Jenny Gapp: An Ode to Big Blue, July 29, 2023

NOAA Teacher at Sea

Jenny Gapp (she/her)

Aboard NOAA Ship Bell M. Shimada

July 23 – August 5, 2023

Mission: Pacific hake (Merluccius productus) Survey (Leg 3 of 5)
Geographic Area of Cruise: Pacific Ocean off the Northern California Coast working north back toward coastal waters off Oregon.
Date: July 29, 2023

Weather Data from the Bridge

Sunrise 0616 | Sunset 2037
Current Time:  1500 (3pm Pacific Daylight Time)
Lat 41 06.7 N, Lon 124 37.6 W
Visibility:  10 nm (nautical miles)
Sky condition: A few clouds
Wind Speed:  13 knots
Wind Direction: 334°
Barometer:  1019.7 mb
Sea Wave height: 2-3 ft | Swell: 330°, 3-4 ft
Sea temp: 14.1°C | Air Temp: 17.6°C

Science and Technology Log

Hake are not the only thing being studied during this mission. In the Chemistry Lab, there are a variety of ongoing tests. Every few transects, seawater is collected and tested for Harmful Algal Bloom (HABs). A vacuum pump sucks the sample through a 0.45um filter, which is then removed and placed into a test tube for microscopic study. The Southern California coast is currently dealing with a bloom toxic to animals. Scientists want to know if the bloom is drifting north. Blooms are a natural phenomenon, but human activity cannot be ruled out from having an impact.

water filtration equipment, and a datasheet on a clipboard, on a metal table
HAB test in the Chem Lab

A seawater pump connects to a software program that allows you to see images of phytoplankton being photographed in real time as they are sucked past the camera. Phytoplankton forms the base of the aquatic food web. They provide food for huge whales, small fish, invertebrates, and zooplankton. Plankton makes up 95% of life in the ocean, they generate half of our oxygen and absorb carbon. A sudden removal of phytoplankton would result in a collapse of aquatic ecosystems, and would accelerate climate change further.

The phytoplankton images are taken using a robotic microscope automating identification. The name of the artificial intelligence is Imaging Flow CytoBot (IFCB). Flow cytometry uses lasers to create both scattered and fluorescent light signals. These signals are read by photosensitive diodes and tubes, and then those signals can be converted electronically to be read by a computer. The data gathered enables ecosystem modeling, and can act as an early warning to toxic blooms. 

Career feature

Steve stands at a line of computer screens and keyboards on the bridge. Through the bridge windows, we can make out blue water. Steve holds what might be an electronic pad in his left hand and a stylus in his right hand. He looks down, focused on his work.
Chief Scientist, Steve de Blois, on the bridge during a trawl.

Steve de Blois, Chief Scientist

Steve’s favorite thing about his job is getting out in nature, seeing, and photographing marine mammals. Even though the hours are long, the commute is short when you’re at sea! His educational background includes an undergraduate degree in biology from the University of Michigan, Ann Arbor; and a Master’s from Humboldt State University (now called Cal Poly Humboldt) in marine mammals. It was tough finding work after graduate school since working with marine mammals generally holds more appeal than fish, and thus more people are competing for a finite number of jobs. Once Steve secured a job at one of NOAA’s regional offices, he found out about other opportunities and ended up on a walleye pollock acoustic trawl survey in Alaska. This is where he had one of those National Geographic moments where the scenery is so stunning it touches you at your core. He has been with NOAA since 1990—the same year the Teacher at Sea Program began. 

Steve’s advice for young people interested in ocean-related careers is to focus on getting your education. He states that getting a graduate degree (PhD and/or Master’s) will make you more competitive in the scientific community. However, he also advises, “get experience.” Nothing can compare to first-hand experience and there are many opportunities for volunteering in the field, in marine labs, and on ships.

During his leisure time, Steve prefers to fly his home-built plane (A Zenith CH 650), go scuba diving, and enjoy photography. When it comes to reading he prefers nonfiction. He has German heritage on his mother’s side and shared some personal history of family members surviving both World War One and World War Two. This part of his family tree has increased his interest in true tales about World War Two German fighter pilots. In his youth, he absorbed science fiction novels by Arthur C. Clarke and recalls enjoying Dune, by Frank Herbert. Recently, he read Rachel Carson’s classic The Sea Around Us and was impressed by its lyrical prose.

Steve has patiently taught me about how to detect hake sign on an echogram. Acoustically speaking, hake have a unique characteristic. The visualized pings usually show hake near the slope of the continental shelf, and they appear as a diffuse cloud of colored pixels, or as a “hakey snakey” line gently curving up and down.  A calculation called NASC, Nautical Area Scattering Coefficient, makes an estimate of individuals in that defined area drawn by scientists.

The acoustic echogram has a color key representing the strength of return on what the sound waves bounce off. The color scale looks something like you’d see in an art room class teaching color theory. The weakest return is signified by a pale grey to dark, then a light blue shade into dark, the blue turns teal as it morphs into greens, then when yellow appears the scientists start getting excited. After yellow is orange, pink, then many shades of red ending with a deep magenta. The ocean floor appears as deep magenta. On Leg 2 the Shimada saw several very dense balls of fish; these fish are likely herring or sardines, species smaller than hake.  The acoustic return from these very dense balls of fish is extremely high—their color in the acoustic software is easily deep red, almost brown.

a screenshot likely of a powerpoint slide combining several graphs. most are grids with thousands of colored dots on them, representing acoustic signatures. diagonal, jagged lines of darker colors mark the seafloor. this slide is labeled AWT 27, Transect 38, July 27, 2023. 40 degrees 36.67'N, 124 degrees 31.82'W. 15:05 PDT (22:05 GMT), 20.7 min. TD 210 m/bottom depth 550 m.
The thicker reddish brown line you see is the continental shelf/ocean floor. The greenish-yellow cloud represents an acoustic signature historically found to be hake. The thin red lines in the echograms on the right represent the head rope from imaging by the SBE (Sea-Bird Electronics) camera, aka “the turtle.”

Taxonomy of Sights

Day 5. Bycatch highlights: Intact squid, Chinook salmon (also known as King salmon), and excited albatross following a record haul.

Day 6. More salmon, two kinds of rockfish, a Thetys vagina salp (more on the awkward name here), and a marine hatchetfish so small my camera found it difficult to focus on. Ethan Beyer, Wet Lab Lead, shared a trick to determine the difference between a yellowtail rockfish and widow rockfish (they look similar). The difference? Widow rockfish have a “widdle” mouth. Meaning, the mouth is smaller than the yellowtail’s (ha, ha). The two types of rockfish we caught were the widow and the shortbelly (Ethan says they make great tacos!) Speaking of tacos, the widow rockfish are due to make an appearance on our mess deck menu soon. 

Day 7. Not much…

You Might Be Wondering…

What is the furthest you’ve been from shore?
To date (July 28th), an extension of transect 39 took us a total of 62 nautical miles from shore, which beat our extension record on Wednesday, July 26th. Leg 3 has extended more transects than Leg 2. The reason for extending a transect is to go where the fish sign is. The NOAA Fisheries protocol is to discover what the western extent is for schools of hake on that transect. So, they wait for at least one mile without seeing hake before ending the transect.

What is the deepest trawl you’ve made?
So far on Leg 3 we’ve gone 400 meters (about a quarter of a mile) to reach a target depth. Simply put, target depth is where the fish are estimated to be.

Floating Facts

Vocabulary

Bycatch – Some dictionaries call them unwanted creatures caught in the pursuit of a different species. NOAA however, thinks it worthwhile to catalog the biomass of these tag-alongs.

Biomass – The total weight (sometimes quantity) of a species in a given area or given volume.

One of these things is not like the others
Tow, Haul, and Trawl are used interchangeably in reference to fishing.
“Catch” is what we’ve caught in the net.

Survey Permits

You know how you ask permission at school and at home to do a thing? The hake survey requires a number of permits to conduct its research. A permit is an official document saying you have asked for and been granted permission. 

NOAA’s Western Region office issues “Authorizations and Permits for Protected Species.” The protected species are salmon and eulachon, a thin silvery thing about the size of a herring. The permit dictates what you can (measure and weigh it) and can’t do (eat it) with protected species.

A state’s jurisdiction over ocean waters only extends three nautical miles from shore. The Oregon Department of Fish and Wildlife wants to know the number of all species caught off its coast. California’s Department of Fish and Wildlife issues a Memorandum of Understanding (MOU) along with a permit. The MOU calls out particular species they are interested in: longfin smelt, coho and chinook salmon. 

Jenny stands in the wet lab holding a sizable salmon with two hands. She wears black gloves, black overalls, and a Teacher at Sea beanie.
I should be frowning – we don’t intend to be pulling salmon out of the water. However, their appearance does contribute to data about the health of their populations.

While fishing rarely ever happens in Alaskan waters during the hake survey, the Department of Fish and Game issues a permit that is shared with Canadian colleagues who may pursue hake further north. Waters defined by NOAA’s National Marine Sanctuaries have their own monitoring system and permit issuance. The hake survey passes through three sanctuaries in California waters and one in Washington (the Olympic Coast). Finally, the West Coast Region of NMFS (National Marine Fisheries Service) issues a permit and requires a record of all species caught in U.S. waters, so a grand total of sorts for all states involved. 

