Anne Krauss: Farewell and Adieu, November 11, 2018

NOAA Teacher at Sea

Anne Krauss

Aboard NOAA Ship Oregon II

August 12 – August 25, 2018

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Western North Atlantic Ocean/Gulf of Mexico

Date: November 11, 2018

Weather Data from home

Conditions at 1615

Latitude: 43° 09’ N

Longitude: 77° 36’ W

Barometric Pressure: 1027 mbar

Air Temperature: 3° C

Wind Speed: SW 10 km/h

Humidity: 74%

 

Science and Technology Log

 

Participating in the Shark/Red Snapper Longline Survey provided a porthole into several different career paths. Each role on board facilitated and contributed to the scientific research being conducted. Daily longline fishing activities involved working closely with the fishermen on deck. I was in awe of their quick-thinking adaptability, as changing weather conditions or lively sharks sometimes required a minor change in plan or approach. Whether tying intricate knots in the monofilament or displaying their familiarity with the various species we caught, the adept fishermen drew upon their seafaring skill sets, allowing the set and haulback processes to go smoothly and safely.

Chief Boatswain Tim Martin deploying the longline gear. The sun is shining in the background.

Chief Boatswain Tim Martin deploying the longline gear.

Chief Boatswain Tim Martin is preparing to retrieve the longline gear. A grapnel and his hand are visible against the water.

Chief Boatswain Tim Martin preparing to retrieve the longline gear with a grapnel

Even if we were on opposite work shifts, overlapping meal times provided the opportunity to gain insight into some of the careers on board. As we shared meals, many people spoke of their shipboard roles with sentiments that were echoed repeatedly: wanted a career that I could be proud ofa sense of adventureopportunity to see new places and give backcombining adventure and sciencewanted to protect the resources we have

I had the opportunity to speak with some of the engineers and fishermen about their onboard roles and career paths. It was interesting to learn that many career paths were not direct roads, but winding, multilayered journeys. Some joined NOAA shortly after finishing their education, while others joined after serving in other roles. Some had experience with commercial fishing, and some had served on other NOAA vessels. Many are military veterans. With a name fit for a swashbuckling novel set on the high seas, Junior Unlicensed Engineer Jack Standfast, a United States Navy veteran, explained how the various departments on board worked together. These treasured conversations with the Engineering Department and Deck Department were enlightening, a reminder that everyone has a story to tell. I very much appreciate their patience, kindness, and willingness to share their expertise and experiences.

Hard hats, PFDs, and gloves belonging to the Deck Department are hanging on hooks.

Hard hats, PFDs, and gloves belonging to the Deck Department

Skilled Fisherman Mike Conway standing on deck.

The ship had a small library of books, and several crew members mentioned reading as a favorite way to pass the time at sea. Skilled Fisherman Mike Conway shared several inspiring and philosophical websites that he enjoyed reading.

 

Lead Fisherman and Divemaster Chris Nichols:

In an unfamiliar setting, familiar topics surfaced in conversations, revealing similarities and common interests. Despite working in very different types of jobs, literacy was a popular subject in many of the conversations I had on the ship. I spoke to some of the crew members about how literacy factored into their daily lives and career paths. Some people described their family literacy routines at home and shared their children’s favorite bedtime stories, while others fondly remembered formative stories from their own childhood. Lead Fisherman Chris Nichols recalled the influence that Captains Courageous by Rudyard Kipling had on him as a young reader. He described how exciting stories such as Captains Courageous and The Adventures of Tom Sawyer inspired a sense of adventure and contributed to pursuing a unique career path. Coming from a family of sailors, soldiers, and adventurers, Chris conveyed the sense of pride that stems from being part of “something bigger.” In this case, a career that combines adventure, conservation, and preservation. His experiences with the United States Navy, commercial fishing, NOAA, and scuba diving have taken him around the world.

Echoing the themes of classic literature, Chris recommended some inspiring nonfiction titles and podcasts that feature true stories about human courage, overcoming challenges, and the search for belonging. As a United States Navy veteran, Chris understood the unique reintegration needs that many veterans face once they’ve completed their military service. He explained the need for a “tribe” found within the structure of the military or a ship. Chris described the teamwork on the ship as “pieces of a puzzle” in a “well-oiled machine.”

A pre-dive safety briefing takes place on the ship's bridge.

Led by Divemaster Chris Nichols, also the Oregon II’s Lead Fisherman and MedPIC (Medical Person in Charge), the team gathered on the bridge (the ship’s navigation and command center) to conduct a pre-dive operation safety briefing. Nichols appears in a white t-shirt, near center.

