Donna Knutson: Last Leg of Leg III Atlantic Sea Scallop Survey 2016, June 24, 2016

NOAA Teacher at Sea Donna Knutson
Aboard the Research Vessel Sharp
June 8 – June 24, 2016

2016 Mission: Atlantic Scallop/Benthic Habitat Survey
Geographical Area of Cruise: Northeastern U.S. Atlantic Coast
Date: June 24, 2016

Last Leg of Leg III Atlantic Sea Scallop Survey 2016

Mission and Geographical Area: 

The University of Delaware’s ship, R/V Sharp, is on a NOAA mission to assess the abundance and age distribution of the Atlantic Sea Scallop along the Eastern U.S. coast from Mid Atlantic Bight to Georges Bank.  NOAA does this survey in accordance with Magnuson Stevens Act requirements.

Science and Technology:DSCN7770 (2)me best

Latitude:  41 29.84 N

Longitude:  070 38.54 W

Clouds:  partly cloudy

Visibility: 5-6 nautical miles

Wind: 3.58 knots

Wave Height: 6 in.

Water Temperature:  53  F

Air Temperature:  67 F

Sea Level Pressure:  30.0 in of Hg

Water Depth: 26 m

 

It has been an action packed two weeks.  The men and women who dedicate themselves to the scallop survey are extremely hard working scientists.  It is not an easy job.  The sorting of the dredged material is fast and furious, and it needs to be in order to document everything within the catch before the next one comes in.  The baskets are heavy and it takes a strong person to move them around so quickly.

DSCN8159 (2) dredge team
Han, Jill, Mike, Vic, Me and Ango

In small catches every scallop is measured.  In dredges with many baskets of scallops, a percentage is measured.  It is a random sampling system, taking some scallops from each of the baskets to get a general random sample of the whole.  Mike led an efficient team, he told us what to look for and oversaw the measuring.

DSCN7780 (2)mike and nicki
Mike and Nikki

He often set samples aside to show me later, when we were not as busy. A few examples were how to tell the difference between the red and silver hake or the difference between the Icelandic and Atlantic sea scallop.  He showed me how the little longhorn sculpin fish, “buzz bombs” known to fisherman, vibrate when you told it in your hand.

DSCN8008 (2)buzz
Longhorn sculpin

Mike even took the time to dissect some hake and to show me the differences in gonads, what they were feeding on by opening their stomach, and the otolith within the upper skull.  The otolith is a small bone in the inner ear that can be used to identify and age the fish when in a lab looking through a microscope.  Mike answered my many questions and was always eager to teach me more.

Another helpful team member was Vic.  Vic taught me how to run the HabCam.  He has been involved in the HabCam setup since it started being used four years ago.  There is a lot of work to do to set up the multiple monitors and computers with servers to store all the images collected by the HabCam.  Vic overlooks it all from the initial set-up to the take down.  I admire Vic’s work-ethic, he is always going 100% until the job is completed.  Sometimes I just needed to get out of his way, because I knew he was on a mission, and I didn’t want to slow him down.

DSCN8132 (2) monitors
Control center for Habcam and Dredging

When we weren’t dredging, but rather using the HabCam, there was a pilot and copilot watching the monitors.  The HabCam, when towed behind the ship, needs to be approximately 1.7 m off the ocean floor for good resolution of the pictures, and keeping it at that elevation can be a challenge with the sloping bottom or debris.  There is also sand waves to watch out for, which are like sand bars in a river, but not exposed to the surface.

When not driving HabCam there are millions of pictures taken by the HabCam to oversee.  When you view a picture of a scallop you annotate it by using a measuring bar.  Fish, skates and crabs are also annotated, but not measured.  It takes a person a while to adjust to the rolling seas and be able to look at monitors for a long period of time.  It is actually harder than anticipated.

DSCN7768 (2)skate
HabCam Picture of a skate.

Han was making sure the data was collected from the correct sites.  She works for the Population Dynamics branch of NOAA and was often checking the routes for the right dredges or the right time to use the HabCam.  Between the chief scientist Tasha and Han, they made sure the survey covered the entire area of the study as efficiently as possible.

DSCN7839 (2)tash han mike
Tasha, Han and Mike discussing the next move.

Dr. Scott Gallager was with us for the first week and taught me so much about his research which I mentioned in the previous blogs.  Kat was with us initially, but she left after the first week.  She was a bubbly, happy student who volunteered to be on the ship, just to learn more in hopes of joining the crew someday.  Both vacancies were replaced by “Ango” whose real name in Tien Chen, a grad student from Maine who is working on his doctoral thesis, and Jill who works in Age and Growth, part of the Population Biology branch of NOAA.  Both were fun to have around because of their interesting personalities.  They were always smiling and happy, with a quick laugh and easy conversation.

DSCN8131 (2)the three
Jill, Ango and Han after dredging.

The Chief Scientist, Tasha, was extremely helpful to me.  Not only does she need to take care of her crew and manage all the logistics of the trip, plus make the last minute decisions, because of weather or dredges etc, but she made me feel welcome and encouraged me to chat with those she felt would be a good resource for me.  On top of it all, she helped me make sure all my blogs were factual.  She was very professional and dedicated to her work, as expected from a lead scientist leading a scientific survey.

DSCN8146 (2)tash and jim
Evan, Tasha and Jimmy discussing route.

I spent as much time as possible getting to know the rest of the crew as well.  The Master, Captain James Warrington “Jimmy” always welcomed me on the bridge.  I enjoyed sitting up there with him and his mates.  He is quick witted and we passed the time with stories and many laughs.  He tolerated me using his binoculars and searching for whales and dolphins.  There were a few times we saw both.

He showed me how he can be leader, responsible for a ship, which is no small feat, but do so with a great sense of humor, which he credits he inherited from his grandmother.  The other captains, Chris and Evan, were just as friendly.  I am sure all who have been lucky enough to travel with them would agree that the RV Sharp is a good ship to on because of the friendly, helpful crew and staff.

DSCN7785 (2)KG
KG, oceanic specialist, helped with dredges.

Because this was my second experience on a survey, the first was a mammal survey, I have really come to appreciate the science behind the study.  It is called a survey, but in order to do a survey correctly, it takes months of planning and preparation before anyone actually gets on a ship.

There is always the studying of previous surveys to rely on to set the parameters for the new survey.  Looking for what is expected and finding, just that, or surprising results not predicted but no less valued, is all in a scientist’s daily job.  I admire the work of the scientist. It is not an easy one, and maybe that is why it is so much fun.  You never know exactly what will happen, and therein lies the mystery or maybe a discovery to acquire more information.

DSCN8127 (2)big goose
I had to hold the largest goose fish we caught!

It was a challenging two weeks, but a time I’m so glad I had the opportunity to have with the members of Leg III of the 2016 Atlantic Sea Scallop Survey.

Donna Knutson: Dredging, June 16, 2016

NOAA Teacher at Sea Donna Knutson
Aboard R/V Hugh R. Sharp
June 8 – June 24, 2016

 

2016 Mission: Atlantic Scallop/Benthic Habitat Survey
Geographical Area of Cruise: Northeastern U.S. Atlantic Coast
Date: June 16, 2016

 

Dredging

 

Mission and Geographical Area: 

The University of Delaware’s ship, R/V Sharp, is on a NOAA mission to assess the abundance and age distribution of the Atlantic Sea Scallop along the Eastern U.S. coast from Mid Atlantic Bight to Georges Bank.  NOAA does this survey in accordance with Magnuson Stevens Act requirements.

Me hat

Science and Technology:

Latitude:  40 32.475 N

Longitude:  67 59.499 W

Clouds: overcast

Visibility: 5-6 nautical miles

Wind: 7.4 knots

Wave Height: 1-4 ft.

Water Temperature:  53 F

Air Temperature:  63 F

Sea Level Pressure:  29.9 in of Hg

Water Depth: 103 m

 

Science Blog:

Paired with the HabCam, dredging adds more data points to the scallop survey and also to habitat mapping.   Various locations are dredged based on a stratified random sampling design.  This method uses the topography of the ocean bottom as a platform and then overlays a grid system on top. The dredged areas, which are selected randomly by a computer program, allow for a good distribution of samples from the area based on topography and depth.

Vic and Tasha sewing up the net on the dredge.
Vic and Tasha sewing up the net on the dredge.

A typical dredge that used for the survey is similar to those used by commercial fisherman, but it is smaller with a width of 8 ft. and weight of 2000 lbs.  It is towed behind a ship with a 9/16 cable attached to a standard winch.  Dredges are made from a heavy metal such as steel and is covered in a chain mesh that is open in the front and closed on the other three sides making a chain linked net made of circular rings.

A fisherman’s dredge has rings large enough for smaller animals to fall through and become released to the bottom once again.  The dredge in a survey has a mesh lining to trap more creatures in order to do a full survey of the animals occupying a specific habitat.

There are three categories of catch received in a dredge: substrate, animals and shell.  A qualitative assessment on percent abundance of each is done for every dredge.  Not all animals are measured, but all are noted in the database.

Dredge being dumped on sorting table.
Dredge being dumped on sorting table.

A length measurement is taken for every scallop, goosefish (also called monkfish), cod, haddock, as well as many types of flounder and skate. A combined mass is taken for each species in that dredged sample.  Some animals are not measured for length, like the wave whelk (a snail), Jonah crab, and fish such as pipefish, ocean pout, red hake, sand lance; for these and several other types of fish, just a count and weight of each species is recorded.

Sorting the dredged material.
Sorting the dredged material.

Other animals may be present, but not

counted or measured and therefore are called bycatch.  Sand dollars make up the majority of bycatch. Sponges, the polychaete Aphrodite, hermit crabs, shrimp and various shells are also sorted through but not counted or measured.

Ocean pout
Ocean pout

All of the dredge material that is captured is returned to the ocean upon the required sorting, counting and measuring.  Unfortunately, most of the fish and invertebrates do not survive the ordeal.  That is why it is important to have a good sampling method and procedure to get the best results from the fewest dredge stations needed.

Goosefish, often called Monkfish, eat anything.
Goosefish, often called Monkfish, eat anything.

The dredge is placed on the bottom for only fifteen minutes.  There are sensors on the frame of the dredge so computers can monitor when the collection was started and when to stop.  Sensors also make certain each dredge is positioned correctly in the water to get the best representation of animals in that small sample area.

Entering the name of the animals to be measured.
Entering the name of the animals to be measured.

Even with sensors and scientists monitoring computers and taking animal measurements, the dredging can only give a 30-40% efficiency rating of the actual animals present. Dredging with the aid of the HabCam and partnerships with many scientific organizations, along with data from commercial fisherman and observer data, create a picture of abundance and distribution which can be mapped.

Adductor muscle the "meat" of the scallop. This on is unhealthy.
Adductor muscle the “meat” of the scallop. This one is unhealthy.

In the scallop survey the emphasis is on where are the most scallops present and this aids fisherman in selecting the best places to fish.  The survey also suggests where areas should be closed to fishing for a period, allowing scallops to grow and mature before harvesting.

This management practice of opening closed areas on a rotational basis has been accepted as beneficial for science, management, and fishermen. This method of balancing conservation and fishing protects habitats while still supplying the world with a food supply that is highly valued.

Personal Blog:

Being part of a dredging team is exciting.  It is a high energy time from the moment the contents are dropped on the sorting platform to the end when everything is rinsed off to get ready for the next drop.

Katryn "Kat" Delgado
Kateryn “Kat” Delgado

I wanted to take pictures of everything, but with gloves on it was hard to participate and help out or just be the bystander/photographer. Kateryn Delgado from Queens NY, a volunteer/student/scientist/yoga instructor/photographer, was very helpful.  She was involved in other surveys and often took pictures for me.

