Nancy Lewis, September 20, 2003

NOAA Teacher at Sea
Nancy Lewis
Onboard NOAA Ship Ka’imimoana
September 15 – 27, 2003

Mission: Tropical Atmosphere Ocean (TAO)/TRITON
Geographical Area: Western Pacific
Date: September 20, 2003

9/19/03:

2015  Deep CTD

9/20/03:

0100:  pH Profiler

0800:  Deploy CO2 Buoy

1600:  .5 N CTD

2000:  1 N CTD and SOLO

Weather  Observation Log:  0100

Latitude: 0 degrees, 1.9′ S
Longitude:  139 degrees,  49.7 W
Visibility:  12 nautical miles (nm)
Wind direction:  120 degrees
Wind speed:  15 knots
Sea wave height:  3-5 feet
Swell wave height:  4-6 feet
Sea water temperature:  26.1 degrees C
Sea level pressure:  1-12.0 mb
Dry bulb pressure:  26.3 degrees C
Wet bulb pressure:  24.0 degrees C
Cloud cover:  48 Cumulus, altocumulus, cirrus

 

Science and Technology Log

Last evening  there was a deep cast of the CTD to a depth of 4000 meters.  Tom Nolan and I packed lots of styrofoam cups  that had been decorated by students in mesh bags, as well as several foam wig heads that had been artistically painted by Kamaka.  These bags we attached to the CTD.   The idea was to see what would happen to these cups when subjected to the pressures of the ocean at that extreme depth.  The effect was quite interesting. The cups were scrunched, the heads shrunken, but all in perfect  proportion.   As you can see from the Plan of the Day, 2 other CTD casts were done today, both at the regular 1000 foot depth.

The pH Profiler is a prototype instrument designed and being tested here by scientists from the University of South Florida, Renate Bernstein and Xuewu (Sherwood) Liu.  The purpose of their work is the development of precise, accurate, simple, robust and inexpensive CO2-system measurement procedures for use in global CO2 investigations on NOAA vessels.    What they are trying to do is to assess the accuracy, precision and overall performance of the University of South Florida systems compared to the systems used by NOAA over the past 15 years.  From what I have gathered so far in talking to these scientists,  they are not happy about the performance of their instrument.

Let me address the question of AOML drifters.  AOML stands for Atlantic Oceanographic and Meteorological Laboratory, and these are surface drifting buoys which are deployed by simply tossing them off the fantail of the ship.  They are tracked by the Argos satellite and provide SST (Sea Surface Temperature) and mixed layer current information.  There is a global array of these drifters and they provide ground truth for NOAA’s polar orbiting satellite AVHRR SST maps.  Please email Craig Engler@noaa.gov or check out http://www.aoml.noaa.gov/ for more information concerning the AOML drifters.

Lewis 9-20-03 drifter buoy
AOML drifters buoys are deployed by simply tossing them off the fantail of the ship.

Personal Log

Before leaving Hawaii, I told all my students that it was going to be extremely hot and humid here at the equator.  Surprisingly enough for me, that has not been the case at all.  It  has been actually quite pleasant outside, and of course, there is always a sea breeze blowing.  Inside the ship is sometimes like an icebox, especially in the computer lab which is kept at 70 degrees Fahrenheit.

The ship’s doctor, Michelle Pelkey, affectionately known as “Doc” runs the ship’s store every evening from 0730 to 0800.  Already I have bought a T-shirt and Aloha shirt emblazoned with the NOAA insignia and KA’IMIMOANA.   They also sell soft drinks, popcorn, hats and other sundry items.

Doc is also the ship’s recreation director, and has pressed everyone to sign up for tournaments in cribbage, darts, Scrabble, and a card game called Sequence.

My evening tonight was spent doing a CTD cast from start to finish with Tom, my colleague from NASA’s Jet Propulsion Laboratory.  Tom has written down every step of the procedure, and we were editing  his instructions during the entire procedure. Randy must have had a lot of faith in us, because we did the whole CTD cast without his help.  The last thing to do on the CTD cast is to hose off the rosette, and I got soaked in the process.  Looks like it is a good time to call it a day!
Question of the Day:

What event occurs this year on September 23rd and what is its significance?

