Meredith Salmon: Remarkable ROVs, July 25, 2018

NOAA Teacher at Sea

Meredith Salmon

Aboard NOAA Ship Okeanos Explorer

July 12 – 31, 2018


Mission: Mapping Deep-Water Areas Southeast of Bermuda in Support of the Galway Statement on Atlantic Ocean Cooperation

Date: July 25, 2018

Latitude: 28.37°N

Longitude: 63.15°W

Air Temperature: 27.8°C

Wind Speed:  9.7 knots

Conditions: partly sunny  

Depth: 5236.01 meters


Science and Technology Log

Since the Okeanos Explorer is known as “America’s Ship for Ocean Exploration,” it is equipped with two important vehicles that allow scientists to study normally inaccessible ocean depths. Deep Discoverer (D2) is a remotely operated vehicle (ROV) that is mechanically designed with software and video engineering programs that generate precise images and videos. A total of nine cameras, including a Zeus Plus camera with impressive zoom capabilities, produce high-definition images that give scientists and those on shore insights about deep-sea ecosystems. The 9,000 pound ROV contains approximately 2,400 feet of intricate wiring as well as specially designed Kraft predator hand that can hold up to 200 pounds. The hand is especially useful for deep-sea sampling and allows scientists to bring certain organisms to the surface for further analysis. D2 can dive up to 30 meters per minute and is designed to withstand pressures almost 600 times that at sea level.  

Deep Discoverer
Front view of the Deep Discoverer featuring the Zeus Plus Camera
Side view of D2
Side view of D2 (Check out the intricate wiring and size of the circuit board!)
Rear view of D2
Rear view of D2

D2 does not operate alone during the eight-hour dives. Instead, it relies on assistance from Seirios, another 4,000-pound machine known as a camera sled. This device is powered and controlled by the Okeanos Explorer and offers the pilots and scientists a wide-angle perspective as they navigate the ocean floor. Seirios is tethered to the Okeanos Explorer and illuminates D2 from above to allow for increased visibility. The frame of this machine is relatively open which increases the distance cameras can be separated from the mounted lighting. This design reduces the light that reflects off particles in the water (optical backscatter) and results in high-quality images.

This camera sled, known as Seirios, is used to illuminate D2 during ROV dives.

All of the deep ocean images and video collected by D2, Seirios, and the Okeanos, can be transmitted to the rest of the world by satellite. The Okeanos is fitted with telepresence technology that enables everyone involved in the operation to provide scientific context to the public. The ability to broadcast this exciting information requires effective collaboration between the Engineering Team, NOAA ship crew, and scientists both onboard and onshore. It is amazing that anyone with Internet connection can be involved the expedition and science in real time.

Mapping Team
The Mapping Team learning about Seirios!


Personal Log

In order to make it back to Norfolk on time for dry dock, we will have to finish our mapping our survey area on the 27th. In the meantime, we have been continuing to process data, collect sunphotometer readings, launch XBTs, and play cribbage. Our cribbage tournament will conclude on Friday night! Everyone aboard is excited about the data we’ve collected and looking forward to a successful end of the expedition.

bow picture 1
The Mapping Team was on the lookout for dolphins!
Dolphins playing on the waves near the bow!
sunset photo
Another fantastic end to the day!


Did You Know?

The first fully developed ROV, POODLE, was created by Dimitri Rebikoff in 1953. However, it was not until the US Navy took an interest in ROVs that this unique technology became very popular. In 1961, the US Navy created the Cable-Controlled Underwater Research Vehicle (CURV).


Deep Discoverer and Seirios

Mary Cook: Final Day, March 30, 2016

NOAA Teacher at Sea
Mary Cook
Onboard R/V Norseman II
March 18-30, 2016

Mission: Deepwater Ecosystems of Glacier Bay National Park
Geographical Area of Cruise: Glacier Bay, Alaska
Date: Wednesday, March 30, 2016
Time: 8:33 am

Data from the Bridge
Pressure: 1031 millibars
Location: N 58°38.406’, W 136°07.990’

Science and Sea Stories Log

When I heard that this Deep Sea Exploration voyage was going to have a remotely operated vehicle (ROV) working in addition to scuba divers, I was so excited! To be able to watch the operations and meet the people who do the work has been a particular fascination for me on this voyage. I’ve always loved the exploration of the ocean using vessels that can go where humans have limitations.

