Debra Brice, November 12, 2003

NOAA Teacher at Sea
Debra Brice
Onboard R/V Roger Revelle
November 11-25, 2003

Mission: Ocean Observation
Geographical Area: Chilean Coast
Date: November 12, 2003

Data from the Bridge
1. 111700Z Nov 03
2. Position: LAT: 01-55.6S, LONG: 083-46.1W
3. Course: 251-T
4. Speed: 13.9 Kts
5. Distance: 193.6 NM
6. Steaming Time: 13H 54M
7. Station Time: 00H 00M
8. Fuel: 2951 GAL
9. Sky: OvrCst
10. Wind: 200-T, 11 Kts
11. Sea: 200-T, 2-3 Ft
12. Swell: 200-T, 3-5 Ft
13. Barometer: 1011.2 mb
14. Temperature: Air: 24.2 C, Sea 23.3 C
15. Equipment Status: NORMAL
16. Comments: Enroute to Stratus buoy site.

Science and Technology Log

Today is a travel day and we are on route to the site of the Stratus Buoy maintained by Woods Hole Oceanographic Institution. The Chief Scientist for this cruise is Dr. Robert Weller, a Physical Oceanographer from Woods Hole and this is the 4th year of the Stratus Project. The science objectives of the Stratus Project are to observe the surface meteorology and air-sea exchanges of heat, fresh water, and momentum ( friction between the air and sea surface: currents), to observe the temporal evolution of the vertical structure of the upper 500 meters of the ocean, and to document and quantify the local coupling of the atmosphere in this region. Air-sea coupling under the stratus clouds is not well understood and numerical models show broad scale sensitivity over the Pacific to how the clouds and the air-sea interaction in this region are parameterized. The first three deployments of the Stratus moorings are part of EPIC.

EPIC is the Climate Variability study (CLIVAR) with the goal of investigating links between sea surface variability in the eastern tropical Pacific and the climate over the American continents. Important to that goal is an understanding of the role of clouds in the eastern Pacific in modulating the atmosphere-ocean coupling. Previous to this study we really didn’t understand how the stratus clouds were formed off this coast and off the coast of California which has a similar climate and currents. The effect of the ocean temperature and suspended particles (aerosols) on the climate are very important and in these regions are not well understood. Prior to this numerical computer models were used to predict climate changes in these regions but no real studies or observations had been made. These studies will help in the predicition of long term effects of global warming. The Stratus moorings carry two redundant sets of meteorological sensors and the mooring also carries a set of oceanographic instruments. Including Acoustic rain gauges. Acoustic rain gauges are located 50 meters below the buoy on the mooring line. The accoustical rain gauge uses the frequency of the sound of the rain drops hitting the sea surface , the sound varies with amount of rainfall rate. This is more accurate than traditional rain gauges as it averages rainfall over a given area and is not effected by wind. The WHOI Stratus buoys are the most highly instrumented bouys in use today with 31 instruments. Today we deployed two ARGO floats, for more information on ARGO floats please go to the website at: www.argo.ucsd.edu. ARGO floats are a global array of three thousand free drifting profiling floats measuring temp and salinity of the upper 2000m of the ocean. Our watch went well and we deployed our float without breaking it and falling overboard (always a plus:)

Personal Log

Went to sleep last night after my watch at 4am and awoke at 10am. Met with Dr. Kermond and Viviana, the chilean teacher, to go over the science activities for the day. We took some still pictures and worked on the computers. Tomorrow we will begin some interviews with the scientists and crew. Weather was warm and humid, calm sea, some clouds and overall very pleasant. The REVELLE is a beautiful ship that has a very smooth ride, very little rolling motion. It was built in 1996 by the Navy for Scripps Institution of Oceanography. It was named after the former director of Scripps, Dr. Roger Randall Revelle. Revelle believed that the only way to truly study oceanography was to go to sea and he made it a goal while director to increase the number of ships owned by Scripps as well as make sure most if not all oceanographers at Scripps went to sea for some of their research. The REVELLE is 273′ long and 52′ 5″ wide at it’s widest point. Cruising speed of 12 knots, range is 13,000 nautical miles at 10 knots, crew of 22, with a scientific party of 37. It operates approximately 340 days a year worldwide, but mainly in the Pacific. For more information look at the Scripps home page at: www.scripps.ucsd.edu Being on the ship is like being a part of oceanographic history.

