Frank Hubacz: Our First Day at Sea, April 29, 2013

NOAA Teacher at Sea
Frank Hubacz
Aboard NOAA ship Oscar Dyson
April 29 – May 10,  2013

Mission: Pacific Marine Environmental Laboratory Mooring Deployment and Recovery
Geographical Area of Cruise: Gulf of Alaska and the Bering Sea
Date: April 29, 2013

Weather Data from the Bridge:

Partly cloudy, Winds 10 – 15 knots
Air temperature: 4.0 C
Water temperature: 5.3 C
Barometric Pressure: 1014.14 mB
 

Science and Technology Log

The primary mission of this cruise is to deploy and recover moorings in several locations in the Gulf of Alaska and the Bering Sea.  These moorings collect data for a group of scientist under the auspices of the Ecosystems & Fisheries-Oceanography Coordinated Investigations (EcoFOCI) which is a joint venture between the NOAA Pacific Marine Environmental Laboratory (PMEL), and the NOAA Alaska Fisheries Science Center (AFSC).  Participating institutions on this cruise include NOAA-PMEL, AFSC, Penn State, the National Marine Mammal Laboratory (NMML), and the University of Alaska (UAF). This interdisciplinary study helps scientist better understand the overall marine environment of the North Pacific.  This understanding will lead to a better management of the fishery resources of the North Pacific Ocean and the Bering Sea.

To ensure that time at sea is maximized for data collection, a day or so before leaving Seward, Alaska, the science crew begins assembling their various monitoring instruments under the directions of Chief Scientist for this project, William (Bill) Floering, PMEL.

William Floering, Chief Scientist

William Floering, Chief Scientist.

Dan Naber from University of Alaska

Dan Naber from University of Alaska.

Some of the equipment that will be deployed includes an Acoustic Doppler Current Profiler (ADCP), which measure speed and direction of ocean current at various depths.  This data helps physical oceanographers determine how organisms, nutrients and other biological and chemical constituents are transported throughout the ocean.  Argos Drogue drifters will also be deployed to help map ocean currents. Conductivity, temperature, and depth (CTD) measurements will be conducted at multiple sites providing information on temperature and salinity data.  Additionally, “Bongo” tows will also be made at multiple locations which will allow for the collection of zooplankton.  The results of this sampling will be used to characterize the netted zooplankton and help to monitor changes from previous sampling events.  In future blogs I will describe these instruments in greater detail.

The furthest extent of our mission into the Bering Sea is very much weather and ice dependent with much variation this time of the year in the North Pacific Ocean.  Current ice map conditions can be found at http://pafc.arh.noaa.gov/ice.php.

Operation Area

Cruise Area

Cruise Area

Personal Log

As I rode in the shuttle bus from Anchorage to Seward, Alaska on Friday, April 27, and then onto the pier where the Oscar Dyson was docked, I was immediately impressed by its size and overall complexity.

Traveling to Seward, Alaska.

Traveling to Seward, Alaska.

Oscar Dyson in port.

Oscar Dyson in port.

Upon arrival I was met by Bill Floering, Chief Scientist on the cruise.  He gave me a tour of the overall ship and then I settled into my room, a double.  Just like being back in college myself, and being the first to the room, I had my choice of bunks and therefore selected the lower bunk (I did not want to fall out of the top bunk if the seas turned “rough”).  Arriving early provided me time to become oriented on the vessel given that I have never been aboard such a large ship before. I also had the opportunity to walk into Seward, AK, with a member of the science team, for a dinner downtown with extraordinary views of the surrounding mountains.

My stateroom!

My stateroom!

Seward

View from Seward, Alaska.

On Saturday, April 27, the rest of the science crew arrived and my roommate, Matthew Wilson, moved in.  Matt is from the Alaska Fisheries Science Center (AFSC) based in Seattle, Washington.  That evening we traveled into town again for another great dining experience…halibut salad with views of Resurrection Bay.

Matt Wilson from the Alaska Fisheries Science Center

Matt Wilson from the Alaska Fisheries Science Center.

Sunday, April 28, was a busy day of sorting and setting up various instruments for deployment.  Winds were very strong, with snow blowing over the peaks of the mountains, glistening in the brilliant sunshine.

Scott McKeever from the Alaska Fisheries Science Center

Scott McKeever from the Alaska Fisheries Science Center.

Scott at work on an ADCP buoy.

Scott at work on an ADCP buoy.

Installing instruments

Here I am helping to install instrumentation.

View of Seward Harbor.
View of Seward Harbor.

