Jeannine Foucault, November 14, 2009

NOAA Teacher at Sea
Jeannine Foucault
Onboard NOAA Ship Pisces
November 7 – 19, 2009

Mission: Ecosystem Survey
Geographic Region: Southeast U.S.
Date: November 14, 2009

Science Log

Of the many things I have learned so far there are three things that are standing out in my mind right now that I can share…..1) there is so much ionization in the ocean (salinity) that if it’s not neutralized it can cause many rusting/electrical problems on the ship 2) water on the ship is purified by passing through a UV light before it is sent for drinking and using on the ship 3) plank owners are called the very first crew members on a new ship!

When I went on the tour of the engine room or should I say rooms. The engineer pointed to a sign that read “cathode”. Well, I know my physical science students remember that a cathode is an electrode where an electric current flows out of a polarized electrical device. Anyway, the ship has all this salt water flowing in (lots of NACL) that has an electric charge so it has to be neutralized using the cathode so the water doesn’t cause any high electrical charges that can be dangerous with so much high voltage already running on the ship. Cool, huh?

Then the engineer explained the process of making water. The ship goes through about 1800 gallons of water per day. Through the process of purifying the water at the final stage is a tiny box with a long rectangular tin attached to a long thick wire. Above this box water flows through another tube flowing across the rectangular box. It reads ‘CAUTION: UV radition light’. As the water flows across the UV light it is emitting short wavelengths of ionizing radiation to rid of any living microorganisms in the water making it suitable to drink.

Finally, another crew member discussed the aspect of the ‘plank owners’. This is an individual who was a member of the crew of a ship when that ship was placed in commission. So since PISCES was commission on November 6, 2009 and the entire crew that is with me now on the ship was a member of the crew then they are all the plank owners of PISCES and I am the office plank owner Teacher at Sea!

Chris Imhof, November 13, 2009

NOAA Teacher at Sea
Chris Imhof
Onboard NOAA Ship Pisces
November 7 – 19, 2009

Mission: Coral Survey
Geographic Region: Southeast U.S.
Date: November 13, 2009

Science Log

Safety is a priority aboard the Pisces – without a sense of safe operations and knowing what to do in a situation – it would be very hard to run effective science missions – everything from knowing where a safe place to stand, when and where to wear a hard hat and what to do in an event or situation. Within hours of leaving port we assembled with the science team for a briefing and learned where we would muster in case of a drill. A muster station is a place you have been assigned when there is an alarm and/or the ship’s horn is blown to communicate to the crew an emergency, situation or event. Once assembled in the designated area, an assigned person calls the bridge to inform that everyone in that station has been accounted for.

I would go to my muster station in the case of a man-over-board -this is communicated with 3 prolonged blasts of the ship’s horn. If I was on deck and saw a person go overboard- I would yell “man-over-board!” and point over the side until I was relieved by an officer – and at the same time be throwing everything under the sun that could float to leave a trail for the ship to follow as it slowed and turned around.

It wasn’t more than an hour after our meeting, while exploring the ship that a drill was issued. As we made our way up 3 decks to our mustering station, we passed crew skillfully and methodically going through the procedures of extinguishing an imaginary “fire” on the starboard deck.

After a few minutes the captain had everyone assemble on the deck where the drill took place and with the XO led a discussion of how it went. What was impressive was the nature of the discussion in which crew members in different departments brought their knowledge and experience to consider other dimensions of the situation – glass windows, machinery or nearby materials that could cause furthers complications or additional measures etc. This type of collaboration builds the cohesion of a ships’ crew as well as the security and safety aboard the ship.

Following the briefing the crew was dismissed and within a short amount of time the ship’s horn blared 6 short blasts and a single long blast – indicating an abandon ship – in this situation/drill we mustered on a side of the ship – bringing with us a life vest, hat and immersion suit. The Pisces is equipped with self-inflatable life rafts on each side of the ship – each sides’ rafts hold more than 60 crew – this is in case one side of the ship cannot be reached or rafts are unable to be used-all ships have this in place today largely due to the Titanic disaster. Following this we learned how to quickly and efficiently put on our immersion suits. This tight fitting, insulated survival suit protects you not only from the elements but the brightness alone increases your chance of rescue. The suit fits snug leaving very little of your skin exposed, it is equipped with an additional flotation device behind your neck and a whistle.