Personal Log

Thursday was a huge improvement over the icky Wednesday ride. We made two successful trawls, and two trawls on Friday. Wet Lab Lead, Ethan Beyer, commented during fish processing on Friday, “I feel like I’m the world’s foremost expert on the visual maturity of hake. I look at a lot of hake gonads.” This was memorable.

Saturday dawned with too much fishing line in the water to do anything so we waited until we moved past it before dipping the net in. We did squeeze in a catch before lunch, but it produced exactly one hake among the usual lanternfish and pyrosomes. Disappointing for the science crew.

Note: In an earlier post I referred to lanternfish as “lampfish,” which is incorrect. I’ve also been calling Dramamine “dopamine” for some reason. I’ll blame it on the mild disorientation that is caused by floating around on the ocean.

My Daily Routine

I wake around 0600 and sometimes make it up to the flying bridge to see the sunrise, but usually go up regardless before breakfast to view the morning light. I stop in at the acoustics lab to sit at my workstation, blog a bit, and see what hake sign there is on the echogram (software visualization of what lies beneath us). Breakfast is served at 0700, then I return to acoustics to stay up to date on when we’re going fishing.

When you hear, “Fishing, fishing, fishing,” on the radio you know it’s almost time for the marine mammal watch. Marine mammal watch happens on the bridge, and I continue watching for a while even after the watch ends. I’ll stay up there for most of the trawl until I hear, ”Doors at the surface.” (More on the stages of a trawl next time.)

Next, I’ll go to the “ready room” in the wet lab where boots and fishy rubber overalls are stored. Blog post three walked you through what we do in the Wet Lab once the catch has been dumped in the crate. Processing species takes us into lunch hour at 1100.

A second trawl after lunch, and assuming the catch is decent, processing will take us to dinner. I have down time after dinner, watch the evening light if the weather is amenable, then return to acoustics for more blog time. I’m in bed somewhere between 2030 and 2230.

While there is a general routine, no day is exactly alike. On Saturday I assisted Ethan with collecting sea water from a vertical net dipped by a crane to 100 meters. Scientists will look at the plankton, krill, and other small species to determine stratification and measure abundance.

Librarian at Sea

“It is a curious situation that the sea, from which life first arose should now be threatened by the activities of one form of that life. But the sea, though changed in a sinister way, will continue to exist; the threat is rather to life itself.”― Rachel Carson, The Sea Around Us

The cover of Rachel Carson’s book, The Sea Around Us, appears on the wall of the dining room at Sylvia Beach Hotel where I stayed prior to the departure of leg three. Her poetic approach to scientific insight continues to inspire readers. The book I brought with me on the ship does something similar. In How Far the Light Reaches, author Sabrina Imbler blends personal memoir with profiles of ten sea creatures. Imbler attempts to keep metaphors and personal (human) parallels at a distance from the scientific integrity of species. Both titles are recommended reading.

image of the cover of How Far the Light Reaches: A Life in Ten Sea Creatures by Sabrina Imbler.
How Far the Light Reaches: A Life in Ten Sea Creatures by Sabrina Imbler
photo of an old copy of The Sea Around Us by Rachel Carson mounted to a red wall
The Sea Around Us by Rachel L. Carson

Hook, Line, and Thinker

When I was a kid, my Dad sometimes sang Gordon Lightfoot’s ‘Ode to Big Blue’ as a lullaby before bed. It’s one of the only songs I know all the lyrics to, although sometimes I scramble the verses up. I think it was my first exposure to the tension between commerce and the sustainability of natural resources. The sixth verse says,

Now the gray whale is run and the sperm is almost done
The finbacks and the Greenland rights have all passed and gone
They’ve been taken by the men for the money they could spend
And the killing never ends it just goes on

Herein lies another ethical debate on balancing preservation, economics, and the needs and wants of Homo sapiens. The song celebrates the natural wonder of whales alongside the biting reality of human enterprise.

In April 2023 NOAA released a 2022 Status of Stocks report. Data displayed overfishing status of 490+ stocks managed by NOAA. 

a NOAA Fisheries infographic showing two pie graphs in the shape of fish silhouettes. the first is labeled 355 Stocks with Known Overfishing Status. This graph shows that 93% are not subject to overfishing (331 stocks) while 7% (just the tip of the tail of this snapper-shaped fish) are subject to overfishing (24 stocks). The other graph is labeled 249 Stocks with Known Overfishing Status. It shows that 81% are not overfished (201 stocks) while 19% (a little more than the tail of this tuna-shaped fish) are overfished (48 stocks).



NOAA Fisheries assistant administrator, Janet Coit, said in the Status of Stocks news release, “Managing fisheries sustainably is an adaptive process, relying on sound science and innovation to conserve species and habitat, and meet the challenge of increasing our nation’s seafood supply in the face of climate change.” NOAA Fisheries priorities for fiscal year 2023 are full of words like: sustainability, resilience, mitigate, adapt, diversify, ensure equity, safeguard, propel recovery, conservation, protect, and restore. NOAA continuously strives to balance the scales between conservation and consumption.

What are the ethical concerns that should guide economics?
Is it possible to view the ocean other than as a natural resource?
Is that view in fact imperative to the sustainability of life on Earth?

A Bobbing Bibliography

If you keep your eye out for books, you will find them. Tucked away on the bridge is a shelf containing…

photo of books on a shelf. we see: Marine Weather, Cold Weather Handbook... , Dutton's Nautical Navigation, Solas, American Merchant Seaman's Manual sixth edition, Shiphandling with Tugs second edition, Watch Officer's Guide fifteenth edition, Stability and Trim for the Ship's Officer fourth edition, Naval Ceremonies, Customs, and Traditions sixth edition, The Bluejacket's Manual, Nautical Almanac 2023, Nautical Almanac 1981

Julie Hayes: Days at Sea! April 26, 2023

NOAA Teacher at Sea

Julie Hayes

Aboard NOAA Ship Pisces

April 22-May 5, 2023

Mission: SEAMAP Reef Fish

Geographic Area of Cruise: Gulf of Mexico

Date: April 26, 2023

Weather Data

Clouds: Scattered

Temperature: 77 degrees F

Wind: 12 kt.

Waves: 2-4 ft.

Science and Technology Log

Each day is started and then ended with a water sample from the ocean. The technology is called a CTD, but the procedure would be called a CTD cast (as if we were casting it in the ocean). CTD stands for conductivity, temperature, and depth. The CTD consists of a collection of electronic instruments that measure the properties of the water, including a laser that checks the clarity of the water. Sampling water bottles are connected to a metal frame called a “rosette”. This information on water characteristics is important to both the scientists and the survey mapping team that use cameras and sonar. This information lets them know how well the clarity of the water is and the speed of sound that helps with the depth finders and sonar.

The apparatus containing the conductivity, temperature, and depth probe sits on the deck of NOAA Ship Pisces, awaiting deployment.
CTD used to check water quality, conductivity, temperature, and depth.

Vocabulary Check

What is Conductivity?

Conductivity is a measure of the ability of water to pass an electrical current.

What is Salinity?

Salinity is the dissolved salt content of a body of water and is a strong conductor of water.

So why is it important for scientist to know what each of these are?

The higher salinity the water is, the higher the conductivity of electrical currents.

Temperature also plays a role in the density. Knowing each of these is important because it lets the scientists know the water quality at different depths so they can make adjustments to their cameras and sonar.

Jack Prior, Chief Scientist

Jack is a pretty “chill” guy, and I have enjoyed watching him in action the past few days. Jack is the field party chief of this mission which involves everything from planning the trip, to deciding the daily sampling locations, deploying cameras, mapping, and figuring out what to do when things go wrong. Jack is in charge of planning and submitting the protocol for the entire mission and also is responsible for the end reports of the mission. You will find Jack on this leg sitting behind multiple computers regulating and keeping a watchful eye on all of the important information regarding this mission. Jack attended the University of West Florida to get his degree in marine biology.

Jack sits at a computer desk with multiple monitors. He smiles at the camera, his right hand giving a thumbs up.
Chief Scientist Jack Prior

Student Question of the Day

Whenever I get a chance, I ask random crew members questions that my students back home were curious about. Here is how Jack answered some of the students’ questions.

Konnor, Nichole, Lillian ask: What degree do you have and what all is needed to do your job?

Jack started his major in biology and had originally planned on going on to be a pharmacist, but then moved to Florida where he ended up getting his degree in marine biology instead. Jack continued to also get his Masters at the University of West Florida, too. Jack changed his career path because he enjoyed marine life. Volunteer work is crucial to get experience, and can benefit you on becoming more diverse when it comes to getting a job in marine biology.

Alyson asks: What would be your dream job?

Someday Jack wants to explore the seafloor in a submarine.

Blake, Sailor, Lilli, Jenna ask: What is your favorite food on the ship?

Taco Tuesdays seem to be a huge hit on the ship, as well as Friday pizza day.

Auburn, Ashton M., Karson, Liam: What would you consider to be the coolest marine life you have seen?

Seeing large diverse reef habitats is what Jack says he finds the most interesting, especially uncommon invertebrates that you’d never see on the beach.

Jaxon and Dwight: Can you be on the ship if you have health issues and what happens if there is a medical emergency?

The ship is a pretty confined space with steep stairs, uneven footing, areas you have to be able to step over, and have the ability to carry heavy weight. If there is ever a medical emergency, the ship works alongside the United States Coast Guard to get them the help they need. However, the ship is great working with all issues and plans accordingly to those who may have special diet restrictions.