I did find it sad that the animals we sorting were not going to live long once returned to sea, but that is a part of the dredging that is inevitable.  Raw data needs to be collected.  After measuring, a percentage of the scallops were dissected to get their sex, abductor muscle (meat), and stomach.  Shell size was compared to the meat and gonad mass and is also used to age the scallop.  The stomach was removed to test for microplastics.  Dr. Gallager and his research team are studying microplastics in the ocean.   Scallops filter relatively large particles for a filter feeder, and therefore are a good species to monitor the abundance of plastics at the bottom of the ocean.DSCN7891 (2)sunset

The weather has been nice, not very warm, but the waves are low.  Just the way I like them.  We are making our way back to Woods Hole to refuel and get groceries.  I didn’t realize we would split up the leg into two parts.  We should be in around 10:00 a.m.  I’m going to go for a long walk since there is not a lot of opportunity for exercise on the ship.  Hope it’s sunny!

 

Donna Knutson: Atlantic Sea Scallop Research Progressed into Habitat Modeling, June 13, 2016

NOAA Teacher at Sea Donna Knutson
Aboard R/V Hugh R. Sharp
June 8 – June 24, 2016

 

2016 Mission: Atlantic Scallop/Benthic Habitat Survey
Geographical Area of Cruise: Northeastern U.S. Atlantic Coast
Date: June 13, 2016

Mission and Geographical Area:  

The University of Delaware’s ship, R/V Sharp, is on a NOAA mission to assess the abundance and age distribution of the Atlantic Sea Scallop along the Eastern U.S. coast from Mid Atlantic Bight to Georges Bank.  NOAA does this survey in accordance with Magnuson Stevens Act requirements.

Science and Technology:

Weather Data from the BridgeTas habcam 055 (4) color

Latitude:  40 43.583 N
Longitude:  67 04.072 W
Clouds:
50% cumulous
Visibility
: 6 nautical miles
Wind: 296 degrees 11 knots at cruise speed of 6.5 knots
Wave Height: 1-3 ft.
Water Temperature:  52 ºF
Air Temperature:  56 ºF
Sea Level Pressure:  29.4 in of Hg
Water Depth: 107 m

Scientific Blog

During the 1970’s fishermen made the observation that the Atlantic sea scallop was becoming hard to find.  Overfishing had depleted the numbers and they were not repopulating at a steady rate.  In the early 1980’s after noticing that nature wasn’t going to be able to keep up with man’s demands of the scallop, programs were set up to monitor the scallop fishing industry and to also set catch limits.

Live video from rear sonar devices
Live video from rear sonar devices

In 1997 NOAA and the New England Fishery Management Council determined that the Atlantic sea scallops were still being overfished and by 1998 a new plan for allowing the scallop to increase their numbers was implemented.

The guidelines for fishermen proved to be useful and the scallop industry had great success.  It was reported that the scallop biomass harvested had increased eighteen times higher than the previous level between 1994 – 2005.

The demand for the Atlantic sea scallop did not decrease.   The sea scallop adductor muscle, the muscle that holds the two shells together and allows the animal to open and close the two shells, is harvested for food.  The muscle is typically 30 – 40 mm in diameter in adult sea scallops.  The demand for this tasty muscle has made the Atlantic sea scallop fishing industry into a very powerful and prosperous billion-dollar industry.

Live forward sonar scanner
Live forward sonar scanner

Fisherman will agree that science is essential to the health of their industry.  It was determined that rotational management was needed for the scallops to replenish, much like crop rotation on land.  After a period of time, areas need to rest without any activity and other areas can be reopened to scallop fishing after a period of time.

 

What that time period for rest is and what areas need to rest while other areas are opened to fishing is the science behind the industry.  The industry recognizes that the science is essential to keep a healthy population of Atlantic sea scallops and, through a special research set-aside program, invests 25% of the scallops to research.  The market value of the scallop, usually $10 -$14 per pound, determines the funding scientists can invest into research.

Resource management is not a new idea.  Resources are managed at all levels whether they are animals such as scallops or deer, minerals or elements mined such as aluminum or coal, or even plants such as trees. Without management practices in place, there is a good possibility of endangering the resource for later use, and in the case of living animals, endanger their future viability.

RSCN7757
Dr. Scott Gallager

Some of the “Research Set-Aside” monies given by the commercial fisherman have allowed the development of a special habitat mapping camera, affectionately called the HabCam.  Dr. Scott Gallager has combined his two areas of expertise, biology and electronics and developed a series of cameras used for studying underwater habitats.  NOAA has contracted Dr. Gallager to oversee the HabCam during the annual sea scallop survey.

While the original HabCam is being used by the commercial fishing industry on scallop vessels, a fourth generation HabCam is used by NOAA on the R/V Sharp to help with the annual Atlantic scallop survey.  It has two sonar devices, one forward and one rear sonar scans a 50 meter swath on each side of the vehicle. It is equipped with four strobe lights that allow two cameras to take photographs.  Each camera takes six pictures a second.  The HabCam has a sensor called the CTD (Conductivity, Temperature, Depth) to measure physical properties such as salinity, temperature, depth, and dissolved oxygen.  Two other sensors are used to measure turbidity, and a device that measures the scattering and absorption of light at that depth.  Measuring absorption allows the computer to make color corrections on the pictures so the true colors of the habitat are seen.  The vehicle is 3700 lbs. and made of stainless steel.  It is actually towed through the water but is “driven” by using the metal jacketed fiber-optic tow cable which pulls it through the water.  The HabCam relays the real-time images and data directly to the ship where it is processed by computers and also people monitoring the pictures. Computer Vision and Image Processing tools are also being developed to count and size scallops automatically from the images as the vehicle is being towed. This will allow managers in the future to use adaptive sampling approaches whereby the sampling track is actually changed as the vehicle is towed to optimize the survey.

HabCam on Right Side
HabCam on Right Side

By analyzing the data from the HabCam and doing dredges over mapped areas of the ocean, scientists can relay their findings to fisherman with suggestions on the best places to harvest Atlantic sea scallops.  It is important to keep in mind the other animals in the area that may be affected by scallop fishing.  The Yellowtail flounder is one such animals that could be better monitored with the aid of the HabCam.  The flounder often is found living in areas that have a high density of sea scallops, but by identifying areas of high scallop and low yellowtail densities, fishermen may be better able to avoid yellowtail bycatch.  Unfortunately, many bycatch fish do not survive the dredging and are often dead upon being returned to the sea.

While scallops and fish are certainly important to the commercial fishing industry, understanding the habitat that supports these organisms is paramount to their effective management. HabCam collects images that contain a huge amount of information on habitat factors such as temperature, salinity, chlorophyll, seafloor roughness, and substrate type (mud, sand, gravel, shells, boulders, etc). Habitat for one organism is not necessarily the same for the next so we need to put together maps of where certain habitats allow each species to exist and where they co-exist to form communities. Understanding this, we can simulate how communities will respond to climate change and other changing environmental factors such as Ocean Acidification (i.e., low ph), which all contribute to habitat.

Dr, Gallager worling on the HabCam
Dr. Gallager working on the HabCam

Because of the success of the HabCam and other habitat monitoring/mapping devices, HabCams I – VI have been built.  There are four different vehicles used now for specialized data collection depending on what the survey priorities are.

HabCam is a unique, and high-end technology, but at the same time is being upgraded to provide habitat data on a variety of sampling platforms such as high speed torpedo-like systems that are towed at 10 kts or greater and on robotic Autonomous Underwater Vehicles (AUV) that will carry the stereo cameras and sonar systems currently on HabCam. The combination of robotics with underwater sampling provides a window into the ocean universe that humans have not been able to effectively explore and sample because of the great pressure and low temperature of the deep sea. Abyssal habitat (deeper than 3000m) is very difficult to sample and more and more oceanographers are looking to develop and use robots to get to where observations and samples need to be taken.

Monitoring the screens for obstacles

While the HabCam was initially developed for the scallop fishing industry, it has clearly made an invaluable contribution to the study of habitats that have so long been inaccessible to us.  There are many cameras throughout the world used to take pictures of the ocean bottom and even animals therein, but the HabCam series that was developed out of Woods Hole Oceanographic Institution (WHOI) is integrating many different data types to develop a more comprehensive understanding of fauna and flora (animals and plants) in their habitats worldwide.  It is an exciting time for oceanic research!

Driving the HabCam
Driving the HabCam

Sources:

National Marine Fisheries Services (www.nmfo.noaa.gov)

Dr. Scott Gallager PhD, tenured Associate Scientist, Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, Visiting Professor, Okinawa Institute of Science and Technology, Okinawa, Japan.

 

Personal Blog:

I am feeling great and meeting so many fascinating people!  Dr. Gallager, or Scott to the scientists on board, has taught me so much in the very short time I’ve been on the ship.  He has many great stories as he has been involved in oceanic research for many years.  He was asked to study the teak wood that the Titanic was made of because “Bob” Ballard saw so little of it even though all the decks and ornamentations were made of it.  So Bob asked Scott to study it and Scott wrote a paper on the polychaete worm that was able to break down the tough cellulose tissue.

After our dredging yesterday resulted in many scallops, you will never guess what we are having for our 12:00 p.m. meal.  I said 12:00 p.m. meal because for some of us it is breakfast and for others it is supper.

Dogfish on the bottom of the ocean, Picture taken by the Habcam.
Dogfish on the bottom of the ocean, Picture taken by the Habcam.

Me and the other five scientists are now done with our 12 hour shift and the new group just took over. We were running the HabCam all day and then looking at random still photos from the HabCam to identify the life forms that are present.  Dr. Gallager is working on a computer image recognizing HabCam, but he feels it is important to have humans involved as well.   I am so thankful I am on the same crew as Dr. Gallager.  I am actually getting better with the whole time schedule shock.  Not really a big deal once you try it.  (Like most things in life.)

Skate on the bottom of the ocean. Picture taken by the HaabCam.
Skate on the bottom of the ocean. Picture taken by the HabCam.

 

 

 

 

 

 

Donna Knutson: The Absolutely Amazing Atlantic Sea Scallop, June 12, 2016

NOAA Teacher at Sea Donna Knutson
Aboard R/V Hugh R. Sharp
June 8 – June 24, 2016

 

2016 Mission: Atlantic Scallop/Benthic Habitat Survey
Geographical Area of Cruise: Northeastern U.S. Atlantic Coast
Date: June 12, 2016

Mission and Geographical Area: 

The University of Delaware’s ship, R/V Sharp, is on a NOAA mission to assess the abundance and age distribution of the Atlantic Sea Scallop along the Eastern U.S. coast from Mid Atlantic Bight to Georges Bank.  NOAA does this survey in accordance with Magnuson Stevens Act requirements.

Weather Data from the Bridge

Latitude:  40 26.375 N
Longitude:  68 19.266 W
Clouds: overcast
Visibility: 5-6 nautical miles
Wind: 21 knots at cruise speed of 4 knots
Wave Height: 4-6 occasional 8 ft.
Water Temperature:  56 °F
Air Temperature:  70 °F
Sea Level Pressure:  29.7 in of Hg
Water Depth: 100 m

Science and Technology Log

! TAS 010There are four types of scallops that are found around the United States.  The Sea Scallop is the largest and found primarily along the Eastern coast.  Therefore, it is called the Atlantic Sea Scallop.  Bay scallops are smaller, found closer to shore and are not usually harvested.  The Calico mollusk is the smallest and rare, and is primarily located around the coast of Florida.  The Icelandic scallop is also occasionally sighted around the United States.

The Atlantic Sea Scallop Placopecten magellanicus  is a deep sea bivalve mollusk.  It has a smooth shell and edges.  Young scallops have a pink/red color with darker stripes radiating outward form the hinge. The older sea scallop is more orange in coloration and may fade into white.  Photoreceptive eyes along their pale pink mantle, allow the scallop to sense changes in light allowing it to protect itself from possible dangers such as incoming predators.

