Mark Van Arsdale: Waking up Copepods, September 23, 2018

NOAA Teacher at Sea

Mark Van Arsdale

Aboard R/V Tiglax

September 11 – 26, 2018

 

Mission: Long Term Ecological Monitoring

Geographic Area of Cruise: North Gulf of Alaska

Date: September 23, 2018

Weather Data from the Bridge

Variable winds, partially cloudy, calm seas

60.20 N, 147.57 W (Prince William Sound)

 

Science Log

Waking Up Copepods

One of the scientists on board is interested in the life cycles of a particular species of Neocalanus copepod. Neocalanus is a remarkable looking copepod.  They have long antennae with feathered forks at the ends. They have striking red-orange stripes on their bodies and antennae that reminds you a bit of a candy cane. Neocalanus is an important copepod in the Gulf of Alaska ecosystem, and it typically makes up the largest portion of zooplankton biomass in the spring.

Neocalanus cristatus, photo credit Russ Hopcroft, UAF

Neocalanus cristatus, photo credit Russ Hopcroft, UAF

Its life cycle is interesting.  If zooplankton were cars, the Neocalanus might be a Toyota Prius.  It’s not fast or fancy, but it’s efficient.  Neocalanus copepods feast in the spring and early summer and then settle down several hundred meters below the surface to enter into a diapause state.  Diapause is a kind of dormancy that involves slowing basic metabolic functions to near zero.  It is a strategy used by other Alaskan arthropods, most notably mosquitos, to survive long winters.  As for why they travel deep into the water column, the answer seems to be that they use less energy in the dark, cold, high pressure waters at depth.  Inside the Neocalanus there is an unmistakable large, sausage shaped sack of oil that should provide the energy reserves needed to survive prolonged diapause.

When the Neocalanus females wake up, they have to restart their metabolism and begin meiotic development of their oocytes (egg cells.) They have previously mated and they store the male’s sperm within their bodies during diapause.  Each of these biological events involves turning on several dozen genes.  What our scientist wants to know is what genes get turned on, in what order, and what environmental clues tell the initial genes to start making RNA. To study all of this, she needs living copepods in diapause.  Our collection process inevitably wakes them up, but it gives her a time zero for observing this transformation.  For the next twelve hours, she separated and preserved copepods every hour for later genetic analysis that may give her insight into when genes turn on and in what order as the copepods wake up.

In order to get her copepods, the night team did a vertical Multi-net tow at four AM.  We dropped the Multi-net down to a depth of 740 meters. The work we were doing was sensitive, as she needed the copepods alive and undamaged.  I was glad to have slept a few hours as we were moving between sampling stations, because what came up in the tow was pretty amazing.  Along with the Neocalanus, there were many other types of zooplankton including the copepod MetridiaMetridia produce an intense bioluminescence when disturbed. When we brought the nets to the surface, the cod ends were glowing electric blue and individual copepods could be seen producing pinpricks of light that were remarkably bright.

Bioluminescence is ubiquitous amongst deep sea species.  Deep sea fishes, jellies, and plankton use it to attract prey, to camouflage their silhouette, to surprise and distract predators, and likely to communicate with members of the opposite sex.  The deep oceans make up 95% of biological habitat on Earth.  If you consider bioluminescence communication a kind of language, it may be the most commonly spoken language on the planet.

Luciferin production and luciferase transcription in the bioluminescent copepod Metridia lucens. Michael Tessler et al (2018)

Personal Log

Protected Waters

Knight Island Passage, Prince William Sound

Knight Island Passage, Prince William Sound

Waking up in Prince William Sound today felt good.  I was closer to home this morning than at any time since leaving Seward.  The Sound feels comfortable and protected.  Should bad weather come up, and it sounds like it will tomorrow, there are hundreds of sheltered bays to hide in.

Chenega Glacier, Icy Bay, Prince William Sound.

Chenega Glacier, Icy Bay, Prince William Sound.

Prince William Sound’s beauties are hard to describe without sounding cliché.  Most striking of all are the large tidewater glaciers.  In the evening, we made our way to Chenga Glacier, to do CTD cast.  It was a quite a sight, as were the three hundred harbor seals hauled out on the floating ice in front of the glacier.

These glaciers directly shape the ecosystem of the Sound.  They provide a large freshwater input that is high in trace minerals, while creating pockets of cold water, which serve as micro-climates within the larger area.  These glaciers are melting at incredible rates, and freshwater inputs are greater than they have been at any time since the last ice age.  Sampling stations that were once near the face of the Chenga and Columbia Glaciers are now miles away from their quickly receding faces. Click here to watch the satellite images of Columbia’s retreat.  This ecosystem is changing, and only through long term ecological monitoring will we know exactly how or what it means.

The completion of the road to the town of Whittier has also changed the Sound.  It’s late September, and most pleasure boaters have stowed their boats for the winter, but the number of boats and people coming into the sound to fish, hunt, and sight see has increased dramatically.  Many Alaskans have come to recognize the coastal gem that lays just seventy miles and one long tunnel through the mountain from Anchorage.