Safety is science – it is also such an important part of how the Pisces runs – how the officers, crew and scientist work, and how the ship is built, runs and operates – as a Teacher at Sea who is staying just a brief time, it has heightened my sense to be more aware of everything around me not just the sea and the science but also how things aboard the ship operate and how each person works and fits into the big picture.

Chris Imhof, November 12, 2009

NOAA Teacher at Sea
Chris Imhof
Onboard NOAA Ship Pisces
November 7 – 19, 2009

Mission: Coral Survey
Geographic Region: Southeast U.S.
Date: November 12, 2009

Science Log

After playing tourist in Jacksonville for a day I jumped at the chance to fly to Gulf Port Mississippi and join the Crew, Marine Mammal Scientists, and a fellow Teacher at Sea on the 3-day shakedown maiden voyage of the NOAA ship Pisces into the Gulf of Mexico up the Florida Strait back to Jacksonville. When I arrived Wednesday, most of the crew were gone enjoying the holiday before we would ship out. I stowed my gear in my stateroom¬†and began to explore the ship. Fortunately, I ran into Christopher Flint, a Port Engineer who oversees the design, construction and refit of much of the NOAA fleet. Mr. Flint took me through the galley, weather deck, bridge, flying deck the winch and engine room, fish labs and even the ships’ sanitation area called the “Domestic Equipment Room” on a whirlwind tour that pretty much did me in for the night.

The Pisces is the 3rd of 4 new Fisheries Survey ships built for the NOAA Fleet – It is a beautiful state-of-the-art ship 208 feet long and 49.2 feet wide or breadth – it can travel a steady 14 knots. Each of the class of NOAA ships is built for different scientific purposes but all the ships of the fleet carry out a mission “to protect, restore and manage the use of living marine, coastal, and ocean resources through ecosystem management.”

When I woke early this morning, the crew were moving about in a well-practiced sequence of procedures to get the Pisces underway. I met more members of the crew on my aimless search through up/down ladders to the Main Deck where I knew contained the galley and thus coffee. The fact many of the crew have come on this maiden cruise from other NOAA ships and work efficiently and seamless was amazing.

The Pisces can carry a crew of 6 commissioned NOAA officers, 4 engineers, 11 crew and 15 scientists. Of the crew I talk to, many have spent over 10 to 20 years with NOAA and have served on many ships; many have fondness for a certain ship or area, all carry a sense of pride for what they contribute to the overall mission. Although I have spent little more than a day on the ship, the more I watch and talk to people aboard the Pisces – the crew, the officers, and the scientists- everyone knows that they need to depend, respect and trust each other to do a good job.

Making my way to smell of breakfast and coffee in the galley I finally meet Jeanine Foucault, another Teacher at Sea. Jeannine was accepted to the Teacher at Sea Program a few years ago – after she and her Seventh-grade students from Sacred Heart School in Southaven Mississippi were selected to name the newest NOAA ship the Pisces. Over the past couple of years Jeanine and her students have seen the keel laying ceremony and the launch of the Pisces. Her team of students are now juniors in different high schools, but still follow the progress of the Pisces – one student even attended the commissioning ceremony a week ago. Many cruises and types of work are offered to Teachers at Sea – from working in the Bering Sea to Hawaii or the Caribbean – Jeanine is just as excited as I am to be here and share this experience with her students – out of all the different adventures she could of have gone on – she has waited a long time to be just on the Pisces!

Chris Imhof, November 10, 2009

NOAA Teacher at Sea
Chris Imhof
Onboard NOAA Ship Pisces
November 7 – 19, 2009

Mission: Coral Survey
Geographic Region: Southeast U.S.
Date: November 10, 2009

Science Log

Ida has impacted things somewhat – the wave height at the offshore buoy at Pisces’ departing port rose to 18 to 22 feet in an hour – eventually the port was closed. The latest is the Pisces will go to sea in the next day or so. This will probably delay the arrival of the ship here by a day.