Until tomorrow,

Nancy Lewis

Nancy Lewis, September 19, 2003

NOAA Teacher at Sea
Nancy Lewis
Onboard NOAA Ship Ka’imimoana
September 15 – 27, 2003

Mission: Tropical Atmosphere Ocean (TAO)/TRITON
Geographical Area: Western Pacific
Date: September 19, 2003

Plan of the Day:

0700:    Recover /Deploy Equatorial ADCP
Recover CO2 Buoy (if there)  OR
Deploy CO2 Buoy ( if Buoy is missing)

Weather Observation Log:  0100

Latitude:  0 degrees,  0.7′ N
Longitude:  140 degrees., 2.3′ W
Visibility:  12 nautical miles (nm)
Wind direction:  120 degrees
Wind speed:  21 knots
Sea wave height:  3-5 feet
Swell wave height:  5-7 feet
Sea water temperature:  26.0 degrees C
Sea level pressure:  1011.2 mb
Dry bulb pressure:  26.0 degrees C
Wet bulb pressure:  23.8 degrees C
Cloud cover:  3/8 Cumulus, altocumulus

Science and Technology Log

The equator!  For me as for most people, it has always just been “that line around the globe,”  but now that I am out here on this project,  I realize that the equator defines more than just the northern and southern hemispheres of the earth.  It is here that the ocean currents are being intensively studied in order for us to understand the relationship between the oceans and climate.  The 1982-83 El Nino was not predicted by scientists, and it had far-reaching, damaging effects on such diverse places as South America and Australia.  It was then that NOAA funded the Tropical Ocean Global Atmosphere project that is the TAO/Triton array.  Approximately 50 of the buoys are maintained by the U.S. and the other 20 are maintained by Japan.  It took 10 years to complete and in essence, it is a 6,000 mile antennae for scientists to monitor conditions in the equatorial Pacific.

Normally,  the trade winds blow from east to west, but in an El Nino event,  the situation is reversed.

The phenomenon has long been observed by South American fisherman,  and usually occurs around the time of Christmas, hence its name which means “Christ child.”  The great ocean currents are moved by the wind, but around the equator, there are counter, below-sea currents.  Instruments in the TAO/Triton array are involved in collecting important data on these below surface currents.

Each TAO buoy is moored to the bottom of the ocean using steel cable surrounded in plastic and railroad wheels are the anchor.  At various depths on the Nilspin, temperature sensors called thermistors are strapped to the cable.  The cable conducts a signal to the surface of the buoy.  These cables can become damaged (by sharks biting them!) or otherwise degraded, and then the signal will be corrupted. Thus, there is the need for the periodic maintenance which is the main mission of the KA’IMIMOANA.

In addition, some of the buoys are equipped with CO2 sensors, which measure the amount of dissolved CO2 in the water, and which can then be used in studies of global warming.  The buoy which we retrieved today stopped working shortly after it was deployed, and it was not known if it had broken free or what had happened.  As it turned out, the buoy was there, and has been replaced with a fully functioning buoy. Right now, I am looking at innards of that CO2 sensor, which is in the computer lab and is being analyzed by the Chief Scientist.

Personal Log

Early this morning, we recovered the ADCP, which is a subsurface buoy.  Shortly thereafter, we deployed a new ADCP.  ADCP stands for Acoustic Dopplar Current Profiler, and this instrument is used to record data on the below surface currents. I will spend time later discussing this buoy, which looks like a giant orange ball.

I spent much of the day catching up on my daily logs, downloading photos and making several video clips to send to the website.  It appears that the hurricane did a number on the East Coast, and we probably will not have email communication until at least tomorrow.  I have been very happy to get some good questions from the students at Na’alehu School on the Big Island, and I am looking forward to hearing from many more of you next week.

I also spent time today chatting with the Chief Boatswain, Kamaka, a very hard working Hawaiian young man who spreads a lot of aloha wherever he goes.  I have invited Kamaka to come to my school when we get back to Hawaii since he is planning to visit the Big Island.  His girlfriend is Marquesan and lives on Nuku Hiva.

The sunset this evening at the equator was stunningly beautiful,  and there was a rainbow under some misty clouds in the east.  I am hoping my photo was able to capture it for you all.  We shall remain here at the equator overnight, and I am looking forward to the gentle rocking of the ship once I tumble into my berth later this evening.

Question of the Day:   What is the Coriolis effect and how does it relate to winds and ocean currents?

Aloha from the KA’IMIMOANA!

Nancy Lewis

Diane Stanitski: Day 17, August 27, 2002

NOAA Teacher at Sea

Diane Stanitski

Aboard NOAA Ship Ka’imimoana

August 16-30, 2002

Day 17: Tuesday, August 27, 2002

We are still enjoying the equator today!!! (0° latitude, 140° west longitude)

The FOO (Field Operations Officer)’s quote of the day: 

“Just as much as we see in others we have in ourselves.”
– William Hazlitt

Weather Log:
Here are our observations at 1400 today:
Latitude: 0°00.49’S (into the Southern Hemisphere!)
Longitude: 139°52.4’W
Visibility: 12 nautical miles (nm)
Wind direction: 090°
Wind speed: 15 kts
Sea wave height: 3-4′
Swell wave height: 5-7′
Sea water temperature: 26.9°C
Sea level pressure: 1008.5 mb
Cloud cover: 4/8, Cumulus

A new tropical storm, Genevieve, is on her way to hurricane status! She is currently at 14°N, 115°W and is moving toward 280° at 6 kts. She has sustained winds at 60 kts with gusts to 75 kts.

