Cecelia Carroll: Back Home, May 16, 2017

NOAA Teacher at Sea

Cecelia Carroll

Aboard NOAA Ship Henry B. Bigelow

May 2 – 14, 2017

Mission: Spring Bottom Trawl

Geographic Area: Northeastern Atlantic

Date: May 16, 2017

Reflections

With our stations complete, we headed home a bit early on Saturday, and with the approaching nor’easter on Mother’s Day, it was probably a good decision.  I thoroughly enjoyed my experience and value the efforts, hard-work, professionalism and teamwork that make an undertaking of such enormity a valued and fun endeavor.  The camaraderie of the team will be forever cherished.

We came back through the Cape Cod Canal late in the evening, on our return to Newport, RI.  We spotted joggers with head lamps running along the path of the canal. Perhaps a local road race?

It was interesting feeling in my kitchen rocking and rolling all day Sunday …. dock rock or kitchen rock???  That was a fun sensation!!

It was nice to see my students this morning, Monday, all welcoming me home and curious about my trip.  On Sunday, I had prepared a slide-show of many of my photos and projected my blog on the “Smartboard” to share with my classes.  They had a wide range of questions from what did I eat, was I seasick, what fish did we catch, did you dissect any fish, did you see any whales, how old do you have to be to go out on the ship, to what will the scientists do with the samples that were saved. They were impressed with my pictures of the goosefish, (who wouldn’t be impressed with such a fish!) and laughed at how the scientist I worked closely with nicknamed me a “Fish Wrangler” as I had caught, in midair,  some slippery, squirming, flip-flopping Red Fish as they had managed an attempted escape off the scale when a big wave hit.  I’ll wear that tag with pride!

Thank you to NOAA and their staff that prepared me for the journey.  Thank you to all the wonderful people I met on the ship.  A “Teacher at Sea” is a monicker of which I will be always proud … as well as “Fish Wrangler!”

Some Photos

IMG_1541

This lobster is regenerating a new claw!! Amazing!

 

IMG_1763

Mike deciding which species of fish we will run on the conveyor ( let go to the end of the conveyor belt without sorting manually straight into a basket )

 

 

 

Alex Miller: Working the Night Shift, June 3, 2015

NOAA Teacher at Sea
Alexandra (Alex) Miller, Chicago, IL
Onboard NOAA Ship Bell M. Shimada
May 27 – June 10, 2015 

IMG_8309 (1)

The full moon lights up the night on top of the flying bridge.

Mission: Rockfish Recruitment and Ecosystem Assessment
Geographical area of cruise: Pacific Coast
Date: June 3, 2015

Weather Data:

  • Air Temperature: 13.3°C
  • Water Temperature: 14.8°C
  • Sky Conditions: Partly Cloudy, I could still see some stars
  • Wind Speed (knots/kts), Direction: 5.5 kts, NNE
  • Latitude and Longitude: 43°29’84”, 124°49’71”

_________________________

Later on Monday, once all the night-shifters had risen from their beds and were beginning to get ready for the bongos and mid-water trawls, I took a tour of the engines with marine engineer and NOAA crewmember, Colleen. We started in the control room. With up to four engines operating at any one time, Colleen says it’s a relief that computer systems help to automate the process. As part of her four-year degree program at Seattle Maritime Academy, she learned how to operate the engines manually as well, but I think we can all agree computers make life easier.

Before moving on to the actual engine room, Colleen made sure I grabbed some ear protection. For a one-time visit they’re probably more for my comfort than to protect from any real damage, but because she’s working with the engines every night, it’s important to protect against early-onset hearing loss. Once the plugs were in, we were basically not going to be able to talk so Colleen made sure that I knew everything I was going to see before we proceeded.

Colleen in the control room.

Colleen in the control room.

First, we made our way past the fresh water tanks. I was really curious about how we get fresh water on the ship, since we’re in the middle of the Pacific Ocean. The Shimada produces freshwater using two processes. Reverse osmosis produces most of the water, using high pressure to push the seawater across a membrane, a barrier that acts like a filter, allowing the water molecules to pass through but not the salt. This is an energy intensive process, but the evaporators use the excess energy produced by the engines to heat the seawater then pass it through a condensing column which cools it, and voilá, freshwater!

