DJ Kast, Interview with a Chief Scientist, June 3, 2015

NOAA Teacher at Sea
Dieuwertje “DJ” Kast
Aboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical areas of cruise: Mid Atlantic Bight, Southern New England, Georges Bank, Gulf of Maine
Date: June 3, 2015

Science and Technology Log: Interview with the Chief Scientist, Jerry Prezioso

 

Chief Scientist Jerry Prezioso and graduate student Megan Switzer. Photo by DJ Kast

Chief Scientist Jerry Prezioso and graduate student Megan Switzer. Photo by DJ Kast

What is your job on the NOAA Henry B. Bigelow?

 Chief Scientist.

What does your job entail?

My job contains three main parts: pre-cruise setup, science underway, and post-cruise wrap up activities.

Pre-cruise Setup. (this starts long before the cruise)

  • Have to have the project instructions.
  • Fishing zone license if in Canadian waters
  • All Scientists are required to have a TB Test and Medical clearance to come aboard.
  • If any of the scientists are not a US citizen,  green cards or security clearance are needed
  • I pick out the station locations and route.
  • Make sure there are enough materials/ supplies/ chemicals.

During Cruise:

  • Supervise and coordinate all the scientists
  • During this cruise I had the day shift and so I did all the day time bongos and CTD’S with the Teacher at Sea DJ Kast
Jerry watering down the net to collect plankton. Photo by DJ Kast

Jerry washing down the net to collect plankton. Photo by DJ Kast

  • Track updates: I need to adjust for time and weather. I keep the ship working all the time 24/7. The ship costs thousands of dollars a day to run, so I make sure its never sitting. That’s why there are two shifts. If it is bad offshore, we move inshore to keep working.
  • Check logs, data.
  • Instruct the Teacher at Sea and provide them with awesome buoys.
Collecting water samples from the Niskin bottles in the Rosette. Photo by DJ Kast

Collecting water samples from the Niskin bottles in the Rosette. Photo by DJ Kast

After Cruise:

  • Destage the vessel.
  • Deliver samples and data
  • Write cruise report
  • Operations table- what we did at every station. Bongo vs. CTD, Bongos for CMARZS, Dave, Jessica.
  • Make sure all scientists get home OK.

How many years have you been doing this?

I have 40 years of government service. Back in 1968, I had my first student NOAA job. At Northeastern University, I was a co-op student, which meant I alternated school with a work-related job until graduation in 1974. I  got a job with NOAA as a biological technician. Afterwards, I was a fishery biologist. Then I went to the University of Rhode Island (URI) for my masters degree in biological oceanography (1991) and since then it has been oceanography all the way- 23 years of oceanography. I started helping out on research cruises. I would help with the plankton tows and show up to collect samples. I started going on many cruises like trawling cruises, fishing cruises, and would even travel on foreign vessels. I’ve been on quite a few foreign vessels: Russian vessels, Japanese, East and West German, Polish, and Canadian and it’s in these type of environments that you really learn to do more things yourself and learn more about different cultures.

What is your own personal research?

I am interested in the influences of distribution of plankton in various areas. This is what I did for my master’s thesis. I wanted to see what environmental parameters could affect plankton distribution. So far, temperature seems to be the strongest influence. Decades ago plankton that was originally found down south is found north now. Such dramatic change between 1970s and now. My boss has seen the same regional change with fish, seen them move up more north as the climate has changed. I am much more field oriented than research (lab) oriented, which is why I am out on the boats so much.

What are some of your hobbies besides SCIENCE?

  • Mainly SCUBA diving and photography
  • SCUBA diving: When I was younger, SCUBA diving was definitely a major push for me to get into oceanography. I was certified during college and I have loved it ever since.
  • Underwater photography is my favorite.
Photo by Jerry Prezioso

Underwater Photography: Herring photo by Jerry Prezioso

 

  • I remember being able to photograph River Herring which spawn in freshwater and then go out to sea to grow to adulthood.
Jerry in the steam filming herring. Photo provided by Jerry Prezioso

Jerry in the steam filming herring. Photo provided by Jerry Prezioso

  • I have lots of ocean fish photos, flounder and striped bass.

 

Comb Jelly. Photo by Jerry Prezioso

 

  • I also use my photography skills on the ship. For example, I combined SCUBA diving and photography by taking pictures of the crew cleaning lines out of the propeller (which is underwater).
  • Photo skills have definitely helped me on the job.

 

Selfie! Photo by DJ Kast

Selfie! Photo by DJ Kast

DJ Kast, Engine Room Tour with the Chief Engineer, June 2, 2015

NOAA Teacher at Sea
Dieuwertje “DJ” Kast
Aboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical area of cruise: East Coast
Date: June 2, 2015

Chief Engineer Tour of Engine Room!