Hasta Luego

Jane Temoshok, October 24, 2001

NOAA Teacher at Sea
Jane Temoshok
Onboard NOAA Ship Ronald H. Brown
October 2 – 24, 2001

Mission: Eastern Pacific Investigation of Climate Processes
Geographical Area: Eastern Pacific
Date: October 24, 2001

Latitude: 19º S
Longitude: 73º W
Air Temp. 21.0º C
Sea Temp. 19.0º C
Sea Wave: < 1 ft.
Swell Wave: 1 – 3ft.
Visibility: 8 – 10 miles
Cloud cover: 6/8

Science Log

Wednesday – The Last Day of the EPIC 2001 Voyage

This is the end of Epic 2001! Actually it’s rather anti-climactic. People are packing up their belonging, finding their passports, exchanging photos, and talking about dinner plans in Arica. This has been an excellent trip for all involved. The scientists are happy, the weather cooperated, no serious injuries or illnesses were reported, and people got along. What more could you ask for?

For me this was an incredible experience, one that I shall reflect upon for a long time. I’ve been exposed to a lot of science I knew nothing about and have been inspired by some very bright thinkers. More than that though, I’ve had an opportunity to share in this project that has far-reaching consequences for the entire planet.

I’m proud to be part of a community of researchers that has been supported through NOAA and NSF. Government support of science that furthers knowledge of our planet for the betterment of all is some of the best work we can do. An outreach program that communicates the results and the excitement to the next generation ensures that this endeavor will continue into the future.

Thank you,
Jane Temoshok

Jane Temoshok, October 23, 2001

NOAA Teacher at Sea
Jane Temoshok
Onboard NOAA Ship Ronald H. Brown
October 2 – 24, 2001

Mission: Eastern Pacific Investigation of Climate Processes
Geographical Area: Eastern Pacific
Date: October 23, 2001

Latitude: 20º S
Longitude: 78º W
Air Temp. 16.0º C
Sea Temp. 17.0º C
Sea Wave: < 1 ft.
Swell Wave: 2 – 4 ft.
Visibility: 8 – 10 miles
Cloud cover: 8/8

Science Log

Doldrums and Horses

We are in the doldrums. It’s true. The ocean looks like a lake. No wind, no waves, nothing. I went to the captain and asked him about it, and he gave me information about doldrums and horse latitudes. Apparently there is a belt of low pressure at the ocean surface near the equator. It is usually overcast (stratus clouds again) and it is incredibly still. This was really, really bad for the sailors of the old days (no wind, no go). In fact, the horse latitudes (which are similar to the doldrums) were so named because ships that were stuck here for long periods of time used to throw their horses overboard to conserve water and lighten the load. For us though it is wonderful (love those engines!). With no wave or wind to slow us down we have made excellent time. In fact, we have slowed down on purpose (we can’t arrive in Chile too early) so the crew can go fishing. If they are successful we will have a bar-b-que on the deck tonight!

Travel Log

Just after my last webcast I went out on the deck and saw a HUGE leatherback turtle! The water was so calm it was easy to spot him. The Boson thought it was as big as a Volkswagen Beetle! Then we saw a few more off in the distance. I don’t have any reference material out here so I can’t find out much about them. So here’s your question…

Question of the day:
How large do leatherback turtles get, and what do they eat?

Only 2 more days until land,
Jane

Jane Temoshok, October 21, 2001

NOAA Teacher at Sea
Jane Temoshok
Onboard NOAA Ship Ronald H. Brown
October 2 – 24, 2001

Mission: Eastern Pacific Investigation of Climate Processes
Geographical Area: Eastern Pacific
Date: October 21, 2001

Latitude: 20º S
Longitude: 85º W
Air Temp. 18.7º C
Sea Temp. 18.6º C
Sea Wave: 3 – 4 ft.
Swell Wave: 4 – 5 ft.
Visibility: 10 miles
Cloud cover: 5/8

Science Log

What to do when you haven’t got a clue?

This is the question that the folks in the ETL vans want you to think about. We were talking about the idea that scientists love to question the world around them and find ways of quantifying their observations and proving their theories. But another aspect of being a scientist is being a problem solver. Taniel and Duayne in the radar van were getting a “funny” reading from their computer and they didn’t know why. Could it be a malfunction in the computer or the radar? Perhaps it was raining and causing the radar to see things differently. Maybe the sensors weren’t lined up properly. There were many ideas and they had to go through each one. They agreed that to solve the problem they both had to brainstorm lots of ideas together and then rule them out one by one. In this case they also sent email to their lab in Colorado for advice. In the end they did figure it out and fix the problem. Taniel and Duayne look at it as kind of a puzzle and they keep trying until they have put it together. It’s called perseverance!

Travel Log

The science on board is just about complete. Now thoughts are turning to preparing to leave the ship on Thursday. So much of the equipment must be put away and this takes man and machine power and a lot of coordination. Remember, when we get off the ship another science group with completely different needs will be coming onboard. Most of their stuff is onboard in a big trailer that was loaded months ago in Seattle, Washington. Can you imagine packing for a trip that you won’t take for six months?