Alantic sea scallop
Atlantic sea scallop

Some mollusks are hermaphroditic meaning they have both sex organs in the same animal, but the Atlantic sea scallop has two distinct sexes.  It is impossible to tell what the sex of a scallop is from its outward appearance.  When looking inside at the gonads it is easy to detect.  The male gonads are creamy white and the female gonads are pink/red in color.

The female can reproduce after they are one-year-old, but four year olds release many more eggs.  The older scallop may emit one to two hundred seventy million eggs at one time.  Spawning occurs twice a year, once in the spring and another in the fall.  Males will release their sperm into the water where the eggs have been released, and then the fertilized egg sinks to the bottom of the ocean to develop in groupings called beds.

Adult scallops will filter feed on phytoplankton and microscopic zooplankton.  The immature larva are filter feeders as well, but can also absorb nutrients though their tissues.

Atlantic sea scallops play an important role in the ecosystem as they become food for other animals such as starfish, crabs, lobsters, snails, and fish such as cod, American plaice, wolfish, and winter flounder.

Sources:

Wikipedia, May 30, 2016

US Atlantic Sea Scallop, March 31, 2013

 

Personal Log

Leg III of the Atlantic Scallop/Benthic Habitat Survey started out a bit rough, bad weather came in from Hurricane Collin and caused a few delays.  The lead scientist Tasha O’Hara decided to push back the departure times in hope of gentler seas.

We set sail on Thursday June 12, 2016 around 7 p.m. from NOAA’s Northeast Fisheries Science Center in Woods Hole.  The Sharp started the third leg of four on the scallop survey.  The last leg will end on June 24, 2016.  The survey team will use a camera to take pictures of the bottom called a HabCam, which stands for Habitat Mapping Camera, and also dredge the ocean bottom periodically for physically counting and measuring specimens.

I have been allowed to participate in the driving of the HabCam and also the sorting, measuring and recording of animals brought up from the dredges.  My blogging got a bit behind as I was trying to immerse myself in the new experiences when the sea sickness hit.

Goosefish
Donna holds a Goosefish

I did not get sick once on the last month long experience, but conditions here are a bit different.  The captain of the Sharp, James Warrington, explained the gyre (oceanic current pattern) is unique here.  We are in a cruising within circular gyre and with weather conditions forcing high waves into the flat bottomed boat, we are getting a lot of motion.  So, yes, I now know what sea sickness is like.  Today the wind has died down a bit so the waves are not as high, and I feel much better.  I have been placed on the midnight to noon crew so that has been an adjustment as well.  I’m sure you morning classes will agree I’m more active in the afternoon.  Not really a morning person. J

Snake eel
Snake eel

Everyone is so great to me here.  They were very considerate during my seasick time.  I actually have been sitting up on the bridge with Captain Jimmy.  I can see the horizon and feel more stable.  Otherwise we are below decks looking at computer screens for the HabCam or working on the back deck looking at the dredged creatures.

Today we are doing some back tracking to get a start on more dredging and that has allowed me to get this blog in.  I really wanted it to be sooner, but that’s the story.

 

 

 

 

 

 

Trevor Hance: Day 4 Aboard The Beagle, June 14, 2015

NOAA Teacher at Sea
Trevor Hance
Aboard R/V Hugh R. Sharp
June 12 – 24, 2015

Mission: Sea Scallop Survey
Geographical area: New England/Georges Bank
Date: June 14, 2015

Deck selfie
Yours truly (note:  quite fun to break out the overalls!)

Science and Technology Log

It’s Day 4 aboard the Beagle, and the crew has full confidence in Captain Fitz Roy… Okay, I’m not Charles Darwin, but, I am reading two very inspiring books while on this cruise.  First, as this is my first scientific voyage, I am revisiting Darwin’s trip aboard the Beagle to channel some of the wonder and “magic” of that extended journey.  The other book I’m reading is the sequel to my favorite book, The Evolution of Calpurnia Tate.  If you teach G4-G8, I highly recommend you get to know “Callie Vee.” The book is a wonderful bit of historical fiction that details the life of a young woman/girl in central Texas in 1899 who wrestles with her interest in science and the conventions of “proper” society.

Life Aboard Ship and the Science Behind the Voyage

Thus far aboard the R/V Hugh R. Sharp we have enjoyed favorable seas, good food and very welcoming company.  Shifts for the science-crew last 12 hours and run 12-to-12, and there are about six people assigned to each shift (note:  the captain and ship’s operational crew keep a different schedule.)  I am on the day shift, so I work from noon to midnight — which I imagine would fit quite nicely with the schedule many of my students are currently keeping now that they are on their summer break!  Our mission is primarily to perform a scallop survey, moving from point to point while making observations related to population densities and spatial distribution.  Late in the cruise we will be doing some exploratory work in an effort to better understand the lobster populations in this area of the Atlantic Ocean.  Our work centers on two primary observation methods:  habitat camera (aka – “HabCam”) and dredge.

Scallop shell
An Atlantic Sea Scallop shell. They have different patterns, and are beautiful shells

Atlantic sea scallops are a bivalve, along with clams, mussels, oysters, etc. that can get up to about 200 mm (about 8 inches) across, and most three year olds are in the 80-90 mm range.  Commercially, they are targeted between 4 ½ – 5 years old.  Scallops feed by filter-feeding through their mantle, which is housed inside the beautiful orange and white outer shell.  Scallops move using a form of jet propulsion that makes it look like they are swimming (they “bite” at the water as they propel themselves up from the seafloor, pushing the water out of the openings near the umbo at the back of the scallop shell).  The physics changes as they get bigger, so it gets more difficult to push themselves off of the sea floor, but the little ones can get up to about 10 feet off the bottom of the sea floor.

Natural predators of scallops include various species of starfish, such as Astropecten and Asterias.  These starfish use distinct predatory tools.  The larger starfish, the Asterias, has a hydrologic musculature that allows it to essentially pull apart the shell of the scallop, inject digestive enzymes (aka – “putting its stomach inside the scallop”) and enjoy! The Astropecten is quite different because they completely engulf the scallop and digest it internally.  The two types of starfish target different-aged scallops: Astropecten eat them when they are small enough to be fully engulfed, and Asterias when the scallops are older and the shells are larger and harder, making it too difficult for digestive fluids to assist with the process.  Other predators of the scallop include humans and Cancer crabs.

Starfish Comparison
Astropecten vs Sclerasterias (same family as Asterias, different genus):  the size makes the feeding distinction pretty obvious

 

NOAA has been conducting these surveys for approximately 40 years.  Before the mid-1990s, scallop fishing was largely unregulated, meaning that commercial and private fishers could operate anywhere at any time.  In the 90’s, the government started to use various management tools to support population sustainability through efforts such as limiting the number of people allowed aboard a commercial vessel, limiting the number of days available in a season, changing the ring-size used on the dredges to catch the scallops and closing fishing areas on a rotational basis.  The commercial fisheries have also set aside funds that are used to support research that will help keep the scallop populations healthy.

After the regulations went into place, scientists observed a strong, positive development in size and overall population of scallops.  With strong data that covers a forty year period, policy makers are sufficiently informed to manage scallops on finer and finer spatial scales, including things like small scale, temporary closures and altering the timing for re-opening temporary closures.  (note:  Over the next few blogs, I will show how this science and these relationship relate to our state learning standards, but for now, let’s just set the table.)

Operations

The first day of the cruise was spent steaming out to the first observation point while getting the HabCam system running on all cylinders.  The HabCam (pictured below) is a 3,400 pound, steel-framed “camera cage” that is towed behind the vessel as it moves (we’ve been traveling at about 6 knots) through a determined course in areas that have been observed using the camera for the past four years (note:  dredge surveys in this area have been conducted for the entire 40ish year period).  We moved towards the south for the first two days along the Great South Channel and are now heading east along the southern edge of Georges Bank.

HabCam is towed and controlled from the ship by a winch with fiber-optic wire connected to the dry lab where all pictures are received and can be assessed while in motion
HabCam is towed and controlled from the ship by a winch with fiber-optic wire connected to the dry lab where all pictures are received and can be assessed while in motion

The science crew uses three primary areas aboard the vessel:  the back deck, where all dredge-related operations are conducted; the wet lab, where samples are weighed and measured; and a dry lab, which houses about 25 computers that run various programs relating to everything from weather to analyzing the positioning of the dredge underwater.

A dredge in action.  Fish, scallops, crabs, starfish and "trash" are sorted into baskets and buckets, then taken into the wet lab where they are measured and weighed
A dredge in action. Fish, scallops, crabs, starfish and “trash” are sorted into baskets and buckets, then taken into the wet lab where they are measured and weighed
Dr. Scott Gallager and me taking measurements of scallops we caught on a dredge
Dr. Scott Gallager and me taking measurements of scallops we caught on a dredge
NORAD… I mean, the scientific dry lab
NORAD… I mean, the scientific dry lab

Over the first two days, I (tried to!) learn how to drive the HabCam, keeping it about 2 meters off the bottom of the seafloor.  The seafloor in this area has been a relatively smooth mix of sand and shell hash, but, there are naturally occurring topographical changes that require the HabCam driver to remain constantly vigilant and adjust as appropriate.

Katie, seated next to me, is a PhD candidate at Cornell.  I’ll share her research in a future blog
Katie, seated next to me, is a PhD candidate at Cornell.  I’ll share her research in a future blog

There are two cameras on the HabCam and they are set to take 6 photographs per second (standard sample rate).  The two cameras give a scientist the chance to view images in 3-D.  This point is important when you remember that scallops swim, which means scientists can use the 3-D imagery to tell whether the scallops are in motion or stationary when photographed (as well as how far up in the water column those scallops are swimming).  At 6 shots per second, there can be millions of photos taken over the course of a season (likely 8,000,000 pairs of photos over 4,000 km of track this year!), and NOAA scientists are recruiting YOU, dear Citizen Scientists, to help filter through the photographs through websites like projectfishhunter.org (set to launch this fall) or seafloorexplorer.org, which is a project started by one of the scientists on this mission, who is a researcher and professor at MIT/Woods Hole Oceanographic Institute.

My students will find a parallel between the HabCam and the six game cameras we have set up in our Preserve that take 3 shots in succession when triggered.  We monitor those cameras weekly and depending on traffic and false hits due to wind-noise, we could have as many as 2,000-3,000 photos on a camera in a given week.

Can you loan me five (sand) dollars?
Can you loan me five (sand) dollars?
Belly-side of a yellow-tail flounder
Belly-side of a yellow-tail flounder
Dr. Gallagher using a 3-D handheld camera (wow!) to take pictures of male and female scallop.  The ones with the bright pink are the females and the white and grey are males.
Dr. Gallagher using a 3-D handheld camera (wow!) to take pictures of male and female scallop.  The ones with the bright pink are the females and the white and grey are males.
Big mouth monkfish
Big mouth monkfish
At Mother’s Café in New Orleans, they’d call this the makings of a debris sandwich.
At Mother’s Café in New Orleans, they’d call this the makings of a debris sandwich.
We caught this little seahorse and I know my daughters will have a million questions about it!
We caught this little seahorse and I know my daughters will have a million questions about it!
Fair winds, my friend
Fair winds, my friend

Lagniappe

In Cajun parlance, “lagniappe” means a little something extra.  In my classroom blog I include a “lagniappe” section at the end to help extend lessons, give folks a chance to plug in to what we’re studying from a different perspective, or just include a “little something” that I find interesting.  Because I can’t really do additional research while aboard this vessel due to limited internet availability, I’ve decided that my Lagniappe section will be more like a “People In Your Neighborhood,” which we all remember from watching Sesame Street as kids.

One of the challenges we face as teachers is capacity building, meaning we have to work to inspire and encourage all students to pursue any areas of learning that interest them, paying particular attention to defeating stereotypes regarding barriers to entry in certain industries.  Our cruise has a pretty broad group of people aboard, so I’ll use my blog to introduce you to “the people behind the science” in this section.  The first “person in my neighborhood” you’ll meet is our Chief Scientist, Nicole Charriere.