Science and Technology Log:

After the equatorial buoy was retrieved late last night, most of the crew worked very late to pull in the 4500 meters of cable. Then, they needed to prepare the new buoy to be deployed this morning. Everyone is looking rather tired today. The CO and Chief Scientist joined us for a few moments at the start of our morning broadcast to participate in the buoy dedication ceremony. I first introduced the show and then we all signed our names on a large NOAA sticker, added a Shippensburg University Spirit sticker, and then attached them to the central cylinder on the buoy where all of the instrument electronics are stored. These stickers will be there for the next year until the buoy is retrieved again. Pretty neat, I think.

Our broadcasts took all morning to complete and overall went well. We continue to learn what works and what doesn’t with regard to the technology. It’s best to interview just a few people and when writing on the dry erase board, use black marker, not blue. As they say, practice makes perfect.

I realized tonight how much I love interviewing scientists, especially people who do things related to, but very different than, what I do. I am always fascinated with other scientists’ research because their methodologies are often so different from my own. They make me think, which definitely expands my mind.

Personal Log:

Well, I was up late last night preparing for double broadcasts today. I spend so much time in front of the computer in the main lounge that I arrived yesterday to find a sign saying, “Casa Diane”. I figured it was Lobo or Don who always comment that I spend too much time in “my office”. Kirby came by to say that the fish were jumping outside and invited me to join everyone on the deck. WOW! I have never seen so many fish in my life! There were hundreds of HUGE fish jumping out of the water, flying over the surface (flying fish), zipping up, down, over, and lurching at smaller fish that I could hardly believe my eyes. The sea was boiling! The fish were different from the starboard to the port side of the ship, tuna and sharks on port and rainbow runners on starboard. I caught my first real fish last night – a yellowfin tuna that probably weighed just under 10 lbs. Larry helped get me started and then coached me as I reeled it in…what fun!!! Everyone was cheering for all of us because all that you had to do was place your hook in the water and something latched on. Even if you had a bite, a shark often came by and snatched your prize. I’ll bet that I saw at least 50 sharks, hundreds of zipping tuna (which are gorgeous, by the way), a whole school of rainbow runners, and tons of flying fish. All in all, we caught at least 25 fish last night (a few around 40 lbs) and immediately cleaned and prepared them to be eaten every which way. A few people awoke early and caught another 20. I love sushimi the most, but we’ve also been eating fish fried, broiled, in salad form, etc. It reminds me of Forrest Gump – shrimp gumbo, shrimp salad, shrimp…! We did have to freeze some of the fish because there’s no way that we could eat everything in the next few days. The fish that were caught all had full stomachs comprised of many very small fish that looked like sardines. To top off the whole experience there was a bright moon above the horizon illuminating the bubbling water. Even the crew who have been on board for many years were impressed with last night’s scene. I am truly amazed by the sea! It brings something new every day. See my photo log for a few pictures of last night’s fiesta! Oh, and I forgot to say that two flying fish actually flew onto the ship overnight and were found this morning. I highlighted the larger one in my broadcasts today – simply amazing.

It has been another interesting day.

More tomorrow…
Diane

Diane Stanitski: Day 15, August 25, 2002

NOAA Teacher at Sea

Diane Stanitski

Aboard NOAA Ship Ka’imimoana

August 16-30, 2002

Day 15: Sunday, August 25, 2002

The FOO’s quote of the day (I really like this one!):

“Let your dreams run wild and free and always follow where they lead.” – N.E. Foster

Weather Log:
Here are our observations at 2200 today:
Latitude: 1°31.9’N
Longitude: 140°00.5’W
Visibility: 12 nautical miles (nm)
Wind direction: 120°
Wind speed: 12 kts
Sea wave height: 3-4′
Swell wave height: 4-5′
Sea water temperature: 27.3°C
Sea level pressure: 1011.7 mb
Cloud cover: 3/8, Cumulus

Hurricane Fausto is slightly diminishing in strength, but is still maintaining winds at 90 kts, gusting to 110 kts. It is currently located at 18°N, 125°W and is moving northwest. Another tropical depression has formed at 11.5°N, 148°W and has maximum sustained winds at 30 kts with gusts to 40 kts. It is expected to gain strength and move into the tropical storm category. We are definitely not in danger of being impacted by either storm because they require Coriolis to form or to be sustained. Coriolis is negligible at the equator so we’re safe!

Science and Technology Log:

This has been my favorite day of the trip so far! I awoke hurriedly at 5:50 AM and ran outside with my hard hat and life jacket. We were taking the RHIB (once again, the rigid inflatable boat) out to retrieve our first buoy. Earl, Dave, Paul, Doug and I rode toward a gorgeous sunrise, removed sensors from the buoy, and then hooked it to a line to drag it in toward the ship. What an amazing morning! It all started there. As soon as the buoy was lifted onto the dock Nadia and I began removing barnacles from the bottom of the frame. The barnacles were still alive with their legs appearing and disappearing within their hard shell. They stick to the mast, buoy, and inner flotation device in clumps. At this point, I am filthy, smelly and loving every second. The barnacles are full of sea water which occasionally bursts and runs down your arms as you work over your head. I’m sure I’ll smell like fish for the rest of the day. The retrieved buoy was then power washed to remove the salt water, algae, and remaining barnacles parts, and to prepare it to be deployed again later during the trip.

