NOAA Teacher at Sea
Jenny Gapp (she/her)
Aboard NOAA Ship Bell M. Shimada
July 23 – August 5, 2023
Mission: Pacific hake (Merluccius productus) Survey (Leg 3 of 5)
Geographic Area of Cruise: Pacific Ocean off the Northern California Coast working north back toward coastal waters off Oregon.
Date: July 29, 2023
Weather Data from the Bridge
Sunrise 0616 | Sunset 2037
Current Time: 1500 (3pm Pacific Daylight Time)
Lat 41 06.7 N, Lon 124 37.6 W
Visibility: 10 nm (nautical miles)
Sky condition: A few clouds
Wind Speed: 13 knots
Wind Direction: 334°
Barometer: 1019.7 mb
Sea Wave height: 2-3 ft | Swell: 330°, 3-4 ft
Sea temp: 14.1°C | Air Temp: 17.6°C
Science and Technology Log
Hake are not the only thing being studied during this mission. In the Chemistry Lab, there are a variety of ongoing tests. Every few transects, seawater is collected and tested for Harmful Algal Bloom (HABs). A vacuum pump sucks the sample through a 0.45um filter, which is then removed and placed into a test tube for microscopic study. The Southern California coast is currently dealing with a bloom toxic to animals. Scientists want to know if the bloom is drifting north. Blooms are a natural phenomenon, but human activity cannot be ruled out from having an impact.
A seawater pump connects to a software program that allows you to see images of phytoplankton being photographed in real time as they are sucked past the camera. Phytoplankton forms the base of the aquatic food web. They provide food for huge whales, small fish, invertebrates, and zooplankton. Plankton makes up 95% of life in the ocean, they generate half of our oxygen and absorb carbon. A sudden removal of phytoplankton would result in a collapse of aquatic ecosystems, and would accelerate climate change further.
The phytoplankton images are taken using a robotic microscope automating identification. The name of the artificial intelligence is Imaging Flow CytoBot (IFCB). Flow cytometry uses lasers to create both scattered and fluorescent light signals. These signals are read by photosensitive diodes and tubes, and then those signals can be converted electronically to be read by a computer. The data gathered enables ecosystem modeling, and can act as an early warning to toxic blooms.


Career feature
Steve de Blois, Chief Scientist
Steve’s favorite thing about his job is getting out in nature, seeing, and photographing marine mammals. Even though the hours are long, the commute is short when you’re at sea! His educational background includes an undergraduate degree in biology from the University of Michigan, Ann Arbor; and a Master’s from Humboldt State University (now called Cal Poly Humboldt) in marine mammals. It was tough finding work after graduate school since working with marine mammals generally holds more appeal than fish, and thus more people are competing for a finite number of jobs. Once Steve secured a job at one of NOAA’s regional offices, he found out about other opportunities and ended up on a walleye pollock acoustic trawl survey in Alaska. This is where he had one of those National Geographic moments where the scenery is so stunning it touches you at your core. He has been with NOAA since 1990—the same year the Teacher at Sea Program began.
Steve’s advice for young people interested in ocean-related careers is to focus on getting your education. He states that getting a graduate degree (PhD and/or Master’s) will make you more competitive in the scientific community. However, he also advises, “get experience.” Nothing can compare to first-hand experience and there are many opportunities for volunteering in the field, in marine labs, and on ships.
During his leisure time, Steve prefers to fly his home-built plane (A Zenith CH 650), go scuba diving, and enjoy photography. When it comes to reading he prefers nonfiction. He has German heritage on his mother’s side and shared some personal history of family members surviving both World War One and World War Two. This part of his family tree has increased his interest in true tales about World War Two German fighter pilots. In his youth, he absorbed science fiction novels by Arthur C. Clarke and recalls enjoying Dune, by Frank Herbert. Recently, he read Rachel Carson’s classic The Sea Around Us and was impressed by its lyrical prose.
Steve has patiently taught me about how to detect hake sign on an echogram. Acoustically speaking, hake have a unique characteristic. The visualized pings usually show hake near the slope of the continental shelf, and they appear as a diffuse cloud of colored pixels, or as a “hakey snakey” line gently curving up and down. A calculation called NASC, Nautical Area Scattering Coefficient, makes an estimate of individuals in that defined area drawn by scientists.
The acoustic echogram has a color key representing the strength of return on what the sound waves bounce off. The color scale looks something like you’d see in an art room class teaching color theory. The weakest return is signified by a pale grey to dark, then a light blue shade into dark, the blue turns teal as it morphs into greens, then when yellow appears the scientists start getting excited. After yellow is orange, pink, then many shades of red ending with a deep magenta. The ocean floor appears as deep magenta. On Leg 2 the Shimada saw several very dense balls of fish; these fish are likely herring or sardines, species smaller than hake. The acoustic return from these very dense balls of fish is extremely high—their color in the acoustic software is easily deep red, almost brown.