Columbia Glacier 1986 (left) 2011 (right). Image from https://visibleearth.nasa.gov/view.php?id=78657

Columbia Glacier 1986 (left) 2011 (right). Image from https://visibleearth.nasa.gov/view.php?id=78657

 

Animals seen today

  • Lots of harbor seals near Chenega Glacier
  • Sea otters
  • Fewer birds today, mergansers, Kittlitz’s murlets, mew gulls, goldeneyes,

 

 

Roy Moffitt: Bring in the Bongos, August 16, 2018

NOAA Teacher at Sea

Roy Moffitt

Aboard USCGC Healy

August 7 – 25, 2018

 

Mission: Healy 1801 –  Arctic Distributed Biological Observatory

Geographic Area: Arctic Ocean (Bering Sea, Chukchi Sea, Beaufort Sea)

Date: August 16, 2018

 

Current location/conditions:

Evening August 16 – Due west of Barrow, Alaska within sight of the coast

Air temp 35F, sea depth  40m , surface sea water temp 41

 

Bring in the Bongos

Bongo Nets ready for deployment

Bongo Nets ready for deployment

In a previous blog I showed the Methot net that catches very small (1-5cm) fish. However, if we want to catch sea life even smaller, we bring in something called a “bongo net.”  The bongo nets have very small openings–the larger nets are 500 micron (1/2 a millimeter) and the smaller nets are 150 micron.   In the picture below, you will see the back tail fin of the Healy with the bongo nets suspended from the hydraulic A-frame.  The A-frame supports a system of pulleys that are used to deploy and retrieve equipment (such as nets and moorings).

 

 

 

 

bongo canister

Organisms caught in the bongo net are washed down into this canister attached at the end.

The net looks and feels more like a tough nylon fabric, however, the water freely flows through the opening trapping the tiny organisms of the sea.  These organisms are pushed into the canister at the end of the net as shown in the picture on the right. While most of them are pushed into the canisters, many are stuck on the side of the net in a sticky goop.   The gelatin like goop is sprayed off the net with seawater by using a hose.  The process takes just a few minutes. Since I was the net holder and stretcher I got little wet!

 

 

Copepods in a Jar

Copepods in a Jar

The main organisms that we caught today were copepods. They are shown in the jar appearing pink.  Copepods are small crustaceans only 1-2mm in size that drift in the sea and feed on phytoplankton. Copepods are an important bottom of the food chain member of the ecosystem and serve as prey for fish, whales, and seabirds.

 

 

 

Flowmeter

Flowmeter suspended at the top of a bongo net

On the front of each net there is a flow meter as shown in the picture. It looks like a little torpedo with a propeller.  When the net trawls behind the ship, water flows through the net.  The amount of water that passes through the net can be calculated.  Using this calculation and the amount of organisms in the net, scientists can calculate the density of living microorganisms at a certain heights in the water column.  With annual samples scientists will be able to determine any changes over time including changes to the overall health of the regional ecosystem.  Today’s samples will also be sent out to a lab for further analysis.

 

Today’s Wildlife Sightings

Today I had unique experience– listening to wildlife.  This was a highlight.  Marine mammal acoustic scientists, Katherine Berchok and Stephanie Grassia, released an acoustic buoy this afternoon.  On top of the ship they put up an antennae and listened in for whales and walrus.  They were able to hear the constant underwater chatter between walruses.   As I wore the headphones and listened in, I was in awe at the grumbles and the ping sounds the animals were making back and forth underwater.  While we don’t know what the walrus were communicating back and forth to each other, to eavesdrop on these conversations, miles away, in real-time, was a pretty special experience.

 

Now and Looking forward

We did not see any ice today. I am looking forward to getting out of the fog and rain and returning back to the ice in the coming days.

Tom Savage: Tuning in to Sei Whales, June 16, 2015

NOAA Teacher at Sea
Tom Savage
On Board NOAA Ship Henry B. Bigelow
June 10 – 19, 2015

Tuning in to Sei Whales

Mission: Cetacean and Turtle Research
Geographic area of Cruise: North Atlantic
Date: June 16, 2015

Weather Data from the Bridge
Air temperature: 13 C
Wind speed: 10 knots
Wind direction: coming from the North West
Relative humidity: 95%
Barometer: 1004 millibars

Personal Log

Today is my third day at sea and I’m enjoying every moment; time onboard the ship flies. Although time onboard is dwindling, lots of discovery remains. Sunday brought sunny skies and warm temperatures, another perfect day for whale identification. It has been a real joy working with this exceptional group of professionals. Everyone is very supportive of each other and mission focused.

Science and Technology Log

The mission of this cruise is Cetacean research, but what exactly is a Cetacean? Cetus is a Latin word used in the context of biology defined as “whale”. Whales and dolphins are included within this order of classification. As stated in my earlier blogs, we are focusing on sei whales, pronounced ‘say” and beaked whales.

Why study sei and beaked whales? These whales are some of the least studied and scientists know relatively little about them. Information collected so far on sei whales: they have poleward migration trends, feed on small fish, krill and copepods (small crustaceans), and are thought to be populated along boundaries of elevated sea floors such as Georges Bank. Along the border of Georges Bank, upwelling of small prey occur due to ocean currents creating a perfect feeding ground for whales. Sei whales will also skim the ocean surface for food. Unfortunately, due to this feeding habit, many sei whales are struck and killed by large ships.