Chris also shared some advice for students. He felt it was easier for students to become good at math and to get better at reading while younger and still in school. Later in life, the need for math may resurface outside of school: “The things you want to do later…you’ll need that math.” As students grow up to pursue interests, activities, and careers, they will most likely need math and literacy to help them reach their goals. Chris stressed that attention to detail—and paying attention to all of the details—is extremely important. Chris explained the importance of remembering the steps in a process and paying attention to the details. He illustrated the importance of knowing what to do and how to do it, whether it is in class, during training, or while learning to dive.

Chris’ recommendations:

  • Tribe: On Homecoming and Belonging by Sebastian Junger
  • Team Never Quit Podcast with Marcus Luttrell & David Rutherford
The sun rises over the Gulf of Mexico.

Sunrise over the Gulf of Mexico

Skilled Fisherman Chuck Godwin:

Before joining NOAA, Skilled Fisherman Chuck Godwin served in the United States Coast Guard for fifteen years (active duty and reserves). After serving in the military, Chuck found himself working in education. While teaching as a substitute teacher, he saw an ad in the newspaper for NOAA careers and applied. Chuck joined NOAA in 2000, and he has served on NOAA Ships Bell M. Shimada, Pisces, Gordon Gunter, and Oregon II.

Echoing Chris Nichols’ description of puzzle pieces in a team, Chuck further explained the hierarchy and structure of the Deck Department on the Oregon II. The Deck Department facilitates the scientific research by deploying and retrieving the longline fishing gear while ensuring a safe working environment. From operating the winches and cranes, to hauling in some of the larger sharks on the shark cradle, the fishermen perform a variety of tasks that require both physical and mental dexterity. Chuck explained that in the event of an unusual situation, the Deck Department leader may work with the Bridge Officer and the Science watch leader and step in as safety dictates.

Skilled Fisherman Chuck Godwin

Skilled Fisherman Chuck Godwin. Photo courtesy of Chuck Godwin.

In addition to his ability to make a fantastic pot of coffee, Chuck has an impish sense of humor that made our twelve-hour work shifts even more interesting and entertaining. Over a late-night cup of coffee, I found out that we shared some similar interests. Chuck attended the University of Florida, where he obtained his bachelor’s degree in Wildlife Management and Ecology. He has an interest in writing and history, particularly military history. He co-authored a published paper on white-tailed deer. An avid reader, Chuck usually completes two or three books during a research cruise leg. He reads a wide range of genres, including sci-fi, westerns, biographies, military history, scientific texts, and gothic horror. Some of his favorite authors include R.A. Salvatore, Ernest Hemingway, and Charles Darwin. In his free time, he enjoys roleplaying games that encourage storytelling and creativity. For Chuck, these adventures are not about the end result, but the plotlines and how the players get there. Like me, Chuck has done volunteer work with veterans. He also values giving back and educating others about the importance of science and the environment, particularly water and the atmosphere. Chuck’s work with NOAA supports the goal of education and conservation to “preserve what we have.”

 

 

Personal Log

Far from home, these brief conversations with strangers seemed almost familiar as we discussed shared interests, goals, and experiences. As I continue to search for my own tribe and sense of belonging, I will remember these puzzle pieces in my journey.

A high flyer and buoy float on the surface of the water.

A high flyer and buoy mark one end of the longline.

My path to Teacher at Sea was arduous; the result of nearly ten years of sustained effort. The adventure was not solely about the end result, but very much about plotlines, supporting (and supportive) characters, and how I got there: hard work, persistence, grit, and a willingness to fight for the opportunity. Every obstacle and roadblock that I overcame. As a teacher, the longline fishing experience allowed me to be a student once again, learning new skills and complex processes for the first time. Applying that lens to the classroom setting, I am even more aware of the importance of clear instructions, explanations, patience, and encouragement. Now that the school year is underway, I find myself spending more time explaining, modeling, demonstrating, and correcting; much of the same guidance I needed on the ship. If grading myself on my longline fishing prowess, I measured my learning this way:

If I improved a little bit each day by remembering one more thing or forgetting one less thing…

If I had a meaningful exchange with someone on board…

If I learned something new by witnessing natural phenomena or acquired new terminology…

If I encountered an animal I’d never seen in person, then the day was a victory.

And I encountered many creatures I’d never seen before. Several species of sharks: silky, smooth-hound, sandbar, Atlantic sharpnose, blacknose, blacktip, great hammerhead, lemon, tiger, and bull sharks. A variety of other marine life: groupers, red snapper, hake, and blueline tilefish. Pelicans and other seabirds. Sharksuckers, eels, and barracudas.

