas.

Silky: widespread, prefer warm water; feeds inshore and in deep water; viviparous bearing 9-14 pups; 80-85 cm at birth; up to 3 m.

Bigeye thresher: widespread in warm ocean waters; ovoviviporous (provides embyo with no nourishment beyond the original yolk); 2 pups per litter; 100-130 cm at birth; attain 4.5 meters.

Personal Log

Well, I guess you can tell what I did today, and I might have a few more tidbits about sharks to add tomorrow. I am completing the log before the line set tonight so as to take in a movie afterwards. Don’t know what’s playing tonight, but it will be free and relaxing.

Tomorrow begins our last week at sea. Little time remains for you to file your questions with me. I’m looking too for suggestions for topics to try to address so if you have ideas, please suggest. I have asked for a tour of the engine room which is a possibility for Tuesday if tickets aren’t sold out. That might give me some interesting goodies to pass along.

Question:

We have seen fish that are rather uniformly dark in color and some that are brightly colored. What are some of the roles of coloration in fishes (as well as other animals)? Describe countershading and how it serves an animal like the blue shark.

Geoff

Geoff Goodenow, May 16, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 16, 2004

Time: 1615

Lat: 18 25 N
Long: 156 13 W
Sky: A dreary morning with gray stratus clouds all around and an occasional misting of precipitation. Much brighter sky by 1300 — enough to cast shadows, but remained mostly cloudy throughout the day. A pleasent evening with clearing skies.

Air temp: 25.7 C
Barometer: 1011.61
Wind: 352 degrees at 13 knots
Relative humidity: 71.5%
Sea temp: 26.4 C
Depth: 5012.1 m
Sea: 2-3 foot swells

Scientific and Technical Log

Longline retrieval started on a bad note this morning as the line went under the ship. It caused only a short delay as maneuvers were quickly and successfully made to keep it out of the propellers. We brought up an escolar, 2 snake mackeral, and a broadbill swordfish head. A large, angry silky shark came in also. The shark was released after being tagged and “kindly” relinquishing a remora. And finally, a new species for the record, a lancetfish (Alepisaurus ferox). These guys look much like the snake mackeral, a long thin body up to 200cm, nearly cylindrical with a tall uneven dorsal fin (sail)standing perhaps 5 body widths high over nearly 2/3 of its back. The snake mackeral’s dorsal fin does not rise nearly so much. The lancet’s skin was very smooth, scaleless in fact, iridescent and rather pale. They have narrow snout with long sharp teeth.

For those interested in the studies of pelagic fishes, the Pelagic Fisheries Research Program (PFRP) publishes a newsletter which can be viewed online (I think) at http://wwwsoest.hawaii.edu/PFRP . For more on the eye work being done by Kerstin and others see Vol. 6 Number 3 (July-September 2001).

Other studies aboard the SETTE:

Melissa is a master’s program student at Virginia Institute of Marine Sciences (VIMS). She did her undergraduate study at UC San Diego. She has been collecting remoras, larvae from our plankton tows and stomach contents from some fishes, and fin clips from sharks. Here’s what it’s all about:

The remoras are being collected as a favor for her labmate’s work at VIMS. That person is looking at the phylogenetics of remoras and also that of their hosts which include sharks, billfishes, and the occasional baitfish or float. She is also collecting fin clippings from sharks of the genus Carcharhinus (e.g. oceanic white tips, silky sharks) for another labmate working on the sandbar sharks (also in the Carcharhinus genus) off of Virginia, looking at natal homing patterns.

From the plankton tows, Melissa is interested in larvae of the fish family Scombridae which incldes tunas, wahoo, bonitos, and mackeral. Can we find ways to identify them based on their genetics? Samples from all will be sequenced using their mitochondrial DNA in an attempt to find unique interspecific (between species) genetic markers. The value of this is that it would allow easier identification of larval types than does morphological identification. We might more readily then identify where and when particular species spawn and thereby attain a better understanding of their life histories. Are the genetics of a species uniform throughout the range of the fish? If there are significant genetic differences in populations then perhaps it is wise to manage fisheries of that species by area as opposed to globally (one size fits all approach) so as to preserve gene pool diversity. Answers to these questions could lead to management practices that better protect these resources.