The other type of whale we are searching for are beaked whales. These whales are extremely difficult to identify due to their feeding and swimming behaviors. They are deep divers and spend a lot of time at depths of more than a thousand feet feeding on squid and fish. When they surface, they are inconspicuous and not acrobatic, and they are very difficult to see. Because they are found offshore in very deep waters, there are few opportunities to study them. Most of what is known about these species comes from individuals that have stranded on beaches where people can find them.

Spectrogram

Acoustician scientist, Chris, analyzing a spectrogram

One method scientists on board use to detect the presence of sei whales is to listen for them using hydrophones (underwater microphones). For this cruise, the acousticians are deploying sonobuoys: short term recorders that can transmit live audio feed through VHF channels. Sei whales generate tonal calls and produce a “down sweep “ from high to low frequency with a range from of 80 – 30 Hz. Sei whales are classified as a Baleen Whale.

Sei whale

Sei whale, photo courtesy Northeast Marine Fisheries, NOAA Whale permit mmpa # 17355

Baleen whales produce tonal calls typically under 1 kHz. For some species, like the humpback whale, song is known to be produced only by males, presumably to attract mates. After deploying the sonobuoy, we quickly began receiving signature tonal calls of sei whales. A sound spectrogram is used to interpret and project these acoustics on a graph with frequency on the y axis (vertical) and time on the x axis (horizontal). The darker plots indicate that the whale is close and lighter plots are weaker signals. Sometimes they will call in doubles or triple sweeps. Below is an example of a sei whale tonal call of the coast of Nova Scotia. Can you find the call?

Spectrograph

Sei whale acoustic sample recorded off the coast of Nova Scotia.

Scientists are not sure at this point what purpose these calls serve; for example, they could be used to maintain contact between individuals, attract mates, or advertise feeding areas.

Atlantic White Sided Dolphin

Atlantic White Sided Dolphin Photo taken by Hillary Moors-Murphy

Scientists are also trying to understand the oceanographic and habitat factors that are correlated with sei whale distribution. One question is what kind of prey are in the areas where sei whales are and are not found. In the evening hours, fishing nets are deployed to take a sample of organisms present in the ocean at that location. Shallow nets, called bongos, are used to take samples of zooplankton in the water down to 200m. Tonight, we are in deeper waters and the mid-water trawl net went down to 650 meters for 45 minutes. The net is then pulled in and fish are identified, counted and entered into a computer database. As mentioned above, sei whales like to feed on copepods and small arthropods. Guess what we pulled out of the bongo nets last night?

Copepod Soup

Copepod soup. A delicious dinner for sei whales!

Until next time, happy sailing!

Tom

Julia West: Neuston! March 25, 2015

NOAA Teacher at Sea
Julia West
Aboard NOAA ship Gordon Gunter
March 17 – April 2, 2015

Mission: Winter Plankton Survey
Geographic area of cruise: Gulf of Mexico
Date: March 25, 2015

Weather Data from the Bridge

Time 0900; mostly sunny, clouds 25% altocumulus; wind 5 knots, 120° (ESE); air 21°C, water 21°C, wave height 1-2 ft.

Science and Technology Log

We continue to zigzag westward on our wild plankton hunt. When we are closer to shore, navigation is tricky, because we are constantly dodging oil platforms, so we can never quite do the straight lines that are drawn on the chart.

Plankton stations 3/25/15

Here’s what we have covered through this morning. We’re making good time!

One of our Oak Meadow math teachers, Jacquelyn O’Donohoe, was wondering about math applications in the work that we are doing. The list is long! But don’t let that deter you from science – no need to fear the math! In fact, Commanding Officer Donn Pratt told me that he was never good at math, but when it came to navigating a ship, it all became more visual and much more understandable. I think it’s cool to see math and physics being applied. So, just for fun, I’ll point out the many places where math is used here on the ship – it’s in just about every part of the operations.

Today’s topic is neuston. As soon as we get the bongo nets back on board, the cable gets switched over to the neuston net. This net is a huge pipe rectangle, 1 meter x 2 meters, with a large net extending to the cod end to collect the sample. The mesh of this net is 1mm, much larger than the 0.3mm mesh of the bongo nets. So we aren’t getting the tiniest things in the neuston net, but still pretty small stuff! We lower the net to the surface, using the winch, and let it drag there for ten minutes. The goal is to have the net half in the water, so we have a swept area of 0.5 x 2 meters, or 1 square meter. (See, there’s some math for you!) That’s the goal. Sometimes with big waves, none of the net is in the water, and then all of it is, but it averages out.

Deploying neuston net

Here I am helping to deploy the neuston net. Photo credit: Kim Johnson

Neuston net

Neuston net in the water. Photo credit: Madalyn Meaker

Then we hose the net off thoroughly to get what is stuck to the net into the cod end.

Neuston net cleaning

Andy is hosing off the neuston net.

As I mentioned before, neuston is the array of living organisms that live on or just below the surface. Some of it is not plankton, as you can also catch larger fish, but mostly, the sample overlaps with the larger plankton that we catch in the bongos. There tends to be more jellyfish in the neuston net, so we sometimes wear gloves. Pam got stung by a man o’ war on the first day while cleaning out the net!

 

neuston sample

Pam is sorting an interesting neuston sample. See her smile – she clearly loves plankton!

