Lona Hall: Land and Sea, June 12, 2019

NOAA Teacher at Sea

Lona Hall

Aboard NOAA Ship Rainier

June 3 – 14, 2019

Mission: Kodiak Island Hydrographic Survey

Geographic Area of Cruise: Kodiak Island, Alaska

Date: June 12, 2019

Time:  1541 hours

Location: Saltery Cove, Kodiak Island

Weather from the Bridge:

Latitude: 57°29.1009’ N

Longitude: 152°44.0031’ W

Wind Speed: 9.0 knots

Wind Direction: N (10 degrees)

Air Temperature: 12.78° Celsius

Water Temperature: 8.89° Celsius

Lona in immersion suit
All dressed up (in an immersion suit) and no place to go

Science and Technology Log

You may be wondering what role technology plays in a hydrographic survey.  I have already written about how modern survey operations rely on the use of multibeam sonar.  What I have not described, and am still coming to understand myself, is how complex the processing of sonar data is, involving different types of hardware and software.  

For example, when the sonar transducer sends out a pulse, most of the sound leaves and eventually comes back to the boat at an angle.  When sound or light waves move at an angle from one substance into another, or through a substance with varying density, they bend. You have probably observed this before and not realized it.  A plastic drinking straw in a glass of water will appear broken through the glass. That is because the light waves traveling from the straw to your eye bend as they travel.

Refraction in a glass of water
Refraction in a glass of water

The bending of a wave is called refraction. Sound waves refract, too, and this refraction can cause some issues with our survey data. Thanks to technology, there are ways to solve this problem. The sonar itself uses the sound velocity profile from our CTD casts in real time to adjust the data as we collect it. Later on during post processing, some of the data may need to be corrected again, using the CTD cast profiles most appropriate for that area at that general time. Corrections that would be difficult and time-consuming if done by hand are simplified with the use of technology.

Another interesting project in which I’ve been privileged to participate this week was setting up a base station at Shark Point in Ugak Bay.  You have most likely heard of the Global Positioning System, and you may know that GPS works by identifying your location on Earth’s surface relative to the known locations of satellites in orbit.  (For a great, kid-friendly explanation of GPS, I encourage students to check out this website.)  But what happens if the satellites aren’t quite where we think they are?  That’s where a base station, or ground station, becomes useful. Base stations, like the temporary one that we installed at Shark Point, are designed to improve the precision of positioning data, including the data used in the ship’s daily survey operations.

power source for the base station
Setting up the power source for the base station

Setting up the Base Station involved several steps.  First, a crew of six people were carried on RA-7, the ship’s small skiff, to the safest sandy area near Shark Point. It was a wet and windy trip over on the boat, but that was only the beginning! Then, we carried the gear we needed, including two tripods, two antennae (one FreeWave antenna to connect with the ship and a Trimble GPS antenna), a few flexible solar panels, two car batteries, a computer, and tools, through the brush and brambles and up as close to the benchmark as we could reasonably get.  A benchmark is a physical marker (in this case, a small bronze disk) installed in a location with a known elevation above mean sea level. For more information about the different kinds of survey markers, click here.

Base station installers
Base station installers: damp, but not discouraged

Next we laid out a tarp, set up the antennae on their tripods, and hooked them up to their temporary power source.  After ensuring that both antennae could communicate, one with the ship and the other with the satellites, we met back up with the boat to return to the ship.  The base station that we set up will be retrieved in about a week, once it has served its purpose.


Career Focus – Commanding Officer (CO), NOAA Corps

CO Ben Evans at dinner
CO Ben Evans enjoying dinner with the other NOAA Corps officers

Meet Ben Evans.  As the Commanding Officer of NOAA Ship Rainier, he is the leader, responsible for everything that takes place on board the ship as well as on the survey launches. Evans’ first responsibility is to the safety of the ship and its crew, ensuring that people are taking the appropriate steps to reduce the risks associated with working at sea.  He also spends a good deal of his time teaching younger members of the crew, strategizing with the other officers the technical details of the mission, and interpreting survey data for presentation to the regional office.

Evans grew up in upstate New York on Lake Ontario.  He knew that he wanted to work with water, but was unsure of what direction that might take him.  At Williams College he majored in Physics and then continued his education at Woods Hole Oceanographic Institution, completing their 3-year Engineering Degree Program.  While at WHOI, he learned about the NOAA Commissioned Officers Corps, and decided to apply.  After four months of training, he received his first assignment as a Junior Officer aboard NOAA Ship Rude surveying the waters of the Northeast and Mid-Atlantic.  Nearly two decades later, he is the Commanding Officer of his own ship in the fleet.

When asked what his favorite part of the job is, Evans smiled to himself and took a moment to reply.  He then described the fulfillment that comes with knowing that he is a small piece of an extensive, ongoing project–a hydrographic tradition that began back in 1807 with the United States Survey of the Coast.  He enjoys working with the young crew members of the ship, sharing in their successes and watching them grow so that together they may carry that tradition on into the future.

Danielle Koushel, NOAA Corps Junior Officer
Danielle Koushel, NOAA Corps Junior Officer, tracks our location on the chart


Personal Log

For my last post, I would like to talk about some of the amazing marine life that I have seen on this trip.  Seals, sea lions, and sea otters have shown themselves, sometimes in surprising places like the shipyard back in Seward.  Humpback whales escorted us almost daily on the way to and from our small boat survey near Ugak Bay. One day, bald eagles held a meeting on the beach of Ugak Island, four of them standing in a circle on the sand, as two others flew overhead, perhaps flying out for coffee.  Even the kelp, as dull as it might seem to some of my readers, undulated mysteriously at the surface of the water, reminding me of alien trees in a science fiction story.

Shark Point
Looking out over Shark Point from the base station

Stepping up onto dry land beneath Shark Point, we were dreading (yet also hoping for) an encounter with the great Kodiak brown bear. Instead of bears, we saw a surprising number of spring flowers, dotting the slopes in clumps of blue, purple, and pink. I am sensitive to the smells of a new place, and the heady aroma of green things mixed with the salty ocean spray made our cold, wet trek a pleasure for me.  


Word of the Day

Davit – a crane-like device used to move boats and other equipment on a ship


Speaking of Refraction…

Rainbow
Rainbows are caused by the refraction of light through the lower atmosphere

Thank you to NOAA Ship Rainier, the Teacher at Sea Program, and all of the other people who made this adventure possible.  This was an experience that I will never forget, and I cannot wait to share it with my students back in Georgia!

Anne Krauss: The Oregon II Trail, August 16, 2018

NOAA Teacher at Sea

Anne Krauss

Aboard NOAA Ship Oregon II

August 12 – August 25, 2018

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Western North Atlantic Ocean/Gulf of Mexico

Date: August 16, 2018

Weather Data from the Bridge

Conditions at 1106

Latitude: 25° 17.10’ N

Longitude: 82° 53.58’ W

Barometric Pressure: 1020.17 mbar

Air Temperature: 29.5° C

Sea Temperature: 30.8° C

Wind Speed: 12.98 knots

Relative Humidity: 76%

 

Science and Technology Log

Before getting into the technology that allows the scientific work to be completed, it’s important to mention the science and technology that make daily life on the ship safer, easier, and more convenient. Electricity powers everything from the powerful deck lights used for working at night to the vital navigation equipment on the bridge (main control and navigation center). Whether it makes things safer or more efficient, the work we’re doing would not be possible without power. Just in case, several digital devices have an analog (non-electronic) counterpart as a back-up, particularly those used for navigation, such as the magnetic compass.

 

This slideshow requires JavaScript.

To keep things cool, large freezers are used for storing bait, preserving scientific samples, and even storing ice cream (no chumsicles for dessert—they’re not all stored in the same freezer!). After one particularly sweltering shift, I was able to cool off with some frozen coffee milk (I improvised with cold coffee, ice cream, and milk). More importantly, without the freezers, the scientific samples we’re collecting wouldn’t last long enough to be studied further back at the lab on land.

Electricity also makes life at sea more convenient, comfortable, and even entertaining. We have access to many of the same devices, conveniences, and appliances we have at home: laundry machines, warm showers, air conditioning, home cooked meals, a coffee maker, TVs, computers with Wi-Fi, and special phones that allow calls to and from sea. A large collection of current movies is available in the lounge. During my downtime, I’ve been writing, exploring, enjoying the water, and learning more about the various NOAA careers on board.

To use my computer, I first needed to meet with Roy Toliver, Chief Electronics Technician, and connect to the ship’s Wi-Fi. While meeting with him, I asked about some of the devices I’d seen up on the flying bridge, the top deck of the ship. The modern conveniences on board are connected to several antennae, and Roy explained that I was looking at important navigation and communication equipment such as the ship’s GPS (Global Positioning System), radar, satellite, and weather instrumentation.

I was also intrigued by the net-like item (called a Day Shape) that communicates to other ships that we are deploying fishing equipment. This lets nearby ships know that the Oregon II has restricted maneuverability when the gear is in the water. At night, lights are used to communicate to other ships. Communication is crucial for safety at sea.

When I stopped by, Roy had just finished replacing some oxygen sensors for the CTD (that stands for Conductivity, Temperature, and Depth). For more information about CTDs click here: https://oceanexplorer.noaa.gov/facts/ctd.html

Without accurate sensors, it’s very difficult for the scientists to get the data they need. If the sensors are not working or calibrated correctly, the information collected could be inaccurate or not register at all. The combination of salt water and electronics poses many interesting problems and solutions. I noticed that several electronic devices, such as computers and cameras, are built for outdoor use or housed in durable plastic cases.