Personal Log

Well, I will say that I am getting better at having my sea legs but that is still a work in progress. I have really enjoyed getting to understand the life on this ship, and I am just amazed at how diverse everyone is and yet still make this an amazing environment. It has taken me a few days to get the hang of where things are and to get out of my comfort zone to ask what I feel like has to be a million questions about everything. I have really enjoyed getting to hear and learn about the crew’s background and how they ended up on NOAA Ship Pisces. I greatly appreciate their willingness to answer my questions, even though I am sure I am in their way at moments. Everyone has a job to do and work different hours and shifts. It is great to see how they all respect each other’s space and sleeping hours.

There is so much science around me that I never knew existed, and I am shocked on how much technology is actually being used and heavily relied upon. Today was the first day the waves were calm enough that I was able to go out on the stern (learning names of different areas of the ship) to work on the blog and soak up a little bit of Sun. It was nice to be able to get some fresh air. The food has been amazing on the ship. I love how everyone is so courteous by thanking the cooks, as well as cleaning up after themselves before leaving the mess. The mess is the area in which we eat and the kitchen is called the galley. It has taken me a few days to understand the boat “lingo” but I am starting to catch on. The stairs are pretty steep, and everyone on board says to use 3 points of contact when walking. This is so that if they hit a wave while walking you are more stable. I could definitely see this being an issue going up and down the stairs. The doors are super heavy and I am still learning how to get those twisted and sealed tight the first time I close it (I am getting there).

A view of the mess: that is, the ship's the dining area. At the moment, it is unoccupied. There are five long tables, bolted to the floor, covered in blue vinyl or plastic table clothes. Black chairs surround each one. The chair's legs are all capped in cut-open tennis balls. The tables are supplied with condiments and paper towel holders. A large television screen mounted on the wall shows a football game.
The mess where we eat. It is spotless and a great size to fit everyone on board.

Maronda Hastie: Depart Cape Canaveral & Student Interviews, August 31, 2022

NOAA Teacher at Sea

Maronda Hastie

Aboard NOAA Ship Oregon II

August 28 – September 14, 2022

Date: Wednesday, August 31 – Thursday, September 12, 2022

Mission: Shark/Red Snapper Bottom Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Weather Data:

Lows/Highs = 75 degrees – 90 degrees Fahrenheit
Wave Height = 1’6″ – 1’8″ Northeast
Wind Speed = 6.2 mph
Humidity = 77%
Barometric Pressure = 29.97″ HG
Sky = Partly Cloudy & Scattered Showers

  • A collage of three photos: at left, a close-up of the captured wahoo on deck, its mouth open to reveal tiny, sharp teeth. At right, two photos of fisherman Josh Cooper standing on deck, holding the captured wahoo at different angles. The fish appears to be about 4 feet long.
  • Jade poses for a photo on the deck of the ship wearing an orange survival suit that covers her head to foot. An empty orange storage bag lies unzipped near her feet. In the background, another crewmember bends to remove or return his survival suit to its storage bag.
  • Maronda, wearing a Teacher at Sea hat, pauses halfway through donning an orange survival suit to hold her gloved right hand up for a photo.
  • Maronda, wearing her Teacher at Sea hat and shirt, stands with Jade on the back deck of NOAA Ship Oregon II. It's a bright day with blue skies, white clouds, and fairly calm seas. In the background we can see a longline with gangions (hooks), a bucket, and a Yeti cooler.
  • Maronda, wearing her Teacher at Sea hat and shirt, sits next to biologist Jim Patterson in an interior room of the ship. They both look at something (presumably a computer screen) out of frame. On the wall behind them are framed photos and a plaque about NOAA Ship Oregon II.
  • Maronda, wearing her Teacher at Sea hat and shirt, sits next to researcher Heather Moncrief-Cox in an interior room of the ship. They both look at something (presumably a computer screen) out of frame. Heather, mid-sentence, gestures with her hands near her face. On the wall behind them are framed photos and a plaque about NOAA Ship Oregon II, plus a ship's bell mounted on a wooden background.
  • View of the sunset over the water; the wake of the ship is visible in the foreground
  • Maronda stands with her arms on the taffrail in front of a sunset over the ocean. Backlit from the sunset, we can only just make out her smile. The bright blue and white NOAA Teacher at Sea logo on her navy-colored t-shirt stands out.

Now that we have departed Cape Canaveral, I’m enjoying the Florida coastline! It didn’t take long for Fisherman Josh Cooper to catch a Wahoo. He must have read my mind about plans for dinner.

Science Log

On Wednesday, August 31, 2022, NOAA Ship Oregon II departed Cape Canaveral and started a path along the Florida coastline headed to the Gulf of Mexico. All of us took another Covid-19 test before departure to keep everyone safe. We had to wait for 17,000 gallons of diesel fuel to load the vessel. I was surprised about the amount of fuel needed for our journey! Although my shift begins at 12pm, I have time to get adjusted since we haven’t made it to the 1st location. I included my students in the interviews with several shipmates. Heather Moncrief-Cox, Senior Research Associate, and Jim Patterson, Fisheries Biologist, sat with me while I logged into Google Meet during my 9th grade Algebra Math class. They seemed happy to answer the questions shown below and were patient with the students. Mrs. Ashanti Raymond, teacher at McNair High School, did an excellent job monitoring the students working while they took their turn asking questions in front of the screen.

On Thursday, September 1, 2022, the students from my Coordinate Algebra & Pre-Calculus classes interviewed Chuck Godwin, Lead Fisherman, and Collin Lynch, Chief Electronics Technician. Their careers & lives are quite interesting! We found out more information about the logistics of fisheries surveys, different careers, education & certifications. I appreciate them taking the time to talk to us! This experience helps me and others understand the purpose of research, safety rules, and how everyone’s part is important!

Table titled: Interview Questions for Teacher at Sea Program: Chuck Godwin, Jim Patterson, or Heather Moncrief-Cox. Table includes 18 questions, such as "When did you realize you wanted to pursue a career in science or an ocean career?" and "What are your normal job duties?"
Interview Question suggestions for the students at McNair High School

The carousel of pictures was taken while students logged into Google Meet to interview my shipmates. Many of the students took notes & emailed me their summary.

  • This slide features the photo of Maronda and Jim Patterson during Jim's video interview. A box caption reads: McNair High Students Interview Jim Patterson: NOAA Fisheries Biologist aboard the ship Oregon II. Part of the NOAA logo is visible as the slide's background.
  • Slide titled "McNair High Students Interview Jim Patterson: NOAA Fisheries Biologist." On the left, there's a photo of Jim wearing a hard hat and life vest, weight a (barely visible) shark. On the right, he leans over a captured fish (maybe wahoo) near a measuring board. The slide includes three bubbles of questions and answers from the interview.
  • On this slide, Jim Patterson, wearing a hard hat and gloves, lines gangions up along the side of a barrel to prepare for the next longline sampling. A box caption reads: McNair High Students Interview Jim Patterson: NOAA Fisheries Biologist. Text bubbles include two

McNair High Students Interview Jim Patterson, NOAA Fisheries Biologist aboard NOAA Ship Oregon II:

What was your most memorable moment at sea?

While I was doing my job a sperm whale came up from the water! It rolled over to the point where you could see its eye and we just stared at each other. It was so remarkable to me that I forgot to turn on my camera.

How does being at sea affect your family life?

I don’t have my own family so therefore that’s not a problem for me. I talk to and meet new amazing people all the time.

What advice can you give students?

Do whatever you are interested in and the work you do in the end will all be worth it! You’ll be happy that you did it.

What is rewarding about your job?

There’s so much that I’ve discovered over the years and new things that I’ve learned. The experience also is something that’s worth it, along with the view of the ocean and sights of the creatures.

How are environmental issues related to STEAM (Science, Technology, Engineering, Arts, and Math)?

STEAM applies to just about everything in life.


  • This slide features a photo of three people on deck carrying a large hose; one, wearing a hat, turns to face the camera and flash a peace sign as he hoists the hose on his right shoulder. This slide is titled "McNair High Students of Dekalb County Georgia Interview Chuck Godwin: NOAA Lead Fisherman." It includes two question and answer text boxes. The NOAA logo is partially visible as the slide background.
  • This slide features a photo of Chuck, wearing a life vest, resting his right hand on another crewmembers' shoulder and pointing excitedly with his left to something out of frame.

McNair High Students of Dekalb County, Georgia, interview Chuck Godwin, NOAA Lead Fisherman:

What certificates or degrees do you have?

I have a Wildlife Management Ecology degree and Multi-Management Certification.

How does your job affect your family?

When my kids were younger this would affect them because I would be gone 2 weeks to 2 months. They are grown now so not so much.

What was your most memorable moment at sea?

We caught a 27 foot basking shark.

What are some of the rewards with your job?

I like the long-lasting friendships and my shipmates are like a second family to me.

What are you looking forward to aboard NOAA Ship Oregon II?

I’m hoping to catch a record-winning great white shark.

Why is your research important?

I protect species and keep them going. I make sure they are okay.


  • This slide is titled "McNair High Students of Dekalb County Georgia Interview Heather Moncrief-Cox: NOAA Senior Research Associate." It features a photo of Heather clipping the fin of a sampled grouper. There's a smaller screenshot of three students smiling at the camera during the video chat. There's one question and answer text bubble set.
  • This slide features a photo of Heather and Jade loading sample tissues into envelopes or vials on deck at night. There's also a screenshot of Heather and Maronda looking at the camera during the video chat. There are three more text boxes.