Nicole’s early interests in marine studies stemmed from her experiences scuba diving and snorkeling while visiting her mother’s family in Belize.  Her love for the ocean did not waiver as she grew, and she received her undergraduate degree in Marine Biology from the University of Rhode Island.  Prior to graduation, she did an internship at URI’s Graduate School of Oceanography and one of her advisors invited her to crew aboard a 29-day scientific mission to the Pacific side of Panama/Costa Rica aboard a Woods Hole Oceanographic Institute research vessel.  During that experience, Nicole realized that sea-life was the life for her because it gave her a chance to be on the front end of data collection and analysis for a broad spectrum of scientific missions, while simultaneously working with a diverse group of people from around the world who were passionate about their work.  She’s been working aboard vessels for several years, with her recent work centering primarily on scallop and shellfish surveys and other research experiences aboard the R/V Hugh R. Sharp, NOAA Ship Henry B. Bigelow, as well as on commercial vessels.  Her career keeps her at sea between 130-140 days per year.

Science Chief, Nicole Charriere
Science Chief, Nicole Charriere

As the Chief Scientist, she is in charge of the flow of scientific operations, meaning she oversees the scientific operations, helping to insure that the equipment needed to conduct the studies is available and in working order (obviously, the salt-water, constant-motion, marine environment requires you to be ready and resourceful!), makes sure that the relationship between the ship’s operational crew fits with that of the science party, and (where I’m concerned) helps to coordinate a fair transition to understanding your role as part of the working team aboard a vessel.  One very interesting point I learned is that there are many opportunities for people interested in research to volunteer to be part of a research team aboard a vessel, and Nicole said she rarely remembers being on a cruise where volunteers weren’t part of the crew.  I highly encourage any students who might read my blog that have an interest in marine science to explore this opportunity while an undergrad to see if sea-life really fits with your-life!

I’ll update about our dredge operations and another member of our science crew in the next blog post.

Current dry lab playlist:  Tom Petty, Bruno Mars, Abba

Carol Glor: Lights, Camera, Action, July 7, 2014

NOAA Teacher at Sea

Carol Glor

Aboard R/V Hugh R. Sharp

July 5 – 14, 2014

Mission: Sea Scallop Survey (Third leg)

Geographical Area: Northwest Atlantic Ocean

Date: July 7, 2014

Weather Data from the bridge: Wind SW 18-20 knots, Seas 4-7 ft,  Visibility – good

Science and Technology Log: Starring the HabCam

The HabCam is a computerized video camera system. It is a non-invasive method of observing and recording underwater stereo images, and collecting oceanographic data,such as temperature,salinity, and conductivity.  The vehicle is towed at  1.5 – 2 meters from the floor of the ocean. The main objective of this mission is to survey the population of scallops as well as noting the substrate (ocean floor make-up) changes. Most substrate is made up of sand, gravel, shell hash and epifauna. We also note the presence of roundfish (eel, sea snakes, monkfish, ocean pout, and hake), flatfish (flounders and fluke), whelk, crab, and skates. Although sea stars (starfish) are a major predator of scallops, they are not included in our annotations.

HabCam
The HabCam awaiting deployment.

The crew and science staff work on alternate shifts (called watches) to ensure the seamless collection of data. The scallop survey is a 24-hour operation. The science component of the ship consists of 11 members. Six people are part of the night watch from 12am-12pm and the remaining members (myself included) are assigned to the day watch which is from 12pm until 12am. During the HabCam part of the survey all science staff members rotate job tasks during their 12-hour shift. These include:

A. Piloting the HabCam – using a joystick to operate the winch that controls the raising and lowering of the HabCam along the ocean floor. This task is challenging for several reasons. There are six computer monitors that are continually reviewed by the pilot so they can assess the winch direction and speed, monitor the video quality of the sea floor, and ensure that the HabCam remains a constant 1.5 – 2 meters from the ocean floor. The ocean floor is not flat – it consists of sand waves, drop-offs, and valleys. Quick action is necessary to avoid crashing the HabCam into the ocean floor.

HabCam pilot
Carol piloting the HabCam.

B. The co-pilot is in charge of ensuring the quality of digital images that are being recorded by the HabCam. Using a computer, they tag specific marine life and check to see if the computers are recording the data properly. They also assist the pilot as needed.

HabCam image
One of the images from the HabCam

C. Annotating is another important task on this stage of the survey. Using a computer, each image that is recorded by the HabCam is analyzed in order to highlight the specific species that are found in that image. Live scallops are measured using a line tool and fish, crabs, whelk and skates are highlighted using a boxing tool so they can be reviewed by NOAA personnel at the end of the cruise season.

Personal Log:

When not on watch there is time to sleep, enjoy beautiful ocean views, spot whales and dolphins from the bridge (captain’s control center), socialize with fellow science staff and crew members, and of course take lots of pictures. The accommodations are cozy. My cabin is a four-person room consisting of two sets of bunk beds, a sink, and desk area. The room is not meant to be used for more than sleeping or stowing gear. When the ship is moving, it is important to move slowly and purposely throughout the ship. When going up and down the stairs you need to hold onto the railing with one hand and guide the other hand along the wall for stability. This is especially important during choppy seas. The constant motion of the ship is soothing as you sleep but makes for challenging mobility when awake.

Top bunk
My home away from home.
Captain Jimmy
Captain Jimmy runs a tight ship.

 

Before heading out to sea it is important to practice safety drills. Each person is made aware of their muster station (where to go in the event of an emergency), and is familiarized with specific distress signals. We also practiced donning our immersion suits. These enable a person to be in the water for up to 72 hours (depending upon the temperature of the water). There is a specific way to get into the suit in order to do so in under a minute. We were reminded to put our shoes inside our suit in a real life emergency for when we are rescued. Good advice indeed.

immersion suit
Carol dons her immersion suit.
life jacket
Life jacket selfie.

 

Did you know?

The ship makes it’s own drinking water. While saltwater is used on deck for cleaning purposes, and in the toilets for waste removal, it is not so good for cooking, showers, or drinking. The ship makes between 600 and 1,000 gallons per day. It is triple-filtered through a reverse-osmosis process to make it safe for drinking. The downside is that the filtration system removes some important minerals that are required for the human body. It also tends to dry out the skin; so using moisturizer is a good idea when out at sea.

Photo Gallery:

Sharp
Waiting to board the RV Hugh R. Sharp
WG flag
West Genesee colors; flying high on the Sharp
Floating Frogs
Floating Frogs at the Woods Hole Biological Museum.
Seal at aquarium
Seal at the Woods Hole Aquarium – Oldest Aquarium in the US.

 

 

 

 

Virginia Warren: The Beginning of Life at Sea, July 11, 2013

NOAA Teacher at Sea
Virginia Warren
Aboard the R/V Hugh R. Sharp
July 9 – 17, 2013

Mission: Leg 3 of the Sea Scallop Survey
Geographical Area of Cruise: Great South Channel, near Nantucket
Date: July 11, 2013

Weather Data from the Bridge: SW winds 10 to 20 knots, seas 3 to 6 feet, widespread rain and scattered thunderstorms

Science and Technology Log:

The first part of the mission has been to tow the HabCam down the Great South Channel, around Nantucket, and then up part of Georges Bank. If you remember from my previous post, the HabCam stands for Habitat Camera Mapping System, which allows scientists to study the animals’ natural habitat. There are only two HabCams that have been built; the V2 which is an early prototype, and the V4 which is what we are using for this survey. This piece of equipment cost over 1.5 million dollars to design, develop, and build. One of the people on our science crew is the engineer that helped to design the frame built around the equipment to keep it safe. The HabCam has four strobe lights that enable the two cameras to be able to take 6 images per second. Not only does the HabCam have the capability of taking quality underwater images, but it also has sonar and several other data collectors that are capable of testing the water’s salinity, conductivity, pH, and more.

HabCam on the Hugh R. Sharp
HabCam on the Hugh R. Sharp

The scientists call the HabCam a vehicle. While the HabCam is deployed in the water, there are two people from the science crew that are always ‘flying’ the HabCam. They are called the pilot and co-pilot. The vehicle is tethered to the ship with a thick, fiber optic cable that also sends data information to the ship’s lab. The pilot uses a joy stick to fly the vehicle. Flying the HabCam vehicle can be a very tricky job because to fly it, the pilot walks a very fine line between having the vehicle close enough to the bottom of the ocean to get clear images and keeping the vehicle from crashing into huge boulders and underwater sand dunes. Pushing the joystick up allows the winch to let more cable out, which sends the vehicle closer to the bottom of the ocean. Pulling the joystick down, shortens the cable and brings the vehicle closer to the ship.

HabCam and Sonar View
The HabCam screen is on the bottom. The screen on top that looks like a desert is the sonar.

My job for the first half of the trip has been to take turns with the other day shift science crew members piloting and co-piloting the HabCam vehicle. The pilot keeps the vehicle at the correct depth, usually around 1.8 to 2.5 meters from the bottom of the ocean. The co-pilot annotates the images as they come from the HabCam. Annotating HabCam images entails quickly identifying objects in the image, such as a fish, crab, or scallop. This sounds easy enough, except that new images are flashing on the screen every second. Eventually the images will be color corrected on shore and annotated in greater detail.

Example of HabCam images strung together to make a larger view of the bottom of the ocean.
Example of HabCam images strung together to make a larger view of the bottom of the ocean.

The HabCam vehicle is also equipped with side scan sonar. In the pictures below (the ones that look like a picture of the desert) you can see the sand waves on the ocean floor and previous dredging marks.

Dredge Marks on Left Screen
Dredge Marks on Left Screen
Dredge Marks on Right Screen
Dredge Marks on Right Screen

Personal Log:

I began my journey by flying from Pensacola, Florida at 6 a.m. Sunday morning into Atlanta, Georgia’s airport. From Georgia I flew into Boston, Massachusetts and landed by about 12:30p.m. (That is 11:30 in Mobile time because Boston is an hour ahead of Mobile.) I was very excited to fly into Boston because as all of my students should know, Boston is a very important city for the American Revolutionary War as it is where the war started. I was able to tour the Old State House, which is where the Boston Massacre occurred, as well as explore the beautiful architecture that Boston has to offer! On my return trip home, I hope to be able to learn more about the history behind the city of Boston!

I stayed Sunday night in a hotel so that I would be able to catch a bus from Boston to Woods Hole bright and early Monday morning. Woods Hole is where I would meet up with the R/V Hugh R. Sharp. Woods Hole is an amazing little research community that is part of Cape Cod and has only one main street with a charming high bridge for the sail boats to enter or exit Eel Pond. I spent most of the day walking around and taking in the beautiful scenery of Wood’s Hole. That afternoon I was able to meet up with some the scientists that participate or have participated in scallop surveys. I slept on the ship that night and was able to get to know the ship’s crew and explore the ship.

My first day at sea was really nice. The ship crew made several comments about the water “looking like glass” because it was so calm. The Hugh R. Sharp has a really awesome ship crew. They were very welcoming and were open to any questions that I asked. As we left woods hole, the ship crew went over the safety procedures to follow should an emergency happen while we are at sea. My students should be happy to know that we even participated in a fire drill. I haven’t had any seasickness to speak of so far, knock on wood. The rocking of the ship actually made for some very sound sleeping!

The science crew shifts are broken into 12 hours. The night shift works from 12 midnight till 12 noon. The day shift works the opposite, 12 noon till 12 midnight. I am on the day shift working with the chief scientist.

