Dawn White: Otoliths & a “Wet” Farewell: July 2, 2017

NOAA Teacher at Sea

 Dawn White

Aboard NOAA Ship Reuben Lasker

June 19 – July 1, 2017

 

Mission: West Coast Sardine Survey

Geographic Area of Cruise: Pacific Ocean; U.S. West Coast

Date: July 2, 2017

Weather Data from the Bridge (As in back home in North Branch, MN)

Date: July 2, 2017                                                             Wind Speed: 8 kts

Time: 7:30 p.m.                                                                 Latitude: 45.5102° N

Temperature: 26.7 oC                                                     Longitude:  92.9931° W

Science and Technology Log

It wasn’t until the last day or two of my leg of the research project that we finally started to catch the species the scientists were specifically looking to track and even then there were only a few.

Angela removes an otolith from the sample target species

Here’s Angela dissecting one of our first samples.  If the young captured were either sardines or anchovies, they were massed, length taken, sex determined (including whether or not they were sexually mature, if possible), and their otoliths were removed.

So what the heck are otoliths and why would anyone want to remove them?

Otoliths are small, bony parts of a fish’s earbones.  They help the fish with balance and orientation.  These bones are made of calcium carbonate and similar to the formation of rings on a tree, they grow with a ring-like pattern based on seasonal metabolic rates.  While the fish is growing faster during the warmer summer months, the rings are broader and more translucent.  Then, during the cooler winter months when a fish’s metabolic rate begins to slow down, that part of the ring appears to be more dense or opaque.

Look at the first illustration below that was taken from a 2008 NOAA press release.  On the lower right you see an image of an otolith from a haddock.  Each species has otoliths of a particular size and shape. If you know the region of ocean from which a set of otoliths was obtained, you may be able to determine the species by utilizing one of the many otolith references that can be accessed online, such as found in this memorandum published by NOAA researcher Mark S. Lowry.

 

The enlarged image on the right was taken from the NOAA Images Library.  Here you can see the rings very distinctly.

Extension question for my students:  Using the otolith image on the right, determine how old the fish was at the time of capture.  Not sure how to do this just yet?  Want to test your accuracy?  Read up on what is involved in the study of sclerochronology first. Then test yourself with this otolith aging interactive.  Enjoy!

Once the otoliths have been removed they are wiped clean and placed in a small vial to finish drying out.  The otoliths are cataloged and sent to the lab for evaluation as shown in the photos below.

 

The combination of measurements taken allow those studying the population to look at the demographics of the catch (What % of the population is juvenile?  What % is sexually mature? What is the relationship between % male vs. female?).  This data provides a sampling of the population’s health and viability, which can then be extrapolated to the population as a whole.  This information can then be used to help inform policy with regards to how heavily these populations can be fished without causing damage to the ecosystems of which they are a part.

 

Personal Log – It’s time to go home!

It seemed like we had just gotten started and it was time to go!  Although they had mixed work/sleep schedules, the science team was willing to gather to see me off.

Angela, Dereka, Dawn (TAS), Nick, Amy, Bryan, Sue, Emily

What an amazing learning experience!  My only regret was that we didn’t start to find the species requiring the more intense, time-consuming dissection and data collection until the very end.  I wanted to make sure I was doing my part!  In return, what I get to take home to my students is invaluable. I can’t wait to share all I have learned about life aboard a research vessel, the many ways in which this unique habitat is being studied, and the vast opportunities that await those who are interested in marine ecosystems.

The only travel plan that was not prearranged regarding my TAS adventure was the exact location of my departure from the Reuben Lasker.  What I did know was that it was to be a “wet transfer.”  What I didn’t know was exactly what that meant.  It was so much fun finding out!