McNair High Students of Dekalb County, Georgia, Interview Heather Moncrief-Cox, NOAA Senior Research Associate:

When did you realize you wanted to pursue a career in science or ocean care?

I’ve always wanted to do this ever since 3rd grade when I dressed up as a Marine Biologist. At 13, I started shark diving.

Why is your research important?

It’s important to do research because it allows you to learn information you might not have known before. You can also gather evidence or proof to contribute to the information you learned.

Heather makes sure data is recorded and tissue samples are stored properly for later research.


On Friday, September 2nd, 2022, the students in my Analytic Geometry class interviewed Fisherman Josh Cooper. He was very helpful with different positions on the deck. He explained his life at sea & talked about some of the fish he recently caught. Later during the week, he prepared ceviche for everyone with the fresh catch of the day.

  • A slide titled "McNair High Students of Dekalb County Georgia Interview Josh Cooper: NOAA Fisherman." It features a photo of Josh showing off his captured wahoo (from earlier slide show) plus a small screenshot of Marond and Josh during the video interview. It has one question/answer box.
  • A slide titled "McNair High Students of Dekalb County Georgia Interview Colin Lynch: NOAA Chief Electronics Technician." It features a small screenshot of Maronda and Colin during the video chat. There's a text box with a question and answer, and another text bubble that reads: the Wi-FI works on your devices because of my job.

McNair High Students of Dekalb County, Georgia, interview Josh Cooper: NOAA Fisherman

What are your normal duties?

I maintain the deck, catch fish, and work where I’m needed.

McNair High Students of Dekalb County, Georgia, interview Colin Lynch: NOAA Chief Electronics Technician

How does your job affect your social life?

You have to know what you are getting into. I’ve been on the vessel for about 2 months. It’s a challenge and it’s all about knowing how to manage your time. NOAA is really good about giving time off.


On Thursday, September 8th, 2022, I interviewed my supervisor Trey Driggers & Fisherman Chris Love. I was able to use a Voice Recorder APP & my phone to capture the moments. Trey was very detailed with explaining the purpose of collecting the data & helped me increase my marine life vocabulary. Chris shared lots of sunrise pictures & we often compared photos between shifts.

  • A slide titled "McNair High Math Teacher of Dekalb County Georgia interviews William Driggers aka "Trey": NOAA Research Fishery Biologist (Field Party Chief.) It features a photo of Trey on deck holding a high flyer buoy over his shoulder.
  • A slide titled "McNair High Math Teacher of Dekalb County Georgia Interviews Chris Love: NOAA Able Bodied Seaman/Fisherman." It features a portait photo of Chris seated at a table, with his hands clasped and elbows resting at the table, arching an eyebrow as he looks toward the camera. There is one question and answer box on this slide, plus the NOAA logo.
  • A slide titled "McNair High Math Teacher of Dekalb County Georgia Interviews Chris Love: NOAA Able Bodied Seaman/Fisherman." It features Chris, wearing gloves and a life vest, standing on deck near the railing perhaps controlling a winch. There is one question/answer box on this slide, and the NOAA logo is partially visible as the slide's background.

McNair High Math Teacher of Dekalb County, Georgia, Interviews Trey Driggers: Supervisor and Chief Scientist:

“We collect otoliths (inner ear bones) from bony fish species that help the fish navigate near reefs. Then we send the samples to the Panama City Lab to determine the age of the fish. They compare the age & length to see how fast they grow.”

How do you keep the bait organized?

You have to go in order so the lines don’t get crossed. We put a total of 50 hooks with bait in each barrel. The last one in is the first one out. Make sure you put the hooks in the Mackerel bait twice to be more secure. Sometimes you’ll get pieces of the bait back or none at all. If we’re lucky, then we’ll catch a few fish. The numbers on the hooks help us stay organized too.

McNair High Math Teacher of Dekalb County, Georgia, Interviews Chris Love: NOAA Able-Bodied Seaman/Fisherman:

What challenges do you face?

Being away from home. Sometimes you miss out on things. If you play around and don’t pay attention, then you can get seriously hurt.

Do you have any memorable moments?

You get to go to different places and experience things away from home. You meet new people on the ships and ports you visit.


On Friday, September 9th, 2022, my students interviewed Lieutenant Commander, Aaron Colohan. He has a lot of responsibilities & made sure we were safe on the ship. He has a large budget of 1.2 million dollars with many factors to consider.

  • A slide titled "McNair High Students of Dekalb County Georgia interview Aaron Colohan, NOAA Lieutenant Commander." It features an image of LCDR Colohan in his blue NOAA Corps uniform, seated, with his arms crossed. His blue baseball cap reads "NOAA Ship Oregon II," though in reverse, suggesting the image has been flipped. This slide includes one question and answer text box and the NOAA logo as the background of the slide.
  • A slide titled "McNair High Students of Dekalb County Georgia interview Aaron Colohan, NOAA Lieutenant Commander." This slide features one question and answer and a small, darkly lit screenshot of LCDR Colohan and Maronda looking at the screen during the video chat.

McNair High Students of Dekalb County, Georgia, interview Aaron Colohan, NOAA Lieutenant Commander:

What are some rewards you get from your job?

I believe in what I’m doing. My reward is doing something for my country, the world, and the planet. This is an opportunity to work outside of the military for public good.

I have to work with 23-30 people a day and make sure they are happy in their environment along with me. I make sure they are well fed and safe with a $1.2 million budget.


On Monday, September 12th, 2022, I interviewed James McDade, Junior Engineer. I had to use ear plugs because the noise level is very loud on the bottom of the ship where the engine & equipment is located. It was very hot & the space was tight.

  • This slide is titled, "McNair High Math Teacher of Dekalb County Georgia Interviews James McDade: NOAA Junior Engineer." It features a photo of James in the engine room wearing large ear muffs for protection. There is also a close-up photo of dozens of wrenches hanging from pegs above a tool bench. There is one question/answer on this slide.
  • This slide is titled, "McNair High Math Teacher of Dekalb County Georgia Interviews James McDade: NOAA Junior Engineer." This slide features another photo of James (wearing ear protection, and smiling) standing in the engine room; there's also another view of equipment (pipes, hoses) in the engine room. There is one question/answer

McNair High Math Teacher of Dekalb County, Georgia, Interviews James McDade: NOAA Junior Engineer:

What made you choose this career?

I got lucky because I was supposed to only work for 60 days, but I was offered a permanent position over 20 years ago. I had no idea. I’ve been able to travel and see beautiful places all around the Hawaiian Islands.

What challenges do you face?

What I do is maintenance. If anything breaks down, I repair it. I check the refrigeration, water leaks, engines, change filters, and pipe system. Before, it was easy to save money while at sea, but now due to online services I spend more.

Can you describe a memorable moment?

When I worked in Hawaii it was fun going to all the different islands and meeting new people. I also visited Taipan China & Guam. I enjoyed having fun in those places. The atmosphere is nice with everyone getting along.

Do you need a degree or certification for your career?

Yes, I went to training at SIU Piney Point Maryland. That’s where I picked up my last endorsement. I need one more license to be an official engineer. I have to study on my own & take the test.

What advice would you give students?

Check out the different careers. Keep a clean record because you are dealing with the government. You want to make sure you can travel, get a passport so you can see the world. I would also say learn how to work with people. You don’t have to like everybody but be respectful & know how to work together.


Personal Log

I am glad we are on our way to the Gulf of Mexico! The shoreline is gorgeous & the skyline is ever changing into patterns of colorful art. Soon I will no longer see land & view the ever-changing skyline. I’m excited that I get to share this experience with my students & colleagues while sailing. My shipmates work well together & are willing to pitch in wherever they are needed.

Jordan Findley: Doin’ Science, June 17, 2022

NOAA Teacher at Sea
Jordan Findley
Aboard NOAA Ship Pisces
June 9-22, 2022

Mission: SEAMAP Reef Fish
Geographic Area of Cruise: Gulf of Mexico
Date: June 17, 2022

Weather Data

Location: 28°05.1 N, 091°53.3 W
Sky: Clear
Temperature: 85 °F
Wind: north, 5 kts.
Waves:

Track NOAA Ship Pisces

Science and Technology Log

We are continuing our path due east. We (they) have surveyed 14 different banks and dropped 102 cameras.

*NERD ALERT*

Along the way we have been collecting water samples that contain environmental DNA (eDNA), and mapping at night. Caroline Hornfeck, graduate student at the University of West Florida, is collecting water samples once daily and at additional fixed sites. She is working under Dr. Alexis Janosik, participating in a multiyear study of reef fish in the Gulf of Mexico with the Florida Fish and Wildlife Conservation Commission (FWC) and NOAA. The project’s goal is to characterize reef fish diversity in the northwest Gulf of Mexico using molecular tools and techniques.   

Environmental DNA is a molecular tool used in aquatic ecosystems. eDNA contains DNA from all organisms in the water column. This DNA can be in the form of gametes (reproductive cells), fish scales, waste, etc. This approach is noninvasive and cost-effective, and does not require contact with the organism. Caroline collects test tubes of water, adds some magical juice that causes a chemical reaction, and the DNA begins to solidify in the test tube. You with me? THIS is real science.

Later in the lab, the eDNA is extracted and the samples are run through polymerase chain reaction (PCR). PCR amplifies (multiplies) genes and the sample is sent to a lab for additional science. Fancy technology makes millions of copies of the DNA. You piece it all together and use the data to assess reef fish diversity. Essentially, eDNA is like taking attendance in the reef community. Roll call.