On this particular day, the ship sailed closer to an algal bloom (a large collection of tiny organisms in the water) responsible for red tide. Red tide can produce harmful toxins, and the most visible effect was the presence of dead fish drifting by. As I moved throughout the ship, the red tide was a red hot topic of conversation among both the scientists and the deck department. Everyone seemed to be discussing it. One scientist explained that dissolved oxygen levels in the Gulf of Mexico can vary based on temperature and depth, with average readings being higher than about 5 milligrams per milliliter. The algal bloom seemed to impact the readings by depleting the oxygen level, and I was able to see how that algal bloom registered and affected the dissolved oxygen readings on the electronics Roy was working on. It was fascinating to witness a real life example of cause and effect. For more information about red tide in Florida, click here: https://oceanservice.noaa.gov/news/redtide-florida/

Chief Electronics Technician Roy Toliver in his office on the Oregon II.

Chief Electronics Technician Roy Toliver in his office on the Oregon II. The office is like the ship’s computer lab. When he’s not working on the ship’s electronics, Roy enjoys reading out on the stern. It’s a great place for fresh air, beautiful views, and a good book!

Personal Log

Preparing and packing for my time on the Oregon II reminded me of The Oregon Trail video game. How to pack for a lengthy journey to the unfamiliar and unknown?

A video game screenshot

I had a hard time finding bib overalls and deck boots at the general store.

I didn’t want to run out of toiletries or over pack, so before leaving home, I tracked how many uses I could get out of a travel-sized tube of toothpaste, shampoo bottle, and bar of soap, and that helped me to ration out how much to bring for fifteen days (with a few extras, just in case). The scientists and crew of the Oregon II also have to plan, prepare, and pack all of their food, clothing, supplies, tools, and equipment carefully. Unlike The Oregon Trail game, I didn’t need oxen for my journey, but I needed some special gear: deck boots, foul weather gear (rain jacket with a hood and bib overalls), polarized sunglasses (to protect my eyes by reducing the sun’s glare on the water), lots of potent sunscreen, and other items to make my time at sea safe and comfortable.

I was able to anticipate what I might need to make this a more efficient, comfortable experience, and my maritime instincts were accurate. Mesh packing cubes and small plastic baskets help to organize my drawers and shower items, making it easier to find things quickly in an unfamiliar setting.

berths on ship show blue privacy curtains

This is where we sleep in the stateroom. The blue curtains can be closed to darken the room when sleeping during the day. On the left is a sink.

My own shark cradle

Reading and dreaming about sharks!

Dirt, guts, slime, and grime are part of the job. A bar of scrubby lemon soap takes off any leftover sunscreen, grime, or oceanic odors that leaked through my gloves. Little things like that make ship life pleasant. Not worrying about how I look is freeing, and I enjoy moving about the ship, being physically active. It reminds me of the summers I spent as a camp counselor working in the woods. The grubbier and more worn out I was, the more fun we were having.

The NOAA Corps is a uniformed service, so the officers wear their uniforms while on duty. For everyone else, old clothes are the uniform around here because the work is often messy, dirty, and sweaty. With tiny holes, frayed seams, mystery stains, cutoff sleeves, and nautical imagery, I am intrigued by the faded t-shirts from long-ago surveys and previous sailing adventures. Some of the shirts date back several years. The well-worn, faded fabric reveals the owner’s experience at sea and history with the ship. The shirts almost seem to have sea stories to tell of their own.

Sunset over water showing orange, pink, and blue hues.

As we sail, the view is always changing and always interesting!

Being at sea is a very natural feeling for me, and I haven’t experienced any seasickness. One thing I didn’t fully expect: being cold at night. The inside of the ship is air-conditioned, which provides refreshing relief from the scorching sun outside. I expected cooler temperatures at night, so I brought some lightweight sweatshirts and an extra wool blanket from home. On my first night, I didn’t realize that I could control the temperature in my stateroom, so I shivered all night long.

A folded grey hooded sweatshirt

It’s heavy, tough, and grey, but it’s not a shark!

My preparing and packing didn’t end once I embarked (got on) on the ship. Every day, I have to think ahead, plan, and make sure I have everything I need before I start my day. This may seem like the least interesting aspect of my day, but it was the biggest adjustment at first.

To put yourself in my shoes (well, my deck boots), imagine this:

Get a backpack. Transport yourself to completely new and unfamiliar surroundings. Try to adapt to strange new routines and procedures. Prepare to spend the next 12+ hours working, learning, exploring, and conducting daily routines, such as eating meals. Fill your backpack with anything you might possibly need or want for those twelve hours. Plan for the outdoor heat and the indoor chill, as well as rain. If you forgot something, you can’t just go back to your room or run to the store to get it because

  1. Your roommate is sleeping while you’re working (and vice versa), so you need to be quiet and respectful of their sleep schedule. That means you need to gather anything you may need for the day (or night, if you’re assigned to the night watch), and bring it with you. No going back into the room while your roommate is getting some much-needed rest.
  2. Land is not in sight, so everything you need must be on the ship. Going to the store is not an option.

Just some of the items in my backpack: sunscreen, sunglasses, a hat, sweatshirt, a water bottle, my camera, my phone, my computer, chargers for my electronics, an extra shirt, extra socks, snacks, etc.

I am assigned to the day watch, so my work shift is from noon-midnight. During those hours, I am a member of the science team. While on the day watch, the five of us rotate roles and responsibilities, and we work closely with the deck crew to complete our tasks. The deck department is responsible for rigging and handling the heavier equipment needed for fishing and sampling the water: the monofilament (thick, strong fishing line made from plastic), cranes and winches for lifting the CTD, and the cradle used for safely bringing up larger, heavier sharks. In addition to keeping the ship running smoothly and safely, they also deploy and retrieve the longline gear.

A pulley in front of water

Pulleys, winches, and cranes are found throughout the boat.

Another adjustment has been learning the routines, procedures, and equipment. For the first week, it’s been a daily game of What-Am-I-Looking-At? as I try to decipher and comprehend the various monitors displayed throughout the ship. I follow this with a regular round of Now-What-Did-I-Forget? as I attempt to finesse my daily hygiene routine. The showers and bathroom (on a ship, it’s called the head) are down the hall from my shared stateroom, and so far, I’ve managed to forget my socks (day one), towel (day two), and an entire change of clothes (day four). With the unfamiliar setting and routine, it’s easy to forget something, and I’m often showering very late at night after a long day of work.

Showers and changing stalls on ship

I’m more than ready to cool off and clean up after my shift.

One thing I never forget? Water. I am surrounded by glittering, glistening water or pitch-black water; water that churns and swells and soothingly rocks the ship. Swirling water that sometimes looks like ink or teal or indigo or navy, depending on the conditions and time of day.

Another thing I’ll never forget? This experience.

A water bottle in the sun

In case I forget, the heat of the sun reminds me to drink water all day long.

Did You Know?

The Gulf of Mexico is home to five species, or types, or sea turtles: Leatherback, Loggerhead, Green, Hawksbill, and Kemp’s Ridley.

Recommended Reading

Many of my students have never seen or experienced the ocean. To make the ocean more relevant and relatable to their environment, I recommend the picture book Skyfishing written by Gideon Sterer and illustrated by Poly Bernatene. A young girl’s grandfather moves to the city and notices there’s nowhere to fish. She and her grandfather imagine fishing from their high-rise apartment fire escape. The “fish” they catch are inspired by the vibrant ecosystem around them: the citizens and bustling activity in an urban environment. The catch of the day: “Flying Litterfish,” “Laundry Eels,” a “Constructionfish,” and many others, all inspired by the sights and sounds of the busy city around them.

The book could be used to make abstract, geographically far away concepts, such as coral ecosystems, more relatable for students in urban, suburban, and rural settings, or as a way for students in rural settings to learn more about urban communities. The young girl’s observations and imagination could spark a discussion about how prominent traits influence species’ common names, identification, and scientific naming conventions.

The cover of the book Skyfishing

Skyfishing written by Gideon Sterer and illustrated by Poly Bernatene (Abrams Books for Young Readers, 2017)

 

Heather O’Connell: Shore Party, Sumdum and Sawyer Glaciers, June 15, 2018

NOAA Teacher at Sea

Heather O’Connell

NOAA Ship Rainier

June 7 – 21, 2018

Mission: Hydrographic Survey

Geographic Area of Cruise: Seattle, Washington to Southeast, Alaska

Date: 6/15/18

Weather Data from the Bridge

Latitude and Longitude: 57°43.2’ N, 133 °35.7’ W, Sky Condition: Overcast , Visibility: 10+ nautical miles, Wind Speed: 2 knots, Sea Level Pressure: 1024.34 millibars, Sea Water Temperature: 7.2°C, Air Temperature: Dry bulb: 11.78°C, Wet bulb: 10.78°C

Science and Technology Log

Yesterday was my first small vessel operation where we took down a base station and set up a new system on an islet next to Harbor Island. We took RA-7, a skiff that used a crane to lift it off the flying bridge of the ship and into the water. This local satellite receiver allows for a reference point for data acquisition that occurs in Alaska, where the GPS system is not as dependable as the lower forty eight states. The positioning given from this high accuracy base station, called GNSS, will assist with nautical charts developed from the Tracy Arm project once time sonar data has been collected. Since the lower forty eight states have permanent base stations with this highly accurate positioning, there is no need to set up these stations.

GPS base station

Setting up a high-accuracy GPS base station

The base stations work by comparing the satellite positioning to a theoretical ellipsoid that was generated in Canada to standardize positioning. Before this, different areas would utilize various landmarks as the reference point and this inconsistency proved challenging when comparing data internationally or even across the states. So, geodesists, scientists who study geometric shape, positioning in space and gravitational field, generated a theoretical ellipsoid. This was created by rotating the shorter axis of an ellipse to mimic the shape of the Earth. Since the poles of the Earth are flat and the equator bulges, this ellipsoid is an accurate representation. This system gives all points on Earth a unique coordinate, similar to an address, and is extremely helpful in developing nautical charts. However, the limitations of this theoretical ellipsoid include its inability to take into account the actual shape of the Earth.