Question of the Day:

Sherie Gee: The Flying HabCam, June 27, 2013

NOAA Teacher At Sea
Sherie Gee
Aboard R/V Hugh R. Sharp
June 26 — July 7 

Mission:  Sea Scallop Survey
Geographical Area of Cruise:  Northwest Atlantic Ocean
Date:  June 27, 2013 

Weather Data from the Bridge:
Latitude:  40  23:09 N
Longitude:  072:34.42 W
Relative Wind Speed:  11.4 Knots
Air Temperature:  23:50 degrees C
Humidity:  84%
Surface Seawater Temperature:  21.8354 degrees C
Surface-Sea water salinity:  31.1071 PSU

Science and Technology Log:

Two methods were used by these scientists to determine population numbers and trends.  They can use the HabCam which stands for Habitat Mapping Camera System  which takes pictures of the organisms on the bottom of the seafloor and they can use the dredge to collect specimens off the bottom of the seafloor to physically count.  We started out using the Habcam which is a towed vehicle that has to be carefully lowered into the ocean by the skilled crew members.  Since it is a towed vehicle, it must use a fiberoptic, winch-controlled wire to tow HabCam, and it is this wire that we pay in and out via the remote control winch box at the pilot station.  It is very similar to the video games that I have seen the students play.  The HabCam takes six pictures per second of the organisms on the ocean floor. The scientists can see these organisms being photographed on the computers.   One computer is used to monitor the organisms and tabulate the number of several species.  In the beginning, we counted scallops, fish, and convict worms.  Then later we counted fish, skates and convict worms.  On another computer, a scientist  controls the HabCam with a remote control joy stick.  The screen shows the bottom contours which is actually a side-scan sonar which pings out 50 meters to the left and right of the vehicle.    The joy stick controlled the wire cable that the HabCam was hooked to.  That is what raised and lowered the HabCam.  Both shifts monitored and controlled the HabCam for about twenty hours and a total of 126 miles.  I will describe and discuss the dredging process on the next blog.

The HabCam on Deck
The HabCam on Deck
Chad Flying the HabCam
Chad Flying the HabCam
Sara identifying and tabulating sea scallops, skates and convict worms
Sara identifying and tabulating sea scallops, skates and convict worms
Brittle stars and a blenny on the seafloor
Brittle stars and a blenny on the seafloor

Organisms Seen:
sea scallops
sand dollars
skates
various fish
stingrays

Did You Know:

  • One nautical mile (nm) is equal to 1.2 miles.
  • The amount of data that the HabCam collected was about one terra bite.

Personal Log:

I really enjoyed maneuvering the HabCam; I can’t believe they actually trusted me to drive it.  I am so impressed at all the technology that is involved in this type of research.   I also enjoyed tabulating and identifying the various organisms on the floor.  It goes by very quickly so you have to keep your eyes on the screen at all times or you will miss collecting the data.

Well, twelve hours has a new meaning for me.  The time working actually went by fairly quickly but the sleeping twelve hours went by double time.  There really is no down time because a person is either working the twelve hours or sleeping the twelve hours. The only time for some interaction amongst us is when we are in the dry lab waiting to rotate on the computers.  I have enjoyed working with these other scientists and our chief scientist Nicole.  They are all so knowledgeable, helpful and wonderful.  They answered all the questions that I had for them.

Nicole - Chief Scientist
Nicole – Chief Scientist

Virginia Warren: Introduction, June 27, 2013

NOAA Teacher at Sea
Virginia Warren
Aboard R/V Hugh R. Sharp
July 9 – 17, 2013

Mission: Sea Scallop Survey
Geographical Area of Cruise: Northwest Atlantic Ocean
Date: Thursday, June 27, 2013

Personal Log:

Virginia Warren, 2013 NOAA Teacher at Sea
Virginia Warren, 2013 NOAA Teacher at Sea

Hello, my name is Virginia Warren and I live in Theodore, Alabama. I teach 5th grade science and social studies at Breitling Elementary School in Grand Bay. I am really excited to have been chosen by NOAA (National Oceanic and Atmospheric Administration) to be a part of their Teacher at Sea program! I believe that one of my biggest responsibilities as a teacher is to educate my students about the importance of protecting and conserving the earth and its seas so that they will continue to thrive for many generations to come. Both Theodore and Grand Bay are only minutes from the Gulf Coast. The Gulf Coast has abundance of what I think are the prettiest, sugar-white-sand beaches the world has to offer. Growing up on the Gulf Coast has created a love and passion in my heart for the sea and all the wonder creatures that live in it! I’m so thankful to NOAA for giving me the opportunity to be a real scientist and to learn more about the scientific research behind protecting the seas that I love so much.

Beautiful Dauphin Island, Alabama!  Courtesy of https://i1.wp.com/dibeachhouses.com/resources/beach_front_condo_rental_on_dauphin_island.JPG
Beautiful Dauphin Island, Alabama! 

Science and Technology Log:

I will be sailing from Woods Hole, Massachusetts aboard the R/V Hugh R. Sharp to participate in an Atlantic sea scallop survey. The R/V Hugh R. Sharp was built in 2006, is 146 feet long, and is the newest vessel in the University of Delaware’s College of Earth, Ocean, and Environment fleet. You can take a virtual tour of the ship by clicking here. If you would like to follow the ship while I am at sea you can track the ship here (Google Earth is required).

R/V Hugh R. Sharp Courtesy of http://www.nrl.navy.mil/media/news-releases/2013/navy-researchers-reservists-evaluate-novel-passive-sonar-surveillance-methods
R/V Hugh R. Sharp
Courtesy of http://www.nrl.navy.mil/media/news-releases/2013/navy-researchers-reservists-evaluate-novel-passive-sonar-surveillance-methods

The purpose of a sea scallop survey is to protect this important fishery from being over-harvested. Traditionally scientists will dredge the bottom of the ocean with a scallop dredge to collect samples. NOAA uses the information collected from the surveys to make decisions about which areas are okay to harvest scallops.

Atlantic Sea Scallop Courtesy of http://www.vims.edu/features/research/scallop_management.php
Atlantic Sea Scallop
Courtesy of http://www.vims.edu/features/research/scallop_management.php

The R/V Hugh R. Sharp is equipped with a relatively new piece of equipment called the HabCam, short for Habitat Camera Mapping System. The HabCam is a less invasive way to survey populations and allows scientists to see what is on the ocean floor. This is an alternative method of surveying, compared to dredging. I look forward to learning how both methods of surveying work.

What I Hope to Learn:

I am so excited to be able to learn firsthand what it’s like to be a real scientist and to be able to participate in a genuine research experience. I hope to learn more about the scientific process and pass the knowledge I learn on to my students. I am also excited to learn about the different types of sea life found in the North West Atlantic Ocean and compare that with what I know of sea life from home on the Gulf of Mexico.

Please follow me on this adventure as I post my experiences on this blog. Let me know what you think by leaving your thoughts and questions in the comment section at the bottom of every blog entry.

Alicia Gillean: Visiting the Bridge and Dredging Overload, July 5, 2012

NOAA Teacher at Sea
Alicia Gillean
Aboard R/V Hugh R. Sharp
June 27 – July 7, 2012

Mission: Sea Scallop Survey
Geographical area of cruise: North Atlantic; Georges Bank
Date: Thursday, July 5, 2012

Weather Data from the Bridge*
*This data is for July 6, 2012. I was so busy dredging on the 5th that I forgot to record the weather data*

Latitude: 41 49.09 N
Longitude: 69 52.77 W
Relative Wind Speed: 11 Knots
Air Temperature: 21 degrees Celsius
Humidity: 82%
Surface Seawater Temperature: 20 degrees Celsius

Science and Technology Log

Wednesday, July 4: Visiting the Bridge and Flying HabCam

Wednesday was a lazy day on the ship. To make up some lost time and to hit as many dredge and HabCam stations as possible, there were a few long “steams” during my shift today. The ship can’t go full speed when pulling the dredge or the HabCam, so in order to go full speed, the ship “steams” with no scientific tools in the water until it reaches its next destination. We had about five hours of “steam” time today and the rest of the day was spent with HabCam, so I didn’t smell like sea scallops at the end of my shift, but I still prefer the more active days.

Bridge
Some of the ship’s controls on the Bridge

I used some of my spare time to go visit the Bridge. Remember, this is where the Captain, engineer, and mates keep the ship moving on the right course and keep everything operating smoothly. Since it was rainy outside, the big windows in the Bridge were a nice substitute to the deck where I usually like to spend my free time. Mary, one of the mates, was on duty. She has been working on boats for more than 20 years and has been on the Hugh R. Sharp for four years. She was kind enough to give me an overview of the function of each of the seemingly limitless computers and buttons that she and the engineer use to do their jobs. I was surprised by how computerized everything is, from steering, to navigation, to monitoring the water and fuel of the ship. There are duplicates of many of the computer systems, in case something doesn’t work and non-technical ways to navigate the ship too, like paper copies of nautical charts.

Alicia fly HabCam
Alicia flying the HabCam

While flying the HabCam Wednesday, I was struck by the amazing camouflage of some of the creatures that live on the ocean floor, like monkfish, flounder, and skates. If you don’t know what you are looking for or if you blink at the wrong moment, they are very easy to miss. It’s neat to see these adaptations in action! I’m glad that I got to experience this science tool in its early stages and appreciate the relationships that the HabCam allows you to see between different animals and how the animals live on the ocean floor that you can’t tell from a dredge haul.

Thursday, July 5: Dredging Overload and the Scoop on Scallops

Since Wednesday was lazy, Thursday was insanely busy! We made it through nine dredge stations during the day shift and one haul was so large that we had almost 6,000 scallops (not to mention all the rocks, fish, sea stars, crabs, etc.). Everyone worked together to get this giant haul sorted and processed. Mary even came down from the Bridge to help! When a haul is this large, we don’t measure and weigh every scallop. Instead, we count the total number of baskets (about the size of a laundry basket) of sea scallops and randomly select two baskets to measure and weigh. The number and average length of the overall scallop haul is calculated based on this subsample. There’s lots of math involved in this process!

Alicia measure scallop
Alicia measuring scallops

We dredged in an area with lots of big rocks and boulders today, so the crew added rock chains to the dredge to help keep the giant boulders out of the dredge. It doesn’t come close to keeping out all the rocks, though! They also added what looks like a metal slide that goes from the side of the sorting table to the edge of the deck to help get the giant rocks off of the table and back into the ocean. I’m constantly amazed at how the scientists and crew seem to anticipate and have a plan for every possible obstacle we might run up against. I expect that is the result of lots of years of experience and very careful planning.

Scallop Gonad
The scallop with pink is female. The other is male.

I mentioned in a previous post that we weigh about 5 scallops from each tow individually and also weigh the meat and the gonad (reproductive organ) of these five scallops individually. As soon as you cut a scallop open, you can tell if it is a male or female by the color of the gonad. Males are white and females are red or pink, as you can see in this picture. Another interesting tidbit about sea scallops is that they have lots of simple eyes that allow them to see shadows and light. You can see a fascinating close-up of sea scallop eyes by clicking here and can learn more about the anatomy of a sea scallop by clicking here.

Since this is a sea scallop survey, I’ve spent quite a bit of time with sea scallops, but I’m still not very skilled at cutting sea scallops to remove the meat quickly. One of the ladies on my watch can shuck about twenty for every one I shuck! She’s offered me lots of pointers, but I’m not going to win a scallop cutting contest any time soon. When we finish sorting and processing each haul, we usually remove the meat from the scallops, wash it, bag it, and put it in a freezer. It can seem like the work is never done when there’s a big haul!

Personal Log

The 4th of July at sea was business as usual; no firework or backyard cookouts for me this year. However, we did make a cake and sing happy birthday for the youngest member of the science group’s 20th birthday.

Since we didn’t do any dredging or anything active on Wednesday, I felt like I needed to run laps around the ship after my shift ended. I settled on trying the stationary bike instead. Riding a stationary bike on a ship that is rocking and swaying means that the bike isn’t really all that stationary! I think I got a nice abdominal workout from trying to keep myself balanced. It felt good to move, though.