IMG_2044

Selfie with the Chief Engineer! Photo by DJ Kast

IMG_7398

John Hohmann, Chief Engineer on NOAA Ship Henry B. Bigelow. Photo by DJ Kast

SCHEMATICS- Drawn by John

IMG_2091

The upper level of the engine room. Drawn out by John Hohmann and photographed by DJ Kast

IMG_2092

The lower level of the engine room. Drawn out by John Hohmann and photographed by DJ Kast

Chief Engineer John Hohmann took me on a tour of  the Engine room here on NOAA Ship Henry B. Bigelow. It was fascinating to learn all of the components that make this type of research vessel work. The electrical components, the seawater distillation apparatus, biological sewage treatment, etc. It was an amazing tour. The Bigelow has a diesel-electric drive system using four diesel generators to power to two electric motors. The motors turn one shaft which rotates the propeller. Overall rated horsepower for main propulsion is 3017hp.

The biological system utilises bacteria to completely break down the sewage into an acceptable substance for discharge into any waters. The extended aeration process provides a climate in which oxygen-loving bacteria multiply and digest the sewage, converting it into a sludge. These oxygen-loving bacteria are known as aerobic. The treatment plant uses a tank which is divided into three watertight compartments: an aeration compartment, settling compartment and a chlorine contact compartment . The sewage enters the aeration compartment where it is digested by aerobic bacteria and micro-organisms, whose existence is aided by atmospheric oxygen which is pumped in. The sewage then flows into the settling compartment where the activated sludge is settled out. The clear liquid flows to the chlorinator and after treatment to kill any remaining bacteria it is discharged. Tablets are placed in the chlorinator and require replacement as they are used up. The activated sludge in the settling tank is continuously recycled and builds up, so that every two to three months it must be partially removed. This sludge must be discharged only in a decontrolled area. Photo and Caption info by Machinary Spaces.com

The biological system utilizes bacteria to completely break down the sewage into an acceptable substance for discharge into any waters. The extended aeration process provides a climate in which oxygen-loving bacteria multiply and digest the sewage, converting it into a sludge. These oxygen-loving bacteria are known as aerobic. The treatment plant uses a tank which is divided into three watertight compartments: an aeration compartment, settling compartment and a chlorine contact compartment .
The sewage enters the aeration compartment where it is digested by aerobic bacteria and micro-organisms, whose existence is aided by atmospheric oxygen which is pumped in. The sewage then flows into the settling compartment where the activated sludge is settled out. The clear liquid flows to the chlorinator and after treatment to kill any remaining bacteria it is discharged. Tablets are placed in the chlorinator and require replacement as they are used up. The activated sludge in the settling tank is continuously recycled and builds up, so that every two to three months it must be partially removed. This sludge must be discharged only in a decontrolled area. Photo and Caption info by Machinary Spaces.com

The most fascinating part for me was the Evaporator.

The inside Mechanics of the evaporator machine. Photo by: Machinery Spaces.com

The inside Mechanics of the evaporator machine. Photo by: Machinery Spaces.com

Distillation is the production of pure water from sea water by evaporation and re-condensing. Distilled water is produced as a result of evaporating sea water either by a boiling or a flash process. This evaporation enables the reduction of the 32 parts per thousand of dissolved solids in sea water down to the one or two present in distilled water. The machine used is called an ‘evaporator’, although the word ‘distiller’ is also used.

Boiling process:

The vacuum in the evaporation machine reduces the pressure to 30 inches of Hg or Mercury to boil water at 180F instead of 212 F

The vacuum in the evaporation machine uses 30 inches of Hg or Mercury to boil water at 180F instead of 212 F. Photo by DJ Kast.

The vacuum in the evaporation machine uses 30 inches of Hg or Mercury to boil water at 180F instead of 212 F. Photo by DJ Kast.

The sea water from the ship’s services is first circulated through the condenser and then part of the outlet is provided as feed to the evaporation chamber. Hot diesel engine jacket water or steam is passed through the heater nest and, because of the reduced pressure in the chamber, the sea water boils. The steam produced rises and passes through a water separator, or demister, which prevents water droplets passing through. In the condensing section the steam becomes pure water, which is drawn off by a distillate pump. The sea water feed is regulated by a flow controller and about half the feed is evaporated. The remainder constantly overflows a weir and carries away the extra salty water or brine. A combined brine and air ejector draws out the air and brine from the evaporator.

Evaporation machine connected to the Ship Service Diesel Generator. Photo by DJ Kast

Evaporation machine connected to the Ship Service Diesel Generator. Photo by DJ Kast

They need to make their own electricity on board ranging from 110 Volts for phones and computers to 750 Volts for some of the ship propulsion motors. Each of those require various circuit breakers seen below.