Setting up Base Station on Harbor Island

Setting up Base Station on Harbor Island

While being on the skiff and learning about theoretical positioning ellipsoids, I heard a lot of talk about RA-2, one of the shoreline launches on Rainier.  I learned that in addition to a single beam sonar, this vessel also has LIDAR. LIDAR, Light Detection and Ranging, can be used in bathymetric data acquisition and is currently used for shoreline data on Rainier. This remote sensing technology can survey up to seventy meters of depth in coastal waters by sending out a laser. LIDAR sends out light pulses and senses the time it takes for these lasers to return to the sensor, to gather data on different land structures. LIDAR gets cloud point data and dots make up the image of the ocean floor. From this, three dimensional maps can be generated. Since the light can penetrate a canopy just like the sun, this technology is used in South America to find hidden cities under tree lines. This technology can also be mounted on planes and is most likely the future direction of shoreline data acquisition. Lasers survey the land and they get the height of different landmasses and can be used for bathymetric data or topographic data.

Sources –

https://oceanservice.noaa.gov/education/kits/geodesy/geo03_figure.html

https://oceanservice.noaa.gov/facts/lidar.html

Personal Log

Tracy and Endicott Arms are part of two alpine, or tundra, ecosystem areas that ship Rainier will survey. Twenty percent of these areas are covered in glaciers and snow fields and are too cold to support trees. The coastal areas of Tracy and Endicott Arms are part of the Terror Wilderness, which is part of Tongas National Forest, the largest national coastal temperate rainforest. Observing my first glacier, Sumdum Glacier, off the coast of Harbor Island while we were at the inlet of Tracy and Endicott Arms, reminded me of a time much before humans existed.

Sumdum Glacier

Sumdum Glacier

Here, out of Holkham Bay, I experienced my first expedition in a skiff, RA-7, to remove a horizontal control base and help set up a new one.  Stepping foot on an actual landmass with all of the different living parts of an ecosystem was a treasure and it most certainly felt like a shore party, as the name suggests. I observed several calcium carbonate shells of urchins, amongst kelp, mussels, and barnacles. The shells transitioned into a forest with Devil’s Club, the only member of the ginseng family present in Alaska, with woody, prickly stems.  This shrub was growing under a Sitka Spruce forest with cone-bearing trees present among the steep rocks of granite. These trees can grow up to one hundred and seventy feet tall and can be as old as seven hundred and fifty years old in Southeast Alaska. After an exciting afternoon of a shore party, we safely returned to the ship and headed into Tracy’s Arm.

Proceeding into the Southern arm of Tracy’s Arm, I saw calves of the tidal glacier that we would soon see. The refrozen and pressurized snow became glacial ice and carved the valleys to form the deep inlets with massive granite slabs on either side of us. South Sawyer glacier was off to the East and the air seemed to get colder as we approached it. Even in the rain and weather, I couldn’t pull myself away from the incredible beauty of this inlet. After endless waterfalls, we approached Sawyer Glacier which was once big enough to cover all of Tracy’s Arm. This acted as a reminder of the Ice Age and its effect on geology.

Sawyer Glacier

Sawyer Glacier

During this journey through Tracy’s Arm, I saw two eagles perched on an iceberg and shortly afterwards three orca whales showing their dorsal fins and playing in the water. As XO informed me, orca whales are actually the largest species of dolphins and these carnivorous mammals can weigh up to six tons. These creatures use echolocation to communicate to their pods, and I wonder how the multi-beam sonar affects this form of communication.

Eagles on Iceberg

Eagles on Iceberg. Photo Credit: Jonathan Witmer

 

Sources  

Studebaker, Stacy. Wildflowers and Other Plant Life of the Kodiak Archipelago.

National Geographic Orcas

Did You Know?

When glacier ice melts, it is filled with air bubbles. As new layers of ice form on top of the old ice, the ice gets denser and the air bubbles get smaller. As the human eye detects the yellow and red light reflected from glacial ice, it appears a spectacular blue. Since snow is full or air bubbles, it reflects the entire spectrum of light and appears white.  

https://www.livescience.com/51019-why-is-antarctica-ice-blue.html

Kimberly Godfrey: Above all else, Safety First! June 5, 2018

NOAA Teacher at Sea

Kimberly Godfrey

Aboard NOAA Ship Reuben Lasker

May 31 – June 11, 2018

Mission: Rockfish Recruitment and Ecosystem Assessment Survey

Geographic Area of Cruise: Pacific Ocean along the California Coast

Date: June 5, 2018

Data from the Bridge

Latitude: 33º 42.135 N

Longitude: 119º 15.440 W

Sea Wave Height: 1-2 feet

Wind Direction: 125.98º (Southeasterly Winds)

Air Temperature: 17.35º C

Sky: Cloudy

Science and Technology Log

I arrived on NOAA Ship Reuben Lasker on Wednesday, May 31st. However, we just left the Port of San Francisco last night (June 2nd) because the ship had to make sure everything was running properly and pass multiple inspections. Safety is a serious thing out here, and I appreciate that very much. Once we had the green light, we sailed out of San Francisco Bay underneath the Golden Gate Bridge. The winds were about 25 knots (almost 29 mph) with 10 foot swells. Conditions like this are not ideal for data collection, so we sailed about 220 nautical miles to the South where conditions were more promising.  I spent my first night on the job acclimating to the evening schedule. In that time, I learned about some of the equipment and programs we use to collect and analyze our catches and samples.

The first thing that I noticed was a GPS system used to track the ship’s location and the locations for each trawl. The boat icon shows the location of the ship, and the dots indicate locations where we plan to survey. Those with a triangle inside are the trawling locations, while the others indicate spots where we need to perform CTD tests. This systems marks locations using latitude and longitude, and can provide an estimated time of arrival.

GPS

GPS Program used to plot survey points and map the location of the ship in real time.

The second program I learned about was NOAA’S Scientific Computer System (SCS). This system allows the ship to record a variety of environmental and positional data immediately into the computer. While some data is still recorded by hand, this system reduces human recording errors, in turn allowing for analyses that accurately represent the data collected.  I also had the opportunity to interview our Survey Technician, Jaclyn Mazzella. Jackie is one of the NOAA Crew members on board, but she is also one of the most important people that serves as a liaison for both the scientists and the crew.  Read the interview below:

What are the responsibilities of the Survey Technician?

The Survey Technician is responsible for data management. All the data collected on the ship is recorded in the Scientific Computer System Database. This includes data from the thermometers, anemometer (wind speed), TSG (thermosalinograph), fluorometer, etc. The data is organized and then delivered as a data package to the scientists. There are two major types of files, continuous files and snapshot files. A continuous file may include data that is taken every 30 seconds, like latitude and longitude, speed over ground, course over ground, etc. A snapshot file provides information about a very specific event. For example, their system records every single step in the trawling process, including the moment the net hits the water, “shooting the doors” that hold the net open, begin fishing, and then every step in the return of that process. While this is happening, all the environmental parameters are simultaneously and continuously being recorded. Jackie maintains these files until the end of a survey and then gives the data to the chief scientist in a document known as the MOA, or the Marine Operations Abstract. The information is also sent to the National Center for Environmental Information, the world’s largest active archive of environmental data. These archives are available to the public.

Continuous Files

This is the continuous system that records conditions in the water, such as conductivity, temperature, and more. This is done every 30 seconds.

Snap Shot

This component tracks each individual step of any activity we do on the ship during a survey.

Why did you apply to work for NOAA?

At first, I didn’t know what NOAA was. I originally wanted to study things like Marine Biology, Astronomy, and Physics. I was attending the Borough of Manhattan Community College as a liberal arts major. I planned to transfer to another school for Physics and Astronomy, but my counselor suggested another option, knowing my interest in Marine Science. I then went to SUNY Maritime in the Bronx to study Marine Environmental Science (State University of New York), a school I never knew existed considering I lived right down from the street from it. Upon graduation, I received an email from a former classmate also working for NOAA, stating that NOAA was seeking Maritime Majors for this position. She gave me a contact, I sent my resume, and I got the job.

What is the most important tool you need to do your job?

The SCS is the most important thing I need, and am fortunate that NOAA Ship Reuben Lasker has up-to-date, top-of-the-line equipment. We are one of the most technologically advanced ships in the world.  We also have back-ups for almost everything on board which is nice to have while at Sea.

What advice would you give to someone interested in pursuing this position as a career?

Being a Survey Technician requires you to have a degree in science. Be certain that if you apply for a position, be sure to know what you are applying for.  Much of my training was on the job training, and I was fortunate to work with Phil White, Chief Survey Technician with years of experience. I learned a lot from him. Phil also developed course for those wanting and needing to learn the ins and outs of a Survey Technician.

If you didn’t work for NOAA, what career would you choose?

Working in Astronomy or Physics because I had a strong interest in both. However, I would say that joining NOAA was one of the best decisions I ever made. I came from a rough background growing up, and now I get to experience things I never would have imagined. NOAA provides an acceptable salary, nice benefits, leave time, vacation time, and paid overtime. When I take leave, I travel to other countries. This is something I always wanted to do.

What are your hobbies?

I love trying new foods when we go in port. I love drawing, painting, and playing video games. And I love to travel. I’ve already been to Egypt, Qatar, Europe. In the next year for two occasions, I plant to travel to Italy, then [for my honeymoon] to Vietnam, Cambodia, Thailand, and the Maldives.

Analyzing data can be a daunting task. “R,” a coding language used for statistical computing and graphics, allows scientists to analyze their data in a variety of ways. The program can be used to perform statistical computations of large amounts of data to show underlying patterns and trends. It can also be used to create plots of specific sects of data if one wanted to highlight a location or time. Many scientists like this program because it is very user friendly, and if one needs help with a program (code), there is a free and open community of users available to provide advice and feedback.