Fire Drill
Engineer during fire drill at sea

On Thursday, we had a fire drill. The Captain was nice enough to schedule it at 12:15 pm, just as one shift was ending and one was beginning, so that people would not be in bed or in the shower when the drill began. During the fire drill, an alarm sounded and the Captain came on the intercom to tell us that it was a fire drill and that all scientists should muster (gather) in their designated spot. All of the scientists met in the dry lab with a life jacket where the chief scientist counted us and reported back to the Captain that we were all accounted for. We waited while the crew finished its part of the drill, then went back to work (or bed, for the night shift). I felt kind of like a student in a fire drill at school!

As I look around the ship, I find it interesting how things are designed for life at sea, like the hooks at the top of every door. If you want a door to stay open, you need to hook it, otherwise the rocking of the door will slam it closed. The table in the galley has about a half inch lip around the edge of it and the drawers of the pantry need to be opened in a special way, because they don’t just slide open. Thanks to these details, you don’t really hear things sliding and crashing around like you might imagine you would when the ship is rocking.

I’m grateful that I have been able to participate in the NOAA Teacher at Sea Program as a part of the science crew. I have worked hard, learned a ton, and can’t wait to share my learning and experiences with my students! However, I miss my family, so I’m glad that we’re headed back toward land soon!

Sunset
Sunset at sea

Alicia Gillean: Strange Ocean Critters and Science at Sea, July 3, 2012

NOAA Teacher at Sea
Alicia Gillean
Aboard R/V Hugh R. Sharp
June 27 – July 7, 2012

 

Mission:  Sea Scallop Survey
Geographical area of cruise: North Atlantic; Georges Bank
Date: Tuesday, July 3, 2012

Weather Data from the Bridge
Latitude: 41 13.20 N
Longitude: 066 35.21 W
Relative Wind Speed: 2.3 Knots
Air Temperature: 18.72 degrees C
Humidity: 78%
Surface Seawater Temperature: 15 degrees C

Science and Technology Log

The HabCam-ing and dredging continue here in the North Atlantic in calm seas and clear skies!

Alicia Star Oddi
Alicia installing sensor on dredge

I learned a new part of the data collection process with the dredge.  Each time the dredge goes out, a sensor that tracks the pitch and roll (side to side and up and down movement) of the dredge on the ocean floor needs to be installed on the dredge.  When the trawl is complete, the sensor is removed and the data is uploaded to the computer.  It is automatically plotted on a line graph that visually tells the story of the dredge’s movement on the ocean floor.  This data is eventually combined with all the other data gathered at each dredge station.  Installing and removing the sensor has been my job for the last couple of shifts.  To do this, I have to climb up on the sorting table when the dredge is first brought to the surface, remove a metal pin and plastic holder that keeps the sensor in place, remove the old sensor and add a new sensor, then reinstall the holder and pin.  This all happens before they dump the dredge. On a funny note, on my way to the sorting table to add the sensor to the dredge earlier today, I managed to trip on a hose that was on deck and turn it on, watering myself and the lab technician that was on the deck with me and entertaining everyone else watching, I’m sure!  Luckily, we were all wearing our foul weather gear, so no one was soaked!!

It’s interesting to experience all the different pieces that make a successful dredge tow.  Before coming to sea, I guess I just assumed that you lowered a big net to the ocean floor and hoped to catch something.  I had no concept of how methodical and detailed each deployment of the dredge really is, from the locations, to the timing, to the number of people involved, to the detailed data collection.  The process is still being refined, even on this third leg of the sea scallop survey.  One of the scientists on my watch is an engineer who helped design and build the latest version of HabCam.  When a part that holds the sensor in the dredge was not working correctly, he was asked to use his engineering skills to create a better way to hold the sensor, so he made the needed modifications right on the ship.

Sorting
Day shift starting to sort a dredge haul

While sorting the haul from dredging stations, I sometimes run across ocean critters that I’ve never seen before.  I usually set these to the side to snap a picture after we finish sorting and to ask a scientist, usually Karen or Sean, to identify it for me.  It turns out that the strange hairy, oval-shaped creature I keep running across is a type of worm called a sea mouse. In my pictures it looks like a grassy ball of mud, but it’s much more interesting in person, I promise!  I consulted a field guide in the dry lab to learn a little more about it.  Its scientific name is Aphrodita hastate and it is usually about 6 inches by 3 inches and can be green, gold, or brown.  There are 15 gills hidden under the bristly fur.  They like muddy areas and often live in the very deep parts of the ocean, so they are only seen when brought up with a dredge or after being tossed ashore in a storm.  I haven’t seen any of them in the HabCam images, so I’m wondering if they tend to burrow in the mud, if their camouflage skills are really impressive, or if we just haven’t flown over any. The HabCam moves so quickly (remember, it takes 6 pictures per second) that it’s impossible to see everything in enough time to figure out what it is.

 

Sea mouse
Belly of a sea mouse

Another item that keeps coming up in the dredge looks like a clump of pasta shells and cheese and it crumbles easily.  My initial guess was that it is some type of sponge, but I was wrong. It turns out these are moon snail egg cases. Once I’m back ashore, I think I’ll have to find out more about these.

moon snail eggs
Moon snail eggs

We’ve seen lots of sea stars, scallops, sand dollars, crabs, clams, hermit crabs, flounder, several species of fish called hake, and skates (relative of the stingray) in the dredge hauls.  We’ve also seen most of these on the ocean floor with the HabCam.  One of the scientists found a whale vertebrae (part of the backbone) while sorting. It’s at least a foot and a half wide and 8 inches high! Can you imagine the size of the whale when it was alive?  Each haul usually has a monkfish or two in it.  I’ve heard that these fish are pretty tasty, but they sure look mean!  I was warned early on to keep my hands away from their mouths unless I want to get bitten!

 

Alicia with monkfish
Alicia with monkfish

Today is supposed to be a day of mainly flying the HabCam, so I’m hoping to be able to interview a few people on the ship about their jobs for use back at school when I’m not flying the HabCam or co-piloting.

Sea stars
Pretty sea stars that came up in the dredge

Personal Log

I ate my first real meal in the galley tonight and it was pretty tasty!  The steward, Paul, has worked on this ship for eight years and seems to have cooking a sea down to a science.  He has to work and sleep some unusual hours to keep everyone aboard well-fed, but he does it with a smile on his face.  Between the meals, snacks, and limited space to exercise, I imagine that keeping fit while at sea for long periods of time can be a challenge. There is a stationary bike next to the washer and dryer, but other than that you have to be creative with getting your exercise.  I saw one crew member on the deck this morning with a yoga mat doing crunches and using a storage container to do tricep dips.  He said that it’s a challenge, but that you can find ways to keep in shape at sea if it’s a priority for you.

I actually slept better the first few days at sea when I was seasick than I do now that I’m feeling better, thanks to the anti-nausea medication, I expect.  I’ve found that earplugs are essential for catching sleep aboard the ship when I’m not medicated!  There is one washer and dryer aboard the ship and I’ve had a bit of trouble finding a time when it’s not in use, so I decided to do my laundry at 5 am a day or so ago when I was having trouble sleeping. I figured I may as well use insomnia to my advantage and it was so nice to use a towel that is finally completely dry for the first time in a week!

There are 22 people aboard this ship; 12 scientists and 10 crew members.   Four of the scientists and two of the crew are women.  Because of watch schedules, most of the time I see only two other women while I’m awake.  All that to say, the ship is a pretty male-dominated arena, with lots of ESPN, toilet seats left up, and guy humor.  I feel very welcome aboard the ship, but I find that I spend most of my down time doing my own thing, like working on this blog or just enjoying the view, since I’m not much of a movie or sports watcher.  With fabulous views of the Atlantic Ocean and beautiful weather, this doesn’t bother me a bit!  In fact, I find that I see the most animals swimming in the ocean during these down times.  Today it was a huge group of jellyfish swimming next to the ship!

I’m still enjoying my time at sea and am looking forward to learning even more in my last few days.

View from science lab
View from the science lab at night

Alicia Gillean: Adventures in Dredging; July 1, 2012

NOAA Teacher at Sea
Alicia Gillean
Aboard R/V Hugh R. Sharp
June 27 – July 7, 2012

 

Mission:  Sea Scallop Survey
Geographical area of cruise: North Atlantic; Georges Bank
Date: Sunday, July 1, 2012

Weather Data from the Bridge
Latitude: 40 48.43 N
Longitude: 068 04.06W
Relative Wind Speed: 8.9 Knots
Air Temperature: 17.61 degrees C
Humidity: 92%
Surface Seawater Temperature: 16 degrees C

Science and Technology Log

Dump dredge
Dumping dredge onto sorting table

My last shifts have been a mix of HabCam work and dredging. Remember, dredging is when we drag a heavy-duty net along the ocean floor for fifteen minutes, then bring it up and record what ocean critters we catch.  Dredging involves a lot more physical work and is much dirtier than flying the HabCam, so time goes much faster when we are dredging and it’s exciting to see what we will catch.  However, it is also kind of sad to see all the animals we bring up in the dredge, because most of them are dead or will soon be dead.  You can watch a video about sea scallop dredging here and here.

There are three two-week legs to this sea scallop survey.  I am on the last leg.  Before the first leg began, a computer program, with the assistance of a few people, decided which spots in the sea scallop habitat we should dredge and fly the HabCam.  These points were all plotted on a computerized map and the chief scientist connects the dots and decides the best route for the ship to take to make it to all the designated stations in the available time.

Here’s how our typical dredging process works:

About 10 minutes before we reach a dredge station, the Captain radios the lab from the Bridge (fancy name for the place at the top of the ship where the Captain and his crew work their magic) to let us know we are approaching our station.  At this point, I get on a computer in the dry lab to start a program that keeps track of our dredge position, length of tow, etc.  I enter data about the weather and check the depth of our dredge station.  When the engineer and Captain are ready, they radio the lab and ask for our depth and how much wire they need to send out to lower the dredge to the ocean floor.  I get the wire length from a chart hanging in the dry lab that is based on the depth of the ocean at the dredge site and use the radio to tell the engineer, who lets out that amount of wire until the dredge is on the ocean floor.  When the dredge hits the ocean floor, I use the computer program to start timing for 15 minutes and notify them when it is time to bring the dredge back up.

Alicia sorting fish
Alicia sorting the haul

The lab technicians and engineer raise and dump the dredge on a giant metal table, then secure it for the scientists to come in and begin sorting the haul.  Meanwhile, the scientists get dressed in foul weather gear to prepare for the messy job ahead.  That means I’m wearing yellow rubber overalls, black steel-toed rubber boots, blue rubber gloves, and a lovely orange lifejacket for each dredge.  Sometimes I add a yellow rubber jacket to the mix, too.  Science is not a beauty contest and I’m grateful for the protection!  Each scientist grabs two orange baskets, one large white bucket, and one small white bucket and heads to the table. The lab technicians shovel the catch toward each scientist as we sort.  Scallops go in one orange basket, fish go in the white bucket, crabs go in the small white bucket (sometimes), and everything else goes into the other orange basket.  This is considered “trash” and is thrown back overboard, but the watch chief keeps track of how many baskets of “trash” are thrown overboard during each haul and enters it into a computer database along with other data. After sorting the haul, much of the data collection takes place in lab called a “van”.

Research Van
Research “van” where we gather data from haul

The fish are sorted by species, counted, weighed, sometimes measured, and entered into a special computer system that tracks data from the hauls.  Sometimes we also collect and count crabs and sea stars.  The baskets of sea scallops are counted and weighed, and then individual scallops are measured on a special magnetic measuring board.  You lay the scallop on the measuring board, touch the magnet to the board at the end of the scallop, and the length is automatically entered into the database.    Some hauls have lots of sea scallops and some don’t have very many.  We had a couple hauls that were almost completely sand dollars and one that was almost completely sea stars.  I learned that sea stars can be quite slimy when they are stressed. I had no idea!