The diminutive creatures were just as interesting as the larger species we saw. Occasionally, the circle hooks and monofilament would bring up small hitchhikers from the depths. Delicate crinoids and brittle stars. Fragments of coral, scraps of seaweed and sponges, and elegant, intricate shells. One particularly fascinating find: a carrier shell from a marine snail (genus: Xenophora) that cements fragments of shells, rocks, and coral to its own shell. The evenly spaced arrangement of shells seems like a deliberately curated, artistic effort: a tiny calcium carbonate collage or shell sculpture. These tiny hints of what’s down there were just as thrilling as seeing the largest shark because they assured me that there’s so much more to learn about the ocean.

A spiral-shaped shell belonging to a marine snail.

At the base of the spiral-shaped shell, the occupant had cemented other shells at regular intervals.

The spiral-shaped shell belonging to a marine snail.

The underside of the shell.

Like the carrier snail’s shell collection, the small moments and details are what will stay with me:

Daily activities on the ship, and learning more about a field that has captivated my interest for years…

Seeing glimpses of the water column and the seafloor through the GoPro camera attached to the CTD…

Hearing from my aquatic co-author while I was at sea was a surreal role reversal…

Fishing into the middle of the night and watching the ink-black water come alive with squid, jellies, flying fish, dolphins, sailfish, and sharks…

Watching the ever-shifting moon, constellations, clouds, sunsets, and sunrise…

Listening to the unique and almost musical hum of the ship’s machinery and being lulled to sleep by the waves…

And the sharks. The breathtaking, perfectly designed sharks. Seeing and handling creatures that I feel strongly about protecting reinforced my mission to educate, protect, and conserve. The experience reinvigorated my connection to the ocean and reiterated why I choose to reduce, reuse, and recycle. Capturing the experience through the Teacher at Sea blog reinforced my enjoyment of writing, photography, and creative pursuits.

 

Teacher at Sea Anne Krauss looks out at the ocean.

Participating in Teacher at Sea provided a closer view of some of my favorite things: sharks, ships, the sea, and marine science.

The Gloucester Fisherman's Memorial Statue

The Gloucester Fisherman’s Memorial Statue

In my introductory post, I wrote about formative visits to New England as a young child. Like so many aspects of my first glimpses of the ocean and maritime life, the Gloucester Fisherman’s Memorial statue intrigued me and sparked my young imagination. At that age, I didn’t fully grasp the solemn nature of the tribute, so the somber sculpture and memorial piqued my interest in fishing and seafaring instead. As wild as my imagination was, my preschool self could never imagine that I would someday partake in longline fishing as part of a Shark/Red Snapper Survey. My affinity for marine life and all things maritime remains just as strong today. Other than being on and around the water, docks and shipyards are some of my favorite places to explore. Living, working, and learning alongside fishermen was an honor.

Teacher at Sea Anne Krauss visiting a New England dock as a young child.

I was drawn to the sea at a young age.

Teacher at Sea Anne Krauss in Gloucester

This statue inspired an interest in fishing and all things maritime. After experiencing longline fishing for myself, I revisited the statue to pay my respects.

A commercial longline fisherman's hand holds on to a chain, framed against the water.

A New England commercial longline fisherman’s hand

Water and its fascinating inhabitants have a great deal to teach us. The Atlantic and the Gulf of Mexico reminded me of the notion that: “Education is not the filling of a pail, but the lighting of a fire.” Whether misattributed to Plutarch or Yeats or the wisdom of the Internet, the quote conveys the interest, curiosity, and appreciation I hope to spark in others as I continue to share my experience with my students, colleagues, and the wider community.

I am very grateful for the opportunity to participate in Teacher at Sea, and I am also grateful to those who ignited a fire in me along the way. Thank you to those who supported my journey and adventure. I greatly appreciate your encouragement, support, interest, and positive feedback. Thank you for following my adventure!

A collage of images from the ship. The shapes of the images spell out "Oregon II."

Thank you to NOAA Ship Oregon II and Teacher at Sea!

The sun shines on the water.

The sun shines on NOAA Ship Oregon II.

Did You Know?

Xenophora shells grow in a spiral, and different species tend to collect different items. The purpose of self-decoration is to provide camouflage and protection from predators. The additional items can also strengthen the snail’s shell and provide more surface area to prevent the snail from sinking into the soft substrate.

Recommended Reading

Essentially two books in one, I recommend the fact-filled Under Water, Under Earth written and illustrated by Aleksandra Mizielinska and Daniel Mizielinski. The text was translated from Polish by Antonia Lloyd-Jones.