While waiting this out I’ve taken some walks along the St. John River, which runs through downtown Jacksonville to the ocean. Essentially it is a large estuary that mixes freshwater and sea – creating an environment for all sorts of interesting creatures including the Florida Manatee (Trichechus manatus latirostris).

These creatures fall under the Order Sirenia – which goes back to Greek mythology and the Sirens – beautiful women who would lure sailors and ships onto the rocks and reefs with their songs – apparently after a long voyage across the Atlantic sailors mistook these creatures as beautiful women or mermaids and the name stuck – Maybe this explains the success of the Sturbucks logo. Even early scientists who first began to study the manatee saw them as a close relative to of the walrus – makes sense – actually the closest relative to the manatee is the elephant! One really wonders to connection to Ariel?

I asked around where I might see one of these creature here? I walked to an area away from main part of town – along the river where I was told manatees sometimes come to feed – the waves were choppy and murky so I could’nt see much, but no surprise manatees do spend 6 to 8 hours a day eating up to 200 pounds of vegetation along the bottom of these areas – grinding up grasses and other vegetation using 24 to 32 flat surface molars in the back of their mouths. Grinding that much ruffage a day has its toll, not just on one’s lower intestine – manatees have adapted by growing new teeth constantly – over a lifetime can grow up to 60 new teeth. Manatees take care of their teeth as well – after eating they clean their teeth using stiff grassy plants like a tooth brush – they even roll small rocks in the mouths to loosen plant debris.

Unfortuneatly, there are less than 2000 Florida manatees left – they are often the victims motorboats, cold water stress and destruction of habitat. While I was looking, people I talked to were proud to talk about the efforts to protect the manatee along the St. John River –

So today I didn’t see a manatee, but maybe my problem was – I was looking for that mermaid on the side of my Starbucks cup. ūüôā

Chris Imhof, November 8, 2009

NOAA Teacher at Sea
Chris Imhof
Onboard NOAA Ship Pisces
November 7 – 19, 2009

Mission: Coral Survey
Geographic Region: Southeast U.S.
Date: November 8, 2009

Science Log

Yesterday, at the Deep Sea Corals Briefing we took a trip to the North Carolina Museum of Natural Sciences “Wet Lab.” This off-site lab -Prairie Ridge-was once a 38-acre cattle pasture – and is now being used by the museum to restore the original Piedmont ecosystem and for outdoor education. The “wet lab” is located on site and is where many of the samples collected by scientists studying the deep coral reef ecosytem – go to be “processed” and “curate” the research.

The lab contains microscopes, hand lenses, lots of jars, species identification field guides. Specimens – usually fish come to the lab where they are identified and classified- placed in jars of 70% ethanol for long-term storage. Some specimens however are stored in 95% ethanol for potential DNA research.

Why are keeping specimens important? – Specimens classified here are entered on a global data base so scientists have access to them from anywhere-global diversity. Scientists study the specimens to compare with other species, morphology (the branch of biology dealing with the form and structure of organisms), compare age and growth, and understand over time where animals lived and are living geographically.The oldest specimens of fish were collected in the 1840’s – this gives scientists a chance to tell how species have changed over the past 150 years. Scientists also use specimens to develop “dichotomous keys”-a key for the identifying organisms based on a series of choices between characteristics.

The lab itself was pretty cool – The collection here contains over 800,000 specimens – one of the top 5 in the US – like a warehouse though it felt like Raiders of the Lost Anchovy – and strangely like the beginning of every zombie movie. Like expeditions to the Amazon – nearly every trip to the deep water coral habitat scientists have discovered a new species – hopefully this voyage will add another piece to the global bio-diversity puzzle. ūüôā