I will leave it at that, though it’s much more complex. I am starting to remember why I avoided molecular biology.  Caroline, I’m impressed.

Meet the Science Crew

Paul Felts
Field Party Chief, Fisheries Biologist

Field Party Chief Paul Felts holds up two fish sampled during the reef fish survey

What do you enjoy most about your job? “It’s the field work that I enjoy most. I love being out on the water (in moderation), participating in the various surveys. I have been a part of so many fun surveys – reef fish, snapper longlines, trawls, plankton, and mammals. I appreciate getting a break from the desk, reviewing footage, and annotating the research. I also enjoy working with the crew and building team camaraderie.”

What is the coolest animal you have seen or worked with? “It’s tough to decide. I have seen all sorts of cool stuff. One mammal survey we were out on the smaller boat and a sperm whale breached about 100-200 yards from the boat. Later those whales were lying on their sides at the surface with full bellies, seemingly just resting after a meal. The giant stingray and thresher shark are up there on my favorites as well.”

Paul is the Field Party Chief. He’s been with NOAA for 21 years. As a Fisheries Biologist at the Southeast Fisheries Science Center, Paul studies fish populations and their impacts. He knows every fish in the sea (or at least close). Out here, Paul coordinates scientific operations. He has to be on every minute of every day, and deal with the crews’ shenanigans, yet still shows up each morning with a smile on his face, ready to take on the day.

Amanda Ravas
Fisheries Biologist

Fisheries Biologist Amanda Ravas, wearing a hard hat and a life vest, grips the side of a camera array resting on deck

What do you enjoy most about your job? “My favorite part about my job is being out in the field… as long as I’m not seasick. Because I’m still so new, I love learning all the ins and outs of the projects, seeing the species I’ve been watching on our videos in person, and hearing stories from other scientists about all the cool projects they’ve been a part of.”

What is the coolest animal you have seen or worked with? “The coolest animal I’ve seen while out in the field is a manta ray which followed our boat for a few minutes as we were making our transit back ashore. And I always get super excited seeing any shark species while out at sea.”

Amanda is a Fisheries Biologist at the Panama City Laboratory. She’s been with NOAA for two years. She studies fish populations and their impacts. She may be tiny, but she’s mighty. Don’t underestimate her. She knows her stuff, and knows it well, and can keep up with the best of them.

Rafael Ortiz
Program Support Specialist

Program specialist Rafael Ortiz, wearing a hard hat, life vest and gloves, holds a hook over a plastic bucket

What do you enjoy most about your job? “I enjoy being part of the NOAA Fisheries Mission at the MSLABS level. Being an administrator I find myself lucky to participate on various surveys with the scientist. I get to build a great working relationship and many friendships with them. I learn so much from them. Everything from science related topics to personnel life topics. I also feel that they have a higher respect for me than just some admin person.”

What is the coolest animal you have seen or worked with?  “Oh so many to list. I’ve seen so much diversity on these surveys that it’s hard to list. I’m always amazed at what comes out of the ocean and the thought of things I’ve not seen or will never see. I’m fascinated by the smallest to the biggest ocean animals.”

Rafael is a Program Support Specialist. He has been with NOAA for seven years. He provides oversight, technical expertise, and support to personnel and field biologists. But don’t let him fool you; he’s a biologist at heart. These scientists are lucky to have him out here at sea. He works hard, and best of all, keeps everyone in good spirits.

Kenneth Wilkinson
Electronics Technician

Electronics technician Kenneth Wilkinson, wewaring a hard hat and life vest, stands by a bandit fishing reel

What do you enjoy most about your job? “All of it. I have done just about every survey – plankton, sharks, small pelagic, reef fish, Caribbean reef fish, and more. I have worked closely with NOAA enforcement, installing vessel monitoring systems and reporting illegal fishing. Surveillance in the Keys was a lot of fun. I enjoyed being down there. Most recently, I operate NOAA drones.”

What is the coolest animal you have seen or worked with?  “The first to come to mind is the 12 ft. tiger shark during a longline survey. I also enjoyed building satellite tags and tagging sea turtles.”

Kenny is an Electronics Technician at the Southeast Fisheries Science Center. He has been with NOAA for 32 YEARS. He handles all the equipment from scientific to shipboard navigation and communication. What would we do without Kenny? This survey, as well as most, relies entirely on the technology. Kenny keeps us in check. I mean he’s the only one that knows what a transmissometer is.

Caroline Hornfeck
Graduate Student, University of West Florida

Graduate student Caroline Hornfreck, wearing a hard hat, life vest, and gloves, sits at a desk in the wet lab aligning sample tubes in a styrofoam holder

What do you enjoy most about your job? “What I enjoy most about being a student in this field, is always adapting and learning new skills that can help me grow as a scientist. Whether that’s in the classroom, research lab at the University of West Florida, or aboard NOAA research vessels.”

What is the coolest animal you have seen or worked with? “One of the coolest animals I have seen is a spotted eagle ray. I hope further down in my research career I can work with elasmobranchs (sharks, skates, and rays) and implement better conservation management for keystone species.”

Caroline earned her B.S. in Marine Biology at the University of West Florida. She is pursuing her Master’s at UWF. She is doing real science out here. Are you even a scientist if you don’t collect DNA? This girl is going places for real.

Personal Log

When 2 or 3 o’clock rolls around, I have to shake things up a bit. I’ve started making rounds just to say hello and see what people are up to. I remind folks that what they do is really cool. I make my way to the bridge usually once or twice to bother them a bit. This is where the ship is commanded. It looks like some sort of spaceship up here. I roam around and try to make sense of the many gadgets and screens. Take a peek out the windows. The sun reflects intensely on the water. It’s hella bright out here.

Operations Officer, LT Christopher Duffy, asks “Do you want to drive?” I look over my left shoulder, I look over my right. Oh, he’s talking to me. “Uh, yeah I do.” I have absolutely no clue what I just signed up for. He seems to think I can handle it. I get the run down. The helm is the steering wheel – check. The main engine controls the propulsion – check. Then there are the bow thrusters. From what I understand, they are basically propellers on the side of the boat. I’m not really sure. I just know they improve maneuverability.

Navigation is an art and science. They transit to specific destinations and position and maneuver the ship and make it look easy. Navigators measure the distance on the globe in degrees. If you have forgotten, like I seemed to have, like a circle, the Earth has 360°. Compasses have four cardinal points (directions), right? – North (N), East (E), South (S), and West (W). Well, turns out when you’re real official, you use degrees instead of directions. As if directions weren’t confusing enough. LT Duffy, “When I say 10° right, you do just that and confirm when you’re there.” I can handle that. “Ten right.” I work with LT Duffy to retrieve our next buoy. Huddleston keeps a careful eye. This is fuuunnnnn. “You ready for a hard right?” “Like all the way?” Seems questionable. Oh he’s serious. “Hard right rudder.” SKKKIIIIRRRRRTTTTTTT. Man this thing can move. We Tokyo drift right into position. Nailed it. LT Duffy takes control to finish positioning (I made it easy for him). I’m grinning ear to ear.

“Are you comfortable giving commands?” “Yep.” The overconfidence kicks in. First things first, CONN candy. What’s that you ask? The officers up here have a secret drawer of tasty treats that they’ve been hiding from us this whole time. Gotta have some before taking command. Wait, what am I doing? LT Duffy explains, “You’ll be giving commands to LTJG, Ariane Huddleston, while she steers.” Uhhhhhhh. I see the fear in her eyes. “Just repeat after me.” Huddleston takes the wheel and I “give commands.” It clicks. This is my time to shine. I “very well’d” the heck out of those commands. So much fun, thank you crew!

Did You Know?

You know all those horrid COVID tests you had to take? You were doin’ science right there. The polymerase chain reaction (PCR) tests genetic material (fluid from the nasal swab). The test detects the virus that causes COVID-19. Scientists use the PCR technology to amplify small amounts of RNA from specimens into DNA, which is replicated until SARS-CoV-2 is detectable if present. It’s cool stuff guys.

Erica Marlaine: You Never Know Where a Good Book Will Take You, July 15, 2019

NOAA Teacher at Sea

Erica Marlaine

Aboard NOAA Ship Oscar Dyson

June 22 – July 15, 2019


Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Gulf of Alaska

Date: July 15 , 2019

Weather Data from the Bridge:

Latitude: 57º 0.79 N

Longitude: 152º40.72 W

Air Temperature:  16º Celsius


Interview with the Chief Scientist

When Sarah Stienessen was a little girl, she got a book about dolphins, and fell in love.  She read the book over and over, dreaming about meeting a real-live dolphin one day.  The problem was she grew up in Wisconsin, not a place with a lot of dolphins. However, as Sarah says “If you have an interest, don’t let location deter you from your dreams.”

When she grew up, Sarah studied zoology at the University of Wisconsin, Madison, but her burning fascination with the ocean led her to graduate school at Texas A&M where she finally got to study DOLPHINS (more specifically, the vocal behavior of dolphins). Her research there included using a hydrophone to listen to dolphins. She later moved to Seattle and began working for NOAA conducting acoustic surveys on walleye pollock in Alaska. On this leg of the Oscar Dyson, Sarah acted as the Field Party Chief (or Chief Scientist).  Sarah pointed out that while her use of acoustics with dolphins was passive (placing a hydrophone in the water and listening to the dolphins) she is now using acoustics actively by sending an audible PING into the water and reading the echos that the fish send back.