I then helped pull in the 4300 meters of nilspin and nylon cable by taking over one of the spools where I turned it around and around as the cable draped over the top. Fun, and tiring! Just as we finished with the last spool, Doug, the XO, decided to fish off the back of the ship. You should have seen the amazing fish swimming all around the fantail of the boat… mahi mahi, and every beautifully colored huge fish that you can imagine! A blow hole was spotted by the FOO earlier, sure signs of a whale nearby. I also saw a huge fish jump out of the water, but couldn’t identify it. The fish all hang out around the buoy because of the barnacles (food) and the shadow created by the buoy, thus creating a small ecosystem in the middle of the Pacific. Suddenly, Doug caught something! He had to keep reeling in the line until he pulled a wahoo on board (ono in Hawaiian, meaning sweet). It had unbelievable colors of green and blue and was shiny with stripes. It had a cigar-shaped body, pointed head, and triangular teeth, with a long dorsal fin separated into 9 segments. Nemo brought it into the shade, pierced its neck, and then returned to the fantail where he caught two beautiful yellowfin tuna – WOW! They were shaped like a football, were beautifully iridescent with yellow, gold and blue across their bodies and fins tinged with yellow. The fins were very long. We feasted on sushimi tonight at dinner, raw tuna fillets with wasabi and soy sauce – scrumptious! We also had baked ono (wahoo) with spices. YUM! Thanks, Doug and Nemo!

We then all worked to prepare the nilspin (cable closest to the buoy) for the next buoy deployment by placing fairings on the cable. Fairings are plastic sleeves that are rectangular and slide onto the cable to provide more friction with the water. This alleviates great movement of the cable that usually happens due to strong ocean currents at this latitude. We are so close to the equator that the equatorial countercurrent makes a huge difference in the movement of the subsurface line. It was like an assembly line with me lifting each fairing out of a garbage can, handing each one to Dave who opened it and slide it onto the cable. Then, Paul used a mallet to secure it on the line while Jon held the cable in place so it didn’t drift off the boat. We must have placed hundreds of them on the line while it was being pulled out to sea by the new buoy that we just deployed (see photo log for pictures of the buoy retrieval and deployment). In the end, it took about 3 hours for the nearly 5000 meters of nilspin cable and nylon cable to be unrolled and pulled by the buoy out to sea. The buoy was floating about 4 km away from the ship by the time the cable was unraveled. You could just see it on the horizon. The crew then dropped two massive anchors (old railcar wheels) into the sea, which sunk and pulled the cable down while pulling the buoy into place above. The entire procedure is a real sight to see because of the crew’s efficiency…truly impressive.

Before dinner, John and I sat down and completed the script for tomorrow’s broadcast, however, things might change because we will be starting the science on board at the same time our broadcast is supposed to air live (9:00 AM ship time). We may have to change the show’s schedule if something exciting is happening on the ship that might be of interest to all of you. Flexibility is key to it all, I’m told.

Personal Log:

After a workout, shower, and dinner, John shot some footage of me on the bridge deck summarizing my experiences thus far, and describing what’s yet to come during this next week. The sunset was outstanding again. There were many clouds and they created these streaming rays of bright yellow light from the setting sun down to the Pacific. I could easily watch this every night.

I’m going to finish my logs and head straight to bed. This was truly the most outstanding 24 hours of the entire trip. I am so lucky to be here and can’t believe that we’re heading to the equator tomorrow!

Question of the day: 

What does TAO stand for and what is the goal of the project?

My favorite day of the trip so far…
Diane

Diane Stanitski: Day 14, August 24, 2002

NOAA Teacher at Sea

Diane Stanitski

Aboard NOAA Ship Ka’imimoana

August 16-30, 2002

Day 14: Saturday, August 24, 2002

The FOO’s quote of the day: 

“I believe because it is impossible.” – Tertullian

Weather log:
Here are our observations at 0900 today:
Latitude: 4°40.8’N
Longitude: 139°58.7’W
Visibility: 12 nautical miles (nm)
Wind direction: 180° (constantly shifting)
Wind speed: 16 kts
Sea wave height: 3-4′
Swell wave height: 5-7′
Sea water temperature: 27.7°C
Sea level pressure: 1011.3 mb
Cloud cover: 7/8, Cumulus, Stratocumulus

Science Log:

Another buoy was repaired this morning because its anemometer wasn’t functioning. The anemometer is the highest object on the buoy and, therefore, is the most vulnerable. Because it’s not as protected and is a moving part, it can be easily damaged by people fishing the area, or by extreme weather. Dave was out on the buoy sitting in the horseshoe (a square opening on the starboard side of the buoy deck permitting you to work on the bottom of the buoy from the deck below) today testing and preparing it for deployment tomorrow. This will be our first buoy replacement, which means that when we retrieve the next buoy there will be oodles of work to do on the ship, including counting the thousands of barnacles that have attached themselves to the bottom of the brace. I can’t wait to smell the deck after they’re removed from the bottom – mm, mm!