Collecting neuston

Madalyn funneling the neuston into a jar with ethanol

Sometimes we end up with Sargassum in our nets. Sargassum is a type of brown “macroalgae” (seaweed) that grows in large clumps and floats on the surface. Have you ever heard of the Sargasso Sea? It is a massive collection of Sargassum in the Atlantic Ocean, held in place by the North Atlantic Gyre.

Sargassum

Sargassum taken from a sample

Sargassum

Sargassum in the water

 

 

 

 

 

 

 

Sargassum often collects in our nets. Sometimes we get gallons of Sargassum, and we have to carefully hose the organisms off of it, and throw the weeds back. We get the most interesting variety of life in the Sargassum! It supports entire communities of life that wouldn’t be there without it. If you want to know a little more about Sargassum communities, check out this website.

Here are a few examples of some of the photographable organisms we have collected in the neuston net. I’m working on getting micrographs of the really cool critters that are too small to see well with the naked eye, but they are amazing – stay tuned. All of the fish, except the flying fish, are very young; the adults will be much, much larger. (If you click on one of these, you will see a nice slide show and the full caption.)

Lastly, here is a really cool neuston sample we got – whale food!

copepods

This sample looks like it is almost entirely made up of copepods; this species is a beautiful blue color.

Personal Log

Now let’s turn to the other life form on the ship – the people. There are a total of 26 people on this cruise. Everyone is really great; it’s a community of its own. First, let me introduce the NOAA Corps crew who run the ship.

The NOAA Corps, or NOAA Commissioned Officer Corps, is one of the seven uniformed services of the United States (can you name the others?). It seems that many have never heard of the NOAA Corps, so it’s worth telling you a little bit about them. Officers are trained to take leadership positions in the operation of ships and aircraft, conducting research missions such as this one and much, much more! NOAA Corps has all the career benefits of the U.S. military, without active combat. Our officers all have a degree in some kind of science, often marine science or fisheries biology.

The crew members generally keep 4 hour watches, twice a day. I really enjoy going up to the bridge to hang out with them. It’s a whole different world up there, and they have been gracious enough to explain to me (as best as I can understand it) how they navigate the ship. Conceptually, I get it pretty well, but even if I was allowed to, I wouldn’t dare touch one of the buttons and dials they have up there!

Our XO (Executive Officer) on the Gunter is LCDR Colin Little. Colin has been with NOAA for eleven years now, and his previous assignments include Sea Duty aboard Oregon II and Oscar Elton Sette, and shore assignments in Annapolis, MD and Newport, OR. His background is in fish morphology and evolution.  His wife and two sons are currently living in Chicago.

ENS Kristin Johns has been on the Gunter for almost a year. She joined NOAA after getting a biology degree at Rutgers. She is currently being trained to be the next Navigation Officer. Kristin is the safety officer, as well as the MPIC (Medical Person in Charge). Kristin is the one who suggested I use the word “thalassophilia” as the word of the day – something she clearly suffers from!

Our Operations Officer (OPS) is LT Marc Weekley. Marc is in charge of organizing the logistics, and coordinating between the scientists and the crew. He’s been with NOAA for ten years (on the Gunter for two years), and has had some interesting land-based as well as offshore posts, including a year at the South Pole Station (yes, Antarctica) doing clean air and ozone monitoring.

ENS Melissa Mathes is newest officer with NOAA, but spent 6 years in the Army Reserves in college, and then 6 years of active duty with the Navy. Melissa loves archery and motorcycles, and she has been rumored to occasionally dance while on watch.

Melissa and Marc

ENA Melissa Mathes and LT Marc Weekley

ENS (which stands for Ensign, by the way) David Wang, originally from New York City, is our Navigation Officer (NAV). He’s been with NOAA for two years. His job, as he puts it, is “getting us where we gotta go, safely.” He is the one who charts our course, or oversees the other Junior Officers as they do it. Dave used to be a commercial fisherman, and when he’s not on duty, those are his fishing lines extending out from the back deck. He’s also an avid cyclist and ultimate Frisbee player.

ENS Peter Gleichauf has been on the Gunter since November, but finished his training over a year ago. He is also an aviator, musician, and avid outdoors person. In fact, for all of the officers, health, fitness, and active lifestyle is a priority. Pete is in charge of environmental compliance on the ship.

Dave and Pete

ENS Dave Wang and ENS Pete Gleichauf

King mackerel

Lead fisherman Jorge Barbosa and a king mackerel caught today on Dave’s line! It took 2 deck crew men to pull it in!

 

Term of the Day: USS Cole – you can look this one up. Next blog post I will explain what in the world it has to do with a plankton research cruise. I promise it will all make sense!

 

Kimberly Gogan: A Ship Full of Science! April 9, 2014

NOAA Teacher at Sea
Kim Gogan
Aboard NOAA Ship Gordon Gunter
April 7 – May 1, 2014

MissionAMAPPS & Turtle Abundance Survey Ecosystem Monitoring
Geographical area of cruise:  North Atlantic Ocean
Date: Wednesday, April 9th

Weather Data from the Bridge
Air Temp: 5.5 Degrees Celsius
Wind Speed: 9.0 Knots
Water Temp: 4.6 Degrees Celsius
ater Depth: 41.2 Meters

The Science Teams (Photo Credit to Mark Weekley)

The Science Teams – Photo by Mark Weekly

Science and Technology Log

If Science at Sea is what I wanted, this is the ship for it!  The evening of our departure from Newport, R.I. on Monday, April 7th, the group of scientists met in the staff lounge for a meeting of the minds. I soon found out that there was an array of scientist on the ship all with different goals and science they wanted to conduct. On this ship we have two teams of Oceanographers, a day team and a night team. The Oceanographers are generally taking underwater tests and samples using a variety of equipment. We also have the Marine Mammal Observer Team who are on the look out for any sort of mammals that may poke head out of the water such as whales and dolphins.