Sand dollar dresge
Dredge haul with LOTS of sand dollars

Sometimes my watch chief, Sean, will select a subsample of five sea scallops for us to scrub clean with a wire brush.

Alicia scrub scallops
Alicia scrubbing scallops at about 11pm

Next, we weigh and measure all five sea scallops before cutting them open to determine the gender.  We remove the gonad (the reproductive organ) and weigh it, then do the same with the “meat” (the muscle that allows the scallop to open and close its shell and the part people like to eat).  All of this information is recorded and each scallop is given a number.  We write the number on each shell half and bag and tag the shells.  The shells and data will be given to a scientist on shore that has requested them for additional research.  The scallop shells can be aged by counting the rings, just like counting the rings on a tree.

Alicia scrub scallops 2
Scrubbing scallops is dirty work!

Meanwhile, other people are hosing off the deck, table, buckets, and baskets used.  The dredge ends by shucking the scallops and saving the meat for meals later.  A successful dredge requires cooperation and communication between scientists, lab technicians, the Captain, and the crew. It requires careful attention to detail to make sure the data collected is accurate. It also requires strategic planning before the voyage even begins.  It’s an exciting process to be a part of and it is interesting to think about the different types of information that can be collected about the ocean from the HabCam versus the dredge.

Personal Log

Hallway to shower
Hallway to the shower and bathroom

Living on a ship is kind of like living in a college dorm again: shared room with bunkbeds, communal shower and bathroom down the hall, and meals prepared for you.  I can’t speak to the food prepared by the steward (cook) Paul, as I haven’t been able to eat much of it yet (I’m finally starting to get a handle on the seasickness, but I’m not ready for tuna steaks and lima beans just yet), but I do appreciate that the galley (mess hall) is open all the time for people to rummage through the cabinets for crackers, cereal, and other snacks. There’s even an entire freezer full of ice cream sandwiches, bars, etc.  If my husband had known about the ice cream, he probably would have packed himself in my duffel bag for this adventure at sea!

Taking a shower at sea is really not much different than taking a shower at the gym or in a college dorm… in the middle of a small earthquake. Actually, it’s really not too bad once you get used to the rock  of the ship.  On the floor where the scientists’ berths (rooms) are, there are also two heads (bathrooms) and two showers.  The ship converts ocean water into water that we can use on the ship for showering, washing hands, etc.  through a process called reverse osmosis.  Sea water is forced through a series of filters so small that not even the salt in the water can fit through.  I was afraid that I might be taking cold showers, but there is a water heater on board, too!   We are supposed to take “Navy showers”, which means you get wet, press a button on the shower head to stop the water while you scrub, then press the button to turn the water back on to rinse.  I’ll admit that I find myself forgetting about this sometimes, but I’m getting much better!

Shower
Shower on Hugh R Sharp

Today there was about an hour and a half of “steam” time while we headed to our next dredge location and had nothing official to do.  Some of the people on my watch watched a movie in the galley, but I decided to head to one of the upper decks and enjoy the gorgeous views of ocean in every direction.  I was awarded by a pod of about 15 common dolphins jumping out of the water next to the ship!

I’m starting to get a feel for the process of science at sea and am looking forward to the new adventures that tomorrow might bring!

Question of the Day

Which way do you think is the best way to learn about the sea scallop population and ocean life in general: dredging or HabCam?  Why do you think so?

 You can share your thoughts, questions, and comments in the comments section below.

Alicia Gillean: Setting Sail and Seeing the Ocean Floor; June 30, 2012

NOAA Teacher at Sea
Alicia Gillean
Aboard R/V Hugh R. Sharp
June 27-July 7, 2012

Mission: Sea Scallop Survey
Geographical area of cruise: North Atlantic; Georges Bank
Date: Saturday, June 30, 2012

Weather Data from the Bridge
Latitude: 40 55.30 N
Longitude: 068 47.49 W
Relative Wind Speed: 15.6 Knots
Air Temperature: 17.44 degrees C
Humidity: 80%
Surface Seawater Temperature: 14 degrees C

Science and Technology Log

Hugh R Sharp
R/V Hugh R. Sharp in Port

Well, it took a car, two airplanes, an airport shuttle, a bus, and a short walk, but I made it to the ship in Woods Hole, MA at about 8pm on June 26, 2012! I met a few of the ship’s crew who were kind enough to show me to my room and I slept on the ship while it was in port. You can see a rather long, but informative video tour of the Hugh R. Sharp on this website and you can track the ship’s progress here.

Everyone reported to the ship at 8am on June 27, but we didn’t end up leaving port until about 2pm because of last-minute adjustments to equipment, among other reasons, so the first day was pretty much the hurry up and wait game. While waiting to leave port, we did a safety drill and heard a presentation from a NOAA employee named Deborah about the basics of sea scallops. I was intrigued by all the data that she mentioned in her presentation and talked to her about it afterwards. She is a mathematician with a passion for biology who found a way to merge the two into a career. A big part of her job is to make sense of the data collected on the scallop survey and to present it in a way that can make sense to people. She uses lots of graphs and charts to help the data tell its story. She said that estimation, graphing, and numerous math skills play a huge role in her work. She was kind enough to give me her business card so that we can chat more after I return from sea, as she isn’t sailing on this leg of the survey.

Survival Suit
Me in my survival suit during safety drill

HabCam

Once aboard the Hugh R. Sharp, I learned that this survey will actually be two surveys in one: about half of our time will be spent dredging, sorting, measuring, and weighing scallops. The other half of the time will be spent gathering data with a newly developed underwater camera system called HabCam. The HabCam is about a half-million dollar, 3,000-pound piece of scientific equipment that is controlled by a winch, operated inside the Dry Lab (kind of like a computer lab) of the ship by a joystick and a computer program that shows the depth of the HabCam and its height off the ocean floor. The pilot of the HabCam “flies” it approximately 2 meters above the ocean floor and the copilot keeps an eye on the images coming back from the HabCam. It takes 6 images per second, so there are LOTS of pictures to look at and the clarity is amazing.

HabCam
HabCam being lowered into the water
Alicia Zip Tie
My first job on the ship

The HabCam is a pretty fascinating piece of equipment that has been under development for several years and is a cooperative effort between the sea scallop industry, NOAA (National Oceanic and Atmospheric Administration), WHOI (Woods Hole Oceanographic Institution), and others. Some of the people that developed the HabCam are on the ship with me and I have had the opportunity to talk to them about its development and uses. Each conversation always seems to have a common theme: the HabCam is a work in progress. We are using version 4 of the HabCam on this scallop survey. As they test the HabCam, they notice issues and make modifications accordingly. It is interesting to see the scientific process in action. Before we left port, they were attempting to correct an issue with pressure and vibration on the winch cable that controls the HabCam while it flies through the water. They thought that covering the portion of the cable directly above the HabCam with zip ties might help break up some of the water pressure and solve the problem. So, my first job as a scientist aboard the Hugh R Sharp involved installing lots and lots of zip ties! I had to laugh when they realized a slight glitch in the plan and had to remove many of the zip ties later. Science is a process!

There are 6 people on my watch and we started with the HabCam. I had the opportunity to pilot and copilot several times. It is fascinating to see images of the seafloor that no one else had ever seen and a bit daunting to be trusted with flying such an expensive piece of equipment through the ocean! We saw skates (like a stingray), sand dollars, sea biscuits, fish, sea stars, and more.

HabCam image
One of the images from the HabCam

You can learn more about the HabCam by visiting this website.

Personal Log

Life at sea is more relaxed than I expected. For some reason, I expected there to be lots of strict rules and procedures, but so far that has not been the case. This has been a welcome surprise for me, especially since despite my extensive anti-nausea arsenal, I am experiencing a rather nasty bout of seasickness. Everyone aboard has been very sympathetic and shared their personal stories of dealing with seasickness as well as remedies for seasickness that work for them (ginger ale, standing outside, etc.). I’m hoping that spending time outside today while we dredge instead of inside flying the HabCam will help. Enough about that!

Bed on Hugh R Sharp
My bed on the Sharp

I share my berth (room) with four other ladies. There are two bunk beds with curtains around each bed to allow for a little privacy and to help darken the room if needed. The berths are in the “belly” of the ship with no windows, so room darkening really isn’t much of an issue! I do think the curtains are sort of ingenious and wish I had them back when I was living in the dorms in college. I am glad that I packed light, since there really isn’t much of a place to store things in the berth. I’m using every inch of available space and wishing that things (like my towel) would actually dry down here, but not much luck with that so far. I managed to be the first person to get drenched on the ship on the day we left and it took three days for my clothes to dry! It’s all part of the adventure, right?

Two of the people I share a room with are on the day shift (noon to midnight) and the other two are on the night shift (midnight to noon), so there really isn’t a time when all four of us are in the room at the same time. When you leave for your watch (shift), you take everything with you that you might need, so you don’t go back to the room while other people are trying to sleep.

There is a constant sucking noise that sounds a bit like wind that I always hear while in my room. I initially thought it was just the sound of the ship going over the water, but now I’m wondering if it might be some type of pump. I checked with my chief scientist Geoff Shook and he told me that the sound is actually the ship’s stabilizer fins. There are 4 fins (2 on each side) that move back and forth to dampen the vessel’s roll and provide a more comfortable, stable ride.

Question of the Day

What do you think the name “HabCam” means?

You can share your thoughts, questions, and comments in the comments section below.

Janet Nelson: Steaming for Home, June 25, 2012

NOAA Teacher at Sea
Janet Nelson Huewe
Aboard R/V Hugh R. Sharp
June 13 – 25, 2012

Mission: Sea Scallop Survey
Geographic Area: North Atlantic
Monday, June 25, 2012

Weather Data from the Bridge:
Latitude: 41 24.21 North
Longitude: 069 54.98 West
Wind Speed: 13.7 kt
Air Temperature: 17 C                    

Final Log:

We are steaming for home. Woods Hole, MA that is. In the past ten days we have conducted 71 scallop dredge tows and processed 15, 979 scallops. We also took over 4 million images with the HabCam in 691 nautical miles of this leg. We have been a little busy.

A tow of scallops

This morning (0600 hrs.) we mustered in the dry lab and began our assignments, ranging from swabbing the decks to vacuuming our state rooms. Tonight I will be in Boston and then on my way back to Minnesota. I am ready to go home, but I know I will think back fondly on a few things. The rocking of the boat when I’m going to sleep.  Meals prepared for me. The sound of waves and water. The hum of the engines. Seeing what comes up in the scallop dredge. Being on deck and on the bridge. A hap chance at seeing whales or dolphins. New friends and fun banter. Even though this journey began with an unpleasant introduction, it is ending with fond feelings.

Me and a barndoor skate!
Me and a barn door skate!

Being on this boat has been interesting for several reasons. I have learned new things about ocean life that I can take back to my classroom as well as a few souvenirs. I can honestly say I have never seen more scallops in my life, not to mention sand dollars and sea stars! I am looking forward to sharing this experience with my family, students, and friends. As I write this last blog, I am thinking of what a privilege it has been to be a member of this team of researchers. I am honored to learn from them. To my team: Jon, Nicole, Mike, Jess, Alexis, Ted, Nick (TG), and TR, thank you!! This experience would not have been the same without you! I will remember you fondly for many, many days to come.

Cheers!