Photo descriptions: Today’s Photos: Different aspects of getting ready to depart. Boxes and crates and cranes!

Only 4 more days until land,
Jane

Jane Temoshok, October 20, 2001

NOAA Teacher at Sea
Jane Temoshok
Onboard NOAA Ship Ronald H. Brown
October 2 – 24, 2001

Mission: Eastern Pacific Investigation of Climate Processes
Geographical Area: Eastern Pacific
Date: October 20, 2001

Latitude: 20º S
Longitude: 85º W
Air Temp. 19.7º C
Sea Temp. 18.6º C
Sea Wave: 4 – 6 ft.
Swell Wave: 4 – 6 ft.
Visibility: 8 – 10 miles
Cloud cover: 7/8

Science Log

Several students have asked about seeing the stars in the Southern Hemisphere. Well I hate to disappoint, but I haven’t seen one star on this voyage. There’s a good reason though (and it’s not because I’m in the lounge watching movies). One of the main reasons this cruise is in the Eastern Pacific is because a layer of stratus clouds almost always covers it. While that’s not good for stargazing it’s great for the atmospheric meteorologists on board. One theory is that the clouds have a cooling effect on the ocean by reflecting the solar radiation back upwards and letting little of it penetrate to the surface. But it really isn’t completely understood at this time.

Additionally the southeasterly winds in this in this area cause the surface water to move away from the coastline allowing deeper water to move up to the ocean surface, creating an upwelling current. Upwelling currents replenish the surface layers with nutrients which is why the fishing and marine life is so plentiful along the coast. The shifts in the temperature of masses of water, along with the effects of the clouds are what the scientists onboard are hoping to understand.

What I have learned on this cruise is that the study of climate is very complex and that this area is particularly important. The Eastern Pacific may hold the key to a better understanding of the processes that affect the climate of the entire globe.

Travel Journal

The Chief Engineer Mike Gowan gave me a tour of the engine rooms today. He works down in the bottom of the ship and is responsible for overseeing all the major mechanics that keep the ship moving and habitable. There are 6 huge engines, air conditioning, water filtration, and sewage systems. It was really loud and we had to wear ear protection while we toured. He is assisted by Patrick,the Junior Engineer, and June, the “oiler”. (Isn’t it great to see women in the engineering room?!) Frankly I found it hard to conceive of working in that environment on a daily basis but they sure love it.

TAS Jane Temoshok and Chief Engineer Mike.

TAS Jane Temoshok and Chief Engineer Mike.

Temoshok 10-20-01 crewpatrick

This is Junior Engineer Patrick McManos.

Temoshok 10-20-01 crewjune2

June, another crew member of the BROWN’s Engineering Department.

Temoshok 10-20-01 peopleclaudiaandjane1

TAS Jane Temoshok (L) and her roommate, Claudia (R).

Temoshok 10-20-01 brownworkingondeck

A view of the crew at work on deck.

Question of the day: How long will it take the RON BROWN to travel from here to Arica (800 miles) averaging 13 knots/hour?

Keep in touch,
Jane

Jane Temoshok, October 19, 2001

NOAA Teacher at Sea
Jane Temoshok
Onboard NOAA Ship Ronald H. Brown
October 2 – 24, 2001

Mission: Eastern Pacific Investigation of Climate Processes
Geographical Area: Eastern Pacific
Date: October 19, 2001

Latitude: 20º S
Longitude: 85º W
Air Temp. 18.8º C
Sea Temp. 18.4º C
Sea Wave: 3 – 5 ft.
Swell Wave: 3 – 5 ft.
Visibility: 10 miles
Cloud cover: 7/8

Science Log

It’s done! Everyone was up early and out on the fantail (the aft deck) right after breakfast. Although the waves were a bit higher today the sun was bright and the temperature mild. In the complete reverse order of how the old mooring was brought in on Wednesday the new mooring was deployed. People worked from 7 this morning ’till 4 in the afternoon to get this put out properly and safely. Near the very end, after paying out close to 4000 meters of rope, the glass balls were attached, next the release valve, and lastly the anchor. The anchor consists of 3 large solid steel wheels that weigh close to 10,000 pounds! What a splash it made when it hit the water! Now there is a sense of relaxation and success. Tomorrow the onboard computers will check for signals from the mooring and then we will be on our way.

Temoshok 10-19-01 whoiglassballsdeploy4

The glass balls being deployed. The large objects by the A-frame are anchors. The left side is for the IMET Buoy and he right side is for the TAO Buoys.

Temoshok 10-19-01 whoijaneinribbest

TAS Jane Temoshok in the small boat going out to the buoy.