Cover of Under Earth

Under Earth written and illustrated by Aleksandra Mizielinska and Daniel Mizielinski; published by Big Picture Press, an imprint of Candlewick Press, Somerville, Massachusetts, 2016

One half of the book burrows into the Earth, exploring terrestrial topics such as caves, paleontology, tectonic plates, and mining. Municipal matters such as underground utilities, water, natural gas, sewage, and subways are included. Under Earth is a modern, nonfiction, and vividly illustrated Journey to the Center of the Earth.

Cover of Under Water

Under Water written and illustrated by Aleksandra Mizielinska and Daniel Mizielinski; published by Big Picture Press, an imprint of Candlewick Press, Somerville, Massachusetts, 2016

Diving deeper, Under Water explores buoyancy, pressure, marine life, ocean exploration, and several other subjects. My favorite pages discuss diving feats while highlighting a history of diving innovations, including early diving suit designs and recent atmospheric diving systems (ADS). While Under Earth covers more practical topics, Under Water elicits pure wonder, much like the depths themselves.

Better suited for older, more independent readers (or enjoyed as a shared text), the engaging illustrations and interesting facts are easily devoured by curious children (and adults!). Fun-fact finders and trivia collectors will enjoy learning more about earth science and oceanography. Information is communicated through labels, cross sections, cutaway diagrams, and sequenced explanations.

 

 

 

 

 

Brandy Hill: Chat with Chief Engineer and My First Tuna Catch, June 28, 2018

 

NOAA Teacher at Sea

Brandy Hill

Aboard NOAA ship Thomas Jefferson

June 25, 2018 – July 6, 2018

 

Mission: Hydrographic Survey- Approaches to Houston

Geographic Area of Cruise: Gulf of Mexico

Date: June 28, 2018

 

Weather Data from the Bridge

Latitude: 28° 50.7’ N

Longitude: 093° 34.4’ W

Visibility: 10+ nm

Sky Condition: 4/8

Wind: 12 kts

Temperature:

Sea Water: 29.6° C

Air: 29.3° C

 

 

Science and Technology Log

This afternoon I spent an hour with Chief Marine Engineer, Thom Cleary. As promised, he gave me a tour of the Engine Room. Thom arrived on the Thomas Jefferson in 2011 and has worked not only on maintaining operations, but greatly improving them. When asked about his favorite ship mechanism, he responded with one that is not his favorite but of which he is most proud. The Thomas Jefferson, along with most other ships, typically used to rid greywater and sewage by offloading into the ocean. The EPA states that ships must be at least one nautical mile from land or people in the water and three nautical miles from aquaculture (2018). With hydrographic survey operations taking place in “no discharge” areas (close to shore), this could complicate and/or slow down the Thomas Jefferson’s progress.

Realizing the inefficiency and in an effort to improve, Thom investigated other options. It was decided that a fuel storage tank would be converted to hold more wastewater. After a long wait period, the new method was installed. Within the first season 38,000 gallons of sewage was stored and discharged to a shore treatment facility. Today, the tanks have gone almost two months without release into the Gulf of Mexico. This improvement has allowed hydrographic operations to continue without interruption, conserves fuel, and increases efficiency.

Renovations to the Thomas Jefferson did not stop there. Originally constructed in 1991, the ship has room for many other improvements. Thom and team advocated for all natural lubricants (rather than petroleum), switched all light fixtures to LEDs, and adjusted the ballast system. In 2016 the roughly 122,000 gallon ballast system changed from using sea to municipal water. This now allows the ship to move from multiple coastal waters without concern for carrying invasive species in the ballast tanks. In addition, the new waste water tank was strategically placed in the center of the ship to help with stability.

Ballast diagram

Ballast diagram showing invasive species risk. (CC)

Thom is an innovator and self-described incorrigible tinkerer. Many of these changes would not have been made without his (and team’s) desire and advocacy to make things better. When I asked if these upgrades were standard on ships, he mentioned that the Thomas Jefferson is a trailblazer.

Chief Engineer Thom Cleary

Chief Engineer Thom Cleary and the desalination/ reverse osmosis system. The RO typically operates at 650 psi (with 900psi maximum potential) and pushes sea water through a membrane creating potable water for the ship.

 

Personal Log

CO (Commanding Officer) authorized a launch on one of the boats. After some mishaps with a fuse, the crew performed multiple safety checks and we were cleared to go. Mission: collect survey data near a stationary platform. CO’s comfort level to obstructions with the main ship is a half-mile, so having the smaller launch boats is helpful when surveying areas like this.