Personal Log

When I arrived at the NOAA Ship Reuben Lasker, we expected to sail on May 31st. However, we were delayed in port for 2 extra days, officially leaving port on June 2nd. During the waiting period, I explored the piers along the Embarcadero. I had the chance to visit the Exploratorium, the Bay Aquarium, and the famous Pier 39. Pier 39 is where the Sea lions aggregate every day and, apparently, have been doing so for 28 years.

Sea lions

The Pier 39 Sea Lions

Coit Tower

Coit Tower

I hiked up the stairs to Coit Tower, a historic landmark built in 1933 (Lillian Hitchcock Coit, a rich socialite, bequeathed over $100,000 back in 1929 to restore and beautify sections of San Francisco). Hey WINS girls, remember how we climb the steps coming out of Tumbling Waters, and how you felt like you were going to die before you reached the top…I almost died twice climbing those stairs! By the second time it was easier.

When on the ship, I would read or sit out on deck and watch the pelicans, gulls, cormorants, terns, and common murres. I also got to do a little bird watching heading to Coit Tower, where I saw lots of Anna’s humming birds, chestnut-backed chickadees, and song sparrows. It was interesting because I don’t recognize the calls of west coast birds. Even the song sparrow, which are also common Philadelphia, have a variation in their song, like an accent or a dialect.

As of June 2nd, we have been out to sea. I’ve been assigned to night shift, which means I will be working a lot on sorting the overnight hauls (Stay tuned for the next blog). However, the weather leaving the bay on the first night was rough, so we sailed south to find calmer waters. I didn’t mind so much because as soon as we passed the Golden Gate Bridge, I got to see something I wanted to see my whole life, humpback whales! It was worth the wait.

 

 

Sam Northern: 3… 2… 1… Deploy the Drifting Buoy!, June 5, 2017

NOAA Teacher at Sea

Sam Northern

Aboard NOAA ship Gordon Gunter

May 28 – June 7, 2017

 Mission: Spring Ecosystem Monitoring (EcoMon) Survey (Plankton and Hydrographic Data)

Geographic Area of Cruise: Atlantic Ocean

Date: June 5, 2017

Weather Data from the Bridge:

Latitude: 42°22.4’N

Longitude: -70°38.2W

Sky: Foggy

Visibility: ≥ 1 Nautical Mile

Wind Direction: 090°E

Wind Speed: 20 Knots

Sea Wave Height: 2-4 Feet

Barometric Pressure: 1008.3 Millibars

Sea Water Temperature: 13.3°C

Air Temperature: 12.1°C

Science and Technology Log

Drifting Buoy

IMG_6642.JPG

Seconds away from deploying the drifting buoy.

3… 2… 1… deploy the drifting buoy! The NOAA Office of Climate Observation established the Adopt a Drifter Program in 2004 for K-16 teachers. The program’s mission is “to establish scientific partnerships between schools around the world and engage students in activities and communication about ocean climate science.” By adopting a drifter I am provided the unique opportunity of infusing ocean observing system data into my library media curriculum. A drifter, or drifting buoy, is a floating ocean buoy that collects data on the ocean’s surface. They tend to last approximately 400 days in the water. Drifters allow scientists to track ocean currents, changes in temperature, salinity, and other important components of the ocean’s surface as they float freely and transmit information.

IMG_9223

Decorating the drifter with stickers.

The buoy is equipped with a thermistor, a drogue and a transmitter so that it can send out daily surface water temperatures and its position to an Argos satellite while it is being moved by surface currents pulling on the drogue. Soon I will receive the WMO number of my drifting buoy to access data online from the drifter. My students and I will receive a drifter tracking chart to plot the coordinates of the drifter as it moves freely in the surface ocean currents. Students will be able to make connections between the data accessed online and other maps showing currents, winds, and surface conditions.

 

How to Deploy a Drifter:

IMG_9349

  1. Remove the plastic covering (shrink-wrapped) from the buoy on the ship.
  2. Record the five-digit ID number of the drifter inscribed on the surface float.
  3. A magnet is then removed from the buoy, which starts a transmitter (located in the upper dome) to allow data from the buoy to be sent to a satellite and then to a ground-based station so we can retrieve the data.
  4. Throw the unpacked drifter from the lowest possible deck of the ship into the sea. The tether (cable) and drogue (long tail that is 15 meters long) will unwrap and extend below the sea surface where it will allow the drifter to float and move in the ocean currents.
  5. Record the date, time, and location of the deployment as well as the five-digit ID.

GoPro footage of the drifter’s deployment

My drifter buoy was launched at 8:01 PM (20:01) on June 3rd, 2017. Its official position is 43 degrees 32.9 minutes North, 067 degrees 40.5 minutes West.

Buoy Trajectory.png

This image shows where we deployed the buoy in the Gulf of Maine. The red and blue symbols are the buoy’s trajectory, confirming that the drifter is being tracked via satellite in real-time.

 

IMG_6640

Chief Scientist, David Richardson and I on the ship’s stern ready to deploy the drifter.

The WMO # associated with my drifter is 44907. To track the buoy and view data, please visit the GDP Drifter Data Assembly Center website. There, you will find instructions on how to access data via the NOAA Observing System Monitoring Center (OSMC) webpage or Quality Control Tools Buoy Location and Trajectory website.  My students will have full access to our drifting buoy data (e.g., latitude/longitude coordinates, time, date) in near real-time for their adopted drifting buoy as well as all drifting buoys deployed as part of the Global Drifter Program. Students can access, retrieve, and plot various subsets of data as a time series for specified time periods for any drifting buoy and track and map their adopted drifting buoy for short and long time periods (e.g., one day, one month, one year). My students are going to be thrilled when learn they get to be active participants in NOAA’s oceanography research.

drifter_annimation

Drifter Diagram [Source — NOAA/AOML/PhOD]

 

Below is a 2-minute video from NOAA’s National Ocean Service to learn more about drifting buoys. 

Deploying my drifting buoy in 360-degress

Nautical Navigation

IMG_9080

NOAA Ship Gordon Gunter’s Navigational Bridge

Understanding where you are on the grid is essential when navigating a ship of any size. NOAA Ship Gordon Gunter houses a major operation with 30 personnel on board. The safety of each individual is a primary concern for Commanding Officer, Lindsay Kurelja. She knows all there it is to know about navigating a marine vessel. Early mariners heavily relied on the stars and landmarks to determine their position in the sea. While celestial and terrestrial navigation techniques are still effective and used often by contemporary sailors, modern ships have GPS. GPS stands for Global Positioning System, and it lets us know where we are and where we are going anywhere on Earth. GPS is quickly becoming an integrative part of our society. It is a worldwide radio-navigation system formed from a constellation of 24 satellites and their ground stations.

IMG_6618

GPS Receiver in the Navigational Bridge

Commanding Officer Kurelja and her crew use a GPS receiver to chart Gordon Gunter’s position in the ocean. The ship receives signals from 10 satellites that are in lower orbit. Once the ship’s receiver calculates its distance from four or more satellites, it knows exactly where we are.

IMG_9075

Nautical Chat

Within seconds, from thousands of miles up in space, our location can be determined with incredible precision, often within a few yards of your actual location. [Source — NOAA] The satellites’ signals give NOAA officers the ship’s positioning. Then, using a nautical chart of the area in which we are cruising, the Navigation bridge team plots the latitude position and the longitude position to determine the ship’s exact location.

 

Ship’s Internet

IMG_9693.JPGSince my expedition began you might have wondered, “How is he even sending these blog posts from so far out at sea?” That is a legitimate question. One I had been asking myself. So, I went to Tony VanCampen, Gordon Gunter’s Chief Electronics Technician for the answer. You may have guessed it; the answer has something to do with Earth’s satellites. Providing internet on ships is different than on land because, well, there is no land. We are surrounded by water; there are no towers or cables.

IMG_6600

Gordon Gunter’s Satellite Antenna

On the deck of the ship is a fixed installation antenna that provides broadband capability. It looks like a mini water tower. The antenna sends signals about the ship’s positioning to a geostationary satellite. A geostationary satellite is placed directly over the equator and revolves in the same direction the earth rotates (west to east). The ship’s computers use the connection made between the antenna and the satellite to transfer data which the satellite in turn sends to a ground site in Holmdel, New Jersey. The site in New Jersey connects the ship to the Internet.

IMG_8525

Electronics Technician, Tony VanCampen

Chief Electronics Technician, Tony VanCampen not only understands, installs, maintains, and repairs all the technology on board Gordon Gunter, he is an expert on all things nautical. Tony has been an asset to my Teacher at Sea experience. He takes the time to not only explain how equipment works, but he shows me where things are and then demonstrates their capabilities. Aboard Gordon Gunter, Tony runs all of the mission electronics, navigational electronics, and the Global Maritime Distress and Safety System. Tony has been working at sea since 1986 when he joined the NAVY and reported on board the USS Berkeley. He took a short break from work at sea when he became a physical security specialist for the NAVY at a weapons station. Tony has held several roles in the NAVY and with NOAA, all have given him a wealth of knowledge about ship operations. He is dedicated to the needs of the crew, scientists, and as of late, one Teacher at Sea. I owe Tony a debt of gratitude for his assistance and kindness.

Personal Log

Out to Sea (Saturday, June 3)

IMG_9132

Bongo Nets Plankton Sampling

As I entered the dry lab this morning to report for duty, there was a lot of exciting chatter going on. I presumed a whale had been seen nearby or an unusual fish was caught in one of the bongo nets. While either of these situations would generate excitement, the lab’s enthusiasm was on the drifting buoy that was to be deployed today. I love how the scientists and volunteers get overwhelmed with joy for all things “science”. I had strong feelings after learning the news, as well. My emotions steered more toward worry than elation because I was the one to deploy the buoy! What if I deployed the drifting buoy incorrectly? What if it gets sucked under the ship? What if a whale eats it? Questions like these kept running through my mind all afternoon. Luckily, time spent rinsing bongo nets and preserving plankton samples kept my mind off the matter. But a voice in the back of my brain kept repeating, “What if…”

IMG_6631

My drifting buoy

I finally laid my worries to rest. At sunset I deployed the drifting buoy without incident! The entire event was extremely special. My buoy is now floating atop the waves of the Gulf of Maine and soon to other parts of the sea. Yes, it will be all alone on the surface, but underneath and above will be a plethora of wildlife. Even when no one is there to witness it, ocean life carries on. For my students and me, we do not have to be with the drifting buoy physically to experience its journey. The transmitting equipment will give us the opportunity to go on the same adventure as the buoy while learning new things along the way.