L to R, TR, Ted, Mike, Jess, Jon, Nicole…my crew

Janet Nelson: On Georges Bank, June 22, 2012

NOAA Teacher at Sea
Janet Nelson Huewe
Aboard R/V Hugh R. Sharp
June 13 – 25, 2012

Mission: Sea Scallop Survey
Geographic Area: North Atlantic
Friday, June 22, 2012 

Weather Data from the Bridge:
Longitude: 068 24.69 West
Latitude: 41.40.50 North
Wind speed: 7.9 kt
Air temp: 18.5 C
Depth: 194.7 feet (32.2 fathoms)

Science and Technology Log:

Our route in George’s Bank
Our route in George’s Bank

Yesterday was a 12 hour shift of towing the HabCam. The strangely unique thing about that was the terrain. We are on the western edge of Georges Bank and the sand waves on the ocean floor are incredible! There are waves as high as 10 meters that come upon you in a blink of an eye. By observing the side scan sonar it looks very similar to being in a desert, or on the surface of Mars. We refer to driving the HabCam through these areas as piloting the “White knuckle express”.

side scan sonar/sand waves
side scan sonar/sand waves

To get through these areas Scott was able to use geographic images collected by the United States Geological Survey and created an overlay of the pictures onto our tow path, alerting us to any possible hazards in navigation. This data allowed us to anticipate any potential dangers before they arose.

Irritated sea scallop
Irritated sea scallop

We continue to see skates, various fishes, lobsters and sand dollars, and in places, huge amounts of scallops. The images will be reviewed back at the lab in Woods Hole, MA. I have been able to see some of them and the clarity is amazing.

Today, we are continuing to tow the HabCam. When finished, we will have taken images from hundreds of nautical miles with over 4 million images taken on Leg II! We will put in the scallop dredge toward the end of my shift. We will then conduct back to back dredge tows on the way back to Woods Hole totaling over 100 nautical miles for this portion of the trip.

Me, heading in to get my foul weather gear on
Me, heading in to get my foul weather gear on

Personal Log:

Yesterday was a beautiful day at sea. It was, however, strange. The sea was really calm and the sun was shining in a big beautiful sky. The strange thing was that about 300 yards out was fog. There were many commercial fishing vessels all around us. It felt like being in an episode of “The Twilight Zone” or some creepy Steven King novel. I am thankful, however, for smooth sailing.

Commercial fishing vessel
Commercial fishing vessel

 

a day at sea
A day at sea

The crew continues to be awesome. We had flank steak and baked potatoes for supper last night. Lee, our chef, is amazing. Everything she makes is from scratch and there is always plenty. The only reason someone would go hungry on this ship is if it was by choice. Lee takes very good care of us! I have had ample opportunity to get to know others who share my shift. Mike, Jessica and I are science volunteers. Jon and Nicole are the NOAA staff along with Scott an associate scientist at WHOI( Woods Hole Oceanographic Institute) on the science team. We get along “swimmingly” and have fun banter to break up any monotony.

I am sleeping very well at night. I think it’s the rocking of the ship that lulls me to sleep. I think I will miss that when I get home. Funny, how at the beginning of this journey I was cursing the very waves that now rock me to sleep. The way the body adjusts is amazing.

I will be home in four days. This week has swiftly gone by. Although I miss home, I feel I will miss people from this ship and the experience of being at sea (minus the sickness!) My mind is already putting together science lessons for my biology classes this fall. I do, however, have three full days left on this ship and I plan to make the most of it. Keep checking the blog to find out what happens next on the great adventure in the North Atlantic Ocean!

Sunset, 6/21/12
Sunset, 6/21/12

Janet Nelson: Sand Dollars and Sea Stars! June 20, 2012

NOAA Teacher at Sea
Janet Nelson Huewe
Aboard R/V Hugh R. Sharp
June 13 – 25, 2012

Mission: Sea Scallop Survey
Geographic Area: North Atlantic
Wednesday, June 20, 2012 

Weather Data from the Bridge:
Latitude: 41.03.21 North
Longitude: 071 32.79 West
Air temp: 21 C
Wind Speed: 15.6 kt
Depth: 135.2 feet

Science and Technology Log:

I came on shift yesterday at noon with three back to back dredge tows (we have done 30 dredges thus far on Leg II). We are off the coast of Long Island. Most of the dredges around here have been filled with sand dollars and sea stars. In total, we have processed and counted on this leg of the survey 5, 366 scallops, 453 skates, and 58 Goosefish, a very interesting fish that  buries itself in the sand and uses a filamentous lure to attract prey and engulf them. In addition, we have counted 132, 056 sea stars (wow!) and 590 crabs. The HabCam had some glitches yesterday but we began running the vehicle on our shift at approximately 1245 hrs. It made a run for approximately three hours and 57 minutes, with approximately 22.387 nautical miles of pictures before we dredged again.

While looking at the images of the HabCam, it astounds me at seeing prior dredge track marks from commercial scallopers and clamers. By looking at the side scan sonar, some of the dredges are very deep and very invasive. It reminds me of strip mining and clear cutting in terrestrial ecosystems. It is also evident, by observing the images, that little is left in those areas but shell hash. With that said, there are still some interesting species that get photographed, such as jelly fish and sea stars in patterns you would think they orchestrated.

We are working our way toward Georges Bank and will be there, from what I’m told, sometime late this afternoon or evening. All equipment is running well and what time we lost with the late departure has mostly been made up. It’s amazing what technology can do!

Personal Log:

As of yesterday, I have been away from home with little to no contact for six days, so when I was told yesterday morning prior to coming on shift that we had cell phone signal, I immediately went up on deck and called my husband! Although I only got an answering machine, it was good, and familiar, to hear his voice.

We then had a fire drill at noon and after that, set to work. It was nice to be outside working for the next 4 hours. I think I finally have my sea legs. However, the seas have also been cooperating with only 1-3 foot swells, at best. When they are higher, I sometimes feel like the Scarecrow in “The Wizard of Oz”. It’s a good thing I can laugh at myself when I look completely ridiculous while tripping through a door or, with no warning whatsoever, bump into a wall!  From what I understand, this ship has a flatter bottom than most so every wave and swell catches it and tosses it in whatever direction that wave is going, despite having just gone in the opposite direction! I am hoping the sea remains calm when we get to Georges Bank.

I am learning a great deal about the critters that live in the ocean around here. It is so strange to have at times hundreds upon hundreds of sand dollars being pulled up in the dredge at one location and then to have mostly sea stars pulled up at another location. My favorite, however, are the hermit crabs! They are so cool! They will begin to crawl out of their shells, see you coming to pick them up and immediately crawl way back inside and stare at you. I actually think I saw one blink at me. Not really, but my imagination does run away at times.

Those are also the times someone, usually me or the watch chief (chief scientist is guilty of this too!), bursts into song or starts quoting a movie line, and then half the crew is joining in. I have gotten more proficient at using the technology equipment on board that does the recording of the measurements of the specimens, and also at cutting/shucking the scallops. Never thought I would know how to do that! I have a feeling there are a few things I never thought I would do before this cruise is over. I have five more days at sea. Anything is possible!

Side note: Today is beautiful for being at sea! Clear sky, moderate winds, and sea legs that are working!!

Cheers!

This slideshow requires JavaScript.

Janet Nelson: Third Day at Sea – June 17, 2012

NOAA Teacher at Sea
Janet Nelson Huewe
Aboard R/V Hugh R. Sharp
June 13 – 25, 2012

Mission: Sea Scallop Survey
Geographic Area: North Atlantic
Sunday, June 17, 2012

Data from the Bridge:
Latitude: 39.48.57 North
Longitude: 07226.9 West
Wind Speed: 12 kt
Air temp: 17.8 C
Approximate wave height: 4-6 feet

Science and Technology Log:

Current time: 1630 hours. We have been operating the HabCam since I came on duty at 1200 hours. It is interesting watching what the HabCam is flying over. Depending on the area, it might be littered with sea stars (a predator of small scallops) or it may be littered with hundreds of sand dollars (a food of ocean pout – ugly looking fish). In the case of sea stars, you won’t see many adult scallops, which, makes sense if the young ones are getting eaten. All in all, the research here is pretty straight forward. We are looking to see what predation is affecting the scallops, basically, food chains and habitat. On the side scan sonar, you can see past dredge marks from fishing vessels that have come through. We have passed over some old fishing nets, gear, a shoe, a can, odd things like that.

I have been “flying” the HabCam which is pretty cool. You need to keep the cam approximately 2.5 to 1.5 meters off the sea floor which can be a tricky thing to do. Fun, but tricky. While the cam is flying, the “co”pilot” is scanning images looking for various critters, specifically scallops. It can be a process that makes your eyes go buggy after about 1/2 to 3/4 hours so we switch off every now and then. This specific episode of the HabCam has been running for approximately 14 hours and has traveled about 177 nautical miles. That is a lot of sea floor!!

In approximately 35 minutes we will deploy the scallop dredge. The dredge will run for 15 minutes spurts. We will run six of them back to back. When the dredge comes up we will sort all the species into their buckets, count and measure the scallops, count and measure the fish, toss back the sand dollars, star fish and most often the crabs. The scallops that are two years old or younger we measure and toss back into the sea. The older scallops get measured, sexed, weighed and sometimes shucked. Word is there will be scallops for supper!

Personal Log:

I now understand what it is like to be in a washing machine with no end! I have not been able to blog prior to now because I have been spending a great deal of time in my bunk and in the head. My diet consists of saltine crackers and water. Occasionally, I can sneak in a piece of fruit, but not often. So far, this experience has not really begun yet. I have, however, been able to go 24 hours with no loss of stomach content. That’s a good sign, I hope. Sleep has been good and I feel rested (for the most part). The crew on the ship is awesome and I could not ask for a better chief scientist! Everyone was very understanding when I was sick and cut me slack for not being able to pull my weight. I think the crying helped soften them up. I was looking forward to big seas and water, not so much any more. I beg for calm seas and light winds. Perhaps I will be able to get some photographs of me working for the next blog, but until then, I will be happy with just keeping my lunch down!

Cheers!


Janet Nelson: Introduction – NOAA Teacher at Sea – June 14-25, 2012

NOAA Teacher at Sea
Janet Nelson Huewe
Aboard R/V Hugh R. Sharp
June 13 – 25, 2012

Pre-Cruise:

Greetings from Lewes Delaware! I am Janet Nelson Huewe. I live in Bemidji, MN with my husband, Gary. Together we have five grown children and two grand children. Bemidji is the home of Paul Bunyan and Babe the Blue Ox.

Good thing Mr. Bunyan left so many footprints that created lakes because my husband LOVES to fish! I have been teaching biology for ten years at Red Lake High School on the Red Lake Indian Reservation. I enjoy learning and doing new things that I can bring back into my classroom. I am very excited to have been selected by the National Oceanic and Atmospheric Administration (NOAA) to participate in their Teacher at Sea program. I will be working on the R/V Hugh R. Sharp in the North Atlantic conducting a sea scallop survey.

I arrived into Lewes on June 13th and boarded the ship. The winds have been high, blowing anywhere from 25 to 40 mph causing waves to reach around 12 feet, so we are still in port, waiting for calmer seas. When we do set sail, we will be using a device called a HabCam (HABitat mapping CAMera system). HabCam is a tool that will provide us with a unique glimpse at the seafloor through optical imaging.

The HabCam vehicle is lifted over the edge of the ship by a winch and then “flies” over the ocean bottom taking six images a second creating a continuous image ribbon. On the surface we will get real-time images and data in a completely non-invasive way.  From the images we can learn about ecosystem change over different time and space scales, calculate biodiversity, classify habitats, map hard to survey species, learn about invasive species, and promote interest in ocean and ecosystem science. HabCam can also provide data to scientists and fishery managers to help them make more informed decisions and to help understand ecosystem change.

We will also deploy a scallop dredge (on the right). This device, however, is more invasive. The dredge will physically skim the bottom of the ocean to collect live specimens. From there, I will help sort and count the scallops and any other critter that gets taken up by the dredge. Maybe I will be able to eat a few scallops later? We’ll see. Until then, keep checking my blog to find out more exciting news from the R/V Hugh R. Sharp!