Jacob Tanenbaum, October 11, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2009

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 11, 2008

Science Log

Greetings from Canada, my son Nicky’s favorite place! We are now in Canadian waters. We have crossed the international boarder. More amazing things keep coming up in our nets. Today we had some interesting sea-stars. Take a look. The larger ones are called Sun-Stars. Do they look like the sun to you? Sea stars are scavengers. They will move around the bottom looking for whatever food is laying around. The legs of the sea star have small tentacles that push food towards the mouth in the center.

Can you find the mouth?

Can you find the mouth?

Did you know that squid can change color? Often male squid change color to attract a mate or to scare off other males who are competing with them. If there are two males near one female, they able to turn one color on the side facing the female, and then turn another color on the other side facing the male.

Squid

Squid

We had more dolphins circling the ship last night. We think our lights may be attracting certain fish or squid, then the dolphins come to eat that. They are not with us during the day at all. One of the benefits, I guess, of being on the night watch. I cannot shoot still photos due to the low light, but have wonderful video. The sounds that you hear on the video were recorded with the ship’s hydrophone. This is a special microphone that can record sounds underwater. The sounds were recorded as the dolphins swam around the ship. You can hear the sound of them swimming by as well as the sound of their sonar as they locate fish to eat. Click here to watch and listen. Thanks to survey technician Pete Gamache for recording this for us. Click here to see the video. Don’t miss it!

Floating Sargassum mat

Floating Sargassum mat

Close up Sargassum

Close up Sargassum

We drove past some seaweed called sargasum weed. It normally grows in an area towards the middle of the Atlantic called the Sargasso Sea. We are well west of the Sargasso, but this seems to have drifted our way. Sargasum Weed grows on the surface of the water. These huge mats of seaweed support an entire ecosystem of sea creatures. Many come to seek shelter in the weeds. Many more come to feed on smaller creatures hiding there.

Snuggy and Zee paid a visit to the fantail of the ship.

Snuggy and Zee paid a visit to the fantail of the ship.

The fantail is an area by the stern of the vessel where the nets are deployed. The photos show the area where the work gets done. Our ship works all night long, of course, and trawls are done at night as well as during the day. Take a look at this video which explains how trawls are done.

NOAA Ship Albatross

NOAA Ship Albatross

Our ship is shadowing another NOAA ship, the Albatross. Why? The Albatross is an old ship and will be replaced by the Bigelow in the years to come. At this point, the ships are trawling in exactly the same place to see if they get similar results in their surveys. Making sure the vessels measure the same thing the same way is called calibration. Right now we are doing calibration with the Albatross.

—————————————————–

IMG_6425-724011Now some answers to your questions:

RM – No we did not see Nantucket yet. We were too far out to sea. We may see it on the way back. Thanks for writing.

T – I love Block Island too. Thanks for the warning about rough seas. I am glad you and your mom are both enjoying the blog as much as I enjoy writing it for you. I’m used to the 12 AM shift now. I that I finally got 8 hours of sleep.

AR – There were TONS of skates in the water.

Hello to Mrs Eubank’s Class. Its great to hear from you. Great questions. Now for answers:

— Amanda, I think fish can get smaller pieces of plastic confused with tiny plankton, but our buoy is too large for that. I don’t think it will hurt fish. I think they will stay away from it.

–Tiffany, this is a tough question and a very good question. I guess over time, our buoy will stop working and will become floating trash. The truth is all science effects the environment you study. The trick is to do more good with your work than harm. Our buoy will help us understand our environment better so that all of us will do less harm in the future. Our ship also burns fuel as we study the ocean. That pollutes a little, but hopefully through our work, we do more good than harm to what we study.

Weston, It felt like the drifter weighs about 35 pounds or so.

Bryce, we use a large net to scoop along the bottom. The opening is about 4 meters wide.

Luke, we have not, nor do I expect to find new species. Our purpose is to learn more about the species that we already know about.

Bryce, we were about 140 miles from the nearest land the last time I looked.