Next, we came to the four diesel engines. Four engines. These four engines are rarely all on at one time but never will you find just one doing all the work. That would put too much strain on and probably burn out that engine. While they burn diesel fuel, like a truck, instead of using that energy to turn a piston like the internal combustion engine of that same truck, they convert that energy to electricity. That electricity powers the two motors that ultimately make the ship go.

Panoramic view of the engine room, engines 1 and 3 can be seen in foreground and engines 2 and 4 in the background.

Panoramic view of the engine room, engines 1 and 3 can be seen in foreground and engines 2 and 4 in the background.

A ship the size of the Shimada requires a lot of power to get moving, but Colleen tells me it gets decent mileage. Though the ship’s diesel tank can hold 100,000 gallons, there’s only about 50,000 gallons in the tank right now and the ship only needs to refuel every couple of months.

After a quick pass by the mechanics for the rudder, the fin-shaped piece of equipment attached to the hull that controls the direction the ship is traveling we arrived at our last stop: Shaft Alley. Those two motors I told you about work together to turn a giant crankshaft and that crankshaft is attached to the propeller which pushes water, making the ship move. When I was down there the ship was on station, where it was holding its location in the water, so the crankshaft was only turning at 50 RPM (rotations per minute).

It was a pleasure getting a tour from Colleen!

_________________________

Throughout the night, the Shimada revisits the same transect stations that it visited during that day, but uses different nets to collect samples at each station. To the right, you can see a map of the stations; they are the points on the map. Each line of stations is called a transect. Looking at the map it’s easy to see that we have a lot of work to do and a lot of data to collect.

The transects and stations within them that the Shimada will survey at.

The transects and stations within them that the Shimada will survey at.

Why does this have to happen at night? At night, the greatest migration in the animal kingdom takes place. Creatures that spend their days toward the bottom layers of the ocean migrate up, some as far as 750 m (almost 2,500 ft)! Considering they’re tiny, (some need to be placed under the microscope to be reliably identified) this is relatively very far. And they do it every day!

To collect data on these organisms, three types of nets are used, two of which are not used during the day. Along with the surface-skimming neuston (which is used during the day), the bongo net, so named because it has two nets and looks like a set of bongo drums, and the Cobb trawl which is a very large net that needs to be deployed off the stern (back of the boat).

The operation of the bongo net is similar to the neuston, it is lowered off the starboard (when facing the bow, it’s the right side) side of the boat. Dropping down to 100 m below the surface and then coming back up, the bongo is collecting zooplankton, phytoplankton and fish larvae. The samples are poured from the cod-end into a strainer with a very fine mesh and since the water is full of those tiny bits, the straining can take a bit of time and some tambourine-like shaking.

The Cobb trawl on deck, waiting to be deployed.

The Cobb trawl on deck, waiting to be deployed.

These samples are then fixed (preserved) in ethanol and they will be analyzed for diversity (how many different species are present) and abundance (how many individuals of each species is present). The bongo is the net of choice for this survey because once scientists go to process the data, the double net provides a duplicate for each data point. This is important for statistical purposes because it ensures that the area that is sampled by one side of the net is similar enough to the area sampled by the other side of the net.

Below you can see video of the bongo net after it’s been hauled back. Scientists are spraying it down to make sure all organisms collect in the cod-end.

 

 

_________________________

Once the bongos are done, comes the real action of the night shift. The mid-water trawls take 15 minutes. I’ve become really great at communicating with the bridge and survey technicians who are operating the nets so that I can record data for the beginning and ending of the trawls. Once the catch is on deck, the survey technicians empty the cod-end into a strainer. The scientists prepare to sort, count and measure the species of interest. If the catch is large or particularly diverse, this can be a significant task that requires all hands on deck.

With four trawls a night, some with 30-50 minutes transit time with nothing to do in between, fatigue can set in and make the work hard to finish. To make it through the night, it takes great senses of humor and playful personalities. A little theme music doesn’t hurt either. The scientists of the night shift, under the direction of Toby Auth, a fisheries biologist with Pacific State Marine Fisheries Commission working as a contractor to NOAA and Chief Scientist Ric Brodeur, are Brittney Honisch, a marine scientist with Hatfield Marine Science Center, Paul Chittaro, a biologist with Ocean Associates working as a contractor to NOAA, Tyler Jackson, a fisheries science graduate student, and Will Fennie.


The data collected during these trawls provides a snapshot of the ecosystem. This data will help NOAA Fisheries Service understand the health of the ocean ecosystem as well as how large certain populations of commercially important fish are such as hake and rockfish.