A New Week (Sunday, June 4)

IMG_6696It has been one week, seven days since I first arrived on board NOAA Ship Gordon Gunter. Like the virga (an observable streak of precipitation falling from a cloud but evaporates or before reaching the surface) we experienced this morning, my time aboard the ship is fleeting, too. As the days dwindle until we disembark, I find myself attempting to soak in as much of the experience as I can. Suddenly, I am looking at the horizon a little longer; I pay closer attention to the sounds made by the ship; and I pause to think about how each sample will tell us more about the Earth’s mysterious oceans. Yes, a week has passed, but now it is the first day of a new week. With two days and a “wakeup” remaining, I intend to embrace each moment to its fullest.

Just Another Manic Monday (Monday, June 5)

IMG_9728No matter the day or time, NOAA Ship Gordon Gunter runs like clockwork. Today, however, the ship seemed to be buzzing with a different kind of energy. NOAA Corps Officers and the crew have been moving around the ship with an ever greater sense of purpose. Believe me, there is never an idle hand aboard Gordon Gunter. One major factor that heavily influences the ship’s operations is the weather. The National Weather Service has issued a gale warning for the Gulf of Maine. Gale warnings mean maritime locations are expected to experience winds of Gale Force on the Beaufort scale.

Position Map June 5

Gordon Gunter’s position at mid-morning of June 5th

Tonight’s weather forecast are winds reaching 20-30 Knots with seas building to 4 to 6 feet. Tuesday’s forecast is even grimmer: winds between 25-35 Knots and waves reaching 7-12 feet. [Source — National Weather Service] Even though the weather forecast is ominous, I fear not! Having witnessed the professionalism and expertise of every crew member on board the ship, I have full confidence in Gordon Gunter.

IMG_9750.JPG

Cape Cod Canal

Chief Scientist and the Commanding Officer adjusted our course due to the imminent weather. We passed through the Cape Cod Canal, an artificial waterway in the state of Massachusetts connecting Cape Cod Bay in the north to Buzzards Bay in the south. The canal is used extensively by recreational and commercial vessels and people often just sit and watch ships and boats transiting the waterway. It was indeed a joyous occasion seeing land on the starboard and port sides of the ship. The passage provided many more sites to see compared to the open ocean. I thoroughly enjoyed the cruise through the Cape Cod Canal, but inside me was the desire to one day return to the deep, blue sea.

Animals Seen

IMG_6483As you can tell, this blog post’s theme revolves around positioning and tracking. So, I decided to ask the seabird and marine mammal observers about the technology and methods they use to identify the positioning of animals out on the open ocean. Our wildlife observers, Glen and Nicholas, have a military-grade cased computer they keep with them on the flying bridge while looking for signs of birds and whales. The GPS keeps track of the ship’s position every five minutes so that a log of their course exists for reference later. When Glen or Nicholas identify a bird or marine mammal, they enter the data into the computer system which records the time and their exact GPS position. To know how many meters out an animal is, observers use a range finder.

IMG_9176

Range Finder

This pencil has been carefully designed according to their location above sea level which is 13.7 meters from the ship’s flying bridge where the observers keep a sharp lookout. The observers place the top of the pencil on the horizon to get accurate distances. If the bird falls between each carved line on the pencil, they know approximately how many meters away the animal is. Wildlife observers’ rule of thumb for tracking animals is called a strip transect. Strip transects are where observers define a strip of a certain width, and count all creatures within that strip. Glen and Nicholas input data on any animal they see that is within 300 meters of the ship. Providing as much information as possible about the positioning of each observed living thing helps researchers understand what is happening and where.

New Terms/Phrases

[Source — Marine Insight]

  • RADAR (RAdio Detection And Ranging): It is used to determine the distance and direction of the ship from land, other ships, or any floating object out at sea.
  • Gyro Compass: It is used for finding true direction. It is used to find correct North Position, which is also the earth’s rotational axis.
  • Auto Pilot: It is a combination of hydraulic, mechanical, and electrical system and is used to control the ship’s steering system from a remote location (Navigation Bridge).
  • Echo Sounder: This instrument is used to measure the depth of the water below the ship’s bottom using sound waves.
  • Speed & Distance Log Device: The device is used to measure the speed and the distance traveled by a ship from a set point.
  • Automatic Radar Plotting Aid: The radar displays the position of the ships in the vicinity and selects the course for the vessel by avoiding any kind of collision.
  • GPS Receiver: A Global Positioning System (GPS) receiver is a display system used to show the ship’s location with the help of Global positioning satellite in the earth’s orbit.
  • Record of Navigation Activities: All the navigational activities must be recorded and kept on board for ready reference. This is a mandatory and the most important log book.

Did You Know?

GPS satellites fly in medium Earth orbit at an altitude of approximately 12,550 miles. Each satellite circles the Earth twice a day. The satellites in the GPS constellation are arranged so that users can view at least four satellites from virtually any point on the planet. [Source — NOAA]

gps

GPS Block IIR(M) Satellite [Source — NOAA]

 

Denise Harrington: The Best Day Ever, April 30, 2014

NOAA Teacher at Sea
Denise Harrington
Aboard NOAA Ship Rainier
April 20 – May 3, 2014

Mission: Hydrographic Survey

Geographical Area of Cruise: North Coast Kodiak Island

Date:  April 30, 2014, 11:44 a.m.

Location: 58 03.175’ N  127o 153.27.44’ W

Weather from the Bridge: 6.3C (dry bulb), Wind 5 knots @ 250o, clear, 1-2′ swell.

Our current location and weather can also be seen at NOAA Shiptracker: http://shiptracker.noaa.gov/Home/Map

Science and Technology Log

The last couple of days have been the best ever: beautiful weather, hard work, deep science. We acquired data along the continental shelf and found a cool sea floor canyon and then set benchmarks and tidal gauges.

In hydrography, we gather data in seven steps, by determining: our position on Earth, depth of water, sound speed, tides, attitude (what the boat is doing), imagery and features.  Step 1 is to determine where we are.

In this picture you can see a GOES satellite antenna and a GPS antenna that helps us determine our precise location.

In this picture you can see a GOES satellite antenna (square white one) that is used to transmit tide data ashore and a GPS antenna (the small white eggs shaped one) that provides the tide gauge with both position and UTC time. Photo by Barry Jackson

In this picture  Brandy Geiger, Senior Survey Technician, uses the GOES from various locations to determine the exact location of the tide gauge.

In this picture Brandy Geiger, Senior Survey Technician, uses GPS to record the positions of the benchmarks we have just set for the tide gauge. Photo by Barry Jackson

tide gauge install 023

Where we are happens to be the most beautiful place on earth. Photo by Barry Jackson

 

In Step 2, we determine the depth of the water below us.

Bathymetry is a cool word that means the study of how deep the water is.  Think “bath” water and metry “measure.”  When your mom tells you to get out of the tub, tell her to wait because you’re doing bathymetry.

As I explained in my first blog, we measure depth by sending out a swath of sound, or “pings,” and count how long it takes for the pings to return to the sonar, which sits beneath the ship or smaller boat.

Yesterday we used the multi-beam sonar to scan the sea floor.  Here is a screen shot of the data we collected.  It looks like a deep canyon, because it is!

Here is the image of the trench Starla Robinson, a Senior Survey Technician, and I discovered.  We decided it should be named Denla Canyon, after us.

Here is the image of the sea floor canyon Starla Robinson, a Senior Survey Technician, and I discovered. We decided it should be named Denla Canyon, after the two scientists who discovered it.

Here I am, gathering pings.

Here I am talking with "the bridge,"  the team responsible for navigating the ship while surveyors collect data.

While collecting data, I kept in contact with “the bridge,” the team responsible for navigating the ship, by radio to ensure the ship’s safety and maximum, quality data acquisition.     Photo by Starla Robinson

 

Step 3, we take into consideration the tide’s effect on the depth of the water.  Tides are one predictable influence on water depth. There are over 38 factors or “constituents” that influence the tides.  The gravitational pull of the sun and the moon at various times of the day, the tilt of the earth, the topography, and many other factors cause water to predictably bulge in different places on earth at different times. The Rainier crew works 24 hours a day and 7 days a week, so they must find a way to measure depth throughout the days and month, by taking into account the tide. Arthur Doodson, who was profoundly deaf, invented the Doodson Numbers a system taking into account the factors influencing tide in 1921. Flash forward to the 21st century, our Commanding Officer, Commander Rick Brennan worked with a team of NOAA scientists to develop a software program called TCARI, as an alternate method to do tide adjustments, taking into account 38 factors, even the moon’s wobble. Inventions abound at NOAA.

The Rainier crew worked for 14 hours today to set up a tide gauge station, an in depth study of how the tide affects our survey area.  On this map, there is a Red X for each tide gauge we will install.  This process only happens at the beginning of the season, and I feel fortunate to have been here–the work we did was….amazing.

 

Each Red X is approximately where a tide gauge will be installed.  The one we installed today in Diver's Bay is in the north west corner of the sheet map.

Each Red X is approximately where a tide gauge will be installed. The one we installed today in Driver Bay is in the north west corner of the sheet map.

You can see an animation here that shows the combined effect of two sine waves that produce a signal like our tide data.  Just imagine what it looks like when you factor in 38 different variables.