Chris Imhof, November 7, 2009

NOAA Teacher at Sea
Chris Imhof
Onboard NOAA Ship Pisces
November 7 – 19, 2009

Mission: Coral Survey
Geographic Region: Southeast U.S.
Date: November 7, 2009

Science Log

Today I attended the North Carolina Museum of Natural Sciences –¬†NOAA workshop on Deep Water Corals a few blocks from the North¬†Carolina State Capital. Scientists, Professors, Teachers, Museum¬†personnel and Management specialists met to discuss research,¬†current understanding, methodology, protection and management of¬†the deep water coral reef which exists on the edges of the planets’¬†continental shelf and slopes. Most people are aware of the warm¬†water shallow reefs that occur worldwide – most people however are¬†unaware of the corals and the reefs that exist nearly 1000′ feet¬†beneath the surface of the ocean. Actually, only with the¬†availability and technology of submersibles and remote operated¬†vehicles (ROV’s) in recent years have scientists really begun to¬†understand this unique ecosystem and the potential threats.

Awareness of these corals Рdominated by the species of deep stony corals (Class Anthozoa) Lophelia pertusa Рwas made primarily by fisherman who pulled these branching corals up with their nets. An interesting fact is the Lophelia species itself may have been classified by the creator of the system of classification himself РCarolus Linneus. It was easily a couple of hundred of years from the time of Linnaeus classification to the moment a human saw these corals in their natural habitat. One of the scientists at this meetings was Sandra Brooke РDirector of the Coral Conservation Center Рwho discussed the differences between shallow and deep corals. Whereas many know about the significance and threats to shallow water corals Рthe need to recognize the significance of deep water corals is even more vital. This is what I hope to convey through this site and my trip. Deep water corals provide a diverse Рif not more diverse ecosystem as shallow corals. Lophelia and other deep corals provide the eco-framework for thousands of species Рessentially a rainforest of the deep sea. These corals have already begun to provide extracts to fight cancer, Alzheimers and viral infections. Since all things in the deep cold waters take so long to grow РLophelia and other species can be hundreds to thousands of years old ( A Golden Coral colony recently harvested for jewelry was found to be 4000 years old).

Corals have growth rings not unlike trees, in the corals scientists¬†can see a window into the ocean’s past – determine ocean¬†temperatures, salinity, heavy metals and other trace elements in¬†the corals can indicate volcanic eruptions and even Saharaan dust¬†storms. So not only do these corals provide a home and place on the¬†food chain for thousands of species-contain a potential wealth of¬†medicines – like a Rainforest – they are like our Redwoods and¬†Bristlecones and ice cores – providing a window into the planet’s¬†paleoecology. I hope to discuss more about what I learned at this¬†briefing to set the stage for my voyage next week- including the¬†technology and methodology scientists use to explore the deep seas-¬†what specimens and data scientists collects, what happens to these¬†specimens and how and what scientists learn from these specimens.¬†The species of animals that lives on the deep water reefs and how¬†scientists, the government and private sector work together to¬†manage these ecosystems into the future.

Clare Wagstaff, September 18, 2009

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship Nancy Foster
September 11 Р18, 2009 

Mission: Florida Keys coral reef disease and condition survey
Geographical Area: Florida Keys ‚Äď Key West
Date: Saturday, September 18, 2009

Contact Information 
Clare Wagstaff Sixth and Eighth Grade Science Teacher Elmwood Franklin School 104 New Amsterdam Ave Buffalo, NY 14216
cwagstaff@elmwoodfranklin.org

Weather Data from the Bridge (information taken at 12 noon) 
Weather: Sunny Visibility (nautical miles): 10
Wind Speed (knots): 0 (in port)
Wave Height (feet): <1
Sea Water Temp (0C): 30.4
Air Temp (0C): 32

Science and Technology Log 

Right: Black-band Disease on Montastraea annularis. Photo courtesy of Mike Henley

Black-band Disease on Montastraea annularis. Photo courtesy of Mike Henley

With the last dive of the cruise over, the group has completed 175 dives, which equates to 7.5 days underwater! Most of the planned coral reef sites have been surveyed even with our lack of a third small boat. The weather has stayed relatively calm and has been surprisingly supportive of our cruise. The mad rush is now to input all the remaining data before we disembark the ship later today.