In the meantime, it provides for some late night fun. Over the course of the nights that I’ve spent in the wet lab, we have uncovered some bizarre and fascinating creatures.

But in my opinion the real star of the trawls was the young female dogfish. A dogfish is a type of shark. I know what you’re thinking and no, she did not try to bite us. But dogfish do have two spines, one at the base of each dorsal (back) fin. We all fell in love, but, ultimately, had to say goodbye and return her to the sea.

This slideshow requires JavaScript.

Thank you for your patience as I’ve gathered the images and video to make this and future posts as informative as possible. Stay tuned for Episode 5 coming soon!

Personal Log

First off, a heartfelt CONGRATULATIONS to the first 8th grade class at Village Leadership Academy. I wish I could be there when you walk across that stage on June 4th.

_________________________

Little did I know when I started hanging out with the scientists of the night shift that it would become a way of life. Each night I managed to stay up later and later and finally last night I made it through all four catches and almost to 0800, the end of the night’s watch. After dinner (some call it “breakfast”), I slept a full eight hours, and it felt completely normal to be greeted with “Good Morning!” at 3:30 in the afternoon.

Speaking of the night’s watch, I’m really grateful that someone was able to get one of my favorite TV shows last Sunday. And Game 7! The Blackhawks are in the finals! Even though I can’t call anyone back home to discuss my theories or that amazing goal by Seabrook in the third period, I can email and it feels like I’m missing less.

The only person I can’t email is my cat, Otto! I can’t wait to snuggle him until he scratches me.

output_GIG1yZ

Otto the cat. He loves snuggling.

Question of the Day:

Comment with answers to these questions and I’ll shout your name out in the next post!

What is your favorite animal we have seen so far?

Acknowledgements:

Thanks to Paul Chittaro for assisting in the use of iMovie for this post!

John Clark, September 27, 2013

NOAA Teacher at Sea John Clark

Aboard NOAA Ship Henry B. Bigelow

September 23 – October 4, 2013

Clark Log 3gMission: Autumn Bottom Trawl Survey
Geographical Area of Cruise: North Atlantic
Date: September 27, 2013

Science and Technology  Log 

It’s going to be a busy night trawling and processing our catch.  Yippee. I like  being busy as the time passes more quickly and I learn about more fish. A large number of trawling areas are all clustered together for our shift. For the most part that means the time needed to collect data on one trawl is close to the amount of time needed for the ship to reach the next trawling area. The first trawl was a highlight for me as we collected, for the first time,  a few puffer fish and one managed to stay inflated so I had a picture taken with that one.

We found a puffer

We found a puffer

However, on this night there was more than just puffer fish to be photographed with. On this night we caught the big one that didn’t get away. One trawl brings in an amazing catch of 6 very large striped bass and among them is a new record: The largest striped bass ever hauled in by NOAA Fisheries! The crew let me hold it up. It was very heavy and  I kept hoping it would not start flopping around. I could just see myself letting go and watching it slip off the deck and back into the sea. Fortunately, our newly caught prize reacted passively to my photo op. I felt very lucky that the big fish was processed at the station I was working at. When Jakub put the big fish on the scale it was like a game show – special sounds were emitted from our speakers and out came the printed label confirming our prize  – “FREEZ – biggest fish ever “-‐-‐the largest Morone Saxatilis (striped bass) ever caught by a NOAA Fisheries research ship.  It was four feet long. I kept  waiting for the balloons to come down from the ceiling.

Catch of the day

Catch of the day

Every member of the science team sorts fish but at the  data  collection tables my role  in the  fish lab is one of “recorder”. I’m teamed  with  another scientist who serves  as  the “cutter”, in this  case Jakub. That person collects the information I enter into the computer. The amount of data collected  depends on  the quantity and  type of fish  caught in  the net. I help  record  data on length, weight, sex, sexual development, diet, and scales. Sometimes fish specimens or parts of a fish, like the backbone of a goose fish, are preserved. On other occasions, fish, often the small ones are frozen for further study. Not every scientist can make it on to the Bigelow to be directly part of the trip so species data and samples are collected in accordance with their requests.