Monday, April 29, our day began with a safety meeting followed by our science meeting.  At that time we were assigned to our work shift.  I will be working from 12 midnight to 12 noon each day during the cruise.  Once the ship sets sail, the science crew is working 24 hours per day!

Science team meeting with Bill and crew.

Science team meeting with Bill and Survey Tech Douglas Bravo.

At 1500 hours we set sail!  The Journey begins!

Releasing tie lines.

Releasing tie lines.

Off we go!

Off we go!

Related articles

Nancy Lewis, September 22, 2003

Nancy Lewis
Onboard NOAA Ship Ka’imimoana
September 15 – 27, 2003

Mission: Tropical Atmosphere Ocean (TAO)/TRITON
Geographical Area: Western Pacific
Date: September 22, 2003

Sunrise:  0610
Sunset:  1817

0515:  4 N CTD

0900:  Shellbacks on bow

1215:  Deploy Test Wind Buoy

Repair 5 N 140 W Buoy

SOLO

Weather Observation Log

Latitude:  4 degrees.,  22.7’ N
Longitude:  139 degrees, 58.8’ W
Visibility:  12 nautical miles (nm)
Wind direction:  160 degrees
Wind speed:  10 knots
Sea wave height:  2-3 feet
Swell wave height:  4-6 feet
Sea water temperature:  28.0 degrees C
Sea level presuure:  1013.0 mb
Dry bulb pressure:  27.8 degrees C
Wet bulb pressure:  24.6 degrees C
Cloud cover:  4/8 Cumulus, altocumulus, cirrus
Air temperature:  27.8 degrees C

Science and Technology Log

I promised that I would return to a discussion of the ADCP, or Acoustic Doppler Current Profiler.   You can see from the Daily Log’s Plan of the Day when these were deployed, but they are deployed at the following locations:  (0-147 E, 0-165 E, 0-170 W, 0-140 W).  On which of these locations did we deploy the ADCP on this leg of the cruise?

These moorings are subsurface, and the data is only available after their recovery. Typically, the depth is 300 meters, and these buoys use the Doppler effect to gather data on ocean currents at that depth.  I have posted several pictures on the website of the ADCP, and to me, it looks like a satellite when it was on board the ship.  In the water, it looked like a big orange fishing bobber.

Our buoy ops (operations) are beginning to wind down, and we recovered no TAO buoy today, as you can see from the plan of the day.  There was a repair done to the 5 N 140 W buoy.  A whole group went out to do that, and used the time while out at the buoy to do a little fishing.  Two large fish came back on the RHIB, a yellow-fin tuna and a mahi-mahi. Kamaka was preparing the fish by cutting filets and making poke for tomorrow’s lunch.

I’d like to make available for teachers a lesson plan submitted by Suzanne Forehand from Virginia Beach City Public Schools.  Because the schools have been closed due to the hurricane,  it is not available as yet on the web.  Teachers may request a copy from me, and I will send it as an attached file to an e-mail.  I would like to thank Ms. Forehand for her collaboration on this project, andI  hope that their electricity is restored soon.  I look forward to hearing from the students at Plaza Middle School in Virginia Beach.

Personal Log

Oh, the life of a lowly Wog!  Traditionally,  those who have crossed the equator at sea for the first time are treated to a variety of secret initiation ceremonies where one is designated a “wog”.  Shellbacks are those people who have already made the passage, and it is their delight to devise various tortures to inflict on the wogs.  The 6 of us on board here were ordered up on the forward deck early this morning, and the fun began.  I cannot give away any of these secrets, but suffice it to say that we all got a saltwater shower.  From here on until we complete the initiation, we have to wear our clothes in ridiculous ways, and bow and scrape to the honorable shellbacks.  At the end of several days of this entertainment for all the shellbacks,  we then become a shellback ourselves and will be issued certificates and a card that we will hold on to forever to avoid having to endure the same in the future. In the 19th century this tradition was carried to extremes with such measures as keel-hauling the wogs, and some very serious, life-threatening acts of hazing.  It is toned way down from those days, and all is done with a spirit of fun and good humor.

I have been busy looking at the photos I have taken on the digital camera, and of course selecting ones to be sent to Maryland to be posted on the website.  There were various glitches today with the computer I am working on, so my work had to be done in fits and starts throughout the day.

Tom and I played 2 games of sequence this evening against the CO and Doc and we won the championship!  The competition is fierce around here because the winners get a T-shirt or cap from the ship’s store.  I guess I’ll find out if it was wise to beat the Captain hands down like that.  I am scheduled to play him next in Scrabble.