An area that I have only briefly referred to in previous logs, are the types of coral diseases present and being studied. Chief Scientist, Scott Donahue, commented to me that there has been a trend over the last decade of decreasing coral coverage. This is believed to be related to anthropogenic stresses such as water quality and climate change. By comparing spatial and temporal patterns against trends in coral reef disease, over different geographic regions and reef types, it is hoped that a greater understanding of how these patterns are related to different environmental conditions. The team was specifically looking at ten disease conditions affecting 16 species of Scleractinian corals and Gorgonian sea fans. Although I tried to identify some of the diseases, it was actually quite difficult to distinguish between individual diseases and also other causes of coral mortality.

White-band Disease on Acropora cervicornis. Photo courtesy of Mike Henley

White-band Disease on Acropora cervicornis. Photo courtesy of Mike Henley

Black-band Disease is a crescent shaped or circular band of blackish material that separates living material from white exposed skeleton. It is caused by a cyanobacteria in combination with a sulfide oxidizing bacteria and a sulfur reducing bacteria. White-band Disease displays a margin of white tissue decay. It can start at the base of a colony or in the middle. It affects branching corals and its cause is currently unknown. Corals have a pretty tough time living out in the ocean and have many problems to overcome. If its not a boat’s anchor crushing it could be any number of the following; a parrot fish (predator) eating it; deterioration of the water quality; a hurricane; an increase in major competitors like algae or tunicates, and to nicely top it all, it can always get a disease too!

Most of the scientists on the Nancy Foster are volunteers, giving up their own free time to be part of the trip. Kathy Morrow is a Ph.D. student who has extensively studied the ecology of cnidarians for the past 9 years. She is currently researching her dissertation on the community structure and stability of coral-algal-microbial associations based on studies conducted off the coast of Summerland Key, Florida and St. Thomas, U.S. Virgin Islands. On one of the last dives of the trip Kathy takes time to collect mucus samples (she refers to this fondly as coral ‚Äúsnot‚ÄĚ), from a site she has previously visited numerous times over the last few years. The objective is to collect mucus samples so that they can be studied later for their bacteria composition.

Morrow collecting coral mucus. Photo courtesy of Mike Henley.

Morrow collecting coral mucus. Photo courtesy of Mike Henley.

Once Kathy has collected these samples she must process them so that they can be stored until she has the opportunity back in the lab, to analyze them. Although I was not present when Kathy was collecting the samples, I did help her in the wet lab with the final stages of storing her collection of samples. Having collected multiple mucus samples from each of the preselected coral species in syringes, the samples were then placed into a centrifuge to extract the bacteria present. This material is denser, so sinks to the bottom ad forms a darker colored pellet. My job is then to remove the excess liquid, but preserve the bacteria pellet so that it can be frozen and stored for later analysis. Back in the lab at Auburn University, Kathy will chemically breakdown the bacteria to release their DNA. This DNA is then replicated and amplified allowing for Kathy to perform analysis on the bacteria to identify the types present in the corals. Kathy will spend the next year studying these bacteria samples and many more she has collected.

Personal Log 

Here I am helping Kathy Morrow preserving coral mucus specimens. Photo courtesy of Cory Walter

Here I am helping Kathy Morrow preserving coral mucus specimens. Photo courtesy of Cory Walter

So here we are back in port after an amazing time on the Nancy Foster. I was initially concerned about being out at sea with people I did not know, studying an area of science I really knew very little about, in an environment I knew would probably make me sick, but didn’t thank goodness! But everything turned out to be a thousand times better than I could have imagined. I have had seen so much and learnt an amazing amount that my head is spinning with all the ideas I have to use with my classes back at school. Yet, there are things that I just rang out of time to look more closely at and part of me wishes we had been out at sea longer. My second time as a Teacher At Sea, has left me with some wonderful memories of the most professional and dedicated scientists and crew you could wish for, but also of how amazing corals are and how much we still have to learn. Thank you everyone who was involved in making this a truly remarkable and memorable experience.

The 2009 coral research team and Teacher At Sea, Clare Wagstaff on board the Nancy

The 2009 coral research team and Teacher At Sea, Clare Wagstaff on board the Nancy Foster