RJ, some scientists made our drifter.

Weston, there are about 1000 drifters right now in the open sea.

I enjoyed your questions. Thanks for writing.

Mr. Moretti’s class, I’m not sure what killed the whale, but remember, all things the live also die. We cannot assume that something human beings did killed that whale. With all the pollution we create, we cannot assume, however, that we did not hurt it. We should stop polluting just to be sure we do not hurt other living things.

Many of you have are working hard to figure out our math question from the other day. Here is how it works. If we are going 8 knots for 24 hours, we multiply 8 times 24 and get 192 knots in a day. If we want to convert that to miles, we multiply again by 1.15 because each knot is 1.15 miles. We get 220.8 Congratulations to all who got this correct. It was a tough question.

Several of you have asked how long I would be on the ship. I will be here until the end of next week. I leave the ship on Friday October 17th.

LP – I enjoy the show Deadliest Catch very much. I think it is cool that scientists sometimes do that same kind of exciting work.

SD, there is no way for me to videotape under that water, but tomorrow I will show you how our sonars (we call them echosounders) work. That is one way to see under the water.

DT from SOMS dont’ worry, there is no light pollution out here. I am on the back deck of a working ship, so right where I am there are lights. I need them to do my job. I just have to go to the upper decks to get away from it or ask the bridge to shut them down for a bit.

Jacob Tanenbaum, October 10, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2008

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 10, 2008

IMG_6354-743446Science Log

Did you figure out the answer to yesterday’s question? Those creatures were the real cast of Sponge Bob Square Pants TV Show. We saw a sponge, like Sponge Bob, and sea stars like Patrick, plankton, like Sheldon Plankton, some squid like Squidward, a crab like Mr. Krabs next to a sand dollar (because Mr. Krabs loves money), a lobster like Larry the Lobster and a snail like Gary. All the creatures in the program actually exist in the sea, except for squirrels, and we have seen them all on this adventure. Amazing creatures keep coming up in our nets day after day. Let’s take a look at a creature called a skate. The skate makes those funny black rectangles that you find on beaches. Take a look at where those rectangles come from and what is inside of them. Click here for a video!

Skates also have interesting faces. They live along the bottom of the sea. Their eyes are on top of their head to spot predators and their mouthes are below to eat what is on the bottom. They have two nostril -like openings above their mouth called spiracles. They look just like eyes but actually help the skate breathe. Here are a few interesting skate faces.

IMG_6247-720301

This sea robin uses three separate parts of its pectoral fin, called fin-rays to move, almost like its walking along the bottom of the sea as it looks for food. This helps is move very quietly, making it able to sneak up on prey unobserved.

Sea Robin

Sea Robin

These two baby dog-fish show different stages of development. This one is still connected to an egg sack. The other has broken loose from it, but you can still see where it was attached just below the mouth. Usually in this species, just like most fish in the shark family has eggs that develop inside the mother’s body. She gives birth to the pups when they have hatched from their eggs and are ready for the open sea.

Dogfish egg sack

Dogfish egg sack

IMG_6374-789593Many people have asked me about garbage. Here is some of what we have found so far. We caught part of someone else’s fishing net. Here is a Styrofoam cup and here is a plastic bag, which we caught 140 miles from the nearest land. How do you think it got here?

Finally, we were visited by some dolphins last night. They were eating smaller fish and as they came in for their attack, you can see the smaller fish jumping straight out of the water into the air to try to avoid being caught. Click here for a video.