On the agenda today is a full tour of the ship. John taped me both inside and outside explaining every part of the ship as we walked from deck to deck and bow to stern. I learned so much through that process. John first explained what we were looking at and then I provided my version as I tried to incorporate the technical terms. We also prepared some fun clips interviewing people about what they do on board.

Despite volunteering to do a CTD launch at 3°N tonight at 1930, the device wasn’t working. The 0130 reading at 2.5°N tomorrow morning was also cancelled because Larry and Jason need to switch out a major part that is malfunctioning. It will soon be time to rise and shine for a buoy retrieval (my first!) and deployment.

Personal Log:

I awoke this morning to sunshine streaming through our porthole. This is an unusual occurrence since it has been so cloudy. I walked outside and smelled FISH! The guys had pulled in the tow lines and they caught 4 gorgeous silvery mahi mahi fish, one over 20 lbs. When I went downstairs, they were filleting them in the kitchen for lunch and hopefully dinner! Wow! This is what I call fresh. They found tuna in one of the stomachs of the largest mahi mahi. I’ll have to make sure that I’m around when they pull in the next group.

Lobo, the Chief Engineer on board the ship, provided John, Takeshi (scientist from France), and me with a tour of the engine room this afternoon. The most fascinating thing to me is how fresh water is produced on the ship. We use approximately 3,000 gallons of fresh water per day, which means that we are each allotted about 100 gallons. This is plenty per person. The majority of the water is used for the CTD cast because fresh water has to be used to spray down the winch, wire, and cylinders after they are brought out of the water (see photo log for picture), and also for cooking and laundry. It is an extremely comfortable ship. The CO was saying today at lunch that the main halls are much wider than many ships and the staterooms are also more roomy. I was surprised at how decadent my room seems to be. Check out the photo log for a picture of my stateroom.

It is hard to believe how close we are to the equator. We continue moving southward along 140°W. I’m getting a little bit nervous about the fact that there are at least 6 people who have never crossed the equator before in a boat/ship. This means that we are called pollywogs. If time permits, there might be a ceremony at the crossing for all first timers, after which you become shellbacks. It’s not quite that easy, though. There is a certain amount of harassment (all in fun, of course) that must first take place to ensure that the wogs EARN the right to cross. Rumors are spreading that something might happen soon. I’ll keep you updated.

You would not have believed the bioluminescence in the water tonight! Kirby and Don spotted it first and suggested that I go up to the bow to peer over the edge at the bottom of the bow as it plows through the water. The phytoplankton become disturbed, which causes them to glow. There are often patches or clumps of these species that are visible making them look like a glow stick in the water. We may have also seen some jellyfish glowing, but only because they’ve eaten the bioluminescent phytoplankton. It’s so interesting. I love hanging my arms over the railing of the bow watching it carve out the water far below.

The sunset and moon rise were incredible tonight. The sun’s rays continued to light up the sky for about an hour after the sun actually set. The colors of light blue growing into bright pink were beautiful. We also had low cumulus clouds far beneath high cirrus clouds that turned pink. It was a spectacular scene (see photo log). I wish that I could have captured the moon rise over the ocean. It looked HUGE and was bright orange. There were thin clouds in the foreground that created an eerie, yet beautiful glow. The moon is almost full and illuminates the ocean surface like a huge flashlight. The Milky Way is in full view and the constellations are brilliant. We were looking for the Southern Cross tonight and think that we may have spotted it. Aaaahhhh!

I’ll write more tomorrow.
Diane

Diane Stanitski: Day 11, August 21, 2002

NOAA Teacher at Sea

Diane Stanitski

Aboard NOAA Ship Ka’imimoana

August 16-30, 2002

Day 11: August 21, 2002

Weather log:
I awoke and went out on the buoy deck this morning to find rain falling from overcast skies! Here are our observations at 0800 this morning:
Latitude: 13°28’N
Longitude: 143°28’W
Visibility: 12 nautical miles (nm)
Wind direction: 100° (direction from which the wind is blowing)
Wind speed: 15 kts
Sea wave height: 4-5′
Swell wave height: 5-7′
Sea water temperature: 27.4°C
Sea level pressure: 1012.2 mb
Dry bulb temperature: 25.0°C
Wet bulb temperature: 24.0°C
Cloud cover: 8/8, rain from altostratus clouds