Sarah was part of the amazing NOAA science team onboard the NOAA Ship Oscar Dyson, which included, Denise McKelvey, Kresimir Williams, and Taina Honkalehto.

Scientists
Back row: Sarah and Kresimir Front row: Denise and Taina

Denise was on the day shift, so I mostly saw her during shift changes and on those rare mornings when I was still awake at 7 a.m. and came down for breakfast (okay, bacon). However, early in the trip, she took the time to explain the fish lab procedure to me, even drawing pictures and a flow chart. (Thanks!)

While the duties of the science team often overlap, Kresimir is definitely the “techie” who enjoys inventing and creating new underwater cameras and other devices.  Do you remember the TV show MacGyver?  MacGyver was a secret agent who was beyond resourceful and had an encyclopedic knowledge of science.  Every episode, he would solve the problem at hand in a matter of minutes using a combination of ordinary objects such as duct tape, household cleanser, a Q-tip, and some matches. Kresimir reminded me of MacGyver.  If something broke, he would enter the room, grab tools and items that just might work in place of the broken piece, and sure enough, within minutes, the device would be up and running again!

Taina was always in the chem lab during drop camera time, her eyes riveted on the screen.  I was excited whenever the camera spotted something, but I loved that Taina seemed equally excited to see what marine species the camera would uncover each night.  One of the most exciting, and clearly the biggest, was the Giant Pacific Octopus!

Giant Pacific Octopus
A Giant Pacific Octopus captured with the drop camera


Science and Technology Log

The Giant Pacific Octopus (or Octopus dofleini) is often rumored to weigh more than 600 pounds, but most adult octopuses are much smaller. An adult female might weigh up to 55 pounds while an adult male can weight up to 88 pounds. According to NOAA, the plural of octopus is octopuses, NOT octopi as some people say.  Because it doesn’t have bones, a giant octopus can squeeze through a hole the size of a quarter! The body of an octopus is shaped like a bag and it has 8 long arms (or tentacles) covered in suction cups. 

Suction cups
Suction cups on the arms of an octopus

A mature octopus can have as many as 280 suction cups on each arm. That’s 2,240 suction cups! The Giant Pacific Octopus loves to eat crabs, but it will also eat snails, oysters, abalone, clams, mussels, and small fish. The octopus’ mouth or jaw is shaped like a parrot’s beak. It is the only hard part of an octopus, and it’s more-or-less indigestible. That means that if a sperm whale eats an octopus, and the contents of the whale’s stomach are later studied, you will see the octopus beak even if you find no other sign that he ate an octopus.

In order to avoid whales and other predators, an octopus will camouflage, or change its color and skin texture to match its surroundings! When he feels threatened, he releases a cloud of purple-black ink to confuse his enemy.


Octopus Elementary Math Time

(Remember, an octopus has 8 arms.)

  1. If an octopus has 2 suction cups on each arm, how many does he have all together? _______
  2. If an octopus has 5 suction cups on each arm, how many does he have all together? _______
  3. If an octopus has 10 suction cups on each arm, how many does he have all together? ______
  4. If an octopus has 2 suction cups on 4 of his arms, and 3 suction cups on his other 4 arms, how many does he have all together? _____________
  5. If an octopus has 4 suction cups on 7 of his arms, but half as many on his 8th arm, how much does he all together? _____________
  6. If an octopus has 259 suction cups and his octopus friend has 751 suction cups, how many do they have all together?

Martha Loizeaux: Cool Science Tools and Drifter Buoy! August 26, 2018


Susan Brown: So You Want To Study Sharks? September 6, 2017

 

 NOAA Teacher at Sea

Susan Brown

Aboard NOAA Ship Oregon II

September 3 – 15, 2017

 

Mission: Snapper/Longline Shark Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 6, 2017

 

Weather Data from the Bridge

Latitude: 29 51.066 N
Longitude: 088 38.983W
Sea wave height: .3 m
Wind Speed: 11.6
Wind Direction: 5.3 degrees starboard
Visibility: (ask bridge)
Air Temperature: 27.5 degrees Celsius

Barometric Pressure: 1014.88 mb
Sky: cloudy

 

Science and Technology Log

Lisa Jones is a fisheries biologist and the field party chief responsible for planning and logistics, manning the survey and the day to day operations. She is in charge of the science team. The Captain, Captain Dave Nelson, is charge of the ship. These two work together on the Oregon II making decisions on where we go.

Lisa has been doing this for 20 years and has been to locations including the Gulf of Mexico, Cuba, California, the western north Atlantic, and Mexico. The research has varied from a focus on shark/snapper like the one we are on to marine mammals, plankton, aeriel surveys, and harbor seals. Here are some of the questions I asked. 

Q: What is the most interesting thing you have brought up from the ocean?

L: As far as sharks are concerned, one year off the Florida panhandle, we caught a sixgill shark so big we couldn’t even tag it.

Q: How big do you estimate the size of that shark?

L: Approximately fifteen feet

Q: What got you interested in sharks?

L: When I was working for the Cal Fish and Game, radio tagging and doing aerial surveys for harbor seals, we would see shark bitten seals as well as sharks during the aerial surveys. One of the coolest things we ever saw off the Channel Islands was a blue whale. 

Q: Those are big, right? How big do you think it was?

L: I don’t know but it looked liked a small building in the water.

Q: What is your training?

L: My undergraduate degree is in geology. I took a lot of oceanography classes during that time. Later, in my 30s, I went back to graduate school for a degree in biology in Tennessee. It’s a long story but I knew I wanted to study sharks. Land locked in Tennessee, I attended a national conference that included many shark specialists. I introduced myself to get connected – basically anyone who would talk to me.

Lisa Jones explains a career in shark research, part 1:

Lisa Jones explains a career in shark research, part 2:

What questions do you have for Lisa? Post them in the comment section. She is happy to answer them!

Personal Log

I am adjusting to life on the ship and the 12-hour shifts. It’s been fun learning all the different jobs we have as we rotate through different stations. I have now baited hooks, recorded data on the computer as we deploy baited hooks and retrieve the longline to record what we catch, a slinger where I get the baited line ready to be attached to the longline, the high flyer pushing the buoy out that marks the start and end of the longline, and even tagged a large sandbar shark.

Check out this video of me slinging the bait:

There have been several questions regarding our route. The survey area has changed due to both Hurricane Harvey and Hurricane Irma. The next post will be all about weather so you can see how this has impacted our trip. I am wondering how much these hurricanes have impacted what and how much we catch.

 

Did You Know?

Salinity and dissolved oxygen in the water impacts what we catch.

 

Question of the day:

What advice did Lisa give for anyone interested in doing the kind of work she does? (hint: watch the video embedded in this post)

Kip Chambers: Parting Shots I of II… July 22, 2017

NOAA Teacher at Sea

Kip Chambers

Aboard NOAA Ship Reuben Lasker

July 17-30, 2017

Mission: West Coast Pelagics Survey  

Geographic Area of Cruise: Pacific Ocean; U.S. West Coast

Date: 07/22/2017

 Weather Data from the Bridge: (Pratt, Kansas)

Date: 08/02/2017                                                                    Wind Speed: SE at 5 mph

Time: 18:40                                                                            Latitude: 37.7o N

Temperature: 29o C                                                                Longitude: 98.75o W

Science and Technology Log:

During my last few days aboard the Reuben Lasker before steaming to Bodega Bay for a small boat transfer on July 30th, we were fishing off of the southern Oregon coast. The ship continued to run the longitudinal transect lines using acoustics and collecting data using the continuous underway fish egg sampler (CUFES) during the day and performing targeted trawls for coastal pelagic species (CPS) at night. The weather and the pyrosomes picked up as we moved down the Oregon coast to northern California, but on what would turn out to be the last trawl of my trip in the early morning hours of July 28th, we had our biggest catch of the trip with over 730 kg in the net. Once again we saw 3 of the 4 CPS fish species that are targeted for the survey including the Pacific sardine, Pacific mackerel, and jack mackerel, but no northern anchovies were to be found. The science crew worked efficiently to process the large haul and collect the data that will be used to provide the Southwest Fisheries Science Center (SWFSC) with information that can be used to help understand the dynamics of CPS in the California Current. The data collected from the CPS fish species includes length and weight, otoliths (used to age the fish), gender and reproductive stage, and DNA samples. The information from these different parameters will provide the biologists at SWFSC with information that can be used to understand the nature of the different populations of the CPS fish species that are being studied.

 

 

I am home now in southcentral Kansas, but as I am writing this, I can picture the science team beginning preparations for a night of trawling probably just north of Bodega Bay. By now (22:00) it is likely that a bongo tow and the conductivity, temperature and depth (CTD) probe samples have been collected providing data that will be used to calibrate and maximize the effectiveness of the acoustics for the area. Lanora and the rest of the team will have prepped the lab for a night of sampling, weather data will be recorded, and someone (maybe Nina or Austin) will be on mammal watch on the bridge. It all seems so familiar now; I hope the rest of the survey goes as well as the first half of the second leg. I will be thinking about and wondering how the science team of the Reuben Lasker is doing somewhere off the coast of California as I settle in for the night. One thing I am sure of, after spending two weeks aboard the ship, is that the entire crew on the Reuben Lasker is working together, diligently, as a team, using sound scientific practices to produce the best data possible to guide decisions about the fisheries resources in the California Current.