There is also a group of Birders collecting data on any bird sightings. And lastly we have our Acoustics, or sound team, that is listening for the sounds of marine mammals. I also learned at that meeting that it would take a lot of teamwork and collaboration on the part of each of the Scientist crews, as well as the NOAA Corps and crew to make it all happen.

Every day the representatives from each team have to get together to coordinate the timing of each of the events that will happen throughout the day. The Mammal and Birding Observer teams are on the same schedule and can collect sighting data throughout the day from 7 AM to 7 PM, only stopping for lunch, as they need daylight to conduct their work. The daytime Oceanographers plan their work of collecting samples around the observer teams, sending off their collection equipment before 7AM, at lunch, and then again at 7PM when the observers teams are done. The nighttime Oceanographers are not working during the same time as other scientists so this gives them the opportunity to to do as many test and collections as they can without interrupting anyone else’s work. The Acoustic team can work anytime of day or during any kind of weather without conflicting with anyone as long as the water is deep enough to drop their equipment. It sounds like an easy schedule but there are many things, like weather, technology and location, that could disrupt this carefully orchestrated schedule of science. When that happens, and it has, everyone must be flexible and work together to make sure everyone can conduct the science they need.

Me helping to bring the Bongo net back onto the ship for cleaning. (Photo credit Chris)

Me helping to bring the Bongo net back onto the ship for cleaning. – Photo by Chris Tremblay

Jerry Prezioso tying the bottom of the Bongo nets getting them really to be put in the water.

Scientist Jerry Prezioso tying the bottom of the Bong nets getting them really to be put in the water.

Science Spotlight

Since there is so much science happening on the ship that I am doing every day, I am going to have to share just one thing at a time or I would be writing for hours! Today’s science spotlight is about scientist Jerry Prezioso and the Bongo nets. Jerry is an Oceanographer who works at the NOAA Lab in Narragansett, R.I. Jerry primarily studies plankton distribution. He has been on many trips on NOAA ships since he was 18!

Today Jerry taught me how to do a Bongo net sample that is used to collect plankton from the various water columns. At the top of the net there is a piece of equipment called a CTD (Conductivity Temperature & Depth Unit) that communicates with the computers in the lab on the ship. The scientists in the lab use that piece of equipment to detect how far down the net is going and when it is close to the bottom, as well as collect data on the water temperature and salinity.

Once the CTD is set and turned on, the Bongo net can be lowered into the water. The nets have weights on them to sink them close to the bottom. Once the nets are close a scientist at the computer has the cable operator pull the nets up and out of the water. Once they are on deck they have to be washed down so all the organisms that were caught in the netting go to the cod end of the nets. The cod ends of the nets are opened up and the organisms are rinsed into a sieve where they will carefully be transferred into glass bottles, treated with formaldehyde and sent to a lab for sorting. There were lots of organisms that were caught in the net. Some that we saw today were: CopepodsComb Jellies or Ctenophora, Herring Larva, aquatic Arrow Worms or Chaetognaths and tons of Phytoplankton and Zooplankton. The Bongo nets are towed several times a day and night to collect samples of plankton.

Jerry Prezioso and I washing down the Bongo Nets.

Jerry Prezioso and I washing down the Bongo Nets. – Photo by Chris Tremblay.

A shot of some of the creatures we caught being filtered into sampling jars for processing.

A shot of some of the creatures we caught being filtered into sampling jars for processing.

Personal Log

The start to the trip has been a little rough. It feels like this is the first day we have been able to do anything. Monday we had to sit in port and wait for a scientist to calibrate some equipment before we left so we didn’t get underway until bed time. When we awoke, the weather was bad and the seas were very rough. Several people were very sick and some still are. We were only able to drop one piece of acoustic equipment all day (more on that in another blog).  We also had to change the plans on where we were going and move closer to shore due to the weather.

On a ship you need to be very flexible as things are changing all the time! Today was the the first day we were able to do any real science for a sustained amount of time and there were definitely lots of bugs and kinks that needed to be worked out. On top of dropping the BONGO nets with Jerry, I was also able to spend some time and fill in some shifts on the the decks with the Marine Mammal team watching for whales and dolphins. We had a few cool sighting of Humpbacks, Minke, and a Right Whales! (More on them and what they do in another blog too.) On another note, the state rooms are huge and I am sharing a room with one of the acoustic scientists, Genevieve. She is very nice and helpful. The food on the ship is spectacular! I am very surprised how good it is and how many choices there are every meal. All and all things are off to a good start and there is so much more I have to share with everyone about what all these scientist do and it is only our first “real” day!

Did You Know? 

Did you know that North Atlantic Right Whales have a V- shaped blow. Their blow holes (two) are separated which gives them the characteristic blow shape.