480 Volt Machines. Photo by DJ Kast

480 Volt Circuit Breaker. Photo by DJ Kast

600 Volt Machines. Photo by DJ Kast

600 Volt Circuit Breaker. Photo by DJ Kast

Its going 1000 amps. WOW. Photo by DJ Kast

Its conducting 1000 amps. WOW. Photo by DJ Kast

Air Compressors. Photo by DJ Kast

Air Compressors. Photo by DJ Kast

The air in the compressors is moist and hot so this cools it down and removes moisture. Photo by DJ Kast

The air in the compressors is moist and hot so this machine cools it down and removes moisture. Photo by DJ Kast

Air pressure holding tanks. Photo by DJ Kast

Air pressure holding tanks. Photo by DJ Kast

Drives. Photo by DJ Kast

Electric Motor Drives. Photo by DJ Kast

 

Engines and generators. Photo by DJ Kast

Engines and generators. Photo by DJ Kast

Evaporation controls. Photo by DJ Kast

Evaporator controls. Photo by DJ Kast

Freshwater Generator. Photo by DJ Kast

Freshwater Generator. Photo by DJ Kast

Generator! Photo by DJ Kast

Ship Service Diesel Generator (SSDG)! Photo by DJ Kast

Jacket Water Tanks on the SSDG

Jacket Water Tanks on the SSDG. This water is used to cool the generators. Photo by DJ Kast

Machine operates the cranes. Photo by DJ Kast.

Hydraulic pump that operates the cranes. Photo by DJ Kast.

Maintenance Service Board. Photo by DJ Kast.

Maintenance Service Board. Photo by DJ Kast.

 

Motor Controls. Photo by DJ Kast.

Motor Controls. Photo by DJ Kast.

Power supply 1, 2D. Photo by Dj Kast.

Power supply 1, 2D. Photo by Dj Kast.

Teal pump that separates oil. Photo by DJ Kast

Oily water separator reduces the water mixed with oil to 115 ppm for overboard discharge. The oil is retained on board. Photo by DJ Kast

Smoke Stacks! Photo by DJ Kast.

Smoke Stacks! Photo by DJ Kast.

Trawling Winch line. Photo by DJ Kast.

Trawling Winch line. Photo by DJ Kast.

Two blue boxes that are motors connected to the propeller. Photo by DJ Kast.

Two blue boxes are electric motors connected to the propeller. Photo by DJ Kast.

Third Engineer John fixing a pipe with a large wrench. Photo by DJ Kast

Third Engineer John is all smiles while he works. Photo by DJ Kast

DJ Kast, Bongo Patterns, June 1, 2015

NOAA Teacher at Sea
Dieuwertje “DJ” Kast
Aboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical areas of cruise: Mid Atlantic Bight, Southern New England, George’s Bank, Gulf of Maine
Date: June 1, 2015

Science and Technology Log:

Bongo Patterns!

Part of my job here on NOAA Ship Henry B. Bigelow is to empty the plankton nets (since there are two we call them bongos). The plankton is put into a sieve and stored  in either ethanol if they came from the small nets (baby bongos) or formalin if they came from the big nets (Main bongos).

What are plankton? Plankton is a greek based word that means drifter or wanderer. This suits these organisms well since they are not able to withstand the current and are constantly adrift. Plankton are usually divided by size (pico, nano, micro, meso, macro, mega). In the plankton tows, we are primarily focused on the macro, meso and megaplankton that are usually with in the size range of 0.2- 20 mm  (meso), 2-20 cm (macro), and above 20 cm (mega) respectively.

Group Size range Examples
Megaplankton > 20 cm metazoans; e.g. jellyfish; ctenophores; salps and pyrosomes (pelagic Tunicata); Cephalopoda; Amphipoda
Macroplankton 2→20 cm metazoans; e.g. Pteropods; Chaetognaths; Euphausiacea (krill); Medusae; ctenophores; salps, doliolids and pyrosomes (pelagic Tunicata); Cephalopoda; Janthinidae (one family gastropods); Amphipoda
Mesoplankton 0.2→20 mm metazoans; e.g. copepods; Medusae; Cladocera; Ostracoda; Chaetognaths; Pteropods; Tunicata; Heteropoda
Microplankton 20→200 µm large eukaryotic protists; most phytoplankton; Protozoa Foraminifera; tintinnids; other ciliates; Rotifera; juvenile metazoansCrustacea (copepod nauplii)
Nanoplankton 2→20 µm small eukaryotic protists; Small Diatoms; Small Flagellates; Pyrrophyta; Chrysophyta; Chlorophyta; Xanthophyta
Picoplankton 0.2→2 µm small eukaryotic protists; bacteria; Chrysophyta
Femtoplankton < 0.2 µm marine viruses

(Omori, M.; Ikeda, T. (1992). Methods in Marine Zooplankton Ecology)

We will be heading to four main geographical areas. These four areas are: the Mid Atlantic Bight (MAB), the Southern New England (SNE), Gulf of Maine (GOM), and George’s Bank (GB). I’ve been told that the bongos will be significantly different at each of these sites.  I would like to honor each geographical area’s bongos with a representative photo of plankton and larval fish.  There are 30 bongos in each area, and I work on approximately 15 per site.