Collecting data from a fish as large as our striped bass is not easy. It is as big as the processing sink at our data collection  station and it takes Jakub’s skill with a hacksaw-‐-‐yes I said hacksaw-‐-‐to open up the back of the head  of the striped  bass and retrieve  the  otolith, the  two small bones  found behind the head that are  studied to determine  age. When we  were  done, the fish was bagged and placed in the deep freeze for  further  study upon our return. On the good side we only froze one of the six striped bass that we caught so we got to enjoy some great seafood for dinner. The team filleted over 18 pounds of striped bass for the chef to cook up.

Too big for the basket

Too big for the basket

More Going On: 

Processing the  trawl is not the  only data  collection activity taking place on the  Bigelow.  Before most trawls begin the command comes down to “deploy the bongos”. They are actually a pair  of  closed end nets similar to nets used to catch butterflies only much longer. The name bongo comes from the deployment apparatus that holds the pair of nets. The top resembles a set of bongo drums with one net attached to each one. Their purpose, once deployed, is to collect plankton samples for further study. Many fish live off plankton until they are themselves eaten by a predator farther up the food chain so the health of plankton is critical to the success of  the ecological food chain in the oceans.

Processing

Processing

Before some other trawls, comes the command to deploy the CTD device. When submerged to a target  depth  and  running in  the water as the ship  steams forward, this long fire extinguisher sized  device measures conductivity and temperature at specified depths of the ocean. It is another tool for measuring the health of the ocean and how current water conditions can impact the health  of the marine life and also the food chain in the area.

Personal Log 

On a personal note, I filleted a fish for the first time today – a  flounder. Tanya, one  of the science crew taught me how to do it. I was so excited about the outcome that I did another one!

Processing fish

Processing fish

Clark Log 3gg

A mix of fish

A mix of fish

Paired trawl

Paired trawl

Learning to fillet

Learning to fillet

John Clark, September 25, 2013

NOAA Teacher at Sea John Clark

Aboard NOAA Ship Henry B. Bigelow

September 23 – October 4, 2013

The galley

The galley

Mission: Autumn Bottom Trawl Survey
Geographical Area of Cruise: North Atlantic
Date: September 25, 2013

Science and Technology  Log 

I was  told  that  the  first  12  hour night watch shift was the hardest for staving off sleep and those who spoke were right. Tonight’s  overnight shift seems to be flying by and I’m certainly awake. Lots of trawling and sorting this  evening with four sorts complete by 6am. One was just full of dogfish, the shark looking fish,  and  they  process  quickly  because  other  than  weight  and  length there is little request for other data. The dogfish were sorted at the bucket end of the job so determining sex had already been completed by the time the fish get to my workstation. Again I’m under the mentorship of Jakub who can process fish faster than I can print and place labels on the storage envelopes. The placement of the labels is my weakness as I have no fingernails and removing the paper backing from the sticky label is awkward and time consuming. Still tonight I’m showing speed improvement over last night. Well at least I’m getting the labels on straight most of the time.

Sorting fish

Sorting fish

In  addition  to  the  dogfish,  we  have  processed  large  quantities  of  skate  (the  one  that  looks  like a  sting  ray to me), left  eyed flounders, croakers (no relation to the frog), and sea robins of which there are two types, northern and stripe. The sea robins are  very colorful with the  array of spines just behind the  mouth. And yes it hurts when one of the spines goes through your glove. Sadly for me sorting has been less exciting tonight.  With  the big fish being grabbed off at the front of the line there has been little left for me to sort. I feel like the goal keeper in soccer  – just  don’t let them get past me. To my great surprise, so far I’ve experienced no real fear of touching the fish. The gloves are very nice to work with.

Species in specific buckets

Species in specific buckets

And let us not overlook the squid. There have been pulled in by the hundreds in the runs today. There are two types of squids, long fin (the lolligo) and short fin (the illex). What they both have in common is the ability to make an incredible mess. They are slimy on the outside and  inky on the inside. They remind me of a fishy candy bar with really big eyes. And  for all the fish  that enjoy their squid  treat the species  is,  of  course,  (wait  for  it) just  eye  candy.  The  stories  about  the  inking  are  really  true. When  upset, they give  off ink; lots of ink. And  they are very upset by the time they reach the data collection stations. If you could bottle their ink you would  never need  to  refill your pen  again. They are also  very, very  plentiful which  might explain  why there are no requests to collect additional data beyond  how long they are. I guess they are not eye candy to marine scientists. However, there vastness is also their virtue. As a food source for many larger species of marine life, an absence of large quantities of squid in our trawling nets would be a bad sign for the marine ecosystem below us.