The Reuben Lasker has a limited number of ports along the west coast where it is possible for it to dock.  The ship’s size, unique keel, and specialized, below-ship sonar equipment require channels to be much deeper than many smaller ports possess.  Because of this, whenever there is to be an exchange of personnel made before a larger port is reached, an onboard transfer craft brings those getting off to a smaller port along the way.  This allows the main vessel to stay in safer waters much further off shore.  Once the exchange of people and gear is made, the transfer boat returns to the ship and the journey continues.

Unique points to consider on this type of trip, however, are that you need to get the transfer boat launched from the main vessel, the ship lets you off several miles from port, and the boat has no seats – you stand up the whole way!  Who knew that even getting back to the mainland was to be an adventure?!

You can see the transfer boat below (right side in the picture – port side of the ship).  Notice how the Reuben Lasker carries it hoisted up off the floor of the back deck.

View of the transfer boat (at right) stored on Reuben Lasker

The transfer boat gets lowered to deck level so we can all step in.  Our gear is stored in the open bow and we all load in the back.  Behind the center console are poles with handles that give us something stable to hold on to as we will be standing for the duration of the trip.  We all wear life jackets and hard hats as the boat is lowered along-side the main ship.

Here’s Skilled Fisherman Victor Pinones ready at the controls as he lowers us to sea level.

Skilled fisherman Victor Pinones ready at the controls

The two outboard motors are started while we are along-side so we are ready to move away from the Reuben Lasker the minute we hit the water.  And we’re off! To give you some perspective of the size of the Reuben Lasker as it looks from the water, you can see Emily, Angela, and Dereka waving to me from the Level-1 deck.

View of NOAA Ship Reuben Lasker from the transfer boat
It didn’t take long before the ship was but a spot on the horizon….
Here’s a better look at the transfer vessel as crew members prepare to for the return trip.

Bon voyage to all!  Safe travels!

Did You Know?

Fun fact: Baby squid are adorable!  Just had to share one last image from under the microscope – thanks, Nick, for pointing this out!  At this larval stage, the squid are mainly transparent except for their developing eyes and chromatophores (sac-like structures filled with pigments that help the squid undergo color changes).  You can observe this process in action at the Smithsonian’s  Ocean Portal web site.

 

Looking at the enlarged photo at right you can just make out the scale – our little friend was a whole 3 mm in diameter!  Too cute!

Dawn White: Pinging for Populations, June 29, 2017

 

NOAA Teacher at Sea

 Dawn White

Aboard NOAA Ship the Reuben Lasker

June 19 – July 1, 2017

 

Mission: West Coast Sardine Survey

Geographic Area of Cruise: Pacific Ocean; U.S. West Coast

Date: June 29, 2017

 

Weather Data from the Bridge

Date: June 29, 2017                                                         Wind Speed: 7.7 kts

Time: 6:15 p.m.                                                                 Latitude: 4805.5N

Temperature: 12.7oC                                                      Longitude: 12520.07W

 

Science and Technology Log

The technology present on this ship is amazing and at the same time quite overwhelming.  These systems allow for data to be collected on a wide range of variables both continuously and simultaneously.  Below are a couple of photos of the acoustics room where multiple sensors are monitoring the feedback from sonar systems placed below the ship’s hull.  One of the acoustic probes sends out sound waves in a cone-like formation directly below the ship.  Another unit emits sound waves in a horizontal pattern.  The ship was designed to run as quietly as possible so as to not disturb the marine life present in the waters as the ship passes by and also to reduce the interference of the ship’s sounds with the acoustics feedback.

 

 

Acoustics technician Dan Palance managing the multiple computers that are constantly collecting data.

Multiple programs help to eliminate the “noise” received by the probes until all that remains are images that represent schools of fish and their location relative to the ocean floor.

 

The images above were taken from a poster on board the Reuben Lasker. They illustrate the range of the water column surveyed by the various acoustic systems.

 

The “soundings” are received by the ship, processed and “cleaned up” using a series of program algorithms. The image below shows the feedback received from one of the systems.

Displays of feedback from an acoustics system

Once the background “noise” has been eliminated, the resulting image will show locations of fish, school size, and the depth (y axis) at which they can be found.