DJ Kast holding the large plankton net. Photo by Jerry P.

DJ Kast holding the large plankton net. Photo by Jerry Prezioso

Bongos in the Sunset. Photo by DJ Kast

Bongos in the Sunset. Photo by DJ Kast

Here is a video of a Bongo launch.

 

Flow Meter Data. It is used how to count how far the plankton net was towed. Used to calculate the amount of animals per cubic meter. Photo by DJ Kast

Flow Meter Data. It is used how to count how far the plankton net was towed to calculate the amount of animals per cubic meter. Photo by DJ Kast

 

The plankton nets need to be wiped down with saltwater so that the plankton can be collected on the sieve.

 

Day 1: May 19th, 2015

My first Catch of Plankton! Mostly zooplankton and fish larvae. Photo by: DJ Kast

My first Catch of Plankton! Mostly zooplankton and fish larvae. Photo by: DJ Kast

Day 1: Fish Larvae and Copepods. Photo by: DJ Kast

Day 1: Fish Larvae and Copepods. Photo by: DJ Kast

 

 

Day 2: May 20th, 2015

Larval Fish and Amphipods! Photo by: DJ Kast

Larval Fish and Amphipods! Photo by: DJ Kast

Day 3: May 21st, 2015

IMG_7096

Day 3, the plankton tows started filling with little black dots. These were thousands of little sea snails or pteropods. Photo by DJ Kast

IMG_7100

Clogging the Sieve with Pteropods. Photo by DJ Kast

IMG_7110

Close up shot of a Shell-less Sea Butterfly. Photo by: DJ Kast

IMG_7121

Glass Eel Larva. Photo by DJ Kast

 

Day 4: May 22nd, 2015

Butterfly fish found in the plankton tow. Photo by; DJ Kast

Butter fish found in the plankton tow. Photo by; DJ Kast

IMG_7187

Baby Triggerfish Fish Larvae Photo by: DJ Kast

Swimming Crab. Photo by DJ Kast

Swimming Crab. Photo by DJ Kast

IMG_7174

Megalops or Crab Larva. Photo by: DJ Kast

IMG_7176

Polychaete Worms. Photo by: DJ Kast

IMG_7165

Salp. Photo by: DJ Kast

 

Day 5: May 23, 2015

Unidentified organism Photo by DJ Kast.

Unidentified organism
Photo by DJ Kast.

Sand Lance Photo by DJ Kast

Sand Lance Photo by DJ Kast

Polychaete worm. Photo by DJ Kast

Polychaete worm. Photo by DJ Kast

3 amphipods and a shrimp. Photo by DJ Kast

3 amphipods and a shrimp. Photo by DJ Kast

Such diversity in this evenings bongos. Small fish Larva, shrimp, amphipods. Photo by DJ Kast

Such diversity in this evening’s bongos. Small fish Larvae, shrimp, amphipods. Photo by DJ Kast

Small fish Larva. Photo by DJ Kast

Small fish Larvae. Photo by DJ Kast

Below are the bongo patterns for the Southern New England area.

I have learned that there are two lifestyle choices when it comes to plankton and they are called meroplankton or holoplankton.

Plankton are comprised of two main groups, permanent or lifetime members of the plankton family, called holoplankton (which includes as diatoms, radiolarians, dinoflagellates, foraminifera, amphipods, krill, copepods, salps, etc.), and temporary or part-time members (such as most larval forms of sea urchins, sea stars, crustaceans, marine worms, some marine snails, most fish, etc.), which are called meroplankton.

Day 6: May 24th, 2015

Copepod sludge with a fish larva. Photo by: DJ Kast

Copepod sludge with a fish larva. Photo by: DJ Kast

Baby Bongo Sample in ethanol. Photo by: DJ Kast

Baby Bongo Sample in ethanol. Photo by: DJ Kast

Megalops? Photo by: DJ Kast

Megalops?
Photo by: DJ Kast

Fish Larvae. Photo by: DJ Kast

Fish Larvae. Photo by: DJ Kast

Side station sample from the mini bongos on the sieve. Photo by: DJ Kast

Sample from the mini bongos on the sieve. Photo by: DJ Kast

Day 7: May 25th, 2015

???? Photo by DJ Kast

???? Photo by DJ Kast

Tiny Snail. Photo by DJ Kast

Tiny Snail. Photo by DJ Kast

Georges Bank- It is a shallow, sediment-covered plateau bigger than Massachusetts and it is filled with nutrients that get stirred up into the photic zone by the various currents. It is an extremely productive area for fisheries.

Photo by: R.G. Lough (NEFSC)

Photo by: R.G. Lough (NEFSC)

Today, I learned that plankton (phyto & zoo) have evolved in shape to maximize their surface area to try and remain close to the surface. This makes sense to me since phytoplankton are photosynthesizers and require the sun to survive. Consequently, if zooplankton are going to consume them, it would be easier to remain where your food source is located. I think this would make for a great lesson plan that involves making plankton-like creatures and seeing who can make them sink the least in some sort of competition.