Kraken2 for the 3-30 blog
The ROV Kraken 2 is owned and operated by the University of Connecticut (UConn)
Crew deploys ROV
Crew deploys the ROV

The big yellow Kraken 2 sits on the stern of the R/V Norseman II. It is a modified ROV that has been customized for special tasks in science research. Kraken 2 is owned and operated by the University of Connecticut. Kraken 2 is usually contracted to do science research for the U.S. government or University clients, but has also done a few jobs of surveying and archaeological work on shipwrecks. Kevin, Matt, Eric, Mike, and Jeff are the members of the ROV team for this voyage. These cool guys have an eclectic background of geography, marine ecology, and engineering coupled with a love of electronics and the computer side of things.


The main parts of the 2,400 lb. Kraken 2 are:

-The big yellow top made of syntactic foam that provides 900 lbs. of buoyancy, which helps maintain neutral buoyancy in water.

-Kraken 2 is tethered to the ship by the green umbilical, which provides power and communications between ship and ROV.

-Kraken 2 carries a number of cameras and lights. Big high intensity lights that provide warm light deep underwater.

-Kraken 2 uses a number of High Definition video and digital still cameras – similar to a camera you might have at home. The video camera has been deconstructed and put into a canister that can withstand high water pressure. These are positioned to get various angles and provide different views around the ROV.

-When the visibility is not good the operators rely on sonar. This allows them to “see with sound” what is in front of Kraken 2 up to 100 meters and helps them make maneuvering decisions.

-An altimeter, which measures height off the bottom and a pressure sensor that determines depth.

-The USBL (ultra short baseline) tracking system has a transducer that emits sound pulses and transponder that receives and sends a pulse back. It can track the vehicle in relation to the ship. All these sound devices are important in marine navigation for obstacle avoidance.

Sample Quivers on ROV
Quivers to hold coral samples

-The manipulator arm is sometimes called the claw. It is very important for collecting samples such as pieces of Primnoa pacifica. An acrylic vacuum tube is also attached onto the arm for “sucking” up moving or delicate samples such as fish and jellyfish. The manipulator arm is used to put samples into quivers then drops a heavy rubber stopper on top to seal it until it is brought to the surface for scientific processing.




There are three people working to “drive” Kraken 2 during deployment. The winch driver gently lifts Kraken 2 from the ship’s stern into the water and also keeps the ROV from crashing into the bottom of the ocean. The pilot is working on the finesse of getting into delicate areas. The navigator operates the claw while maintaining a close dialog with the Bridge. The cameras, radar, and sonar monitors along with the remote controls are all house in a metal shipping container called the Van.

ROV Van Door
Door to the ROV “Van”

Matt and Mike drive the ROV from within the van. The Science Leader in the last picture is Cheryl.


Kraken 2 is a unique ROV for the niche it occupies. It is a science class ROV.

Most Science Class ROVs are large about the size of a small truck and require a dedicated ship and personnel. The advantages of Kraken 2 are that it doesn’t go as deep (up to 1 km) therefore, isn’t as expensive. Smaller ships can deploy it. It’s an excellent ROV for continental shelf and slope exploration.

One night Qanuk got to go down with Kraken 2! Mike attached him to the frame. He is probably the first bald eagle to ever attempt such a feat. Qanuk was videoed as he explored the depths and even had his photo taken with Primnoa pacifica in situ.


Personal Log

Today concludes my voyage as a NOAA Teacher at Sea. Wow! It has been amazing to be a part of the Deepwater Exploration of Glacier Bay. Getting to work alongside scientists, engineers and ship’s crew that are doing adventuresome and cutting-edge work is a dream come true for me. A special “Thank you” to Dr. Rhian Waller, as Lead Scientist for accepting a Teacher at Sea on board to work with her project. I am so thankful that they all welcomed me into their work space and were willing to teach me how to do some helpful things like processing coral for reproductive studies. These people are teachers in their own right. Their enthusiasm for their work and for learning new things is infectious and I plan to carry that attitude back to my students in Scammon Bay, infusing my classroom with awe and excitement to be brave, conscientious, problem-solving citizens of our magnificent Earth!