Taxonomy of Sights
Day 5. Bycatch highlights: Intact squid, Chinook salmon (also known as King salmon), and excited albatross following a record haul.
Day 6. More salmon, two kinds of rockfish, a Thetys vagina salp (more on the awkward name here), and a marine hatchetfish so small my camera found it difficult to focus on. Ethan Beyer, Wet Lab Lead, shared a trick to determine the difference between a yellowtail rockfish and widow rockfish (they look similar). The difference? Widow rockfish have a “widdle” mouth. Meaning, the mouth is smaller than the yellowtail’s (ha, ha). The two types of rockfish we caught were the widow and the shortbelly (Ethan says they make great tacos!) Speaking of tacos, the widow rockfish are due to make an appearance on our mess deck menu soon.
Day 7. Not much…
You Might Be Wondering…
What is the furthest you’ve been from shore?
To date (July 28th), an extension of transect 39 took us a total of 62 nautical miles from shore, which beat our extension record on Wednesday, July 26th. Leg 3 has extended more transects than Leg 2. The reason for extending a transect is to go where the fish sign is. The NOAA Fisheries protocol is to discover what the western extent is for schools of hake on that transect. So, they wait for at least one mile without seeing hake before ending the transect.
What is the deepest trawl you’ve made?
So far on Leg 3 we’ve gone 400 meters (about a quarter of a mile) to reach a target depth. Simply put, target depth is where the fish are estimated to be.
Floating Facts
Vocabulary
Bycatch – Some dictionaries call them unwanted creatures caught in the pursuit of a different species. NOAA however, thinks it worthwhile to catalog the biomass of these tag-alongs.
Biomass – The total weight (sometimes quantity) of a species in a given area or given volume.
One of these things is not like the others
Tow, Haul, and Trawl are used interchangeably in reference to fishing.
“Catch” is what we’ve caught in the net.
Survey Permits
You know how you ask permission at school and at home to do a thing? The hake survey requires a number of permits to conduct its research. A permit is an official document saying you have asked for and been granted permission.
NOAA’s Western Region office issues “Authorizations and Permits for Protected Species.” The protected species are salmon and eulachon, a thin silvery thing about the size of a herring. The permit dictates what you can (measure and weigh it) and can’t do (eat it) with protected species.
A state’s jurisdiction over ocean waters only extends three nautical miles from shore. The Oregon Department of Fish and Wildlife wants to know the number of all species caught off its coast. California’s Department of Fish and Wildlife issues a Memorandum of Understanding (MOU) along with a permit. The MOU calls out particular species they are interested in: longfin smelt, coho and chinook salmon.