IMG_6125-731150

IMG_6383-764446Snuggy and Zee decided to visit the kitchen today. Here are Zee and Snuggy with our chief Steward Dennis M. Carey and our 2nd cook, Alexander Williams. The food here is fantastic. See how large the kitchen is? We have a lot of people to feed on this ship, and the cooks here work hard. You have seen a few of the many different jobs that people can do on a ship like this. You have seen the scientists at work in the labs, you have seen the engineers who make the engine go. You have been to the bridge where the NOAA Corp officers run the ship. You have been to the kitchen where the cooks keep us so well fed. Tomorrow, you will see how the deck crew trawl our sample nets through the water. Keep checking the blog this weekend. There will be lots to see.

~~~~~~~~~~~~~~~~~

Now, some answers to your questions and comments:

Hi to KD and to Derek Jeter. We are staying safe. Thanks for writing.

Hello to St. Mark School in Florida. I’m glad you are enjoying the blog. I really enjoyed your thoughts about what these fish have in common. Great work. Here are some answers:

If a ship hit a drifter, the drifter would probably be broken. But the ocean is a big place, and that does not happen very often.

Can your school adopt a drifter? Of course! Take a look here: http://www.adoptadrifter.noaa.gov/. In the mean time, you are welcome to follow the adventures of our buoy. Keep checking this website!

I have Snuggy because some of my kindergarten classes asked me to take a bear with me to sea. So I did!

How heavy are the drifters? It weight 30 pounds or so, I would guess. Enough to make me work to pick it up.

I knew the whale was dead because part of it was decomposing. We could see it and we could smell it. Yuck.

Did any fish try to bite me? Yes. One scallop closed its shell on my finger. I had to be quick to get my hand out of the way in time. Other than that, no.

At 8 knots per hour, the ship could travel 192 knots, or about 220 miles in a day.

Congratulations to all who calculated correctly. The truth is that we have to stop for sample trawls every hour or two, so we seldom make our top cruising speed when we do work like this. So, we usually travel less than we could.

Oh, and to all those who asked, so far I have not gotten sick. Yet.

Thanks all for writing. Keep checking the blog!

Jacob Tanenbaum, October 8, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2009

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 8, 2008

Science Log

Today we started working. My shift is 12 midnight to 12 noon, so I slept for a few hours in the afternoon and then worked overnight and into the morning. It is hard to get used to staying up all night. It feels a little like I took an unexpected trip to Europe. Our first haul took the longest to sort out because many of us were learning how things were supposed to work, but after a full day, it started to feel routine. Here is a sampling of some of the amazing creatures that came up in our nets:

Big fish!

It’s a shark!

This is a dogfish. It is a relative of the shark, but without all those ferocious teeth. So many people have asked me if I have seen a shark, I had to put these photos up for you!

This is a dogfish. It is a relative of the shark, but without all those ferocious teeth. So many people have asked me if I have seen a shark, I had to put these photos up for you!

This lumpfish is a related to the anglefish, which has a light and lives in deeper water.

This lumpfish is a related to the anglefish, which has a light and lives in deeper water.

Here is a squid, a sea-robin a baby dogfish that had just hatched and a flounder or two.

Here is a squid, a sea-robin a baby dogfish that had just hatched and a flounder or two.

This is a skate.

This is a skate.

These are the skate egg cases. Have ever found one on a beach? Now you know what it grows into.

These are the skate egg cases. Have ever found one on a beach? Now you know what it grows into.

This is a long horned sculpin. These creatures buzz when you hold them and stick their fins up to scare you off. Amazing!

This is a long horned sculpin. These creatures buzz when you hold them and stick their fins up to scare you off. Amazing!

The largest lobster I have ever seen. Can you guess why I'm smiling in the picture? Here is a special shout out to my favorite lobster (and clam) fans, Simon and Nicky Tanenbaum!

The largest lobster I have ever seen. Can you guess why I’m smiling in the picture? Here is a special shout out to my favorite lobster (and clam) fans, Simon and Nicky Tanenbaum!

And finally, we saw whales!

~~~

NOAA Ship Albatross, also working on this survey

NOAA Ship Albatross, also working on this survey

On a personal note, this is a very comfortable ship. Zee and Snuggy will continue to show us around each day. Several of us watched the presidential debate on live satellite TV in the lounge tonight. Here are Snuggy and Zee having a quick meal.