Launch Boat Approach

The launch boat crew from left to right: Lt. Klemm, Kevin Brown, Pat Osborn, and Brandy Hill (below deck).

 

SurveyNearPlatform

Survey area near the stationary platform. The ship to the left is a supply vessel.

While cruising out to the survey area, I spoke with Pat Osborn, part of the Thomas Jefferson’s deck crew and our survey line driver for the day. Pat has two years of training and was explaining that he is still learning parts of his job. (Everyone on the ship wears multiple hats.) He spoke highly of his job and appreciated the multi-dimensional relationship between CO and the crew. Pat explained that CO is not expected to be an expert in all areas of the ship- there are safety checks (such as preparing for the launch) where the CO asks lead crew members to evaluate and sign-off prior to action. Every mission I’ve observed and attended has proceeded in this manner. It is a highly respectful and safe environment.

AllisonLaunchApproach

Chief Survey Technician, Allison Stone, awaiting launch boat arrival.

Launch Return to Ship

Patrick Osborn approaching ship Thomas Jefferson with the launch boat.

KevinDeployingCTD

Kevin Brown lowers the CTD while the boat is stationary. A CTD captures the salinity, temperature, depth, and concentration of particles in the water column. This information is used for analyzing the survey data. On the ship, this information is collected using an MVP which allows the ship to stay in motion.

As soon as we had the survey equipment set up and running, survey technician Kevin Brown brought out a fishing pole. I hadn’t realized that we could fish while out on the boat! We proceeded to catch and release about 10 tuna (likely False Albacore and Bonito). Kevin reeled in two, then passed the pole to me. I couldn’t believe how hard it was to real in a fish. I was reading that they can stay on the line and swim up to 40 mph!

Brandy reeling

Brandy Hill’s active line power stance.

False Albacore

Brandy Hill and her first fishing boat catch, False Albacore.

Peaks

 + Witnessed hard work and precision paying off- the launch boat survey data had an error of 0.0006 meters. The data is highly accurate!

+ Drove “the survey line” on the launch boat. (More of an explanation coming soon.)

+ Reeled in a beautiful, tough fish.

Note: After the seasickness subsided, I’ve decided to leave out the “Valleys” category. I’m having a great time.

And We’re Fishing…

NOAA Teacher at Sea

Kate Schafer

Aboard NOAA Ship Oregon II

September 17 – 30, 2017

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 21, 2017

 

Weather Data from the Bridge:

Latitude: 27o 15.5’ N

Longitude: 97o 01.3’ W

Haze

Visibility 6 nautical miles

Wind SE 15 knots

Sea wave height 3-4 feet

Sea Temperature: 29.6o Celsius

Note: Just a month ago Hurricane Harvey was bringing 20 foot seas to this area, but today we’re enjoying the 3-4 foot swell.

Science and Technology Log:

Well, we’ve gotten to the fishing grounds, and we’ve gone from waiting to very busy!  We put out the first lines starting at around 8 pm on Tuesday evening.  The process involves first baiting 100 hooks with Atlantic mackerel.  When it’s time for the line to be deployed, first there is a tall buoy with a light and radar beacon (called a high flyer) on it that gets set into the water, attached to the monofilament fishing line.  Then there’s a weight, so the line sinks to the bottom, a series of 50 baited hooks then get clipped onto the line as the monofilament is being fed out.

Those 50 hooks are referred to as a “skate”.  This confused me last night when I was logging our progress on the computer.  I kept thinking that there was going to be some kind of flat, triangular shaped object clipped on to help the line move through the water…not really sure what I was imagining.  Anyway, Lisa Jones, the field party chief and fisheries biologist extraordinaire, has so kindly humored all my questions and explained that skate is just a term for some set unit of baited hooks.  In this case, the unit is 50, and we’ll be deploying two skates each time.

After the first skate comes another weight, the second skate, another weight and then the last high flyer.  Then the line is set loose and we wait.  It’s easy to locate the line again, even at night, because of the radar beacons on the high flyers.

Why are we collecting this data?

As mentioned in my previous post, one of the tasks of NOAA, especially the National Marine Fisheries Service Line Office, is to collect data that will help with effective fisheries management and assist with setting things like catch quotas and so forth.  A catch quota refers to the amount of a particular species that can be harvested in a particular year.  Fisheries management is incredibly complicated, but the basic idea is that you don’t want to use up the resource faster than it is replenishing itself.  In order to know if you are succeeding in this regard, you must go out and take a look at how things are going.  Therefore, the Oregon II goes out each year in the fall and samples roughly 200 sites over about eight weeks.  The precise locations of the sampling sites change each year but are spread out along the SE Atlantic Coast and throughout the U.S. waters in the Gulf of Mexico.