Photo by DJ Kast

Photo by DJ Kast

Harpactacoid Copepod. Photo by DJ Kast

Harpactacoid Copepod. Photo by DJ Kast

The Biggest net caught sand lance (10 cm). Photo by DJ Kast

The Biggest net caught sand lance (10 cm). Photo by DJ Kast

Fish Larvae. Photo by DJ Kast

Fish Larvae. Photo by DJ Kast

Day 8: May 26th, 2015 Very Diverse day,  Caprellids- skeleton shrimp, Anglerfish juvenile, Phronima inside of salp! Photo by DJ Kast

Photo by: DJ Kast

Juvenile Anglerfish aka Monk Fish. Photo by: DJ Kast

IMG_7483

Sand Shrimp. Photo by DJ Kast

IMG_7469

A tiny krill with giant black eyes. Photo by DJ Kast

IMG_7454

A small jellyfish! Photo by: DJ Kast

IMG_7451

A phronima (the bee looking thing inside the translucent shell) that ate its way into a salp and is using the salp as protection. Photo by: DJ Kast

Video of the phronima:

Caprellids or Skeleton Shrimp. Photo by DJ Kast

Caprellids or Skeleton Shrimp. Photo by DJ Kast

Video of the Caprellids:

Day 9:  May 27th, 2015= Triggerfish and colorful phronima (purple & brown). Our sieves were so clogged with phytoplankton GOOP, which is evidence of a bloom. We must be in very productive waters,

Evidence of a Phytoplankton bloom in the water, Photo by: DJ Kast

Evidence of a Phytoplankton bloom in the water. Photo by: DJ Kast

Juvenile Triggerfish. Photo by: DJ Kast

Juvenile Triggerfish. Photo by: DJ Kast

Day 10: May 28th, 2015= change in color of copepods. Lots of ctenophores and sea jellies

A Sea jelly found in George's Bank. We are in Canada now! Photo by: DJ Kast

A comb jelly (ctenophore) found in George’s Bank. We are in Canada now! Photo by: DJ Kast

Gooseberry: a type of ctenophore or comb jelly. Photo by DJ Kast

Sea Gooseberry: a type of ctenophore or comb jelly. Photo by DJ Kast

Did you  know? Sea Jellies are also considered plankton since they cannot swim against the current.

Day 11: May 29th, 2015: Border between Georges Bank and the Gulf of Maine!

Krill found in the Gulf of Maine. Photo by DJ Kast

Krill found in the Gulf of Maine. Photo by DJ Kast

Callenoid Copepods. Photo by DJ Kast

Callenoid Copepods- its so RED!!! Photo by DJ Kast

Gulf of Maine! Water comes in from the North East Channel (the Labrador current), coast on one border and George’s  Bank on the other. Definitely colder water, with deep ocean basins. Supposed to see lots of phytoplankton. Tidal ranges in the Gulf of Maine are among the highest in the world ocean

Gulf of Maine currents! Photo by NEFSC NOAA.

Gulf of Maine currents! Photo by NEFSC NOAA.

Day 12: May 30th, 2015: day and night bongo (Just calanus copepods vs. LOTS of krill.)

Krill, Krill, Krill! Photo by DJ Kast

Krill, Krill, Krill! Photo by DJ Kast

Krill are normally found lower in the water column. The krill come up at night to feed and avoid their predators and head back down before dawn. This daily journey up and down is called the vertical migration.

Video of Krill moving:

Day Sample. Photo by DJ Kast

Day Sample. Photo by DJ Kast

Night Sample. Photo by DJ Kast

Night Sample (look at all those krill). Photo by DJ Kast

Day 13: May 31th, 2015: Calanoid Copepod community.  Calanoida feed on phytoplankton (only a few are predators) and are themselves the principal food of fish fry, plankton-feeding fish (such as herring, anchovies, sardines, and saury) and baleen whales.

Calanious Community. Its so RED! Photo by DJ Kast

Calanus Community. It’s so RED! Photo by DJ Kast

Day 14: June 1st, 2015:

Brittle Stars caught in the Plankton Tow. Photo by DJ Kast

Brittle Stars caught in the Plankton Tow. Photo by DJ Kast

Tusk shell. Photo by DJ Kast

Tusk shell. Photo by DJ Kast

Side profile of Shrimp caught in the plankton nets. Photo by DJ Kast

Side profile of Shrimp caught in the plankton nets. Photo by DJ Kast

Shrimp Head. Photo by DJ Kast

Shrimp Head. Photo by DJ Kast

Shrimp Tail with Babies. Photo by DJ Kast

Shrimp Tail with Babies. Photo by DJ Kast

Day 15: June 2nd, 2015: Last Day

Gooey foamy mess in the sieve with all the phytoplankton. Photo by DJ Kast

Gooey foamy mess in the sieve with all the phytoplankton. Photo by DJ Kast

Gooey foamy mess in the net with all the phytoplankton. Photo by DJ Kast

Gooey foamy mess in the net with all the phytoplankton. Photo by DJ Kast

Gooey foamy mess in the jar with all the phytoplankton. Photo by DJ Kast

Gooey foamy mess in the jar with all the phytoplankton. Photo by DJ Kast

Map of all the Bongo and CTD/ Rosette Stations. Photo by DJ Kast.