Graph of acoustic feedback, with background “noise” eliminated, depicting depth and size of fish schools

 

Extension question for my students reading this:  Approximately how deep are the schools of fish being picked up by the sonar at this location?

Acoustics aren’t the only tools used to try pinpoint the locations of the fish schools.  As I wrote about on an earlier blog, the CUFES egg sampler is used to monitor the presence of fish eggs in the waters that the ship passes over.  Water samples are analyzed every half hour.  If egg samples appear in an area where there is also a strong acoustics signal, then that may be a location the ship will return to for the night’s trawl.  The main focus of this trip is to monitor the anchovy and sardine populations, so extra attention is paid to the locations where those eggs appear in the samples.

Personal Log:

Each time we drop the net for an evening trawl it is always retrieved with a bit of suspense:  What’s going to be in the net this time?  How big is the haul?  Will we capture any of the key species or haul in something completely different?

I can honestly say that while on board there were no two hauls exactly the same.  We continued to capture large quantities of pyrosomes – unbelievable amounts.  Check out the net-tearing load we encountered one night.  We literally had to weigh them by the basketful!

Here I am getting ready to help unload this large catch.

TAS Dawn White prepares to help unload large catch

 

Net-tearing load of pyrosomes!

Above is the codend of the net filled with pyrosomes and fish.  A 5-basket sample was pulled aside for analysis.  The remainder was simply classified and massed.

While I was certainly don’t need to see another pyrosome any time soon, there were plenty of other times when some very unique species made an appearance!

Pacific Jack Mackerel
Solitary Common Salp
TAS Dawn White holds a Blue Shark
Dogfish Shark

Did you know?

The dogfish shark (pictured above) was one of about 50 or so that were caught in the same haul.  We had trawled through a school that was feeding on the small fish found at the ocean surface during the evening hours.  This is the same species of shark that is commonly provided to students for dissection.  Use the search terms “dogfish shark dissection” and see what you find!

Dawn White: Finally Fishing! June 27, 2017

NOAA Teacher at Sea

Dawn White

Aboard NOAA Ship Reuben Lasker

June 19 – July 1, 2017

 

Mission: West Coast Sardine Survey

Geographic Area of Cruise: Pacific Ocean; U.S. West Coast

Date: June 27, 2017

 

Weather Data from the Bridge

Date: June 27, 2017                                                         Wind Speed: 28.9 kts with gusts
Time: 9:15 p.m.                                                                 Latitude: 4828.20N
Temperature: 13.4oC                                                      Longitude: 12634.66W

Science and Technology Log

White_Lasker route 6-27
The red line indicates the route of NOAA Ship Reuben Lasker transiting along the coast of Vancouver Island

We finally reached the tip of Vancouver Island on Sunday evening, June 25. It would be our first night of fishing.  The red line indicates the route taken by the Reuben Lasker as we transited along the coast to the northernmost tip of the island.  The blue lines indicate the path to be taken for regular interval acoustic monitoring for schools of fish.  Based on the acoustics results, a decision would be made as to where the fishing would occur at night.

 

 

 

White_deploying net
Crew deploying the fishing net

The photo at left shows the crew completing the deployment of the fishing net.  You can see the large winch that will release and retrieve the main body of the net.  The net will be set out for about 45 minutes.  During this time there are many variables that will be monitored.  Sensors attached to the net will collect data on time spent at each depth.  Other factors being monitored include temperature, wind speed, swell size,  and lat/long of trawl. In addition, there are four water-activated “pingers” attached to the net that emit sounds at frequencies known to disturb larger mammals in an effort to reduce accidental captures.

Once the net has been retrieved, the scientists collect the catch in large baskets and begin the process of weighing and sorting.  The first night’s catch was primarily made up of a very unique colonial type of organism called a pyrosome. The side nets and codend (mesh covered end of the main net where most of the catch is collected) were packed with these the first couple of trawls.