If you’ve been mapping out our course on a “chart” of the Pacific Ocean (as I’m sure you all are!), you may have noticed that we’ve made a sudden shift to the south! Why? To divert away from a tropical depression forming to our east! The Commanding Officer, CDR Mark Ablondi, made the decision late last night, after French class, to reverse the order of our trip. Instead of visiting the buoys from north to south along 125°W and then cruising west toward the 140°W line, we’ll first head south along the 140°W meridian and then toward 125°W. Flexibility is key to the success of the trip, especially when considering the safety of the crew. A tropical wave is heading our way with a tropical depression behind it. To our north there are a series of subtropical high pressure cells which will cause the tropical depression to slide due west, very close to our original path, thus the reason for the change. We’re hoping to avoid all signs of the storm. However, we currently have overcast skies and rain falling from beautiful altostratus clouds. The only thing constant about the weather is change – gotta love it!

Science log:
Our most exciting part of the morning so far has been a live test broadcast with Jennifer Hammond at NOAA’s Silver Spring office and others who will enable a future broadcast to come live to you. We had to attempt it three times because we kept getting disconnected. Larry, our very important computer technician on board, is looking into the cause of the problem. We’ll try another live broadcast test tomorrow morning before our first general broadcast, hopefully later this week (stay tuned on the web site for further information).

The constructed buoy that was going to replace the one to be removed at 8°N, 125°W, will now be used for the 2°N, 140°W replacement. Because ocean currents are much stronger near the equator, the buoys require more flotation. This means that two extra fiberglass inserts are placed inside the buoy (sort of like adding the donut hole to the donut). This will enable the buoy to float more effectively.

We tested the CTD profiler early this afternoon. CTD stands for conductivity, temperature, and depth. This instrument continuously records data as it is lowered through the water column to nearly the bottom of the ocean. It also collects water samples at preselected depths. Water is then brought to the surface from these depths and analyzed for salt and nutrient content. I have been asked to take some of the CTD measurements since we’ll be doing them a few times every day and I’m told it takes 1-2 hours. I’m very interested to see what it entails. I think that Jason will train four of us tomorrow.

Well, I reread my logs and decided that I need to provide some context as to why we’re all on the Ka’imimoana in the first place. El Niño! You’ve all heard the term, I’m sure, but what does it mean, and should it concern us?

Here is the story…
El Niño, Spanish for “the boy” or “the Christ Child”, is a phenomenon that refers to a warm ocean current that typically occurs around December (Christmas-time) off the west coast of Peru and lasts for many months. This appears to be related to a warming of the entire tropical Pacific Ocean.

Let’s go back even further… Under normal ocean and atmosphere conditions (during non-El Niño years), the trade winds in the Pacific blow from east to west across the tropical Pacific Ocean, dragging the ocean water beneath with them (due to friction). Because the water is being moved toward the western Pacific, it piles up such that the actual surface of the water near Indonesia can be up to approximately ½ meter (~1.5′) higher than off the west coast of South America – amazing! The sea surface temperature near Indonesia is also about 8°C (how many °F?) warmer than near South America because it has been warmed by the sun as it crossed the Pacific near the equator. Near South America, cold subsurface water then emerges at the ocean surface to take the place of the water that moved westward. This process is known as “upwelling” and brings cold, nutrient-rich water to the surface, which is attractive to many fish species, including the anchovy.

Warm ocean water is important for many reasons, primarily because it has a direct relationship with the atmosphere above it. Above warm water, evaporation increases, winds at the surface flow together, and clouds form. Thunderstorms form much more easily under these conditions causing rain. Heat is transferred from the ocean to the atmosphere in this process, known as “convection”. This shows why there is such a direct and important link between the ocean’s temperature and the winds in the atmosphere. Convection usually occurs over the warmest water and winds blow toward the warm rising air from all directions. Energy is transferred and this is one of the important flows across earth. I always tell my students that the earth constantly tries to maintain a balance and this is why there is movement. Earth is dissatisfied with excess heat near the equator and cold air hovering around the poles. In a move toward equilibrium, the wind flows and the ocean currents move…energy is being transferred! Okay, I could go on for days about this because I love it so much. Let’s move on to El Niño. During El Niño events, which typically occurred every 3-7 years in the past, but may be happening more often now, large-scale winds that normally blow from east to west across the Pacific Ocean diminish, and occasionally even reverse direction. Now, the warm water that is typically found in the western Pacific moves toward the eastern Pacific and, voila!, little upwelling occurs along the coast of South America resulting in fewer nutrients for the phytoplankton and other marine life that survive on the nutrients brought from below. With warmer water in the eastern Pacific, the process of convection shifts eastward with the warm water so the rising air and ensuing storms are found closer to the central Pacific.