Map of all the Bongo and CTD/ Rosette Stations (153 total). Photo by DJ Kast.

Through rough seas and some amazingly calm days, we have all persevered as a crew and we have done a lot of science over the last 16 days. We went through 153 stations total. I have learned so much and I would like to thank Jerry, the chief scientist for taking me under his wing and training me in his Ecosystem Monitoring ways.  I would also like to thank Dena Deck and Lynn Whitley for believing in me and writing my letters of recommendation for the Teacher at Sea program. I would love to do this program again! -DJ Kast

DJ Kast, Interview with the Stewards, June 1, 2015

NOAA Teacher at Sea
Dieuwertje “DJ” Kast
Aboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical area of cruise: East Coast
Date: June 1, 2015 Day 14

Weather Data:

  • Rainy and Choppy
  • Air Temperature: 8 °C
  • Water Temperature: 10.46°C
  • Barometer: 1021.3 mb
  • TSG (Sound-Velocity): 1487 meters/sec
  • TSG- Conductivity: 3.63 s/m
  • TSG- Salinity: 32.66 PSU
  • Wind: 30 knots North East

Interview with Dennis Carey and Jeremy Howard, Chief Steward and Chief Cook of NOAA Ship Henry B. Bigelow Research Cruise 1502. They have been working together for 3.5 years.

 

Dennis Carey

Dennis! Photo by DJ Kast

Dennis! Photo by DJ Kast

 What is your job here on the ship?

My name is Dennis and I am the Chief Steward. This means that I am in charge of food production and management. I am the Head of the Steward Department and I have been for about 12 years now.

How is a boat kitchen different from a home kitchen?

First of all, a boat kitchen is called a galley and the dinning area where everyone eats is called a mess hall. Additionally, a water fountain is called a scuttlebutt.

In terms of a technical answer to your question, we have:

  1. Convection oven- it cooks things faster because it can cook at 25F higher than a regular oven and the air is circulated by a fan as well.
Convection Oven. Photo by DJ Kast

Convection Oven. Photo by DJ Kast

2. Grill

Grill! Photo by DJ Kast

Grill! Photo by DJ Kast

3. Steam jacket kettle- for sauces and soups

Soup Maker. Photo by DJ Kast

Steam jacket kettle. Photo by DJ Kast

4. Commercialized equipment- blender& large refrigerator

5. Gallon water, coffee and milk machine

Water and ice dispenser, microwave, and lots of tea. Photo by DJ Kast

Water and ice dispenser, microwave, and lots of tea. Photo by DJ Kast

Milk on the left, See-through refrigerator on right. Photo by DJ Kast

Milk on the left, Stand-up refrigerator on right. Photo by DJ Kast

6. Cereal dispensers!

Cool Cereal dispenser! Photo by DJ Kast

Cool Cereal dispenser! Photo by DJ Kast

7. Salad bars

Salad bar. Photo by DJ Kast

Salad bar. Photo by DJ Kast

8. Dragon/ Dishwasher Machine: It sanitizes by steaming dishes up to 195F.

 

The Dragon. Photo by DJ Kast

The Dragon. Photo by DJ Kast

Tell me about your experience:

I served 22 years with the Navy, and 12 years with NOAA and all those years were in food service.

What training do you need for your job:

  • Back in my day, I was called a Mess Specialist when I graduated C-school, now called culinary specialists.
    • According to https://www.navycs.com/navy-jobs/culinary-specialist.html:  The Navy Cook rating was one of the original ratings in 1797. The name Cook was changed to Ship’s Cook in 1838. It wasn’t until 1948 that the culmination of the various rates Commissary Steward, Ship’s Cook, Ship’s Cook (B) (Butchers), and Baker consolidated into the Commissaryman rating. In 1975, the name was changed to Mess Management Specialist, and finally, in 2004, the Culinary Specialist rating was established.
  • I attended Rose State College in Oklahoma and Central Texas University.
  • I went to C-school, which is also called advanced food preparation and management.
  • You will need experience and lots of it, particularly on the job experience. I started with an Intern culinary internship with Hilton Northwest in Oklahoma city.
  • I also did a Food Service Attendance. It is a 3 month rotation where everybody has to work in the galley. They kept me as a cook!

According to the Navy Personnel Command,

General Culinary Specialist description:

Culinary Specialists (CS) receive extensive training in culinary arts, and other areas within the hospitality industry.  This CS rating is responsible for all aspects of the dining (shipboard mess decks) and shore duty living areas.  Culinary Specialists work in the “heart of the ship,” and are vital in maintaining high crew morale on ships, construction battalions and every shore base.