White_many pyrosomes
Many pyrosomes were mixed in with the catch.

You can see many pyrosomes mixed in with the rest of the catch here.  They are the pink colored cylindrical organisms.  They have been increasing in population over the past couple of years as well as appearing further north than ever observed before.  A nice overview of the pyrosome influx and volumes observed was recently reported in an article published by Environment entitled “Jellied sea creatures confound scientists, fishermen on U.S. Pacific Coast”. You can review the article here.

The trawl net being used was part of the research project, as it possessed modifications aimed at capturing and quantifying organisms that made it through an apparatus called the extruder door.  The purpose for this opening is to allow for larger mammals and non-target organisms to pass through the net relatively unharmed should they get caught.  Two additional pocket nets had been added to the main net for the specific purpose of monitoring what made it through the mesh.

This far north, the researchers were expecting to find mostly juvenile herring and salmon.  On our second night of fishing we actually had several species of fish and other marine animalia to i.d. The amount and type of data collected depended on the species of organism.  In some cases, we collected just the mass of the group of organisms as a whole.  For other species, we collected mass, lengths, presence/absence of an adipose fin, DNA samples from a fin clip, and more.  Certain species were tagged, bagged, and frozen for further study in a land-based lab.  It’s so interesting to see the variety we pull out of the net each trawl!

Some of the species collected can be seen below:

Extension question for my students reading this:

What traits could you use to differentiate between the juvenile salmon and Pacific herring?

 

Personal Log:

White_scientists collecting data
Here are some of the scientists making sure the correct data is collected and recorded from one of our catches.
White_here i am in yellow
Here I am (in yellow) with some of the scientists (L to R: Emily, Amy, and Angela) getting ready to receive the evening’s catch.

First trawl starts as close to sunset as possible, which for this latitude has been somewhere between 9:30-10:00 p.m. There is always this air of anticipation as we wait for the net to be emptied.  It has been enlightening to work with the science staff as they evaluate each sample.  The number of reference sheets and data recording forms is incredible.  It seems like you would need to take a course in data management just to ensure you were familiar enough with the requirements to not overlook some detail of importance.

The photo of the group above was taken about 11:00 p.m.  I was worried initially that I would not be able to flip my sleep schedule to match the work schedule, but it has been much more doable than I thought it would be.  Our staterooms are dark and quiet, so going to bed in the morning really doesn’t feel any different that at night.  Thanks to the extensive movie collection and my ability to keep downloading books to read on Kindle, I have had plenty of filler for downtime and that “reading before bed” I always do.

Time to go to work…..

 

Did You Know?

There are 36 species of dolphin worldwide, including 4 species of river dolphins.  Quite a few of the Common Bottlenose Dolphin followed the ship out of the harbor in San Diego, riding along on the wake produced by the ship.  On the way up the coast of California I saw a couple of Dall’s Porpoises (not in the dolphin family, but quite similar in appearance).  Then as we traveled south along Victoria Island there were a couple of Pacific White-Sided dolphins enjoying games along-side the ship. It is so exciting to see these animals out in their native habitat!

Every night before the ship drops the fishing net, a member of the science team is sent to the bridge to perform a 30-minute mammal watch.  The surrounding waters are observed closely for any signs of these and other larger species.  The investigators do their best to ensure that only the small fish species intended for capture are what enters the net.  Should there be a sighting, the ship moves on another 5 miles in an effort to avoid any accidental captures.  The scientists and crew work very hard to minimize the impact of their studies on the surrounding ecosystems.