Check out this link  to the website at Northeast Fisheries Science Center’s Protected Species Branch (NEFSC PSB) Right Whale Team and the work we do there. There is an interactive Google map site and wonderful links.

Boarding the NOAA Ship Gordon Gunter.

Boarding the NOAA Ship Gordon Gunter.

Boarding the NOAA Ship Gordon Gunter in Newport, R.I.

Boarding the NOAA Ship Gordon Gunter in Newport, R.I.

 

Britta Culbertson: The Beat of the Bongo (Part 2) – Catching Zooplankton, September 12, 2013

NOAA Teacher at Sea
Britta Culbertson
Aboard NOAA Ship Oscar Dyson
September 4-19, 2013

Mission: Juvenile Walley Pollock and Forage Fish Survey
Geographical Area of Cruise: Gulf of Alaska
Date: Wednesday, September 12th, 2013

Weather Data from the Bridge (for Sept 12th, 2013 at 9:57 PM UTC):
Wind Speed: 23.05 kts
Air Temperature: 11.10 degrees C
Relative Humidity: 93%
Barometric Pressure: 1012.30 mb
Latitude: 58.73 N              Longitude: 151.13 W

Science and Technology Log

Humpback Whale

A humpback whale. (Photo credit: NOAA)

We have been seeing a lot of humpback whales lately on the cruise.  Humpback whales can weigh anywhere from 25-40 tons, are up to 60 feet in length, and consume tiny crustaceans, plankton, and small fish.  They can consume up to 3,000 pounds of these tiny creatures per day (Source: NOAA Fisheries).  Humpback whales are filter feeders and they filter these small organisms through baleen.  Baleen is made out of hard, flexible material and is rooted in the whale’s upper jaw.  The baleen is like a comb and allows the whale to filter plankton and small fish out of the water.

Baleen

This whale baleen is used for filter feeding. It’s like a small comb and helps to filter zooplankton out of the water. (Photo credit: NOAA)

I’ve always wondered how whales can eat that much plankton! Three thousand pounds is a lot of plankton.  I guess I felt that way because I had never seen plankton in real-life and I didn’t have a concept of how abundant plankton is in the ocean. Now that I’m exposed to zooplankton every day, I’m beginning to get a sense of the diversity and abundance of zooplantkon.

In my last blog entry I explained how we use the bongo nets to capture zooplankton.  In this entry, I’ll describe some of the species that we find when clean out the codends of the net.  As you will see, there are a wide variety of zooplankton and though the actual abundance of zooplankton will not be measured until later, it is interesting to see how much we capture with nets that have 20 cm and 60 cm mouths and are towed for only 5-10 minutes at each location.  Whales have much larger mouths and feed for much longer than 10 minutes a day!

Cleaning the codends is fairly simple; we spray them down with a saltwater hose in the wet lab and dump the contents through a sieve with the same mesh size as the bongo net where the codend was attached.  The only time that this proves challenging is if there is a lot of algae, which clogs up the mesh and makes it hard to rinse the sample.  Also, the crab larvae that we find tend to hook their little legs into the sieve and resist being washed out.  Below are two images of 500 micrometer sieves with zooplankton in them.

Zooplankton

A mix of zooplankton that we emptied out of the codend from the bongo.

Crab larvae

Crab larvae (megalopae) that we emptied out of the codend.

Some of the species of zooplankton we are finding include different types of:

  • Megalopae (crab larvae)
  • Amphipods
  • Euphausiid (krill)
  • Chaetognaths
  • Pteropods (shelled: Limasina and shell-less: Clione)
  • Copepods (Calanus spp., Neocalanus spp., and Metridea spp.)
  • Larval fish
  • Jellyfish
  • Ctenophores

The other day we had a sieve full of ctenophores, which are sometimes known as comb jellies because they possess rows of cilia down their sides.  The cilia are used to propel the ctenophores through the water.  Some ctenophores are bioluminescent.  Ctenophores are voracious predators, but lack stinging cells like jellyfish and corals. Instead they possess sticky cells that they use to trap predators (Source:  UC Berkeley).  Below is a picture of our 500 micrometer sieve full of ctenophores and below that is a close-up photo of a ctenophore.

Ctenophores

A sieve full of ctenophores or comb jellies.

Ctenophore

A type of ctenophore found in arctic waters. (Photo credit: Kevin Raskoff, MBARI, NOAA/OER)

It’s fun to compare what we find in the bongo nets to the type of organisms we find in the trawl at the same station.  We were curious about what some of the fish we were eating, so we dissected two of the Silver Salmon that we had found and in one of them, the stomach contents were entirely crab larvae! In another salmon that we dissected from a later haul, the stomach contents included a whole capelin fish.