Cottage Lane students, we are traveling about 8 knots per hour right now. Can you calculate how for we can travel in a day? Remember, the ship works all day and all night. How far can it go at that speed? Post your answers on the blog, then watch the video. Would you like to do this kind of work? Let me know.

I have enjoyed reading your comments very much. We are going to have a little delay in my responding to comments today as I get used to working the midnight shift. You are all correct when you say that the Bigelow has a LOT more technology than the Eagle. Consider this: I went on deck at about 4 in the morning to do some work and found that I could not see the stars because the electric lights on the ship were so bright! I guess we have to have a GPS when you reach that point! Celestial navigation just will not work on a ship with lights so bright!

Mascots in the galley

Mascots in the galley

A lot of you were focusing on what sailors then and now need to survive: Food and water, for example. Did you know old sailing ships had to bring their entire supply of fresh water with them in barrels. Today, our ship can take the salt out of seawater to make it safe to drink. Technology has changed the way we live on ships!

To my fellow TAS from the Delaware: Thanks for writing. We are doing bottom trawls and are looking to survey the entire benthic community here. Thanks for the sea-sickness tips. I may need all the help I can get if the weather decides to change.

Lynn: thanks for reading the blog. Zee is fine, and so far so am I. With luck, the weather will hold! If not, Zee may do better than I do. We could see Cape Cod earlier today. Beautiful!

Barney Peterson, August 18, 2006

NOAA Teacher at Sea
Barney Peterson
Onboard NOAA Ship Rainier
August 12 – September 1, 2006

Mission: Hydrographic Survey
Geographical Area: Shumagin Islands, Alaska
Date: August 18, 2006

wet and dry bulb thermometer

Wet and dry bulb thermometer

Weather Data from Bridge 
Visibility: 10 nm
Wind direction:  220˚
Wind speed:  light 0 – 2 knots
Sea wave height: 0 – 1’
Seawater temperature: 9.4 ˚C
Sea level pressure:  1017 mb
Cloud cover: cloudy (8/8)

Science and Technology Log 

Wednesday I spent time on the bridge, observing what happens when the ship is traveling at sea. My classes at James Monroe Elementary have participated in the GLOBE program, acquiring and sending weather data daily to be used to form a picture of conditions around the world.  It was particularly interesting to me to learn that the crew of NOAA ships take much the same readings hourly and report them every 4 – 6 hours to the National Weather Service to help develop the predictions that help us all guide our day to day lives.  I was especially impressed that the readings I saw were made using traditional instruments, not an automated electronic weather device.

One of the people in the pilot house logs weather every hour on the hour. There is an outside station on the starboard wall of the pilot house.  This gives a temperature reading and allows them to calculate relative humidity.  That is the difference between how much moisture is in the air, and how much total moisture the air is capable of holding.  It may be expressed as a percentage, or decimal number. For hourly reporting, the relative humidity is not recorded and it is calculated automatically by when the “Big Weather” is submitted to National Weather Service.  Both temperature of the air and sea water are read in ˚Fahrenheit and converted to ˚Celsius for reporting.

An anemometer  measures wind speed.

An anemometer measures wind speed.

Wind speed is read from an anemometer mounted on the ship’s mast.  This reading is a bit trickier if we are under way. When the ship is moving, the ship’s speed is subtracted from the anemometer reading to give a corrected wind speed.  (Otherwise, the reading is like what you would get running while holding a pinwheel in front of you…much faster air movement than what is actually happening.) There is a wind vane mounted on the front of the ship and also an electronic gauge for reading wind direction.

The barometer (at left) is used for reading air pressure. It is located on the back wall of the pilot house and always gets a gentle tap before a reading is taken. This measurement is important because trends up or down in air pressure give clues to developing weather systems.  The pressure is recorded in milibars.  The ship’s barometer is shown at left. Some measurements involve using experience and personal judgment as well as instruments.  These are the ones for wave height, swell height, cloud cover amount, cloud height, and visibility. The accuracy of these readings depends upon the experience and care of the person making them.  The sea wave and swell can be estimated by careful observation, which seems to become second nature to the crew because they are exposed to them all the time.  They are recorded in feet.  The direction of the swell is always shown as the direction in which the swell is going. It can be measured using a device mounted on the deck outside the pilot house.