Dawn White: Sampling the Pacific, June 24, 2017

NOAA Teacher at Sea

 Dawn White

Aboard NOAA Ship Reuben Lasker

June 19 – July 1, 2017

 

Mission: West Coast Sardine Survey

Geographic Area of Cruise: Pacific Ocean; U.S. West Coast

Date: June 25, 2017

 

Weather Data from the Bridge

 

Date: June 25, 2017                                                         Wind Speed: 22 kts

Time: 4:00 p.m.                                                                 Latitude: 5026.55N

Temperature: 14.3oC                                                      Longitude: 12808.11W

 

Science and Technology Log

 

Although the scientists have not performed any fishing trawls since departing San Diego, there is a survey crew on board that has continuously been monitoring the water column for a variety of factors using acoustics and an instrument called a Conductivity/Temp/Depth (CTD) probe.

Last night I was able to observe the launch and retrieval of a small, handheld CTD probe.  It looks very much like a 2 ft torpedo. The electronics and sensors built into the probe measure such factors as salinity, sound speed, depth, and water temperature.  This smaller probe is launched off the tail of the boat and let out on a line of filament from a reel that appears very similar to a typical fishing reel.  It does not take more than a couple of minutes for the probe to sink to a depth of about 300 meters.  Data is collected from the probe at various depths on the way down.  Once the probe has reached its target depth, it is simple reeled back in using a winch to retrieve it.  This requires quite a bit of energy as the probe is deployed with enough line for it to end up about 3 miles behind the ship.  The data from this probe is then blue-toothed to the program used by those monitoring the water column acoustically.  It help the techs make corrections in their acoustical readings.

 

White_scientists deploying probe_R
Surveyor Jian Liu and scientist Juan Zwolinski deploy the smaller CTD probe off the stern of NOAA Ship Reuben Lasker

 

The Reuben Lasker also carries a larger version of the CTD probe with the additional capabilities such as water collection at various depths.  However, this version requires the ship to be stationary.  Taking measurements with the unit slows down the work of the day as each stop takes about 30 minutes from launch until retrieval.  The launch of the larger CTD can be seen below.

 

White_CTD probe in basket
CTD Probe in steel protected basket

 

The data from the CDT probe is recorded real-time on the survey team’s computers.  Below you can see how this data presents itself on their video screens.

 

On the left video display you can see that there are several variables that are plotted against a depth vs. temperature. The green line tracks fluorescence (a measure of the chlorophyll concentration); the light blue line tracks dissolved oxygen; the red line represents temperature; the blue line is for salinity.

 

Extension question for my students reading this:  What correlations or relationships do you see happening as you observe the change in variables relative to changes in depth?

 

White_Lasker route
Route of NOAA Ship Reuben Lasker

Here is the route taken by the Reuben Lasker during the past 24 hours or so.  As you can see from the chart, the ship has now reached the northern-most end of Vancouver Island.  This is where the CDT recordings, marine mammal watching, deployment of two sets of plankton nets (to be explained later) and fish trawling will begin along the predetermined transect lines.

Note at the base of the screen the other parameters that are continuously recorded as the ship moves from place to place.

 

 

Personal Log

The action on-board is increasing dramatically today.  We have arrived at our outermost destination today, along the northernmost coast of Vancouver Island.  The sights from the bridge are amazing…all this blue water and rugged, pine covered coastline.  I am still waiting for that orca whale sighting!

The waves are up today but I’m holding my own.  Yeay!  Especially as the night fishing will begin in a few hours.

Unique activity of the day – I just finished a load of laundry!  The ship possesses 3 small washer/dryer units so we can redo our towels and whatever else we have used up during the course of this first week.  How serviceable can you get! I’ll retrieve mine as soon as dinner is over.  We have set meal hours and if you miss…it’s leftovers for you!  Best part of this is I am actually ready to eat a normal meal, even with the ship rocking the way it is today.

I have now been assigned deck boots and a heavy duty set of rain gear to cover up with when the fish sorting begins.  I can’t wait to see what all we pull up from these nutrient rich waters!

 

Did You Know?

Much of the data collected by the CTD and acoustic equipment from the Reuben Lasker is entered into a large data set managed by CalCOFI (California Cooperative Oceanic Fisheries Investigation).  Anyone interested in utilizing and analyzing this data can access it via the organization’s website located here.  There is an incredible amount of information regarding the work and research completed by this group found on this site. Check it out!