We’ve put out three long lines so far.  Last night, we caught a single fish, but it was a really cool one.  It’s called the Golden Tilefish but has an even better species name: Lopholatilus chamealeonticeps.  As Lisa was explaining that they dig burrows in the sea floor, I realized that I had seen their cousins while snorkeling around coral reefs but would never have made the connection that they were related. This guy was big!

 

Tilefishp3

Golden tilefish (Lopholatilus chamealeonticeps) caught in first longline of the trip

This afternoon, things got really hectic.  Of our 100 hooks, 67 had a fish on it, and 60 of those were sharks.  As we were pulling in the last bit of line, we pull on a shark that was missing its back half!  Another had a bite taken out of it.  And then on hook number 100, was a bull shark.  This shark had been snacking along the line and got caught in the process.

OLYMPUS DIGITAL CAMERA

Bull shark caught on the last hook of a very productive bout of fishing (Photo courtesy of Lisa Jones, NOAA)

And I haven’t even mentioned the red snappers.  I will save them for another post, but they are absolutely beautiful creatures.

MeasuringSnapperp3

Red snapper being measured

 

Personal Log:

I definitely continue to feel out of my element at times, especially as we were pulling in all these hooks with sharks on them, and I could barely keep up with my little job of tracking when a fish came on the boat.  All the sharks started running together in my mind, and it was definitely a bit stressful.  Overall, I feel like I’ve adjusted to the cadence of the boat rocking and have been sleeping a lot more soundly.  I continue to marvel at how amazing it is that we’re relatively close to shore but, except for a few songbirds desperate for a rest, there is no evidence of land that my untrained eyes can detect.  Lastly, I’ve realized that a 12-hour sampling shift is long.  I have a lot of respect for the scientists and crew that do this for months on end each year with just a few days break every now and then. Well, it time to pull in another line.  Next time, we’ll talk snapper.

 

Kimberly Scantlebury: The Night Shift, May 10, 2017

NOAA Teacher at Sea

Kimberly Scantlebury

Aboard NOAA Ship Pisces

May 1-May 12, 2017

Mission: SEAMAP Reef Fish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: May 10, 2017

Weather Data from the Bridge

Time: 15:36

Latitude: 2804.2177  N, Longitude: 9042.0070 W

Wind Speed: 10.2 knots, Barometric Pressure: 1016.8 hPa

Air Temperature: 26.1 C, Water Temperature: 24.89 C

Salinity: 36.49 PSU, Conditions: Some cloud, light wind, 2-4 foot waves

Science and Technology Log

Research vessels do not just work during the day. It is a 24/7 operation. Tonight I checked in with the night shift to learn more about the sonar mapping that has been done in the dark ever since I boarded NOAA Ship Pisces.

IMG_3081

Algebra I level math in action!

The first thing I noticed entering the dry lab was a pad of paper with math all over it. Todd, the survey technician I interviewed earlier, had noticed the the picture the ship’s sonar was producing had a curved mustache-like error in the image. Details like temperature need to be taken into account because water has different properties in different conditions that affect how sound waves and light waves move through it. He used the SOH-CAH-TOA law to find the speed of sound where the face of the transducer head was orientated. He found a six meter difference between the laser angle and what the computer was calculating. Simple trigonometry on a pad of paper was able to check what an advanced computer system was not.

NOAA Ship Pisces is also equipped with an advanced multibeam sonar. (Sonar stands for SOund NAvigation and Ranging.) In fact, there are only eight like it in the world. One of Todd’s goals before he retires from NOAA is to tweak it and write about it so other people know more about operating it. Since they are so few and you need to go to them, there are fewer publications about it.

Another mapping device is the side scan sonar. It is towed behind the vessel and creates a 300 meter picture with a 50 meter blind spot in the center, which is what is underneath the device. Hydrographic vessels have more sonars to compensate for this blind spot. The purpose of the mapping is to identify new habitat areas, therefore expanding the sampling universe of the SEAMAP Reef Fish Surveys.

This slideshow requires JavaScript.

Up on the bridge looks much different. The lights are off and monitors are covered with red film to not ruin the crew’s night vision. Everything is black or red, with a little green coming from the radar displays. This is to see boats trying to cross too close in front of NOAA Ship Pisces or boats with their lights off. Lieutenant Noblitt and Ensign Brendel are manning the ship.

Ensign Brendel noted to me that, “We have all of this fancy equipment, but the most important equipment are these here binoculars.” They are always keeping a lookout. The technology on board is built for redundancy. There are two of most everything and the ship’s location is also marked on paper charts in case the modern equipment has problems.