A barometer reads air pressure.

A barometer reads air pressure.

Cloud cover is measured in eighths.  The observer divides the sky, calculates by observation how many eighths of the sky are covered by clouds, and reports that fraction. Likewise, a person must be a careful observer to note the kind of clouds they are seeing and where they mostly appear in the sky. There is a cloud chart available that shows pictures of cloud types and tells the altitudes at which they are commonly formed.  This is a great help. (The cloud chart is shown at the right.) When there are low clouds, and there is land nearby, the observer can check the elevation of a point of land and judge the elevation of the lowest clouds as they appear against that point. Another measurement that may sometimes have to be an experienced estimate is visibility.  Again, if land is visible, the observer tells how far away she/he can clearly see according to landmarks and the distances on charts or the ship’s radar screens.  It is a lot harder to make this judgment when the ship is at sea, with no landmarks to help.  That is when experience is especially important.  One aid in this case is that the known distance to the horizon, due to the curvature of the earth, is eight nautical miles.  That means that if the observer can see clear to the horizon, visibility is at least 8nm.

This day I watched Able Bodied Seaman (AB) Jodi Edmond take weather readings and report “Big Weather” to the National Weather Service using the internet.

A cloud chart on the NOAA’s National Weather Service Web site.

A cloud chart on the NOAA’s National Weather Service Web site.

Personal Log 

I am running about a day behind writing and submitting my logs.  There is so much to do and see that I forget to spend enough time writing.  I am using the personal journals that my students gave me at the end of the school year to record my impressions and thoughts every evening.  Those act as memory-joggers when I sit down at the computer to do my formal writing.

Everyone aboard the RAINIER is very friendly and helpful.  I am still making a few wrongs turns or selecting the wrong stairs to get to where I need to go. The officers and crew are great about pointing me in the right direction and giving me clues to help me remember how to find where I need to be when.

Every afternoon the orders for the next day are posted in several spots throughout the ship.  These list the survey boats that will be going out, and their crews and assignments.  The list also tells about responsibilities on board ship…both for the officers and the crew.  These are called the Plan of the Day (POD) and are important for everyone to read when they are posted.

Question of the Day 

How is wind direction normally reported: do we tell the direction from which the wind comes, or the direction toward which it is blowing?

Barney Peterson, August 16, 2006

NOAA Teacher at Sea
Barney Peterson
Onboard NOAA Ship Rainier
August 12 – September 1, 2006

Mission: Hydrographic Survey
Geographical Area: Shumagin Islands, Alaska
Date: August 16, 2006

Weather Data from Bridge 
Visibility: 12 nautical miles (nm)
Wind direction: 234˚
Wind speed: 0 – 3 knots
Sea wave height: 1’
Seawater temperature: 11.7˚C
Sea level pressure: 1011.8 mb
Cloud cover: 8/8 Height: 2000 -3000’ Type: Stratus

My first view of the NOAA ship RAINIER at the dock in Seward, AK.

My first view of the NOAA ship RAINIER at the dock in Seward, AK.

Science and Technology Log 

Yesterday I spent time in the Plot Room learning about the technology used to survey the surface of the earth underneath the ocean (bathymetry).  For each survey the computers must  have accurate, real-time information about the behavior of the ship on the sea surface (pitch, roll, speed) because all of this can affect the accuracy of sonar readings.  The sonar (sound waves) is beamed from the bottom of the survey vessel and spreads out in a cone shape to the undersea surface. Bottom features that stick up closer to the sea surface reflect sonar waves and return echoes sooner so they show up as more shallow spots.  Echoes from deeper places take longer to return, showing that the bottom is farther away at those places.