Richard Chewning, June 8, 2010

NOAA Teacher at Sea
Richard Chewning
Onboard NOAA Ship Oscar Dyson
June 4 – 24, 2010

NOAA Ship Oscar Dyson
Mission: Pollock Survey
Geographical area of cruise: Gulf of Alaska (Kodiak) to eastern Bering Sea (Dutch Harbor)
Date: June 7 – 8, 2010

Weather Data from the Bridge

Position: Just southwest of the Semidi Islands, Alaska
Time: 1400 hrs
Latitude: N 55 54.331
Longitude: W 156 54.606
Cloud Cover: mostly cloudy
Wind: 9.2 knots from E
Temperature: 7.2 C
Barometric Pressure: 1019.6 mbar

Science and Technology Log

Calming seas greeted our arrival at Snake Head Bank around 1800 hours on Sunday. Snake Head Bank is an area of the Gulf of Alaska that has been designated as untrawlable habitat. Trawling is a fishing technique where a net is towed behind one or more boats. The Dyson will be using this technique later in our cruise to catch pollock. Fishermen trawl on the bottom or somewhere in the water column depending on what fish is being targeted. Previous NOAA surveys using both acoustic and ROV (remotely operated vehicle) data have indicated that the ocean bottom in this area contains terrain such as large rocks that could snag a trawl net skimming along the bottom.

Snake Head Bank
Snake Head Bank

Our mission was to further study select areas of Snakehead Bank to better understand the seafloor where acoustic research had been conducted but the bottom composition had not been verified. NOAA scientists call this ground-truthing. To accomplish this task, the Dyson deployed a self-contained camera to the seafloor to collect video footage. This operation requires both a specially designed rig to film on the ocean floor and the coordinated efforts from crew members from various departments throughout the ship.

Success! Video footage from the bottom of the Gulf of Alaska

You might be surprised to learn that an over-the-shelf handheld camcorder and lens were used to record the footage of Snake Head Bank. Both the camera and lens are mounted to and protected by a heavy metal frame. Similar to a roll cage of a car, this cage protects the video camera from the weights used to send the rig to the bottom and from any hazards on the seafloor such as large rocks. Since we are sampling areas beyond the depth sunlight penetrates, a light must also be included to reveal the bottom. This means our camera operations can be conducted both during the day and night! The camera and the battery for the light are protected in a waterproof case that can easily be opened to change tapes and batteries.

Deployments are conducted day and night
Deployments are conducted day and night

In addition to darkness and unknown obstacles, filming at depth is also complicated by water pressure. Water pressure refers to the weight of the water pressing down (think about the pressure in your ears build as you dive to the bottom of a swimming pool). A tight seal must be maintained as water will force its way through the smallest opening. Water pressure can be enlisted to serve a useful purpose. Water pressure activates a switch once the rig reaches a certain depth turning the camera and light on and off. This conserves the batteries and ensures only the video at the bottom is recorded.

Richard waiting on the hero deck for camera recovery

The entire rig is deployed using one of the Dyson’s powerful winches using a long wire cable. The wire cable is threaded through a block attached to a metal support structure called the A-frame that can be extended over the side of the ship. The entire rig was constructed to be neutrally buoyant so the rig would hover just off the bottom. Plastic floats tied on top and metal chains hanging down from the rig ensured the camera was angled correctly towards bottom.

In order for a successful deployment, crew members from throughout the ship must work together. Just like any successful workplace or athletic team, these deployments require coordinated efforts, communication, and clearly defined job responsibilities.

The Officer of the Deck and Navigation officer positions the ship at each station and must keep the ship as stationary as possible when the camera is deployed so the camera is not dragged along the bottom. A member of the deck crew operates the winch and raises and lowers the A-frame. Another member of the deck crew assists a survey technician casting and retrieving the camera rig over the side. Two scientists change out the tapes and batteries, transfer and log the video, and adapt the rig as necessary.