Why is this important? El Niño results in changes to temperature and rainfall on a GLOBAL basis. For instance, because convection shifts eastward, parts of northeastern Australia often experience a major drought while the coast of Chile can receive severe floods. The 1997 El Niño event, one of the strongest ever experienced and recorded, resulted in heavy rains over the southern U.S., record rains in California, and a mild winter in the mid-western states of the U.S. At times, the monsoon that affects Southeast Asia arrives much later than normal. We are on the Ka’imimoana to help predict upcoming El Niño events . This is done with the help of 70 buoys that are located on the tropical ocean surface between 8°N and 8°S latitude. Sensors on these buoys measure atmospheric conditions like wind speed, wind direction, air temperature, relative humidity, radiation, and ocean temperature data from the surface to 500 meters below, to help determine if an El Niño event is occurring, or not. We do know that an El Niño is currently forming in the Pacific. Now, we need to ensure that all possible data are available by checking to make sure the sensors are functioning properly and that data are being sent via satellite to researchers who are using models to predict the severity of this event.

With early prediction of an El Niño, countries can adjust the types of crops that they grow, and plan in areas such as water resources, fisheries, and reserves of grain and fuel. Countries that have experienced the effects of El Niño in the past can also effectively plan in advance for drought, floods, and extreme weather, a consequence of the phenomenon, El Niño.

If you are a teacher, I’m writing a lesson plan related to the current El Niño conditions in the Pacific that you can use in your classroom. I will provide optional assignments so that you can use it from the middle school to college level. Please check my lesson plans in the next week to find this activity. Paul Freitag, Chief Scientist on board, is assisting with the exercise by providing current ocean temperature data and informed ideas.

Personal log:
I have remarked a few times today how helpful everyone is on the ship regarding questions that the new people have (that includes me!) or things that we need. This is a tremendous group of people. The Doc helped lower my bunk bed on the first day, after I spent 15 minutes trying every possible hole, button, lever, etc., until she discovered it was actually screwed into the wall. Doug McKay is helping me practice my knot tying which I started learning with my husband in Honolulu; I hope to be of some use on the RHIB or on the decks in the future when things need to be tied down.

John Kermond has answered every imaginable question, many times more than once. He has been very patient. The Chief Scientist endures my many inquiries about the TAO buoys and manages to come up with appropriate manuscripts and manuals whenever I need extra information. The Captain took the time to provide an overview of Pacific Ocean weather this morning before our test broadcast. It’s amazing how many questions I have each day. I even had to learn how to open the doors to go out on the deck. There is a lever that you lift to a certain point which allows you to exit; you then need to lower the lever again once you leave. This keeps the doors from flying open on their own and also keeps them water tight. I ended up sleeping with my stateroom door open the entire first night on the ship because I didn’t realize that it clicks shut only after much force. I woke up and the door was wide open. Taking a shower is always interesting. I’ve learned to stand with my feet wide apart to brace myself and I often use the walls for stability. Fortunately, I don’t even need to think about many of these details anymore. It’s remarkable how we all adjust to our surroundings.

Spiderman is the movie of choice tonight. I’m writing to you from my corner computer and peering out at a group of about 8 people sitting in the main lounge watching the movie. I haven’t watched any movies so far, but I am signed up for the game tournaments to start sometime later this week. In the first round I’m competing against the Commanding Officer (CO) in Scrabble (Yikes!), against the Chief Scientist in Yahtzee (Yikes again!), and am partners with our Cadet on board when we play Sequence. This is an evening program initiated by the Doc to keep morale high on the ship. Sounds good to me!

Well, I’m off to fold laundry before going to bed. Another outstanding day on the ship…I could really get used to this!

Hope all is well with you. Keep in touch!
Diane

Dana Tomlinson: Day 20, March 20, 2002

NOAA Teacher at Sea

Dana Tomlinson

Aboard NOAA Ship Ka’imimoana

March 1 – 27, 2002

Date: Wednesday, March 20, 2002

Lat: 5°S
Long: 95°W
Seas: 5-8 ft.
Visibility: unrestricted
Weather: mostly cloudy with isolated rainshowers
Sea Surface Temp: 82-86°F
Winds: SE 10-15 knots
Air Temp: 84-70°F

Today was a day of CTD’s, a live broadcast and a nighttime buoy visit. We are back to doing a CTD every degree, so Amy was a busy girl today (it gets even busier very close to the equator when she does CTD’s every half a degree). Our live broadcast was at 12:30 today as we are now on Central time. That was a bit dicey because John and I didn’t realize that the clock in the studio hadn’t been changed, so 20 minutes before show time, we were still thinking we had an hour and 20 minutes to go! Thank goodness I figured it out when I went down to eat and all the food had been put away because lunch was over!!

It just goes to prove, however, that preparation isn’t everything. We had a large “studio” audience (about 10-12 people standing behind the camera watching) and they all thought today’s broadcast was the best by far. All of the broadcasts will be put on the website as streaming videos in a few weeks when we return, so you can then decide for yourself. We had great guests: Clem, the Chief Steward who keeps our stomachs full of her yummy food (today’s delight: homemade bread pudding), Ensign Sarah Dunsford, Fred Bruns (the only original crew member since the KA has been working the TAO array), our bilingual trio of scientists Sergio Pezoa and Nuria Ruiz and our Ecuadorian observer, Juan Regalado, all topped off by a visit from oiler Ian Price (we’ve taken to calling him “Mr. Hollywood”). It was fun.