There are international rules on the water, just like the rules of the road. The difference is there are no signs out here and it is even less likely you know who is following them. Each boat or ship has a series of lights that color codes who they are or what they are doing. Since NOAA Ship Pisces is restricted in maneuverability at night due to mapping, they have the right of way in most cases. It is also true that it takes longer for larger vessels to get out of the way of a smaller vessel, especially in those instances that the smaller one tries to pass a little too close. This did happen the night before. It reminds me of lifeguarding. It is mostly watching, punctuated with moments of serious activity where training on how to remain calm, collected, and smart is key.

Personal Log

It has been a privilege seeing and touching many species I have not witnessed before. Adding to the list of caught species is bonito (Sarda sarda) and red porgy (Pagrus pagrus). I always think it is funny when the genus and species is the same name. We have also seen Atlantic spotted dolphins (Stenella frontalis) jumping around. There are 21 species of marine mammals indigenous to the Gulf of Mexico, most in deep water off of the continental shelf. I also learned that there are no seals down here.

One of the neatest experiences this trip was interacting with a sharksucker (Echeneis naucrates). It has a pad that looks like a shoe’s sole that grips to create a suction that sticks them to their species of choice. The one we caught prefers hosts like sharks, turtles…and sometimes science teachers.

This slideshow requires JavaScript.

Did You Know?

Fishing boats use colored lights to indicate what kind of fishing they are doing, as the old proverb goes red over white fishing at night, green over white trawling tonight. Vessels also use international maritime signal flags for communication during the day.

Liz Harrington: Let’s Go Fishing! August 17, 2013

NOAA Teacher At Sea
Liz Harrington
 Aboard NOAA Ship Oregon II
August 10 – 25, 2013

Mission : Shark/Red Snapper Bottom Longline
Geographical area of cruise: Western Atlantic Ocean and Gulf of Mexico
Date: Aug 17, 2013

Weather: current conditions from the bridge:
Partly cloudy, scattered showers and thunder storms
Lat. 27.19 °N  Lon. 84.38 °W
Temp. 92 °F ( 33.4° C)
Wind speed   10-15 knots
Barometer  30.1 in  (1015 mb)
Visibility  10 mi
Sea temp  83 ° F   (28.8  ° C)

Science and Technology Log

We have arrived at the survey sites, the fishing has begun and I’m having the time of my life! The process is a collaborative effort between the science team and the crew of the ship.  In upcoming blogs I’ll focus on all the different people on board the ship and their roles, but I’d like to first tell you about the fishing from my perspective as part of the science team. The science team consists of four scientists and seven volunteers. We are divided into day shift (noon to midnight) and night shift (midnight to noon). I am assigned to the day shift.

I was told that about a mile of line with 100 hooks would be let out and weighted to stay close to the bottom.  I was interested to see how they could let the line out and haul it back in again without all those hooks getting tangled. Well, I learned that the hooks are removable.  The hooks are attached to one end of a 12 foot section of line. The other end holds a snap. This set up is called a gangion.  The gangions are snapped onto the longline as it is let out and taken off the line as it is reeled in.  They are stored in a very orderly way to avoid tangles, although an occasional tangle does occur.  As the ship is approaching a designated site we prepare for setting the line. This is done from the rear of the ship, called the stern.

gangion

Parts of a gangion

baited gangions

Gangions baited and ready to set

We bait the hooks and decide on job assignments.  The jobs that need to be done while setting the line are “Data” (manning the computer to keep a count of the gangions that are put on the line); “High Flyer” (throwing out the buoys that will mark the beginning and end of the line); “Slinger” (throwing the baited hook over the edge of the ship and holding the other end of the gangion to receive a numbered tag); and “Numbers” (snapping numbered tags on to the gangions).  The weather conditions and the speed of the current must be checked before the final approval is given to set the line.  When the signal is given our team gets to work.

high flyer

Skilled fisherman Chuck Godwin and I get ready to put out the high flyer

High Flyers mark each end of the longline

High Flyers mark each end of the longline

slinging

Lead scientist for this trip, Kristin Hannan, slinging while we set out the line. The bait is Atlantic Mackerel.

After the line is set and the work station is cleaned up (that bait can get a little messy!), a CTD is deployed to gather data on the water – Conductivity (a measure of salinity), Temperature and Depth. The CTD also measures the dissolved oxygen in the water – remember that fish breathe by absorbing oxygen from the water as it runs over their gills.