Juvenile pollock are indiscriminate zooplanktivores.  That means that they will eat anything, but they prefer copepods and euphausiids, which have a high lipid (fat) content. Once the pollock get to be about 100 mm or greater in size, they switch from being zooplanktivores to being piscivorous. Piscivorous means “fish eater.”  I was surprised to hear that pollock sometimes eat each other.  Older pollock still eat zooplankton, but they are cannibalistic as well. Age one pollock will eat age zero pollock (those that haven’t had a first birthday yet), but the bigger threat to age zero pollock is the 2 year old and older cohorts of pollock.  Age zeros will eat small pollock larvae if they can find them.  Age zero pollock are also food for adult Pacific Cod and adult Arrowtooth Flounder.  Older pollock, Pacific Cod, and Arrowtooth Flounder are the most voracious predators of age 0 pollock.  Recently, in the Gulf of Alaska, Arrowtooth Flounder have increased in biomass (amount of biological material) and this has put a lot of pressure on the pollock population. Scientists are not yet sure why the biomass of Arrowtooth Flounder is increasing. (Source: Janet Duffy-Anderson – Chief Scientist aboard the Dyson and Alaska Fisheries Science Center).

The magnified images below, which I found online, are the same or similar to some of the species of zooplankton we have been catching in our bongo nets.  Click on the images for more details.

Personal Log (morning of September 14, 2013)

I’m thankful that last night we had calm seas and I was able to get a full eight hours of sleep without feeling like I was going to be thrown from my bed.  This morning we are headed toward the Kenai Peninsula, so I’m excited that we might get to see some amazing views of the Alaskan landscape.  The weather looks like it will improve and the winds have died down to about 14 knots this morning.  Last night’s shift caught an octopus in their trawl net; so hopefully, we will find something more interesting than just kelp and jellyfish in our trawls today.

Did You Know?

I mentioned that we had found some different types of pteropods in our bongo nets.  Pteropods are a main food source for North Pacific juvenile salmon and are eaten by many marine organisms from krill to whales.  There are two main varieties of pteropods; there are those with shells and those without.  Pteropods are sometimes called sea butterflies.

Pteropod

A close-up of Limacina helicina, a shelled pteropod or sea butterfly. (Photo credit: Russ Hopcroft/University of Alaska, Fairbanks)

Unfortunately, shelled pteropods are very susceptible to ocean acidification.  Scientists conducted an experiment in which they placed shelled pteropods in seawater with pH and carbonate levels that are projected for the year 2100.  In the image below, you can see that the shell dissolved slowly after 45 days.  If pteropods are at the bottom of the food chain, think of the implications of the loss of pteropods for the organisms that eat them!

Pteropods

Shelled pteropods after being exposed to sea water that has the anticipated carbonate and pH levels for the year 2100. Notice the degradation of the shell after 45 days. (Photo credit: David Liittschwager/National Geographic Stock)

Read more about ocean acidification on the NOAA’s Pacific Marine Environmental Laboratory (PMEL) website. Also, check out this press release from November 2012 by the British Antarctic Survey about the first evidence of ocean acidification affecting marine life in the Southern Ocean.

Teacher’s Corner

In my last blog entry on the bongo, I talked about using the “frying pan” or clinometer to measure wire angle.  If you’re interested in other applications of clinometers, there are instructions for making homemade clinometers here and there’s also a lesson plan from National Ocean Services Education about geographic positioning and the use of clinometers this website.

If you are interested in teaching your students about different types of plankton, here is a Plankton Wars lesson plan from NOAA and the Southeast Phytoplankton Monitoring Network, which helps students to understand how plankton stay afloat and how surface area plays a role in plankton survival.

If you would like to show your students time series visualizations of phytoplankton and zooplankton, go to NOAA’s COPEPODite website.

Zooplankton time series

Zooplankton time series visualization from the COPEPODite website.

For more plankton visualizations and data, check out NOAA’s National Marine Fisheries Service website.

If you are interested in having your students learn more about ocean acidification, there is a great ocean acidification module developed for the NOAA Ocean Data Education Project on the Data in the Classroom website.

Emilisa Saunders: Finding the rhythm aboard the Oregon II, May18, 2013

NOAA Teacher at Sea

Emilisa Saunders

Aboard NOAA ship Oregon II

May 14, 2013 – May 30 2013

Mission: SEAMAP Spring Plankton Survey

Geographical Area of Cruise:  Gulf of Mexico

Date: May 18, 2013

Weather Data: Wind Speed: 13.94 knots; Surface water temperature: 25.4;  Air temperature: 26.4; Relative humidity: 87%; Barometric pressure: 1,015.33 mb

IMG_1991

Science and Technology Log:

For the scientists on board the Oregon II, each shift follows roughly the same routine.   When we start our shift, we check in at the dry lab to see how much time we have until the next sampling station.  These stations are points on the map of the Gulf of Mexico; they were chosen to provide the best coverage of the Gulf waters.  Our ETA, or estimated time of arrival, is determined by how fast the ship is moving, which is influenced by wind and currents, which you can see in the map below.  A monitor mounted in the dry lab shows us a feed of the route mapping system that is used by the crew on the Bridge to drive the ship.  This system allows us to see where we are, where we are headed, and what our ETA is for the next station.  We also get warnings from the Bridge at one hour, at thirty minutes, and at ten minutes before arrival.

Gulf Currents

The currents in the Gulf of Mexico, plus our planned route.  Image courtesy of NOAA.

At the 10-minute mark, we put on our protective gear – more on that later in this post – and bring the cod ends up to the bow of the boat, where we attach them to the ends of the appropriate nets.  Then, we drop the Bongo nets, the regular Neuston net, the Sub-surface Neuston net, and the CTD into the water, in that order.  These all go down one at a time, and each one is pulled out and the samples collected before the next net goes in.