This work also has applications in forensic studies. Fish that have been taken illegally and already filleted can be identified by genetic markers enabling better enforcement of regulations. Also, morphological identification of degraded tissue, as in stomach contents where enzymes have done their deed, is impossible.  Stomach contents collected here will be screened using genetic markers for the tuna larvae to see if the larvae are part of that particular fish’s diet.  Applications from this work could potentially aid studies of trophic levels and predator/prey relationships.

Goodenow 5-16-04 shark on cradle
Shark being lifted aboard

Personal Log

Suffered my first injury in shark wrestling today with a slight abrasion to left knee — not enough to scare me away from the next match. Nothing too news worthy to report about the day. It was a rather slow day. Not much sun, humidity was above the norm — a bit uncomfortable outside. Continued reading Wilson’s book, did wash and stewards offered a linen change today which I took advantage of.

There was a moment of excitement this afternoon when a marlin took off with a troll line. It was out of control and our two champion fisherman couldn’t handle it. Gears were stripped in the reel which actually smoked from the heat generated as line spinned off. That rod is out of action for the duration; the fish won that round.

This evening our electronics technician, John, gave me a pictorial introduction to other research cruises of the SETTE which I will share with you another time. And, relieved of longline duties tonight, I spoke with Mike and science in general and some specific regarding his work in fisheries research.

To all of my ’02-’03 Advanced Biology students, I am sorry to report that I was not able to make use of my Secchi disk nor did I even see one on the ship.

Question:

What does the term upwelling mean? Identify several general locations in the oceans where upwelling occurs. What is the biological impact of upwelling in those areas?

Geoff

Geoff Goodenow, May 15, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 15, 2004

Time: 1550

Lat: 18 52 N
Long: 155 47 W
Sky: Bright and sunny over us but the island has a layer of stratus obscuring views to top
Air temp: 26.3 C
Barometer: 1012.72
Wind: 202 degrees at 12 knots
Relative humidity: 62.4
Sea temp: 26.2 C
Depth: 2015.4 m

Sea: Rolling along with 2-3 foot swells; no big deal.

Scientific and Technical Log

Scientific name for the pomfret we caught yesterday is Brama brama and for the silky shark (caught a week or so ago) it is Carcharhinus falciformis.

Today as we trolled just off the Hawaii shoreline as we steamed south to our longline set position. Mike and Chris teamed up again to land a shortbilled spearfish (Tetraturus angustirostris) 161 cm and 17 kg, silvery body with a deep blue dorsal fin — beautiful fish. This one was kept for eye studies and other tissue samples. We pulled a nearly intact fish about 20 cm long from its stomach. The 2 man team of Chris and Mike is working smoothly and efficiently; no fish has a chance against them now.

We will set the longline tonight southeast of the southern tip of Hawaii at Apuupuu Seamount, 929 m below. (18 31N, 155.24 W). Following the set we will be doing a plankton tow.

Vision (one more time):

Another aspect of the vision studies is trying to assess the animal’s speed of vision. Electroretinography measures the response of an eye to light pulses from a flickering source. So called flicker fusion (FF) is reached when the eye loses its ability to perceive individual pulses of light. A relatively high FF value is characteristic of shallow living species compared to deeper dwellers. In the dim light the speed of light gathering is slowed similar to the need to slow a camera’s shutter speed to gather sufficient light.

In concluding this abbreviated look at the vision studies, I’ll try to draw some of the pieces together. Pop up tags show where these animals spend their time in terms of depth, light and temperature realms. We can tell how sensitive an eye is to light and how fast it works. As you will recall, some of these fishes deep dwelling fishes have heat a exchange system located in the eye which keep it warm. It has been shown that speed of vision is affected by temperature change — a warm (above ambient) eye functions more effectively. Much more goes on, but perhaps you get a sense of how different areas of study contribute to a better picture of this function in these pelagic fishes.