Temoshok 10-19-01 peoplegirlsinhardhats4

Women in hard hats on the deck: Claudia (Chile), Charlotte (France), Jane (U.S.), and Olga (U.S.) are ready to work on deck.

Travel Log

Wildlife on board

Gordy Gardipe from the engineering crew says that oftentimes seabirds fly onto deck during the night. They are attracted to the lights on the ship and they fly directly into it. Sometimes they die but sometimes they just get disoriented. Gordy has a special box that he uses to capture the bird. He waits until daylight and then sets them free. He said he used to release them right away but often they would just fly right back and do it again. That’s why he waits for sunlight.

Question of the day: What does a petral (type of sea bird) eat?

Keep in touch,
Jane

Jane Temoshok, October 18, 2001

NOAA Teacher at Sea
Jane Temoshok
Onboard NOAA Ship Ronald H. Brown
October 2 – 24, 2001

Mission: Eastern Pacific Investigation of Climate Processes
Geographical Area: Eastern Pacific
Date: October 18, 2001

Latitude: 20º S
Longitude: 85º W
Air Temp. 21.0º C
Sea Temp. 19.0º C
Sea Wave: 2 – 3 ft.
Swell Wave: 3 – 4 ft.
Visibility: 10 miles
Cloud cover: 5/8

Science Log

What lies beneath?

This is our third day “on station” at 85 W. Since successfully retrieving the mooring yesterday most of the scientists on board have been taking apart all the scientific instruments that came up with it. Their hope is that data was recorded all year long and that now they can transfer it to their onboard computers to bring home.

Along with that many people are preparing for tomorrow’s deployment of the new buoy. There are many things to consider, such as the length of rope (4400 meters!) and the depth order in which the instruments are to be attached. Each instrument must be placed along the rope so that it hangs precisely at a certain depth. Furthermore, the barnacles that were attached to the instruments that were brought in yesterday really made it difficult to get at the sensors. So today many of us are painting the instruments with a special paint that barnacles and other sea life don’t like. It’s called “anti-foul” paint. It’s used a lot on the bottoms of boats and such and it smells really bad! Hopefully it will make the buoy unattractive to barnacles.

The most important thing to consider though is where to put the mooring. X may mark the spot on a map, but it doesn’t work in the ocean. Just like the land around you has hills and mountains and valleys and plains the ocean floor is not smooth. In general the depth of the ocean in this part of the world is 4000 to 5000 meters. But if you needed to sink something to the bottom it would be important to know that it’s not going to land on an underwater mountaintop or be pulled down into a deep valley. The Ron Brown has a type of radar called the “sea beam” that looks straight down to the bottom of the sea and sends out acoustic signals. It measures how quickly those signals bounce off the bottom and return to the ship. This tells the computer how deep it is right there. It keeps doing this so the computer can form a picture of the bottom of the sea. It actually forms a map so the scientists can “see” where to drop the anchor.

Travel Log

MYSTERY PACKAGE

Shortly after completing our “web cast” while I was still on the bridge, the ensign on duty reported seeing an object in the water. We all took up binoculars and sighted a bright orange rectangular shaped object, about the size of a shoebox, that was floating off the starboard side. The captain quickly called the crew on deck and told them to prepare to retrieve the item as the ship approached. Of coarse everyone crowded around to see it being brought on board and was speculating as to what it might be. Drugs! Money! Perhaps a love letter! Because of its bright orange wrapping it was obviously meant to be discovered. Some speculated that it was just a piece of safety equipment that had fallen off a ship. The first thing we all noticed when it was lifted on to the deck was the barnacles attached to its underside. From this we inferred it had been in the water for several months, but because of the small size of the barnacles, probably less than a year. The captain came down and used a knife to cut it open. Alas, nothing but Styrofoam inside. We felt so let down!

In my broadcast today, I said I would give a t-shirt to the first student who could identify the signal flags on the back of the shirt. Look at the photo carefully, and if you think you know the answer, send me an e-mail. Be sure to include your name and teacher’s name so I know how to contact you! Good luck.

Question of the day: Is it necessary to paint all the instruments that will hang along the rope with anti-foul. Should the ones hanging at 50 meters get the same amount as those that hang at 500 meters or 1500 meters? Why or why not?

Photo descriptions: This is my roommate Claudia and a scientist from Ecuador helping paint the instruments with Anti-Foul Paint.

Temoshok 10-18-01 paintinginstruments

This is a photo of the Sea Beam Radar that is mapping the floor of the ocean underneath the ship.

Temoshok 10-18-01 seabeam

Here are 2 photos of the mystery package that turned out to be nothing!

Look carefully at the signal flags on the T-shirt. Do you know what letter each flag signals?

Temoshok 10-18-01 tshirtflags

Keep in touch,
Jane