Dawn White: Onward to Vancouver! June 24, 2017

NOAA Teacher at Sea

 Dawn White

Aboard NOAA Ship the Reuben Lasker

June 19 – July 1, 2017

 

Mission: West Coast Sardine Survey

Geographic Area of Cruise: Pacific Ocean; U.S. West Coast

Date: June 23, 2017

 

Weather Data from the Bridge

Date: June 15, 2017                                                         Wind Speed: 24 kts

Time: 12:00 noon                                                             Latitude: 4332.4806N

Temperature: 15oC                                                          Longitude: 12446.5864W

 

Science and Technology Log

One of the lessons I want to take back to my students is not only a better understanding of some incredible career opportunities out there that they probably are not aware of, but also how some simple, almost by chance factors can influence our career choices.  For example, in speaking with PJ Klavon one of the ship’s Officers on Duty (OOD), I asked how he came about becoming a NOAA officer.  He said he was at a job fair and a NOAA staff member asked him if he would like to fish and captain a ship.  He answered “Yes” and here he is, having been part of the NOAA program the past 7 years.  I also met Sarah Donohoe, the ship’s navigator.  She commented that while in middle school she happened to read the hardcover book about being a Teacher at Sea that NOAA produced a few years ago.  It intrigued her then and now here she is, working her way up the chain of command having first earned a degree in Biology.

We headed out of the San Diego port on Monday, June 19 with the objective of traveling straight to Vancouver where we are to begin our main transects, collecting samples of fish throughout the night along a very specific path.  The transect lines have been used for several years so that the data will show how species and population sizes change over time.

Transect Lines are paths along which one counts and records occurrences of the species of study (e.g. sardines). It requires an observer to move along a fixed path, to count occurrences along the path and, at the same time (in some procedures), obtain the distance of the object from the path.  There will be more on this to follow when we get to actively fishing in a couple of days.

Consider the path on the diagram below (image from http://www.fao.org).

Samplings are taken at regular intervals.  The pathways are marked by longitude and latitude so they can be repeated as needed.

Since we are mostly just cruising to our starting point, there has not been much research going on.  The main activity has been to collect eggs from the water directly below the boat.  This water is channeled through a tube containing a mesh filter capable of capturing organisms and eggs that are 5 microns in diameter or larger.  There are two main egg types that the researchers are looking for – the eggs from anchovies and sardines.  They are monitoring how many they find in the samples being collected every 30 minutes.  This information can be compared to the water temperature, location of the vessel, and the size of schools of these organisms as observed via sonography.

CUFES  (Continuous underway fish egg sampler)  Approx. 640 L/min of water flows through the apparatus illustrated below.  The water flows through a tube that has the 5 micron mesh filter inside which collects the eggs, etc. found in that water sample. The sample is then rinsed into a petri dish, where the number of eggs of each species is identified and recorded.  The sample is then placed in a 5% formalin/salt water solution for preservation and later study.

CUFES (Continuous Underway Fish Egg Sampler)

The image below represents the eggs and multiple species of zooplankton that can be captured during one CUFES sample period.  The anchovy eggs are a very distinct oval shape.  See if you can find them in the sample below!

CUFES sample with anchovy eggs

 

CUFES sample with circular fish eggs

Personal Log

I arrived in San Diego last Sunday afternoon.  With the ship in port for the weekend, there were few staff on board so I had a quiet start to my trip. PJ Klavon, the Officer on Duty (OOD) did a fabulous job of keeping me company and patiently answered my questions about the ship, our itinerary, what a “typical day” looks like, and the various roles of the ship’s personnel.  As the evening progressed, I had a chance to meet a few other members of the crew.   It was great to have some time to take it all in, move into my stateroom, and even enjoy an off-ship dinner in town.  I watched the sunset in the harbor from the same deck level my room is located on.