An hour after the last high flyer is set, the line is hauled in. This is done from the bow (the front deck of the ship). During this part of the process I am full of anticipation as we wait to see what each hook holds. It might be a light catch with a couple of fish or it might be a very busy catch.  When the crew yells “fish on”, the action begins. Anything that is caught is brought on board and data is collected (more on this later). If it is too big to be pulled in, then it is lifted into a cradle and worked on along the side of the ship. The crew will determine if cradling is needed and will shout out “hard hats”, as we all need to be wearing hard hats when the crane is being used to move the cradle. In our first two days of fishing, the day shift has cradled five sharks. It is so exciting to be next to such a big, beautiful creature.

The final step to the fishing process is clean up. Our gear is put away, the deck is hosed down (using salt water, as fresh water is in precious on a ship), numbers are checked for proper order and damaged gangions are repaired. If there were fish caught that require dissection, this would be done now as well. In the meantime, Oregon II steams on to the next survey site.  So, you can see that the ship is a busy place 24 hours a day.

repairing or replacing worn gangions

Members of the day shift science team repair gangions after a recent haul. Foreground- Micayla and Cliff, volunteers. Background – Amy Schmidt, scientist.

Personal Log

I am having so much fun on the Oregon II. The work is really interesting and the people have been fantastic.  Not only has everyone on board been very friendly and helpful, but they have really made me feel like a member of the team. Right from the start we were trained for the various jobs and expected to do them, with lots of help and encouragement always available. I initially thought I’d be more of an observer, but that is not the case at all.  All of the volunteers are actively involved in every aspect of the fishing routine.

sharpnose shark

Here I am taking measurements on a Sharpnose Shark

I find it fascinating that people from all over the country have come together to cross paths here aboard a ship in the Gulf of Mexico. In future blogs I’d like to highlight some of their stories, but for now there is work to be done (although I’m not to the point where I can call this work. It’s way too much fun!)

New Terms

Shark Burn – the abrasion received when a wiggling shark rubs against your skin.

Water Haul – nothing at all is caught during a set.

night shark

Daniel, volunteer, prepares to release a Night Shark

removing hook

Removing a hook from a cradled Sandbar shark

CTD

Micayla and Cliff stabilize the CTD during deployment.

data collection

Micayla logs hook numbers as line is let out.

Kristy Weaver: What’s a Reef Fish Survey? May 30, 2012

NOAA Teacher at Sea
Kristy Weaver
Aboard The R/V Savannah
May 23 – June 1, 2012

Mission: Reef Fish Survey
Location: 44 miles off the coast of Jacksonville, FL
Date: May 30, 2012

Current Weather: 80 degrees and sunny

Science and Technology Log

Today is our last full day at sea.  We have caught about 2,000 fish in the past week!  A lot of them were thrown back into the water because we only need to keep a fraction of them for the reef fish survey.  The fish that we keep are studied by the scientists for a few reasons.

First, every fish we catch is measured and weighed.

David, a fisheries biologist, measures every fish that we catch

Then we have a sheet that tells us which fish we “keep” and which fish we “toss” back into the ocean.

Stephen writes down the length of every fish as David calls out the numbers

After Stephen writes down the length he uses this paper to tell David to keep the fish or toss it back into the ocean

Every fish that we keep gets its own ID number and envelope.

After it gets dark we stop fishing and go inside to the lab to collect information about the fish we caught that day.  Every single fish that we keep gets its own ID number, and gets weighed and measured again.  We write everything down.  These notes are data.

Here I am writing down the length and weight of each fish as Stephen weighs and measures them

When you make observations using your senses you are collecting data too!  Can you think of a time you collected data or made an observation like a scientist?

After we  record the length and weight I give Stephen the envelope and the other scientists come get the fish.

Passing Stephen the envelope for the fish he just measured and weighed

Scientists Jennifer and David take parts of the fish that they will study under a microscope later

Once all of the information is brought back to the scientists at the lab, they look at different parts of the fish using a microscope.  This will tell the scientists three main things…

1) Is the fish a male (boy) or a female (girl)?

2)How old is the fish?

And

3) Are these fish from all different families, or are they all related to each other?

Once the scientists answer these questions, they can decide if its okay for people to go fishing for certain types of fish, or if too many fish are being taken out of the ocean and need to be protected.  Right now fisheries are not allowed to take Red Snapper out of the Atlantic Ocean.  That fish is a very important part of our survey.

Special thanks to Captain Raymond and the crew and of the R/V Savannah and to Zeb, the chief scientist, and his team of scientists for a great experience!

Ok, I got him!  He was heavy!

This Red Snapper nearly knocked me over