The earth goes around the sun in 24 hours and moon goes around the earth in a little more than 12 hours, much like these two gray sine waves. Interestingly, when you add two different waves, you get the wonky blue sine wave, with ups and downs. This combined effect of the sun and the moon (two dots) causes the ups and downs of the tide (blue wave). Graph taken from Russell, D. Acoustics and Vibration Animation, PSU, http://www.acs.psu.edu/drussell/demos/superposition/superposition.html.

 

Low tide is the best time to see sea stars, mussels and barnacles, but it is also a more hazardous time in the tidal cycle for mariners to travel. Therefore, navigational charts use the mean lower low water level, low tide, for the soundings, or depth measurements on a chart.  The black numbers seen on a nautical chart, or soundings, represent depth measurements relative to mean lower low tide. Driver Bay, the area on the chart where we installed the tide gauge today, is the crescent shaped bay at the northwest end of Raspberry Island.

This is a nautical chart used to help mariners navigate safely.

This is a nautical chart used to help mariners navigate safely.

Installing Tide Gauge Stations

Before gathering sonar data, ground and boat crews install a tide gauge to measure changes in water level and to determine the mean lower low water level datum. A tide gauge is a neat device that has air pumped into it, and uses air pressure, to determine how deep the water is.   The tide gauge uses a formula of (density of sea water)(gravity)(height) = pressure.  The gauge measures pressure, and we apply factors for gravity and sea water.  The only missing factor is height, which is what we learn as the gauge collects data.  This formula and nuances for particular locations is a fascinating topic for a blog or master’s thesis.  Scientists are looking for tidal fluctuations and other location specific variances. Then, by computer they determine the mean lower low tide depth, factoring in the tidal fluctuations.

There are permanent tide gauge stations all over the world.  The nearest permanent tide gauge station to our study area is in Kodiak and Seldovia.  These permanent gauges take into account many factors that affect tides over a 19 year period of time, not just the gravitational pull of the moon.

The tide gauge stays in place for at least 28 days (one full tidal cycle).  During the month, data of the tides is collected and can be compared to the other tide gauges we install.

Installing the Tide Gauges and Benchmarks

Excitement built as the crew prepared for the “Tide Party,” packing suitcases full of gear and readying the launches.  Installing Tide Gauges signals the beginning of the season and is one of the few times crew gets paid to go on shore.

 

Why Bench Mark?

There are three reasons I have figured out after many discussions with patient NOAA crew as to why we put in bench marks.

 

I installed this benchmark by having a hole drilled in bedrock and affixing the benchmark with concrete if anyone ever returns and needs to know their exact location.

I installed this benchmark in Driver Cove by having a hole drilled in bedrock and affixing the benchmark with concrete if anyone ever returns and needs to know their exact location. Photo by Barry Jackson

The first reason we install benchmarks is to provide a reference framework to ensure both our tide staff and the tide gauge orifice are stable and not moving relative to land.  The second reason is if we ever come back here again to gather or compare data to previous years, we will know the elevation of the tidal datum at this location relative to these benchmarks and can easily install a new tide gauge.  The third reason is that the earth and ocean floor changes constantly.  As scientists, we need to make sure the survey area is “geologically stable.”  We acquire several hours of GPS measurements on the primary benchmark to measure both its horizontal and vertical position relative to the earth’s  reference frame.  Should there ever be an earthquake here, we can come back afterwards and measure that benchmark again and see how much the position of the Earth’s crust has changed.  After the last big earthquake in Alaska, benchmarks were found to move in excess of a meter in some locations!

Teacher on Land Polishing Her Benchmark Photo by Brandy Geiger

Teacher on Land
Polishing Her Benchmark
Photo by Brandy Geiger

Installing the Benchmark

Today, our beach party broke into two groups.  We located stable places, at about 200 foot intervals along the coastline.  We drilled 5 holes on land and filled them with concrete.  A benchmark is a permanent marker you may have seen at landmarks such as a mountain peak or jetty that will remain in place for 100 years or more.  We stamped the benchmark by hand with a hammer and letter stamps with our station identification.   If we chose a good stable spot, the benchmark should remain in the same location as it is now.

Tide Gauge

As one group sets up benchmarks, another group installed the tide gauge.

 

Here, Chief Jim Jacobson, Lead Survey Technician, sets up a staff, or meter stick, I used to measure the change in water depth and others used for leveling.

Here, Chief Jim Jacobson, Lead Survey Technician, sets up a staff, or meter stick, I used to measure the change in water depth and others used for leveling.  Photo by Barry Jackson

To install the tide gauge, you must have at least three approved divers who install the sensor in deep water so that it is always covered by water.  Because there were only two crew on board trained to dive, Lieutenant Bart Buesseler, who is a dive master, was called in to assist the team.   The dive team secured a sensor below the water.  The sensor measures the water depth with an air pressure valve for at least 28 days.  During this time there is a pump on shore that keeps the tube to the orifice pressurized and a pressure sensor in the gauge that records the pressure. The pressure is equal to the number of feet of sea water vertically above the gauge’s orifice. An on-board data logger records this data and will transmit the data to shore through a satellite antenna.

Divers install the tide gauge, and spent most of the day in the cold Alaska waters.  Good thing they were wearing dive suits!  Photo by Barry Jackson

Divers install the tide gauge, and spent most of the day in the cold Alaska waters. Good thing they were wearing dive suits! Photo by Barry Jackson

Leveling Run

After the gauge and benchmarks are in place, a group does a leveling run to measure the benchmark’s height relative to the staff or meter stick.  One person reads the height difference between 5 different benchmarks and the gauge. Then they go back and measure the height difference a second time to “close” the deal.  They will do the same measurements again at the end of the survey in the fall to make sure the survey area has not changed geographically more than ½ a millimeter in height!  Putting the bubble in the middle of the circle and holding it steady, leveling, was a highlight of my day.

Observation

Finally, a person–me– watches the staff (big meter stick above the sensor) and takes measurements of the water level with their eyes every six minutes for three hours.  Meanwhile, the sensor, secured at the orifice to the ocean floor by divers, is also measuring the water level by pressure. The difference between these two numbers is used to determine how far below the water’s surface the orifice has been installed and to relate that distance to the benchmarks we have just leveled to.  If the numbers are consistent, then we know we have reliable measurements.  I won’t find out if they match until tomorrow, but hope they do.  If they don’t match, I’ll have to go back to Driver Bay and try again.

As we finished up the observations, we had a very exciting sunset exit from Raspberry Island.  I was sad to leave such a beautiful place, but glad to have the memories.

Last minute update: word just came back from my supervisor, Ensign J.C. Clark, that my tidal data matches the gauge’s tidal data, which he says is “proof of my awesomeness.” Anyone who can swim with a car battery in tow is pretty awesome in my book too.

The data Starla Robinson and I collected is represented by the red line and the data the gauge collected is represented by the blue line.  The exact measurements we collected are on the table.

The data Starla Robinson and I collected is represented by the red line and the data the gauge collected is represented by the blue line. The exact measurements we collected are on the table.

Spotlight on a Scientist

Lieutenant Bart Buesseler came to us straight from his family home in the Netherlands, and before that from his research vessel, Bay Hydro II.  The main reason our CO asked him to leave his crew in Chesapeake Bay, Maryland, and join us on the Rainier is because he is a dive master, capable of installing our sensors under water, and gifted at training junior officers.

 

Lieutenant Beusseler knows he needs to be particularly nice to  Floyd Pounds, an amazing cook from the south who cooks food from every corner of our ocean planet.

Lieutenant Beusseler knows he needs to be particularly nice to the amazing chefs aboard Rainier, including Floyd Pounds, who cooks food from every corner of our ocean planet with a hint of a southern accent.

During his few years of service, LTJG Buesseler adventured through the Panama Canal, along both coasts of North America, and has done everything from repairing gear to navigating the largest and smallest of NOAA vessels through very narrow straits.  He loves the variety: “if I get tired of one task, I rotate on to another to keep engaged and keep my mind sharp.”  He explains that on a ship, each person is trained to do most tasks.  For example, he says, “during our fast rescue boat training today, Cal led several rotations. But what if he is gone? Everyone needs to be ready to help in a rescue.”  Bart says at NOAA people educate each other, regardless of their assignments, “cultivating information” among themselves. Everyone is skilled at everything aboard Rainier.
In the end, he says that all the things the crew does are with an end goal of making a chart.   His motto? Do what you love to do and that is what he’s doing.

Personal Log

Today was a special day for me for many reasons.  It is majestic here: the stark Alaskan peninsula white against the changing color of the sky, Raspberry Island with its brown, golden, crimson and forest green vegetation, waterfalls and rocky outcroppings.  I’m seeing whales, Puffins, Harlequin Ducks and got up close with the biggest red fox ever.  Most importantly, I felt useful and simultaneously centered myself by doing tide observations, leveling and hiking.  I almost dove through the surf to make it “home” to the ship just in time for a hot shower. Lieutenant Buesseler’s reference to “cultivating information” rings very true to me.  In writing these blogs, there is virtually nothing I came up with independently.  All that I have written is a product of the patient instruction of Rainier crew, especially Commander Brennan. Each day I feel more like I am a member of the NOAA crew here in Alaska.