 

 

 

Video Transcription: (Narration by Kip Chambers)

(0:01) Ok, we’re preparing to remove otoliths from a jack mackerel. It’s for the Coastal Pelagic Species survey on the Reuben Lasker, July 27, 2017.
(0:22) We have Phil, from Washington Fish & Game, who’s going to walk us through the procedure. 
(0:30) The otoliths are essentially the fish’s ear bones. They help with orientation and balance, and also have annual rings that be used to age the fish.
(0:48) And so the initial cut is – looks like it’s just in front of the operculum and about a blade-width deep. 
(1:01) And the secondary cut is from the anterior, just above the eyes and kind of right level with the orbital of the eyes, back to the vertical cut.
(1:22) It’s a fairly large jack mackerel. And, once the skull cap has been removed, you can see the brain case, and you have the front brain and kind of the hind brain where it starts to narrow…
(1:42) … and just posterior to the hind brain, there are two small cavities, and that was the right side of the fish’s otolith, 
(1:55) … and that is the left side. And that is very well done. Thank you Phil.

 

I wanted to use a portion of this section of the blog to share some comments that were expressed to me from the members of the science team as I interviewed them before I left last week. The first “interview” was with Dave Griffith, the chief scientist for the survey. Dave was kind enough to provide me with a written response to my questions; his responses can be found below.

Dave Griffith
Chief Scientist Dave Griffith

Q1: Can you tell me a little bit about your background, including education and work history?

Q1: I was born and raised in a small suburb of Los Angeles county called Temple City. Located in the San Gabriel valley at the base of the San Gabriel mountains, it was the perfect place to exercise the love and curiosity of the animals I could find not only in my backyard but also in the local mountains. It wasn’t until I reached high school that I realized I had a knack for sciences especially biology. This interest and appeal was spurred on by my high school teacher, Al Shuey. With little concept of a career, I continued on to a junior college after high school still not sure of my direction. Here I dabbled in welding, art, music and literature but always rising to the surface was my love of sciences. My fate was sealed.

I entered San Diego State’s science program and was able to earn a bachelor’s degree and a master’s degree of science. For my dissertation I studied the re-colonization capabilities of meiofaunal harpacticoid copepods in response to disturbed or de-faunated sediments within Mission Bay. While studying for my masters, I was hired by Hubbs-Sea World Marine Laboratory as the initial group of researchers to begin the OREHAP project which is still operational today. The OREHAP project’s hypothesis was that releasing hatchery reared fish into the wild, in this case white seabass (Atractocion nobilis), would stimulate the natural population to increase recruitment and enhance the population. At the time the white seabass population numbers were at their all time low. During that time of employment at HSWML, I was also teaching zoology at SDSU as a teaching assistant in the graduate program. I was also the laboratory manager and in charge of field studies at Hubbs. My plate was pretty full at the time.

I heard about the opening at the SWFSC through a colleague of mine that I was working with while helping her conduct field work for her Ph.D. at Scripps. I applied and was hired on as the cruise leader in the Ship Operations/CalCOFI group for all field work conducted within CFRD (now FRD) working under Richard Charter. That was 1989. I have now been the supervisor of the Ship Operations/CalCOFI group since 2005.

My main objective on the Coastal Pelagic Fish survey as the cruise leader is to oversee all of the operations conducted by personnel from FRD during the survey. All scientific changes or decisions are made by the cruise leader using science knowledge, logic, common sense and a healthy input from all scientists aboard. I am the liaison between the scientific contingent and the ship’s workforce as well as the contact for the SWFSC laboratory. The expertise I bring out in the field is specific to fish egg identification, fish biology, field sampling techniques, knowledge of the California Current Large Ecosystem and sampling equipment.

Q2: What have you learned from your time on the Reuben Lasker during the 2nd leg of the Pelagic Species Survey?

Q2: First, that you never have preconceived ideas of what you expect to find. You always come out with knowledge of previous studies and a potential of what you might see, but the ocean always will show you and demonstrate just how little you know. When I was beginning in this career I was able to witness the complete dominance of a northern anchovy centric distribution change to a Pacific sardine centric distribution and now possibly back again. It’s mind boggling. I remember one of my colleagues, one of the pre-eminent fish biologists in the field, Paul Smith say to me during these transitions say, “Well, you take everything you’ve learned over the past 40 years, throw it out the window and start over again.” Yeah, the ocean environment will do that to you.

Q3: What advice would you give to a 1st year college student that was interested in pursuing a career in marine science?

Q3: Keep an open mind. Once you enter a four year university you will see areas of study that you never thought or believed existed. Have a concept of where you want to be but don’t ignore the various nuances that you see along the way. Go for the highest degree you feel capable of achieving and do it now because it becomes so much more difficult as you get older or the further away you get from academics if you begin working in a science position.

And last, and I feel most important. Read. Read everything. Journals, magazines, classics, modern novels, anything and everything and never stop. Communication is such an incredibly important part of science and you need to have a command of the language. Not only is reading enjoyable but it will make you a better writer, a better speaker and a better scientist.

 

Personal Log:

I am back home in Kansas now after wrapping up my assignment on the Reuben Lasker and I have started to contemplate my experiences over the last couple of weeks. There are so many facets related to what I have learned during my time on the ship; the technology and mechanics of such a large research vessel are both fascinating and daunting at the same time. There are so many moving parts that all have to come together and work in a very harsh environment in order for the ship to function; it is a testament to the men and women that operate the boat that things operate so smoothly. As impressive as the technology and research is on the Reuben Lasker, it is the people that have made the biggest impact on me.

You can see from Dave’s response above that there are some incredibly talented, dedicated individuals on the ship. I would like to share with you some of my observations about some of those people that I worked with including Dave Griffith. Dave is not only an outstanding scientist that has spent a lifetime making important contributions to fisheries science, he is also an incredibly well rounded person and an encyclopedia of knowledge. I would like to take this opportunity to personally thank Dave for his patience, and willingness to listen and provide insight and advice to me during my time on the ship. In my upcoming blog, I will provide more information about the other members of the science team that I had the pleasure to work with while on board. Until then please enjoy the pictures and video from my last week on the Reuben Lasker.

Barney Peterson: Who Works on NOAA Ship OREGON II? Part 2

NOAA Teacher a Sea

Barney Peterson

Aboard NOAA Ship Oregon II

August 13 – 28, 2016

Mission: Long Line Survey

Geographic Area: Gulf of Mexico

Date: Sunday, August 28, 2016

Weather Data is not available for this post because I am writing from the Biloxi/Gulfport Airport.

WHO WORKS ON THE OREGON II?  Part 2: THE SCIENTISTS

Meet Lisa Jones, a career marine scientist who came to her present position as a Research Fisheries Biologist for NOAA from a life of working with animals.  Born in Memphis and raised in the mountains of east Tennessee, she did her undergraduate work at Emory University, and then earned her Master of Science at East Tennessee State.

Lisa has lived and worked in Colorado where she trained horses for a while.  She moved to California and worked for the Department of Fish and Game to earn money for grad school and eventually ended up in at the National Marine Fisheries lab in Pascagoula, Mississippi.  She started there as a student intern and 19 years later is working as a research scientist for NOAA.  Her schedule of being out on the water during the summer and home during the winter months suits her well.

Ten years ago Lisa got interested in doing agility training with a rescue dog she kept, an Australian Shepherd.  Since then she has acquired 3 more Aussies through rescue and adoption (one dog left homeless by Hurricane Katrina.)  Lisa’s interest in dog training and agility trial competition helps her recharge her energy and enthusiasm each winter so she is ready to go back to sea in the spring.  Her big goal is to make it to the national agility dog competition trial with her Aussies.

Lisa’s advice for students interested in a marine science career is to do well in math and science, but do not neglect developing good research and communication skills: reading, writing and speaking.  In a science career you will need to be able to work as a team member, report on your work and develop applications for grant funding.  While you are young, get out and volunteer to get experience.  Take internships, volunteer at an aquarium, a science camp or as a field work helper.  Getting good field work experience is important even if you don’t plan a research career.  It is hard to run support for researchers and set policy for others if you don’t have a fairly deep understanding of their jobs.  “Always ask questions.  Demonstrate your interest.  The only stupid question is the one you don’t ask.”

Lisa has been my go-to person for everything I needed to know about living and working on the OREGON II.  From making sure I met everyone, to teaching me to use and care for our equipment, to teaching me to cut mackerel and bait hooks, she has been right there.  The success of this experience for me has been mostly due to having good teachers and being with a group of people willing to share their experience and expertise.

Kevin Rademacher, Fisheries Research Biologist, started out riding dolphins at Marine Life in Gulfport, Mississippi!  He spent several years doing dive shows and working with performing marine mammals before he got into research work.  Kevin was graduated from University of Southern Mississippi with major emphasis in biology and fisheries science and a minor in chemistry.  After graduation he worked restoring antiques with his father while he applied for jobs in the marine science industry.

Kevin started out on NOAA Ship CHAPMAN, a 127’ stern trawler.  In 1988 he spent 240 days at sea as a survey technician while earning certifications with survey equipment, deck equipment, as a diver, an EMT, worked the helm watch and corrected charts.  Then he moved into the lab working with the marine mammal group, ground fish and reef surveys.  He has chosen to continue working on reef fish surveys because it gives him the opportunity to work with cutting edge equipment like underwater cameras as they have evolved from simple video to using sophisticated arrays of four sets of camera groups, each cluster including a stereo black and white set and one color camera to give the fullest possible depth and detail 360⁰ images.  Underwater work is Kevin’s main interest, but there are only so many research biologists so his job assignments have been varied.  It was fortunate for me that he was assigned to work on the long-line survey this trip so I could learn from him.