Job Descriptions:

  • Menu management and ordering the quantities and types of food items necessary for quantity food preparation.
  • Operating kitchen and dining facilities.
  • Maintaining subsistence inventories using storeroom management procedures.
  • Culinary Specialists work in kitchen, dining areas, bachelor quarters, living quarters and food service storerooms aboard ships, shore bases, construction battalions, and designated aircraft.  The work is physical, creative and mentally challenging; in which one has to be flexible and versatile in their daily duties.

After “A” School, Culinary Specialists are assigned to deploying units or shore stations in the United States and/or overseas. During a 20-year career in the Navy, CS’s spend approximately 60 percent of their time assigned to fleet units and 40 percent to shore stations.

Apprenticeships are highly valued for ship work and below are the current USMAP apprenticeship trades that are currently offered for the Culinary Specialist rating:

  • Baker (Bake Products)
  • Cook (Any Industry)
  • Manager, Food Service (Hotel and Restaurant)
  • Cook (Hotel and Restaurant)
  • Housekeeper (Commercial, Residential, Industrial)
  • Household Manager (Private, Residential Management)

(http://www.public.navy.mil/bupers-npc/enlisted/community/supply/Pages/CSRating.aspx)

What was the first NOAA ship you worked on?

I worked on the Delaware as a Chief Steward.

 

Delaware Research Vessel. Photo by NOAA

Delaware Research Vessel. Photo by NOAA

 

 

 

 

 

 

 

 

Jeremy Howard- Chief Cook

What is your job here on the ship?

Second Cook- food preparation and sanitation.

How did you get trained to do your job?

I’ve been a NOAA steward for 6 years and every year NOAA sends stewards to training to keep up with the culinary skills.

Tell me more about cooking for so many people

You have to be able to cook portions for crew size. Crew size varies per mission of the cruise and so we figure out all of the crew aboard for consumption of goods. We make sure we are accommodating food choices like: vegetarian, gluten free, lactose free, etc. Our crew size is 32 people right now, and the maximum crew size is 41 people. We try to minimize waste. Main goal of the steward department is to cook GREAT food and not waste it.

Why did you chose to be a chef?

I am passionate about cooking great food. Being a cook, you have to have passion because there is a lot of routine in cooking. You start seeing the same people every day, cooking similar food and so I figure out ways to keep on learning new things, and continuously improve.

To be a chef you need to have good communication skills with the chief steward and in general you need to be flexible especially out on a ship.

Being out at sea- you can’t go to the store if you forgot something. You have to have attention to detail before we get underway.

NOAA is the best kept secret for culinary work. I love the Bigelow- I have a great career here, and I might not be able to see foreign ports so much but I am guaranteed to see my family. I get to see them 2 to 3 months out of the year versus 2 weeks like on navy ships. BEST KEPT SECRET.

Food inventory:

We do all the food shopping before we leave for trip. Chief Steward orders the food from a reputable FDA approved supplier. Dennis does all the inventory. We can’t waste money or food on this ship. He needs to do an inventory of things and we go by our motto with inventory which is: First in, first out!

What was your first ship?

NOAA Ship- Delaware II!

Delaware Research Vessel. Photo by NOAA

Delaware Research Vessel. Photo by NOAA

But technically, before that I was in the Navy for 5 years. I was part of the Hurricane Katrina relief in New Orleans.

What does a typical day look like?

Both of us get up at 4 AM to prepare breakfast and we make 3 square meals a day (7-8 AM, 11 AM-12:30 PM, and 5-6 PM). We finish about 7:30 PM.

IMG_2111

Lunch Menu on 5-31-15. Yummy! Photo by DJ Kast

IMG_2113

Yummy lunch food. Photo by DJ Kast

You gotta keep a good morale about your career, you keep growing, and it never gets boring. We also help with the morale of the ship and we host Bingo Nights, and Ice Cream Socials, which allows new crew to bond with old crew.

Bingo Night with John! Here is Billy picking up one of the prizes. Photo by Jerry Prezioso.

Bingo Night with Third Engineer John! Here is Electronic Technician Billy picking up one of the prizes. Photo by Jerry Prezioso.

I’ll humbly say that Bigelow has the best steward department EVER!