While fishing rarely ever happens in Alaskan waters during the hake survey, the Department of Fish and Game issues a permit that is shared with Canadian colleagues who may pursue hake further north. Waters defined by NOAA’s National Marine Sanctuaries have their own monitoring system and permit issuance. The hake survey passes through three sanctuaries in California waters and one in Washington (the Olympic Coast). Finally, the West Coast Region of NMFS (National Marine Fisheries Service) issues a permit and requires a record of all species caught in U.S. waters, so a grand total of sorts for all states involved.
Personal Log
Thursday was a huge improvement over the icky Wednesday ride. We made two successful trawls, and two trawls on Friday. Wet Lab Lead, Ethan Beyer, commented during fish processing on Friday, “I feel like I’m the world’s foremost expert on the visual maturity of hake. I look at a lot of hake gonads.” This was memorable.
Saturday dawned with too much fishing line in the water to do anything so we waited until we moved past it before dipping the net in. We did squeeze in a catch before lunch, but it produced exactly one hake among the usual lanternfish and pyrosomes. Disappointing for the science crew.
Note: In an earlier post I referred to lanternfish as “lampfish,” which is incorrect. I’ve also been calling Dramamine “dopamine” for some reason. I’ll blame it on the mild disorientation that is caused by floating around on the ocean.
My Daily Routine
I wake around 0600 and sometimes make it up to the flying bridge to see the sunrise, but usually go up regardless before breakfast to view the morning light. I stop in at the acoustics lab to sit at my workstation, blog a bit, and see what hake sign there is on the echogram (software visualization of what lies beneath us). Breakfast is served at 0700, then I return to acoustics to stay up to date on when we’re going fishing.
When you hear, “Fishing, fishing, fishing,” on the radio you know it’s almost time for the marine mammal watch. Marine mammal watch happens on the bridge, and I continue watching for a while even after the watch ends. I’ll stay up there for most of the trawl until I hear, ”Doors at the surface.” (More on the stages of a trawl next time.)
Next, I’ll go to the “ready room” in the wet lab where boots and fishy rubber overalls are stored. Blog post three walked you through what we do in the Wet Lab once the catch has been dumped in the crate. Processing species takes us into lunch hour at 1100.
A second trawl after lunch, and assuming the catch is decent, processing will take us to dinner. I have down time after dinner, watch the evening light if the weather is amenable, then return to acoustics for more blog time. I’m in bed somewhere between 2030 and 2230.
While there is a general routine, no day is exactly alike. On Saturday I assisted Ethan with collecting sea water from a vertical net dipped by a crane to 100 meters. Scientists will look at the plankton, krill, and other small species to determine stratification and measure abundance.



Librarian at Sea
“It is a curious situation that the sea, from which life first arose should now be threatened by the activities of one form of that life. But the sea, though changed in a sinister way, will continue to exist; the threat is rather to life itself.”― Rachel Carson, The Sea Around Us
The cover of Rachel Carson’s book, The Sea Around Us, appears on the wall of the dining room at Sylvia Beach Hotel where I stayed prior to the departure of leg three. Her poetic approach to scientific insight continues to inspire readers. The book I brought with me on the ship does something similar. In How Far the Light Reaches, author Sabrina Imbler blends personal memoir with profiles of ten sea creatures. Imbler attempts to keep metaphors and personal (human) parallels at a distance from the scientific integrity of species. Both titles are recommended reading.
Hook, Line, and Thinker
When I was a kid, my Dad sometimes sang Gordon Lightfoot’s ‘Ode to Big Blue’ as a lullaby before bed. It’s one of the only songs I know all the lyrics to, although sometimes I scramble the verses up. I think it was my first exposure to the tension between commerce and the sustainability of natural resources. The sixth verse says,
Now the gray whale is run and the sperm is almost done
The finbacks and the Greenland rights have all passed and gone
They’ve been taken by the men for the money they could spend
And the killing never ends it just goes on
Herein lies another ethical debate on balancing preservation, economics, and the needs and wants of Homo sapiens. The song celebrates the natural wonder of whales alongside the biting reality of human enterprise.
In April 2023 NOAA released a 2022 Status of Stocks report. Data displayed overfishing status of 490+ stocks managed by NOAA.

NOAA Fisheries assistant administrator, Janet Coit, said in the Status of Stocks news release, “Managing fisheries sustainably is an adaptive process, relying on sound science and innovation to conserve species and habitat, and meet the challenge of increasing our nation’s seafood supply in the face of climate change.” NOAA Fisheries priorities for fiscal year 2023 are full of words like: sustainability, resilience, mitigate, adapt, diversify, ensure equity, safeguard, propel recovery, conservation, protect, and restore. NOAA continuously strives to balance the scales between conservation and consumption.
What are the ethical concerns that should guide economics?
Is it possible to view the ocean other than as a natural resource?
Is that view in fact imperative to the sustainability of life on Earth?
A Bobbing Bibliography
If you keep your eye out for books, you will find them. Tucked away on the bridge is a shelf containing…