The data from each day’s survey is downloaded into computers in the Plot Room.  Survey technicians review the data line by line to be sure it all fits together and to “clean up” any information that is questionable.  They use information about the temperature and conductivity of the water where the survey was taken to understand how fast the sonar waves should be expected to travel. (This information is critical for accuracy and is collected every 4 to 6 hours by a device called the CTD.  The CTD is lowered from the ship and takes readings at specified depths on its way down through the water.)

Ensign Megan McGovern and crew partner in full firefighting bunker gear for our first Fire/Emergency Drill.

Ensign Megan McGovern and crew partner in full firefighting bunker gear for our first Fire/Emergency Drill.

When survey work is in deep water, it is done from the ship using equipment that can cover a wider area in less detail.  The launches are used for shallow water work where it is more important to navigation to have finer detail information on water depths and underwater features of the earth surface. Bonnie Johnston, a survey technician, spent about an hour explaining how the system works and showing me how they clean up data before it is sent off for the next stage of review, on its way to becoming part of a navigational chart.  Computers used have two screens so survey technicians can see a whole survey line of data and look closely at information on tiny spots at the same time without losing their place on the big screen.  This helps to judge whether changes of depth are accurate according to trends on the sea bottom, or spikes that show an error in the echoes received by the sonar. The software also allows them to see data as 2-D, 3-D, color models, and to layer information to give more complete pictures.

Tomorrow we are scheduled to begin our actual survey work in the Shumagin Islands.  In between making new surveys the technicians are kept very busy working with the data they have on hand. There are many steps to go through to insure accuracy before data is ready to use for charts.

This is the 4.5 foot dogfish shark caught by a crewmember.  This shark has no teeth even though it looked ferocious.  released it after taking pictures.

This is the 4.5 foot dogfish shark caught by a crewmember. This shark has no teeth even though it looked ferocious. released it after taking pictures.

Personal Log 

My first two days aboard the RAINIER have been a swirl of new faces and places.  The only name I knew for sure before I arrived was Lt. Ben Evans who had exchanged email with me about the gear I would need. I was met at the Seward RR station by and welcomed onto the ship by Ensign Megan McGovern.  She gave me a quick tour of the ship, including where to put my gear. I felt like a mouse in a maze: up and down steps, around blind corners, and through doorways. It has been much easier so far to find my way than I thought it would be.  Reading books that use nautical terms has helped give me a background to understand port, starboard, fore, aft, head, galley, bridge, fantail, and flying bridge. Now I just need to remember where they all are.

Monday was taken up with a safety briefing, checking out equipment such as my flotation coat, personal flotation device (life jacket) for use in survey boats, hard hat, and immersion suit.  I spent several hours reading Standing Orders that all persons aboard must read before being allowed to stay. I talked with the medical officer, and discovered where to eat and the times meals are served. Tuesday we had a Fire/Emergency Drill at about 1030 (10:30 am) for which I reported as fast as I could to my assigned station on the fantail.  We were checked off on a list and some crew members practiced with fire fighting equipment.

Just as we finished that drill, the Executive Officer called an Abandon Ship Drill.  Everyone rushed to quarters to get immersion suits, hats and any assigned emergency gear before reporting to muster stations.  Again we were checked off and all accounted for before anyone could return to what they were doing before. These drills are an important part of shipboard life. They are required once a week and always within 24 hours of the ship sailing from port.

I am sleeping and eating well.  The food is like camp and so are the bunk beds.  So far I have seen lots of salmon: the stream in Seward was full of migrating Coho (silvers); the sea at Twin Bays was alive with jumping Pinks. Monday night one crew member, fishing from the fantail while we were anchored, caught and released a 4.5’ dogfish (shark).  The next day someone caught an 8 lb. silver.  There are sea lions, otters, gulls, eagles, puffins and dolphins to watch. I hate to close my eyes to sleep because I know I will miss seeing something wonderful.

Question of the Day 

What is the speed of sound through air?  Does sound travel faster or slower through water?