Safety equipment

Safety equipment

When the squid are missing, our friend the Skate (which of  the four  types does not  matter)  is glad to pick up  the slack on  the “messy to work with” front. As this species makes it down the sorting and data collecting line the internal panic button goes  off and they exude this thick, slimy substance  that covers their bodies and makes them very slippery customers at  the weigh stations.  It turns out the small spines on the tails were placed there so that fisheries researchers could have a fighting chance to handle them without dropping. Still, a skate sliding onto the floor is a frequent event and provides comic relief for all working at the data collection stations.

Clark Log 2There was new species in the  nets tonight, the  Coronet fish which looks like  along  drink straw with stripes  and a string attached to the back end. It is  pencil thick and about a foot long without the string. We only caught it twice during the trip. The rest of the hauls replicate past  sorting as dogfish, robins, skates, squid, croakers, and flounder are the bulk of the catch. I’ve been told that the diversity and size of the trawl should  be more abundant as we steam along the coastline heading north  from the lower coast of  New Jersey. Our last trawl of the shift, the nets deployed collect two species new for our voyage, but ones I actually recognized despite my limited knowledge of fish – the Horseshoe Crab and a lobster! I grew up seeing those on the Jersey shore.  We only got one lobster and after measuring  it we let  go  back  to  grow  some  more.  It  only  weighed in at less than two pounds.

Personal Log 

The foul weather suit we wear to work the line does not leave the staging room where they are stored as wearing them around the ship is not  allowed. After  watching others, I have mastered the art  of  pushing the wader pants over the rubber boots and  thus leaving them set-‐up  for quick donning and  removal of  gear  throughout  the shift.

While the work is very interesting on board, the highlight of each  day is meal time. Even though I work the night  shift (which ends at  noon) I take a nap right after my shift so I can  be  up  and  alert in  time  for dinner. My favorite has been  the T-‐bone steaks with Monterey seasoning and  any of the fish cooked up from our trawling like scallops or flounder. The chef, Dennis, and his assistant, Jeremy serve up some really fine cuisine. Not fancy but very tasty. There is a new soup every day at  lunch and so far my favorite has been the cream of tomato. I went back for seconds! Of course, breakfast is the meal all of us on the night watch  look forward  to  as there is no  meal service between midnight and  7am. After 7 hours of just snacking and  coffee, we are ready for  some solid food by the time breakfast  is served.

Seas continue to be  very calm and the  weather sunny and pleasant. That’s quite a surprise for the North Atlantic in the fall. And  the sunrise today was amazing. The Executive Officer, Chad Cary, shared that the weather we are experiencing should continue for at least four more days. I am  grateful  for  the  calm weather – less  chance  to  experience  sea  sickness.  That is something I’m determined to avoid if possible.

Lollie Garay, May 15, 2009

NOAA Teacher at Sea
Lollie Garay
Onboard Research Vessel Hugh R. Sharp
May 9-20, 2009 

Mission: Sea scallop survey
Geographical Area: North Atlantic
Date: May 15, 2009

Weather Data from the Bridge 
Temperature: 13.5˚C
True wind: 4.1 KT
Seas: 3-4 ft

Science and Technology Log 

See the green secretions around the Sand dollars and the Jonah Crab?

See the green secretions around the Sand dollars and the Jonah Crab?

We’ve been at sea for seven days now and the daily sampling continues. Winds are not as strong as yesterday and we’re all glad. Skies are overcast and a thick fog surrounds us. Nothing out of the ordinary occurred today. By the time our shift ended we had completed 9 sampling stations. The majority of the dredges brought up were full of sand dollars. Lots of sand dollars mean slimy green secretions all over everything! Live sand dollars have a felt-like coating of fine spines. They shuffle through loose sand and feed on diatoms and microorganisms. Flounders and other bottom fishes feed on them. Their color is highly soluble and stains.

Lollie and Larry Brady measure special samples in the wet lab.

Lollie and Larry Brady measure special samples in the wet lab.

I’ll continue my conversations about my day shift crew. Larry Brady is a Biological Science Technician with the NOAA Fisheries Service. A former business manager with McGraw-Hill, he began volunteering with the Northeast Region Fisheries Services Sandy Hooks Lab in New Jersey. He found he really enjoyed what he did. One thing led to another and he has now been with the NOAA fisheries for 9 years. His responsibilities include maintaining the FSCS hardware and auditing data.