 

Susy Ellison, A Hydrographic Wonderland, September 13, 2013

NOAA Teacher at Sea
Susy Ellison
Aboard NOAA Ship Rainier
September 9-26, 2013

Mission:  Hydrographic Survey
Geographic Area: South Alaska Peninsula and Shumagin Islands
Date:  September 13, 2013

Weather:  current conditions from the bridge
You can also go to NOAA’s Shiptracker (http://shiptracker.noaa.gov/) to see where we are and what weather conditions we are experiencing
GPS Reading:  55o 15.037’ N  162o 38.025’ W
Temp: 10.44C
Wind Speed: 9.8 kts
Barometer: 1021.21 mb
Visibility:  foggy on shore

Science and Technology Log

Since leaving Kodiak 5 days ago, I have been immersed in a hydrographic wonderland.  Here’s what I’ve learned, summed up in two words (three, if you count the contraction); it’s complicated.  Think about it.  If I asked you to make a map of the surface of your desk you could, with a little bit of work and a meter stick, make a reasonably accurate representational diagram or map of that surface that would include the flat surface, as well as outlines of each item on the surface and their heights relative to that surface, as well as their location relative to each other on a horizontal plane.  You might want to get fancy and add notes about the type of surface (is it wood, metal, or some sort of plastic), any small irregularities in that surface (are there some holes or deep scratches—how big and how deep?), and information about the types of objects on the desk top (are they soft and squishy, do they change location?).  Now, visualize making this same map if your desktop was underwater and you were unable to actually see it.   Not only that, the depth of the water over your desktop can change 2 times each day.  If that isn’t complicated enough, visualize that the top of the water column over your desk is in constant motion.  OK, not only all those variables, but pretend you are transformed into a very teeny person in a small, floating object on that uncertain water over the top of your desk trying to figure out how to ‘see’ that desktop that you can’t actually see with your own eyes?  Welcome to the world of the hydrographer; the challenge of mapping the seafloor without actually touching it.  It is, indeed, a complex meld of science, technology, engineering, and math (STEM, in educational parlance), as well as a bit of magic (in my mind).

How do you know what's down there?

How do you know what’s down there?

Challenge number one—how do you measure something you can’t see or touch with your own hands?  Long ago, sailors solved that obstacle by using a lead line; literally, a line with a lead weight attached to the end.  They would drop the weighted line over the side of their ship to measure the depth.  These soundings would be repeated to get enough data to provide a view of the bottom.  This information was added to their maps along with estimates of the horizontal aspects (shoreline features and distance from the shoreline) to create reasonably good charts that kept them off most of the underwater obstacles. A simple solution to a complex problem.  No electricity required, no advanced degrees in computer science needed, no calculus-based physics necessary.  Fast- forward to 2013 and the world of complex calculations made possible by a variety of computer-based algorithmic calculations (i.e. some darn fancy computing power that does the math for you). The NOAA Ship Rainier’s hydrographers use sound as their lead line, traveling in small boats known as launches that are equipped with multibeam sonar that send a series of sound ‘pings’ to the ocean floor and measures the time between sending and receiving the ping back after its trip to the bottom.  Sounds simple enough, doesn’t it?  If it were all that simple I wouldn’t be typing this in a room on the Rainier filled with 20 computer monitors, 10 hard drives, and all sorts of other humming and whirring electronic devices.  Not only that, each launch is equipped with its own impressive array of computer hardware.

One of the launches is lowered from the ship.

One of the launches is lowered from the ship.

So far on our survey days 2 launches have been sent out to cover identified transects.  Their onboard crew includes a coxswain (boat driver), as well as 2-3 survey technicians and assistants. Each launch is assigned a polygon to survey for the day.

EVERY PING YOU TAKE…

Once they arrive at their assigned area, it’s time to ‘mow the lawn’—traverse back and forth systematically collecting data from one edge of your assigned polygon to the other until the entire area has been surveyed. Just in case you haven’t realized it yet, although that sounds pretty straightforward, it isn’t. Is the area shallow or deep?  Depth affects how much area each traverse can cover; the sonar spreads out as it goes downward sending it’s little pings scampering to the ocean floor. Visualize an inverted ‘V’ of pings racing away from the sonar towards the sea floor. If it’s deep, the pings travel further before being bounced back upwards.  This means that the width of each row the sonar cuts as it “mows the lawn” is wider in deeper water, and narrower in shallow.  Shallower areas require more passes with the launch, since each pass covers a more limited area than it might if the water were deeper.  As the launch motors back and forth ‘mowing the lawn’, the sonar  signature is recorded and displayed on monitors in the cabin area and in front of the driver.  Ideally, each lap overlaps the previous one by 25-50%, so that good coverage is ensured.  This requires a steady hand and expert driving skills as you motor along either over or parallel to ocean swells.  All you video gamers out there, take note–add boat driving to the repertoire of skills you might need if you want to find a job that incorporates video gaming with science!

sonar screen

One of the monitors displays the sonar. The green line is the seafloor. This image shows that the deeper the sea, the wider the swath that is covered with each pass of the launch.

Calvin Burch uses a computer monitor to guide him as he drives the launch.  It's an art to 'mow' in straight lines while anticipating every roll and bounce of the coean's surface.

Calvin Burch uses a computer monitor to guide him as he drives the launch. It’s an art to ‘mow’ in straight lines while anticipating every roll and bounce of the ocean’s surface.

Here’s a small list of some of the variables that need to be considered when using sonar to calculate depth; the chemistry of the water column through which you are measuring, the variability of the water column’s depth at specific times of day, the general depth (is it shallow or deep), and the movement of the measuring device itself.  So many variables!!

Starla Robinson and Randy Shingeldecker monitor our progress on the launch's computer monitors.

Starla Robinson and Randy Shingledecker set up the program that will enable them to monitor our progress

HOW FAST DOES SOUND TRAVEL?

When you’re basing your charts on how sound travels through the water column, you need to look at the specific characteristics of that water.  In a ‘perfect world’, sound travels at 1500m/second through water.  In our real world, that speed is affected by salinity (the concentration of salts), temperature, and depth (water pressure).  The survey crew uses a CTD meter to measure Conductivity, Temperature, and Depth.  The CTD meter is deployed multiple times during the day to obtain data on these parameters.  It is attached to a line on the rear of the launch, dropped into the water just below the surface for 2 minutes, and then lowered to near the ocean floor to collect data.  After retrieval, it’s hooked to the computer on the launch to download the data that was collected.  That data is stored in its own file to use when the data is reviewed in the evening back on board the Rainier.  This is one of the variables that will be applied to the sonar data file—how fast was the sound moving through the water?  Without this information to provide a baseline the sonar data would not be accurate.

ctd deploy 1

Randy Shingledecker gets ready to send the CTD over the side. It’s clipped into a stout line and a reel for lowering it.

ctd retrieval 1

The CTD is lowered to just above the seafloor to collect data on Conductivity, Temperature, and Depth. This data will be applied to our sonar data to obtain an accurate sound speed for this area.


 

 

 

ROCKING AND ROLLING…

When you’re out on the ocean in a boat, the most obvious variable is the instability of the surface, itself.  This is called ‘attitude’.  Attitude includes changes to the boat’s orientation fore and aft (pitch), side-to-side (roll), and up and down (heave) as it is gently, and not-so-gently rocked by ocean swells and waves.  This means that the sonar is not always where you think it is in relation to the seafloor.  This is like trying to accurately measure the height of something while you, the measurer, are on a surface that is constantly moving in 3 different directions. Good luck.  Luckily for this crew of hydrographers, each boat is equipped with a little yellow box whose technical name is the IMU (inertial measurement unit) that I call the heave-o-meter, as we bob up and down on this might ocean.  This little box contains 3 gyroscopic sensors that record all those forward and backward pitches, sideways rolls, as well as the bobbing up and down motions that the boat does while the sonar is pinging away.  This information is recorded in the launch’s computer system and is applied to the sonar data during analysis back at the Rainier.

This yellow box is the IMU.  It's internal gyros capture information about the boat's pitch, roll, and heave.

This yellow box is the IMU. It’s internal gyros capture information about the boat’s pitch, roll, and heave.

TIME AND TIDE…

Now that you’ve gotten your launch to the correct polygon (using GPS data to pinpoint your location), taken CTD readings to create a sound transmission profile for your transect area, and started up the heave-o-meter to account for rocking and rolling on the high seas, it’s time to start collecting data.  Wait—there’s still another variable to think about, one that changes twice daily and affects the height of the water column.  You also have to factor in changes in the depth of the water due to tidal changes. (for an in-depth look at how tides work, check out this link: http://oceanservice.noaa.gov/education/kits/tides/tides01_intro.html).  At high tide, there’s a greater likelihood that subsurface obstacles will be covered sufficiently.  At low tide, however, it’s pretty important to know where the shallow spots and rocks might lurk.  NOAA’s hydrographers are charting ocean depths referenced to mean lower low water, so that mariners can avoid those low-water dangers.

You might be asking yourself, who keeps track of all that tide data and, not only that, how do we know what the tide highs and lows will be in an area where there are no other tide gauges?   NOAA has tide gauges along many coastal areas.  You can go online to http://tidesandcurrents.noaa.gov/and find out predicted tide heights and times for any of these locations.  While we are working here in Cold Bay, we are using a tide gauge in nearby King Cove, as well as a tide gauge that the Rainier’s crew installed earlier this summer.  More data is better.

Here's the tide chart from the King Cove tide gauge.

Here’s the tide chart from the King Cove tide gauge.

What do you do if you’re surveying in an area that doesn’t have existing tide gauges?  In that case, you have to make your own gauge that is referenced to a non-moving point of known elevation (like a rock).  For a detailed description of how these gauges are set, check out NOAA TAS blogs from some of the teachers who preceded me on the Rainier. On Wednesday, I helped dismantle a tide gauge on Bird Island in the Shumagin Islands that had been set up earlier this season (check out TAS Avery Martin’s July 12th posting), but had ceased to report reliable data.  Our mission on Wednesday was to find out if the station had merely stopped reporting data or if it had stopped collecting data entirely. 

Setting off in a skiff to check on the Bird Island tide gauge.

Setting off in a skiff to check on the Bird Island tide gauge.

When we arrived at Bird Island we found out exactly why the gauge had stopped sending data—its battery bank had fallen from one rocky ledge to another, ripping apart the connections and breaking one of the plastic battery boxes in the process.  That took a lot of force—perhaps a wave or some crazy gust of wind tore the 3 batteries from their mooring.  Since each battery weighs over 25lbs, that means that something moved over 75lbs of batteries.  Ideally, the station uses solar panels to keep the batteries charged.  The batteries power up the station so that data can be sent to a satellite. Data is also stored on site in a data logger, but without power that data logger won’t work.