Here’s me squinting into the morning sun for a selfie the morning of our launch.  My room is on the 0-1 level with a small window looking out the starboard side of the boat.

TAS Dawn White and NOAA Ship Reuben Lasker

I haven’t written much these first few days for two reasons: 1) there hasn’t been much activity to report on and 2) I have struggled to get my “sea legs” beneath me.  The weather north of us has not been cooperating very well and the wind/waves have been rather severe at times.  Yesterday winds blew constantly at about 30 knots with periods of time blowing 40-45 knots.  The waves were incredible.  Quite an experience attempting stairs in such conditions, or trying to fill your plate during lunchtime!  The ocean is much less angry today so I feel like I can look at a computer screen for any period of time.

I am staying up later this evening to begin the transition to our nighttime fishing schedule.  We will be trawling and working on evaluating our catch from about 8 p.m. to 8 a.m. starting Sunday night.  I am really looking forward to seeing what we catch!

Did You Know?

There are opportunities beyond the Teacher at Sea program for those of you interested in seeing what life upon a research vessel is like.  Students with a degree in the sciences and an interest in marine biology can volunteer to assist on a NOAA research trip much like the one I am on right now.  In fact, one of the members of the science team on this trip is a new graduate who is interested in getting involved in the NOAA program.  You can read more about NOAA and its opportunities by checking out the information available on their home page at NOAA Home.

 

 

————————————————————————————————————————————–

 

Dawn White: Almost Bon-voyage! June 14, 2017

NOAA Teacher at Sea

 Dawn White

Aboard NOAA Ship Reuben Lasker

June 19 – July 1, 2017

 

Mission: West Coast Sardine Survey

Geographic Area of Cruise: Pacific Ocean; U.S. West Coast

Date: June 14, 2017

Weather Data from the Bridge

I am still at home in North Branch, MN having just finished the school year as well as the graduation festivities for my youngest.  Whew!  The weather data from my bridge is as follows:

Date: June 14, 2017                                                         Wind Speed: NE 9 mph

Time: 3:45 p.m.                                                                Latitude: 45.5102° N

Temperature: 81oF                                                          Longitude: 92.9931° W

Science and Technology Log

I obviously have nothing to add to the science log at this point, but having observed the blogs from those that have gone before me this season, I will have plenty to report on in the very near future!  I am excited for this fabulous learning opportunity and look forward to sharing all that I discover with those back at home and elsewhere!

 

Personal Log

I join the ranks of many of my fellow Teachers at Sea (TAS) when I say that being able to use my biology degree to get involved in actual field research has been on my “bucket list” for a long time.  I entered the field of teaching later in life and via other career paths, have been blessed to have used my degree in many ways – in the field of medicine, in pharmaceuticals, and now as a classroom teacher.  Along the way I grew to develop a passion for the field of environmental science and knowing that no one has taught this subject in our district for several years, took up the charge to design a course for the upcoming school year.  This idea had been developing for a while and without many funds available in our district for professional development in this content area I began to look for ways to get engaged in environmental programming that I could use directly in my classroom.   Through my initial research into this area, I uncovered this exciting TAS opportunity.  I hesitated to apply at first – this was going to be quite a challenge and way out of my comfort zone –  but isn’t that what I am always encouraging my students to do?  Step out of the box?  Our science department team attended the National Science Teachers Association (NSTA) conference in Minneapolis last fall where I met a couple of team members from the NOAA Teachers at Sea program.  With several questions answered, I decided to apply and here I am – on my way in just a couple of days!  I thank my family and friends for their words of encouragement and support.  Here are the ones I want to thank the most:

 

The Whites, L to R: Patrick, John, Courtney, Dawn, Cassidy

Did You Know?

 I am already starting my vocabulary lists!  Stay tuned for terms like:

pyrosome

pelagic vs. non-pelagic

hydroscopy

otoliths

ichthyoplankton