During my time on the OREGON II Kevin has been a willing source of any information I request about the marine life we are seeing.  He has a copious memory for facts and an encyclopedic knowledge of the appearance, habits, and names of the animals in the ocean.  No matter what we brought up on our hooks, bony fish, sharks, algae, coral or shellfish, he knew them by common and scientific name and provided interesting facts to help me remember them.  Kevin’s passion for his job is obvious in the way he attends to details and shares his knowledge.  His irrepressible sense of humor made the afternoons baiting hooks with smelly fish in the hot sun an adventure instead of a chore.

the-day-shift-science-crew-kevin-rademacher-teacher-at-sea-barney-peterson-lisa-jones-mike-cyrana-and-kasea-price
The Day Shift Science Crew – Kevin Rademacher, TAS Barney Peterson, Lisa Jones, Mike Cyrana, and Kasea Price

Trey Driggers, Research Fisheries Biologist, first got interested in aquatic animals because of alligators.  Growing up on a lake in Florida he was constantly warned to stay away from the water because there were alligators…the kind of warning guaranteed to intrigue any curious youngster.  About then, the movie “Jaws” was released and the media blitz that accompanied it drew his imagination toward an even scarier predator.  His interest grew and he remembers two books in particular that kept it alive: “The Dictionary of Sharks” and “Shark Attack.”  From that point on his career path seemed to point straight toward marine biology.

Trey put in four years studying a basic liberal arts program at Clemson University.  He remembers a Smithsonian presentation called “Shark in Question,” which had a chapter addressing the question “How can people become shark experts.”  He entered the University of South Carolina and spent 2 years taking nothing but science courses to get enough credits and background knowledge to enter a Master’s program in Marine Science. He began working as a volunteer in labs and on commercial fishing boats to gain experience.   Trey completed his thesis on yellowfin tuna and was ready to move on.  Advisors warned him away from focusing on charismatic marine fauna, but his father had taught him to push back against barriers and pursue his goals.  He began working as a volunteer in labs and on commercial fishing boats to gain experience.  He spent 3 years earning his Ph.D. and worked in a post-doctoral position while looking for a research job.  His previous volunteer work on surveys gathering information on blacknose sharks helped him get a foot in the door to get a contract position at the NOAA Fisheries Research Lab in Pascagoula.  He continues research to add to our understanding of sharks and enjoys his job because he loves the challenge of not knowing all the answers.

Trey’s advice to young people is to get involved in volunteering in a variety of ways so you can discover where your interests lie.  That volunteer experience can demonstrate interest that will set you apart from other applicants when it comes to applying for the limited number of positions that may be available in your chosen field.

trey-driggers-head-of-the-night-shift-science-team-working-in-the-dry-lab
Trey Driggers, head of the Night Shift Science Team, working in the dry lab

VOLUNTEERS

There were six unpaid volunteers aboard the ship this cruise.  They provide important manpower to get the research done while gaining knowledge and experience to transfer to other areas of their lives.  Most often they are students who are gathering data to use for research projects, working toward advanced degrees.  Sometimes there will be a volunteer like me, a very lucky Teacher at Sea who has been chosen by NOAA…….. to participate in the cruise to learn about the work and careers in NOAA to take that knowledge back and share it with our students and the general public.

Mike Cyrana is a Post-Doctoral Student at Tulane University, working toward his PhD in Marine Biology.  This is the second year he has worked with fisheries crews in the Gulf as he compiles data for his research.  Mike was on my watch so we worked together 12 hours each day and got to swap stories and share information.  He shows a passion for his work that lets you know he has chosen a career he loves.  Mike is to blame for introducing me to chocolate tacos….my newest vice!

mike-showing-off-the-catch
Mike showing off the catch

Lydia Crawford is also a Post-Doctoral Student at Tulane University.  She is doing research about sharks for her PhD in Ecology and Evolutionary Biology.  Lydia was on the midnight to noon shift so our paths crossed very seldom.  She is knowledgeable and willingly shared what she knows to help make our jobs easier.  She also has been out on research cruises as a volunteer before and helped us newbies learn the ropes.

night-crew-before-shift-change-trey-chrissy-lydia-and-toni
The Night Shift at work – Trey, Chrissy, Lydia, and Toni

Kasea Price, working for her MS at University of Southern Mississippi was on day shift with me and helped me wrangle sharks, dissect for otoliths and collect any number of specimens to bring home to my class.  On one of our last days working together she found out that she has been hired to work for one of her professors at school, a job that will make it possible for her to complete her degree without piling up huge loans.  We all celebrated for Kasea.

kasea-price-showing-off-a-large-red-grouper
Kasea Price showing off a large Red Grouper

Toni Mancinelli is the youngest of the volunteers.  She is an undergraduate, just starting her junior year at The University of Tampa.  She felt very fortunate to be accepted for this cruise and worked hard to learn and contribute while she participated.  Her happy attitude and willingness to help made her a pleasure to know and work with.

 

Mary Cook: My First Day at Sea! March 19, 2016

NOAA Teacher at Sea
Mary Cook
Onboard R/V Norseman II
March 18-30, 2016

Mission: Deepwater Ecosystems of Glacier Bay National Park
Geographical Area of Cruise: Glacier Bay, Alaska
Date: Saturday, March 19, 2016
Time: 8:28pm

Weather Data from the Bridge
Temperature:
38°F
Pressure:
1013 millibars
Speed:
0.2 knots
Location:
N59° 01.607’, W136° 10.159’
Weather Conditions:
Intermittent light rain

Science Blog
Before the Norseman II left port, the Boatswain conducted all the required ship safety drills with us: fire drill, man overboard, and abandon ship. This is where we learned to don the emergency flotation suit, gathered at the Muster Station for roll call, and went over procedures in case of an emergency. These drills are taken very seriously.

Ranger Greg is a good sport

We left the port of Auke Bay just north of Juneau at around 10 pm Friday night and steamed into Glacier Bay to arrive at Bartlett Cove this morning at 9 am. We disembarked to attend a required safety orientation for Glacier Bay National Park. Ranger Greg informed us that he had recently seen 4 humpback whales headed into the Bay! Also, that orca live in the Bay year round. Many of the channels are ice-free now because it is warmer than usual for this time of year.

After the brief stop at Bartlett Cove, we steamed into the East Arm of Glacier Bay toward White Thunder Ridge. Many of us were on deck with binoculars looking for wildlife and enjoying the scenic snow-capped mountains. We saw birds, otters, moose and mountain goats!

 

Chief Scientist Dr. Waller conducts science meeting

While en route, Chief Scientist Dr. Rhian Waller conducted a science meeting reviewing the purpose and plans for the cruise, which is to explore, collect samples and data on the presence and emergence of Primnoa pacifica in Glacier Bay. Primnoa pacifica is commonly called Red Tree Coral. NOAA’s Dr. Bob Stone, who first pursued collecting data on the Red Tree Coral in Glacier Bay back in 2004, is working on this expedition. Other than Bob’s documentation, the Primnoa pacifica of Glacier Bay, Alaska is a mystery.

Two dives were conducted below the steep incline of White Thunder Ridge. The divers got into their dry suits, reviewed their plans on how to communicate and collect samples underwater, and then boarded the little boat called a RHIB (rigid-hull inflatable boat). They returned to Bob’s old spot and dove about 72 feet down for sample collection. The dive took about 30 minutes and when they returned with samples, we began processing each one.

The Primnoa samples will be assessed for three different things: genetics, isotopes, and reproduction. The genetic fingerprints will be useful in determining the generational spreading pattern of the Red Tree Coral in Glacier Bay. The isotopes will aid in understanding what they eat and their place in the food web. The reproduction assessments will identify sex and level of maturity. An interesting observation is that Primnoa pacifica is one of the first corals to seed newly exposed rock faces when glaciers recede. Bob estimates that the tallest of these coral are about 40 years old because that is when the glacier receded past this point. Using that fact, he also calculates their growth rate to be about 2 centimeters per year.

 

Tonight, the ROV Kraken 2 will be deployed in order to explore deep depths for the presence of the Red Tree Coral. ROV means remotely operated vehicle. More on that tomorrow!

Kraken 2 Remotely Operated Vehicle (ROV)

Personal Blog
I must say it is a pleasure to be aboard the Norseman II with such enthusiastic scientists and crew. The atmosphere on the ship is one of anticipation and this is how I imagine the early explorers of Glacier Bay must have felt. Rhian, our Chief Scientist, described this expedition as exploratory in nature. I’ve always dreamed of being an explorer and now I get to watch some real explorers in action! These guys and gals have done so many cool things like study life in Antarctica, map uncharted territory, design and build new equipment, and travel to the deep ocean in the Alvin submersible. I am so thankful that they are excited to be a part of the NOAA Teacher at Sea program and share with our students in Scammon Bay and beyond. I’ve enjoyed listening as they brainstorm ways to use our eagle mascot, Qanuk, to engage young people in real science and exploration.

So, as I call it a day, I’d like to congratulate our Scammon Bay Lady Eagles who become the Class 1A Alaska State Champions today! Go Eagles! I’m so proud of both our boys and girls teams and their coaches. They’ve worked hard, played smart and represented our community with dignity and respect.
Good night…..

This slideshow requires JavaScript.