Dr. Shayla D. Williams is a research chemist at the Howard Marine Science Laboratory in Sandy Hook, New Jersey. She is researching fatty acid chemical tracers in two Northeast fisheries key resource species: Summer Flounders and Black Sea Bass. Fatty acids are a reflection of one’s diet.  As Dr. Williams says, “You are what you eat.” Gary Pearson is on his first survey cruise. Formerly with the Massachusetts Military Reservation, 102nd Fighter Wing division, he has been with the NOAA Fisheries Service maintenance department for three years. Gary works with just about every physical aspect of this survey, except for data entry. 

Personal Log 

Dr. Shayla Williams rakes the catch for sorting.

Dr. Shayla Williams rakes the catch for sorting.

As the night shift came on duty tonight, “Doc” A.J. told me that he had sandwiched his head between pillows to keep from rolling around and slept just fine through the tempestuous day. So, once I finally got to my bunk I thought about what he said. I only had one pillow, but I did have my life jacket. So, I tucked myself between the life jacket and the wall. He was right! I didn’t roll either and slept all through the night!

New Animals Seen Today 

Spiny Dogfish (2) Pipe fish

Gary Pearson sorts out the fish after a catch.

Gary Pearson sorts out the fish after a catch.

A Pipe Fish

A Pipe Fish

Lollie Garay, May 14, 2009

NOAA Teacher at Sea
Lollie Garay
Onboard Research Vessel Hugh R. Sharp
May 9-20, 2009 

Mission: Sea scallop survey
Geographical Area: North Atlantic
Date: May 14, 2009

Weather Data from the Bridge 
Temperature: 14.89C
True Wind: 18KTs
Seas: 4-6ft

Science and Technology Log 

Vic Nordahl and Shad Mahlum in the wet lab

Vic Nordahl and Shad Mahlum in the wet lab

We are at station 90 as I write, or try to write.  A front has moved in and brought wind and wave action that has us rolling. As I sit in the wet lab, the wind data on the computer jumps from 20-24 KTs. I had to write this journal entry by hand first because it was too difficult to work on the computer! However work proceeds, we just need to secure anything that can fall or roll. So how do we get on “station”? Stations are a pre-determined number of sampling stratums identified by beginning and ending Latitudes and Longitudes. Stratum is defined by depth intervals. Sampling is done in the same stratums every year, but the actual stations may not be the same.

Last night I was out on deck and saw lights dancing in the middle of the darkness. I was told they were the lights from other vessels. I asked why there were fishermen here if this was a closed area. Turns out that some commercial fishermen have special access permits that allow them to fish in pass-by zones. They can only use these permits a certain number of times for a certain number of years. I also learned that they are monitored by a satellite system that can see who is there.

A front brings fog and high seas, again!

A front brings fog and high seas, again!

I have mentioned some members of my shift crew in my logs. I would like to talk a little more about who they are, what they do and why they are here, in my remaining logs. Chief Scientist Kevin has been with the Fisheries Service since 2002. He is responsible for the overall operations on the science side. He oversees the Watch Chiefs; is responsible for data auditing and cruise track planning; and maintains communication with Woods Hole Oceanographic Institute about the progress of the survey.

Vic Nordahl is a Fishery Biologist at NOAA’s Northeast Fisheries Science Center in Woods Hole and is part of the senior staff of the group. He mentors and supervises the fisheries survey team and is out at sea two times a year with the scallop survey. He also does a triennial Surf Clam and Quahog survey. He is currently working on calibrating a time series between the NOAA Ship Albatross and the Research Vessel Hugh R. Sharp. The Albatross has been retired after 36 years of service. Shad Mahlum, our Watch Chief, is a Sea Tech with NOAA Fisheries Service. Before joining NOAA a year ago, he served 7 years in the Coast Guard. After the Coast Guard, Shad attended school in Bozeman Montana where he studied Zoology and Fresh Water fisheries.

Personal Log 

This exotic looking creature is a Chain Dogfish.

This exotic looking creature is a Chain Dogfish.

Before I had even opened my eyes, I felt the ship rolling. Winds from a front that moved in are churning up the seas which make simple things like showering a real challenge. I know that while we are towing the dredge the ship moves slower so I waited in bed until I felt us slow down. Then I jumped up and raced into the shower hoping I could make it through getting dressed before we picked up speed. I almost made it! During one of our last stations a HUGE wave crashed all the way across the stern. I was in the wet lab processing scallops when I heard and saw the action. Wish I had had my camera ready! I think we work harder during these wave events because it’s just so hard to do anything without straining those sea legs and arms to maintain your balance! Hope we have a calmer day tomorrow.