Deployments require teamwork and coordination
Recovering remote camera rig at Snakehead

Finally, the unsung hero of this camera deployments was the science team’s IT (Information and Technology) Specialist. The IT specialist on th  is cruise is Rick Towler. If you like to solve problems and develop a wide range of skills, then this is the job for you. Rick saved the day on more than one occasion during the camera operations. Using some creative engineering, Rick overcame some technical difficulties with the pressure switch and wiring on the control circuit board for the camera and light. Rick is an indispensible member of the science team and is responsible for maintaining the equipment brought onboard by the scientists. When you are miles from the nearest hardware store or electronics shop, you have to be able to make do with what you have and be able to think outside the box. I think of Rick as the science team’s MacGyver! By the end of the survey’s 42 stations, the crew of the Dyson was a well-oiled machine and had overcome every challenge.

Rick, the Dyson’s MacGyver, is on the job!

Personal Log

The weather continues to improve by the hour. I am starting to find my rhythm after recovering from my drowsiness resulting from the combined effects of jet lag and the seasickness medication from the beginning of the cruise. I was surprised and pleased to learn that the Dyson has a large roll stabilization tank located just in front of and below the bridge. Tall buildings built near earthquake prone areas also use large containers of water to counter the swaying motion that damages buildings during earthquakes.

Meals aboard the Dyson are a key part of any ship routine. Meals are served for one hour starting at 0700, 1100, and 1200 hours. Meals are an interesting time to visit with people. Some crew members at meals are tired as they are just coming off watch, others are wide awake and in a hurry as they are grabbing a quick bite between deployments or projects, and others are still trying to wake up as they have just left their rack even though the meal might be dinner! Dinner Monwas very satisfying: roast beef and game hen with broccoli, steamed rice, and noodles.

Dinner is served

You might also see someone headed for their morning workout. I discovered that the little physical exercise. I haven’t tried the treadmill yet as I hear running can be a littletricky on the rolling seas!

After completing our deployments around 0545, we turned southwest for Unimak Pass. We are leaving the Gulf of Alaska behind and now heading for the Bering Sea. I am looking forward to seeing the Aleutian Islands up close as we will be sailing among the islands rather than the open sea. This will give us the benefit of smoother sailing and the added bonus of beautiful scenery along the way!

Headed to the Bering Sea!

Animals Observed from Snake Head Bank Seafloor
Rock Fish
Brittle stars
Skate (similar to a sting ray minus the barb)
Euphausiids (commonly called krill)

Noah Doughty, September 19, 2006

NOAA Teacher at Sea
Noah Doughty
Onboard NOAA Ship Western Flyer
September 18 – 22, 2006

Mission: USS Macon Wreck Archeological Expedition
Geographical Area: California Coast
Date: September 19, 2006

Weather Report from the Bridge 
Visibility: Poor
Wind direction: Variable from the northwest
Wind speed: Light airs
Sea wave height: 3-5’
Seawater temperature: 56.1o F
Sea level pressure: 1022 millibars
Cloud cover: 7/8

Dr. Steve Rock (left) and Ph.D student Kristof Richmond (Right), from Stanford University.
Dr. Steve Rock (left) and Ph.D student Kristof Richmond (Right), from Stanford University.

Science and Technology Log 

Today the photomosaic team from Stanford University, Dr. Steve Rock and Ph.D. student Kristof Richmond, stepped up to direct underwater operations.

Currently there are two known debris fields. The larger field contains the Curtiss F9C-2 Sparrowhawk airplanes, five of the eight Maybach Engines and remnants of the galley.  The second debris field contains the bow end of the MACON with identifiable artifacts from the officer’s quarters and the mooring mast receptacle.  A third debris field, containing the tail section, is speculated to exist but has never been found.  In spite of some challenges we managed to mosaic both of the known fields.

The photo-mosaic will be created using a control system designed by the Stanford team to pilot the Tiburon along a series of parallel transect lines, a pattern playfully called “mowing the lawn.”  As the ROV travels above the seafloor along its transect line, a High Definition Camera periodically captures images that are assembled to create the photo-mosaic.  Due to the low light and at times murky conditions, the camera can’t be more than a few meters off the sea floor. Imagine trying to create a picture of your local soccer or football field by walking the entire field holding a camera at arm’s length facing straight down.

Tomorrow we will continue the photo-mosaic efforts!