Question of the Day:  What is the origin of the word “hurricane”?

Aloha until tomorrow!

Nancy Lewis

Nancy Lewis, September 19, 2003

NOAA Teacher at Sea
Nancy Lewis
Onboard NOAA Ship Ka’imimoana
September 15 – 27, 2003

Mission: Tropical Atmosphere Ocean (TAO)/TRITON
Geographical Area: Western Pacific
Date: September 19, 2003

Plan of the Day:

0700:    Recover /Deploy Equatorial ADCP
Recover CO2 Buoy (if there)  OR
Deploy CO2 Buoy ( if Buoy is missing)

Weather Observation Log:  0100

Latitude:  0 degrees,  0.7′ N
Longitude:  140 degrees., 2.3′ W
Visibility:  12 nautical miles (nm)
Wind direction:  120 degrees
Wind speed:  21 knots
Sea wave height:  3-5 feet
Swell wave height:  5-7 feet
Sea water temperature:  26.0 degrees C
Sea level pressure:  1011.2 mb
Dry bulb pressure:  26.0 degrees C
Wet bulb pressure:  23.8 degrees C
Cloud cover:  3/8 Cumulus, altocumulus

Science and Technology Log

The equator!  For me as for most people, it has always just been “that line around the globe,”  but now that I am out here on this project,  I realize that the equator defines more than just the northern and southern hemispheres of the earth.  It is here that the ocean currents are being intensively studied in order for us to understand the relationship between the oceans and climate.  The 1982-83 El Nino was not predicted by scientists, and it had far-reaching, damaging effects on such diverse places as South America and Australia.  It was then that NOAA funded the Tropical Ocean Global Atmosphere project that is the TAO/Triton array.  Approximately 50 of the buoys are maintained by the U.S. and the other 20 are maintained by Japan.  It took 10 years to complete and in essence, it is a 6,000 mile antennae for scientists to monitor conditions in the equatorial Pacific.

Normally,  the trade winds blow from east to west, but in an El Nino event,  the situation is reversed.

The phenomenon has long been observed by South American fisherman,  and usually occurs around the time of Christmas, hence its name which means “Christ child.”  The great ocean currents are moved by the wind, but around the equator, there are counter, below-sea currents.  Instruments in the TAO/Triton array are involved in collecting important data on these below surface currents.

Each TAO buoy is moored to the bottom of the ocean using steel cable surrounded in plastic and railroad wheels are the anchor.  At various depths on the Nilspin, temperature sensors called thermistors are strapped to the cable.  The cable conducts a signal to the surface of the buoy.  These cables can become damaged (by sharks biting them!) or otherwise degraded, and then the signal will be corrupted. Thus, there is the need for the periodic maintenance which is the main mission of the KA’IMIMOANA.

In addition, some of the buoys are equipped with CO2 sensors, which measure the amount of dissolved CO2 in the water, and which can then be used in studies of global warming.  The buoy which we retrieved today stopped working shortly after it was deployed, and it was not known if it had broken free or what had happened.  As it turned out, the buoy was there, and has been replaced with a fully functioning buoy. Right now, I am looking at innards of that CO2 sensor, which is in the computer lab and is being analyzed by the Chief Scientist.

Personal Log

Early this morning, we recovered the ADCP, which is a subsurface buoy.  Shortly thereafter, we deployed a new ADCP.  ADCP stands for Acoustic Dopplar Current Profiler, and this instrument is used to record data on the below surface currents. I will spend time later discussing this buoy, which looks like a giant orange ball.

I spent much of the day catching up on my daily logs, downloading photos and making several video clips to send to the website.  It appears that the hurricane did a number on the East Coast, and we probably will not have email communication until at least tomorrow.  I have been very happy to get some good questions from the students at Na’alehu School on the Big Island, and I am looking forward to hearing from many more of you next week.

I also spent time today chatting with the Chief Boatswain, Kamaka, a very hard working Hawaiian young man who spreads a lot of aloha wherever he goes.  I have invited Kamaka to come to my school when we get back to Hawaii since he is planning to visit the Big Island.  His girlfriend is Marquesan and lives on Nuku Hiva.

The sunset this evening at the equator was stunningly beautiful,  and there was a rainbow under some misty clouds in the east.  I am hoping my photo was able to capture it for you all.  We shall remain here at the equator overnight, and I am looking forward to the gentle rocking of the ship once I tumble into my berth later this evening.

Question of the Day:   What is the Coriolis effect and how does it relate to winds and ocean currents?

Aloha from the KA’IMIMOANA!

Nancy Lewis