This is the data logger for the tide gauge.  It is housed in a watertight box and was retrieved for downloading on the ship.

This is the data logger for the tide gauge. It is housed in a watertight box and was retrieved for downloading on the ship.

We retrieved all the equipment and will be able to download whatever data had been recorded before the system broke. The automated tide gauge is, basically, a narrow diameter air-filled tube that is underwater and set at a fixed depth with a narrow opening pointed downward to the seafloor. The pressure required to balance the air in the tube is equal to the pressure of the water column directly above the opening.  The tide gauge measures this pressure and converts it to depth.  Pressure/depth changes are recorded every six minutes—or ten times each hour. As it turns out, the damaged battery bank was only one of the problems with this station.  Problem number two was discovered by the dive team that retrieved the underwater portion of the gauge; the hose had been severed in two locations. In this case, something had caused the tube to break, so it was no longer connected to the data logger.  That must have been some storm!

ENC Carrier inspects the battery bank that inow s on a rock ledge 2 feet below where it had been placed!

ENS Carrier inspects the battery bank that rests on a rock ledge 2 feet below where it had been placed weeks ago!

The waterproof battery boxes were broken in the tumble.

The waterproof battery boxes were broken in the tumble.

The solar panels that charged the batteries were intact, still tied into bolts in the rocks.

The solar panels that charged the batteries were intact, still tied into bolts in the rocks.

The dive crew gets ready to jump in

The dive crew gets ready to jump in

Brrr, it's chilly work diving in arctic waters.  The divers are investigating the gauge and removing the damaged hose

Brrr, it’s chilly work diving in arctic waters. The divers are investigating the gauge and removing the damaged hose

While there, we set to work checking on benchmarks that had been set earlier in the season.  We used a transit and survey rods (oversized rulers) to measure the relative heights of a series of benchmarks to ensure accuracy. There are 5 benchmarks along the beach.  Each one was surveyed as a reference to the primary benchmark nearest the gauging station.  Multiple measurements help ensure greater accuracy.

I am holding the survey rod on top of a benchmark.

I am holding the survey rod on top of a benchmark.

 

I used a level to make sure the rod was plumb--perpendicular to the benchmark.  No easy feat with a strong wind blowing!

I used a level to make sure the rod was plumb–perpendicular to the benchmark. No easy feat with a strong wind blowing!

We also were tasked with checking the primary benchmark’s horizontal location.  While this had been carefully measured when it was set back in July, it’s important to make sure that it hasn’t moved.  It might seem a crazy concept to think that a benchmark cemented into a seemingly immovable piece of rock could move, but we are in a region that experiences seismic events on an almost daily basis.  (You can check out seismic activity at http://www.aeic.alaska.edu/) NOAA Corps Officer ENS Bill Carrier set up a GPS station at the benchmark to collect 4 hour’s data on its position, a process called HORCON (horizontal control).  Unfortunately, the winds were in charge of how much data we were able to collect that day, and blew down the station after only 3 hours! [image of station down]  Sometimes the best laid plans …..

A gust of wind blew the recording station down.

A gust of wind blew the recording station down.

 

DATA, DATA, and MORE DATA

While data collection is important, it’s what you do with the data that really gets complicated.  Data management is essential when working with so many files and so many variables. Before each launch returns to the Rainier, the day’s data is saved onto a portable hard drive.  Immediately after being hauled back up onto the ship, the data is handed off to the ‘Night Processing Team’ and hustled off to the Plotting Room (computer HQ) to be uploaded into a computer.  This is where the magic happens and an advanced degree in computer science or GIS (geographic information systems) can come in handy.  I have neither of those qualifications, but I know how to read a screen, click a mouse, and follow directions.  So, on Friday evening I was ushered into the ranks of ‘night processor’.

When each launch returns to the ship, their day's data is saved onto a hard drive.  This drive is transported to the plotting room to download onto the computer.

When each launch returns to the ship, their day’s data is saved onto a hard drive. This drive is transported to the plotting room to download onto the computer.

First, data is downloaded into the main computer.  Each launch’s files are called raw data files and are recorded in the launch’s acquisition logs.  Once the data is on the computer, it is important to set up what I call a ‘file tree’; the series of files that increase in specificity.  This is analogous to having an accurate list of what files live within each drawer and section of your file cabinet. These files are color-coded according to the operations manual protocols to minimize the chance of misfiling or the data.  They are definitely more organized than the files on my laptop—I might change my lackadaisical filing ways after this trip!

Once the data are placed in their folders, the fun begins.  Remember, you have files for multiple variables;  sonar, CTD casts, the IMU Heave-o-meter, and tide data.  Not only that, you have, with any luck, performed multiple casts of your CTD meter to obtain accurate data about the conditions affecting sound wave transmission within your polygon.  Now you get to do something I have never done before (and use a vocabulary word I never knew existed and one that I might try to spell in a future Scrabble game); you concatenate your CTD data.  Basically, you put the data from all your CTD casts together into one, neat little file.  Luckily, the computer program that is used does this for you.  Next, you direct the program to add all the variables to your sonar files; the concatenated CTD data, tide data, and IMU data.

 

Survey Tech Brandy Geiger and ENS Wall begin to upload the data and organize it into files.

Survey Tech Brandy Geiger and NOAA Corpsman ENS Wall begin to upload the data and organize it into files.

Assuming all goes well and you have merged all your files, it’s time to ‘clean’ your data and review it to make sure there are no obvious holes or holidays in the data that was collected.  Holidays can occur if the launch was bouncing too much from side to side during data collection and show up as a blank spot in the data because the sonar was out of the water and not pinging off the bottom.  You can identify these holidays during the data collection process [holiday signature], but sometimes there are smaller holidays that show up once the data is merged and on your computer screen.  There can also be miscellaneous errant pings caused by debris in the water column.  Cleaning involves systematically searching each line of your surveyed polygon to identify and delete those ‘bad’ pings.  Kind of like photoshopping away the parts of a digital image that you don’t want in the final image.  You work methodically in a grid pattern from left to right and top to bottom to ensure that you are covering the whole file.  It sounds easy, but to a non-PC person such as myself all that right click, left click, center click stuff was a bit boggling.  The program is amazingly complex and, rumor has it, a little bit ‘buggy’ at times.

Multiple screens, multiple tasks.  I am learning the art of 'cleaning' the data--getting rid of extraneous pings.

Multiple screens, multiple tasks. I am learning the art of ‘cleaning’ the data–getting rid of extraneous pings.


After all this, guess what?!  You still don’t have a chart.  It takes almost 2 years to go from data collection to chart publication.  There’s endless amounts of data compilation, reports to be written, and quality control analysis to be completed before the final report and charts are issued.

Personal Log

So far I have spent two nights on the ship ‘in transit’, moving between ports. The other nights have been spent anchored offshore. While the first night at sea was a little bouncy, the second was, in my opinion, the wildest roller coaster ride I have ever taken.  Imagine being pulled to the top of a high roller coaster, and released to fly down to the bottom while you are lying flat in your bed.  That’s what it felt like as we motored from the Shumagin Islands to an anchorage in Cold Bay.  An endless series of up, up, ups, followed by a wild ride down, down, down. Luckily all the drawers and doors have latches that keep them from flying open—although I had a jacket hanging on a hook that seemed to hit the latch on one closet door and actually knock it open—after this happened a couple of times I gave up and put the coat on the floor and firmly shut the door.  My bathroom trash can ended up in the shower stall.  At one point I heard a loud thump in the dark—and realized my survival suit in its orange bag had fallen from the top bunk to the floor—glad I wasn’t in its way! It was time to just hang on and try not to roll out of bed.

If your chair isn't tied down, put tennis balls over the wheels to keep it from rolling!

If your chair isn’t tied down, put tennis balls over the wheels to keep it from rolling!

tiedown1

Strap the printer tightly to a table!

tiedown2

Don’t forget to secure the trashcans!

We finally stopped rocking and rolling around 3 in the morning.  I thought maybe I was just a bit sensitive to the rocking motion, but was comforted to find out the everyone agreed that it had been a wild night.  In fact, one of the potential ‘hazards’ for our work on Thursday was ‘lack of sleep’.

FOO Meghan Mcgovern goes over the Plan of the Day (POD).  Today's identified hazards included 'Lack of Sleep'.

FOO LT Meghan McGovern goes over the Plan of the Day (POD). Today’s identified hazards included ‘Lack of Sleep’.

 

After almost a week aboard the Rainier I have been impressed with the teamwork, precision, and overall efficiency which overlays all operations. This crew can get a launch loaded, lowered, and underway in less time than it sometimes takes me to record my morning attendance at school!  This is no simple feat (the boat, not the attendance!).  It reminds me of a buzzing beehive filled with activity and focused on a single task; data collection. Each day begins on the fantail (the rear of the boat) at 0800 with the FOO (Field Operations Officer) reviewing the POD (Plan of the Day) and a summary of the day’s goals, work assignments, weather, and potential hazards, prior to sending out the survey crews.

The Boatswain (bo’sun) directs the next part of this tightly choreographed activity, as the launches are lowered by their davits (small cranes), while lines and hooks are handled with an eye to safety and efficiency.  Within 5 minutes the two launches have been lowered, loaded with crew and supplies, and are on the water, buzzing away from the hive like bees to perform their daily waggle dance as they move back and forth collecting hydrographic data.

At 1630 they return to the hive, filled with the sweet nectar of hydrographic data.  Launches are lifted back onto the ship and the data is whisked off to the computer room for downloading. 5 Minutes later a survey team debrief is held to review work accomplished that day and any problems that may have come up so that plans can be made for the next day’s work.  This crew is organized!!

The NOAA Ship Rainier

The NOAA Ship Rainier