To other (non-vision) studies tomorrow.

Personal Log

We steamed toward Kona through the night so that we could ferry Steven to shore and flights to other places. It was great to have met him; I’m sorry he had to jump ship. I got up at 5:30 to experience sunrise (around 6 o’clock). I thought it would be nice to see it rise over the island, but didn’t count on the clouds hanging over the mountains to obscure anything that might have been spectacular; it wasn’t even good from our perspective. But it was nice to see a color that I haven’t seen (except as a flash) in over a week — green. We have been wrapped in a beautiful blue and white world (which I am sure would excite fans of the Penn State Nittany Lions and the Mifflinburg HS Wildcats), but I tend to favor green fields and forests in the mix.

Unfortunately, we didn’t get to touch the green or for that matter the briny deep as snorkeling was denied us. So it was a day of leisure on board. I spent time reading (Diversity of Life), making some journal entries and enjoying the sight of land — perhaps the last for another 9 days (not complaining). I tried to ignore the typical signatures of human presence at Kona: autos, the Big K-Mart and Lowes perched to give exiting customers a grand view across the sea, a cruise ship at anchor, shore front hotels and homes dotting the mountainside. I directed my focus on the crashing surf, blankets of exposed black lava rock interrupting the predominant green, and shear black cliffs dropping to the sea — the natural stuff. It got better the further south we moved along the coast.

Dan guided Kylie and me through filleting of the spearfish this afternoon. Between the three of us (and the catch team, of course) we secured a good bit of food for the crew. This evening I split spool duty with Kerstin then took a chair from which to watch the rest of the set, read and talk with super fisherman Chris.

It’s a great night back in the world of blue and white.

Question:

Can you find the point on the sea where you would be most distant in any direction from land?

Geoff Goodenow, May 12, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 12, 2004

Time: 1745 (Later than usual due to busy late afternoon fishing)

Lat: 18 33N
Long: 158 20 W
Sky: Somewhat overcast this morning but a nice sunny day overall.
Air temp: 26.5 C
Barometer: 1013.5
Wind: 90 degrees at 10 knots
Relative humidity: 63.5%
Sea temp: 26.3 C
Depth: (forgot to check)
Sea condition: Good sized swells today kept us rocking and rolling pretty good throughout the afternoon and evening. But it wasn’t discomforting at all.

Scientific and Technical Log

Brought up 3 escolar and one wahoo on the longline this morning — not a very exciting time. The set was about 30 miles NE of Cross seamount. After retrieval we steamed south again through/over Cross and back to the area of success around Swordfish seamount to set the line tonight. Along the way we encountered several so called “bird piles”, congregations of birds on the water, indicative of fish below.   Passing over Cross we pulled in 5 mahi mahi, a small yellowfin tuna, and 4 bigeye tunas. It was a busy late afternoon. There’s lots of fish on ice for upcoming meals!

Returning now to the vision studies:

This afternoon Eva gave me the tools and an escolar eye and had me go through the procedures she follows to get what she needs for her studies. (Kylie basically does the same procedure but uses skipjack tunas). I’m not ready for microsurgery yet, but she gave my effort a thumbs up as I successfully secured the materials she needs for later study.

As the eye is taken from the animal marks are made on it with a scalpel to mark its orientation in the animal. After measuring eye cup and pupil size, the cornea and lens are removed and a bit more scraping and cleaning eventually leaves her with optic nerve, retina and vitreous to be preserved. This took me about 45 minutes to do.

Back at her university lab, the retina alone will be used. Sections of the retina will be mounted for microscopic examination. With it she can answer questions such as 1) what do the photoreceptor cells look like? 2) Is there a variety of types of receptors in their eye? 3) What is the density/distribution of receptors across the retina? In another study she makes other preps for microscopic examination to observe density of ganglia in the retina.

Personal Log

I had some ideas for tonight’s entry in this section, but this boat is rocking pretty hard right now and sitting in front of the computer is not particularly pleasant. I’m cutting things short tonight.

Geoff