Neuston

Towing the Neuston net on the night shift

The idea of dropping a net into the water probably sounds pretty simple, but it is actually a multiple-step process that requires excellent teamwork and communication amongst several of the ship’s teams.  The scientists ready the nets by attaching cod ends and making note of the data that tracks the flow of water through the net.  Because the nets are large and heavy, and because of the strong pressure of the water flowing through the nets, they are lifted into the water using winches that are operated by the ship’s crew.  The crew members operate the machinery, and guide the nets over the side of the ship.  While this is happening, the crew members communicate by radio with the Bridge, providing them with information about the angle of the cable that is attached to the net, so that the Bridge can maintain the a speed that will keep the net at the correct angle. At the same time, a scientist in the dry lab monitors how deep the net is and communicates with the deck crew about when to raise and lower the nets.  This communication takes place mostly over walkie-talkies, which means that clear and precise instructions and feedback are very important.

Operating the winches

Crewmember Reggie operating the winch, while crewmember Chris measures the angle of the cable

When each net is pulled back out of the water after roughly 5-10 minutes, we use a hose to spray any little creatures who might be clinging to the net, down into the cod end.  At stations where we run the MOCNESS, we head to the stern of the ship, where the huge MOCNESS unit rests on a frame.  Lowering the MOCNESS takes a strong team effort, since it is so large.  After we retrieve each net, we detach the cod ends and bring them to the stern, where a station is set up for us to preserve the specimens.  I’ll go into more detail about the process of preserving plankton samples in a later post.

Hosing down the nets

Alonzo, hosing down the Bongo nets before bringing them aboard.

We’ve had a couple of nights of collecting now, and so far it has been completely fascinating.  I’m in awe of the variety of organisms that we’ve come across.  The scientists on my shift, Glenn and Alonzo, are super knowledgeable and have been very helpful in explaining to me what we are finding in the nets.  Although this is a Bluefin Tuna study, we collect and preserve any plankton that ends up in the nets, which can include copepods, myctophids, jellies, filefish larvae and eel larvae, to name a few.  When we get the samples back to shore, they will be sent to a lab in Poland, where the species will be sorted and counted; then, the tuna larvae will be sent back to labs in Mississippi or Florida for further study and sometimes genetic testing.

My favorite creature find so far has been the pyrosome.  While a pyrosome looks like a single, strange creature, it is actually a colony of tiny creatures called zooids that live together in a tube-shaped structure called a tunic.  The tunic feels similar to cartilage, like the upper part of your ear.  Pyrosomes are filter feeders, which means they draw in water from one opening, eat the phytoplankton that passes through, and push out the clean water from the other end.  So far on the night shift, we’ve found two pyrosomes about four inches in length and one that was about a foot long; the day crew found one that filled two five-gallon buckets!

Me holding a pyrosome.  So neat!

Me holding a pyrosome. So neat!

Alonzo and the pyrosome

Alonzo holding the pyrosome

Challenge Yourself:

Hello, Nature Exchange Traders!  Pick one of the of the zooplankton listed in bold above, and research some facts about it: Where does it live?  What does it eat?  What eats it?  Write down what you find out and bring it in to the Nature Exchange for bonus points.  Be sure to tell them Emmi sent you!

Gumby Suit

In the Gumby suit, practicing the Abandon Ship drill. Photo by Glenn Zapfe

Personal Log:

Safety is the top priority on board the Oregon II.  We wouldn’t be able to accomplish any of our scientific goals if people got hurt and equipment got damaged.  We started our first day at sea with three safety drills: the Man Overboard drill, the Abandon Ship drill and the Escape Hatch drill.  For Man Overboard, everyone on board gathered, or mustered, at specific locations; for the Science team, our location was at the stern, or back of the ship.  Aft is another word for the back.  From there, we all scanned the water for the imaginary person while members of the crew lowered a rescue boat into the water and circled the Oregon II to practice the rescue.

For the Abandon Ship drill, we all grabbed our floatation devices and survival suits from our staterooms and mustered toward the bow, or front of the ship.  I got to practice putting on the survival suit, which is affectionately called a Gumby suit.  In the unlikely event that we would ever have to abandon ship, the suit would help us float and stay relatively warm and dry; it also includes a whistle and a strobe light so that aircraft overhead can see us in the water.

For the Escape Hatch drill, we all gathered below deck where our staterooms are, and climbed a ladder, where crew members helped pull us up onto the weather deck (the area of the ship exposed to weather) on the bow of the ship.  This is meant to show us how to escape dangers such as fire or flood below deck.

Safety gear

Safety gear on; ready for station!  Photo by Glenn Zapfe

But safety isn’t just practiced during drills; it’s pretty much a way of life on the ship.  Whenever winches or other machinery are in operation, we all have to wear hard hats and life jackets; that means that we wear them every time we reach a station and drop the nets.  We are also all required to wear closed-toed and closed-heeled shoes at all times, unless we’re sleeping or showering.  Another small safety trick that is helpful is the idea of, “keep one hand for yourself and one hand for the ship.”  That means we carry gear in one hand and leave one free to hold onto the swaying ship.  This has been really useful for me as I get used to the ship’s movements.

Until next time, everyone – don’t forget to track the Oregon II here: NOAA Ship Tracker