New Animals Seen Today 

Chain Dogfish 

Jacob Tanenbaum, October 14, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2008

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 14 2008

Here is Doctor Kunkel collecting samples with Watch Chief Mel Underwood.

Here is Doctor Kunkel collecting samples with Watch Chief Mel Underwood.

Science Log

Dr. Joseph Kunkel from the University of Massachusetts at Amherst is investigating a mystery on board our ship. In the last few years, fisherman and biologists have all noticed that lobsters are disappearing from waters south of cape cod near shore. This includes Narragansett Bay and our own Long Island Sound. Why? Thats’ what Dr. Kunkel is trying to find out.

He and other scientists have found that the lobsters are infected with a bacteria. Dr. Kunkel has a hypothesis. He believes that some lobsters get the bacteria because their shells are not as strong as other lobsters and don’t protect them as well. He is here collecting samples to test his hypothesis.

Shellfish are affected by acid rain

Shellfish are affected by acid rain

He has even made a discovery. He and another scientist, named Dr. Jercinovic, discovered that this shell fish actually has boney material in certain places in the shell. The boney material helps make the lobster strong enough to resist the bacteria. Effected lobsters may not have as much bone, so their shells are weaker. Why are the shells weaker? There may be a few reasons. The water South of Cape Cod is warmer than it normally is. Climate change may be to blame. The water has a lot of pollution from cities like New York and Boston. There are many streams and rivers pouring into the area that are Affected by acid rain. All of these things may effect the lobsters in the sea. They may effect other creatures in the sea as well. Can you think of things that are happening in our neighborhood that may contribute to this problem? Post your ideas on the blog and I will share them with Dr. Kunkel. What does shell disease look like? Can you see the red spots on the photo on the right? That is shell disease. It can get much worse. Thanks Dr. Kunkel for sharing your work and your photograph.

Cups are ready!

Cups are ready!

The art teachers, Mrs. Bensen in CLE and Mrs. Piteo in WOS had groups of students decorate Styrofoam cups for an experiment on the ship involving technology, water pressure in science and perspective in art. You probably have felt water pressure. When you swim to the bottom of the deep end of a pool, you may have felt your ears pop. This is water pressure. It is caused by the weight of the water on top of you pushing down on you. Well, a pool is only 10 or 12 feet deep. Just imagine the pressure at 600 feet down. We wanted to do an experiment with water pressure. Since Styrofoam is has a lot of air in it, we wanted to see what happened when we sent the decorated cups to the bottom of the sea. Click here for a video and see for yourself. If you decorated a cup, you will get it back when I come in next week.

Here are some more interesting creatures that came up in our nets overnight. We have been in deeper water and some some of the creatures have been quite interesting.

This “sea pen” is a type of soft coral.

This “sea pen” is a type of soft coral.

Two sea-hags

Two sea-hags

This is a sea-hag. It is a snake-like fish that has some amazing teeth. We put one inside a plastic bag for a few minutes to watch it try to eat its way out. Take a look at this video to see what happened.

Spoon Arm Octopi

Spoon Arm Octopi

Here are three Spoon Arm Octopi. Each octopi has three hearts, not one. One pumps blood through the body and the other two pump blood through the gills. There are three octopi in this photo. How many hearts to they have in all?

Red fish

Redfish

This redfish are also an interesting criters. When they lay eggs, you can see the babies inside. They live in deep water. We caught this one at a depth of 300 meters. How many feet is that?

Squid and sea star

Squid and sea star

Here is a bobtail squid and a sea-start. The squid looks like an octopus, but it is not.

Skate case with a baby skate inside

Skate case with a baby skate inside

This skate case had a baby skate inside. Here is what it looked like as the tiny creature emerged.

Crab and eggs

Crab and eggs

Finally, the red on the underside of this crab are the eggs. Biologists call them roe.

Zee and Snuggy paid a visit to the ship’s hospital to take a look around. The hospital is amazing. They are able to treat a wide variety of injuries and ailments without having to call for help. They can even put in stiches if they need to. In cases of serious injury, however, the Coast Guard would have to take the patient to land with the helicopter or fast boat. Zee and Snuggy had a great time touring the hospital, and all three of us are just fine.

IMG_6859-737787