The nighttime visit to the buoy at 5°S 95°W was to check on the buoy’s anemometer. For a while now, the anemometer had been sending back low wind readings. The scientists weren’t sure if this was because there really were low winds in the area, or there was a problem. So, a little RHIB ride in the dark with a spare anemometer just in case did the trick. Turns out the bearings were bad in the old one, so they installed a new one (in the dark with spotlights in 8 foot swells). All in a day’s work for NOAA’s intrepid scientists Mike McPhaden, Brian Powers and Nuria Ruiz!

Question of the Day: 

Since we’re doing a CTD every degree, how often does Amy have to get up to do them? Or, how long is it between degrees of latitude going about 11 knots?

Answer of the Day: 

Mrs. Mackay’s class at Emory Elementary in San Diego CA were the first to come up with what the beam of a ship is: the width of the ship at its widest part (on the KA it’s 43 feet). Great job, you all!

Til tomorrow,
🙂 Dana

Dana Tomlinson: Day 19, March 19, 2002

NOAA Teacher at Sea

Dana Tomlinson

Aboard NOAA Ship Ka’imimoana

March 1 – 27, 2002

Date: Tuesday, March 19, 2002

Lat: 8°S
Long: 95°W
Seas: 5-8 ft.
Visibility: unrestricted
Weather: mostly cloudy with isolated showers
Sea Surface Temp: 82-86°F
Winds: NE 10-15 knots
Air Temp: 84-70°F

This morning, the eight Pollywogs on board (folks who have crossed the Equator but have never gone through the Shellback initiation) went through their Shellback ceremony and became official card-carrying Shellbacks. After 3 days of festivities in this proud maritime tradition, the wait is over. I must say, in all honesty, that I had a great time. The crew of the KA put a lot of effort into this and made it a terrific experience. All Wogs that have the opportunity should partake in this if given the opportunity.

We will be reaching the 95°W line at about 11pm this evening. At that time, there will be a relatively rare nighttime RHIB ride out to the buoy here at 8°S to replace the buoy’s rain gauge (the rest of it is operating properly). This is a fairly simple procedure, so it can safely be done at night. We will be doing a CTD at the same time. This way, as soon as both operations are done, we can continue on to check on the buoy at 5°S. And, as on land, out here at sea, time is money.

Question of the Day: 

How much do you think it costs to run the Ka’imimoana every day?

Answer of the Day(s): 

We have lots of them here from the weekend.

From Thursday: No one ever got back to me, so the deepest spot in the Pacific Ocean can be found in the Marianas Trench – about 10 miles deep.

From Friday: The beginning of modern oceanography is generally regarded to have begun with the Challenger Expedition of 1873-76. Check this out – very interesting.

From Saturday: I had two intrepid folks from San Diego give this a really good college try: Bob M. and John W. According to Ensign Kroening, we will have traveled 880 miles to get from the 110°W to the 95°W at an average of about 11 knots and it will have taken us 80.5 hours. (I like to think of this as driving from LA to the Oregon border at 10 mph with the scenery never changing!!)

From Sunday: The first buoy was deployed by NOAA in the Pacific in 1979. It is the very same one that is floating out on the equator at 110°W with Emory’s name on it! Thanks to John W. from San Diego again!

Til tomorrow,
🙂 Dana

Jane Temoshok, October 2, 2001

NOAA Teacher at Sea
Jane Temoshok
Onboard NOAA Ship Ronald H. Brown
October 2 – 24, 2001

Mission: Eastern Pacific Investigation of Climate Processes
Geographical Area: Eastern Pacific
Date: October 2, 2001

Just got back from a fabulous C-130 flight! It was a long day but well worth it. The video and digital pictures will be amazing. They let me fly the plane!!!!! for real!!!! Then I dropped several air expendable bathythermographs (EXBT) – in other words big plastic tubes out of a hole in the floor of the plane.

The chief scientist, Nick Bond, also gave me a job to do which required using the onboard computers to note the exact time and longitude of each drop. The plane “porpoised” for 6 hours to just south of the equator. Porpoising means we flew at an altitude of 5000 feet for 7 min. and then descended to 100 feet! for 7 minutes and then back up to 5000 ft. Of course Dr. Kermond filmed everything so there will be lots to see. Everybody on board was very accommodating.

Please share my historic flight with my students tomorrow. I’m sure they will be impressed. We did fly over the RON BROWN – just barely because we were only at 100 ft! Then on our way back I was able to speak with Jennifer via the cockpit radio. Very exciting.

Keep in touch,
Jane