DJ Kast, NOAA Ship Henry B. Bigelow, May 31, 2015

NOAA Teacher at Sea
Dieuwertje “DJ” Kast
Aboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical area of cruise: East Coast
Date: May 31, 2015

NOAA Ship Henry B. Bigelow

“National Oceanic and Atmospheric Administration (NOAA) Ship Henry B. Bigelow is the second of five new fisheries survey ships to be built by NOAA. The ship is named after Henry Bryant Bigelow (1879-1967), a Harvard-educated zoologist whose work helped lay the scholarly foundation for oceanography as a scientific discipline. He was an internationally known expert on the Gulf of Maine and its sea life, and on the world’s jellyfish, corals, and fishes” (NOAA NEFSC).

http://www.nefsc.noaa.gov/Bigelow/pdfs/bigelow_scientist_poster.pdf

Henry B. Bigelow and his goat Buck. PHOTO BY:

Henry B. Bigelow and the WHOI Mascot goat Buck. Photo by: NEFSC NOAA

Legacy of the name:

Henry B. Bigelow (1879–1967) was an American oceanographer and marine biologist. Bigelow described numerous new species to science, 110 of which are recognized today according to the World Register of Marine Species.  In addition, some 26 species and two genera (Bigelowina, stomatopods in family Nannosquillidae, and Bigelowiella, protists in family Chlorarachniophyte) are named after him. The Henry Bryant Bigelow Medal in Oceanography is awarded by the Woods Hole Oceanographic Research Institute to honor “those who make significant inquiries into the phenomena of the sea”. Bigelow was the first recipient of the medal in 1960. He was honored by the naming of  NOAA Ship Henry B. Bigelow.

Mission of the ship:

NOAA ship Henry B. Bigelow will support NOAA’s mission to protect, restore, and manage the use of living marine, coastal, and ocean resources through ecosystem-based management. Its primary objective will be to study, monitor, and collect data on a wide range of sea life and ocean conditions, primarily in U.S. waters from Maine to North Carolina. The region includes Georges Bank, one of the world’s best known and most productive marine areas. The region is also home to the nation’s top-valued port, oldest commercial fisheries, and rare large whales and sea turtles. Data are used by a range of scientists who study variation in ocean conditions and sea life in order to better inform the nation’s decisions about both using and sustaining the ocean’s bounty.

“Henry B. Bigelow will also observe weather, sea state, and other environmental conditions, conduct habitat assessments, and survey marine mammal and marine bird populations. Henry B. Bigelow is a state-of-the-art research ship with multiple science mission capabilities. Foremost among these capabilities is the ship’s “quiet” hull, a design feature that minimizes sound made by the ship underwater. This allows scientists to use hydroacoustic methods for surveying marine life, and significantly reduces changes in the natural behavior of animals owing to the ship noise. In addition, the vessel can collect a variety of oceanographic data while marine life surveys are underway, resulting in both richer and more efficiently collected data.” (NOAA NEFSC)

Ship Details:

Take a virtual Ship Tour here! : http://www.nefsc.noaa.gov/Bigelow/shiptour.html

Levels: 2 (staterooms, gym, laundry), 1 (Mess Hall), 01 (Lounge), 02, Bridge, Flying Bridge

 

Most of the main deck is reserved for mission functions. The aft working deck provides 145 sq m of open space for fishing and other over-the-side operations, with an additional 33 sq m of deck space at the Side Sampling Station. Space and support connections are provided for a laboratory van on the aft working deck.

Large, easily reconfigurable laboratories are designed to accommodate the varied needs of individual scientific cruises:

  • Fish/Wet Laboratory 56 sq m (602 sq ft)
  •  Chemistry Laboratory 27 sq m (290 sq ft)
  •  Dry Laboratory 14 sq m (150 sq ft)
  •  Hydrographic Laboratory 9 sq m (96 sq ft)
  •  Scientific Freezer 19 sq m (204 sq ft)
  • Preservation Alcove 5 sq m (54 sq ft)
  •  Acoustic/Computer Laboratory 46 sq m (495 sq ft)

“Underwater radiated noise has been shown to influence fish behavior, and sonar self-noise can limit the effectiveness of hydroacoustic surveys and other functions. The International Council for Exploration of the Seas (ICES) has established a standard for ships’ underwater radiated noise in order to effectively employ hydroacoustic stock assessment techniques. Henry B. Bigelow has been designed and constructed to meet this ICES noise standard. This reduced noise signature will improve NOAA’s ability to accurately assess fish stocks and to compare standardized data with the international fisheries scientific community. Examples are the propulsion motors, which are specially constructed and balanced to reduce noise and vibration, and the diesel generators, which are mounted on double isolated raft systems. The hull form and highly skewed, five-bladed propeller were carefully designed and tested using U.S. Navy quieting techniques. Pumps, motors, ventilation and piping systems are all designed for low noise, with some critical systems resiliently mounted in the ship. Hull structure is treated in critical areas with special acoustic damping tiles. Airborne noise has been reduced throughout the ship for personnel safety and comfort.” http://www.omao.noaa.gov/publications/bigelow_final.pdf

To summarize that, this ship is so quiet I cannot tell when we are slowing down to 2 knots for bongo or going 11 knots to steam to the next station. It’s amazing.

Bridge:

The bridge is equipped with numerous dedicated systems including:

  • Hydrographic ES60 SONAR system, and ME70 multibeam system
  • Dynamic positioning and auto pilot system
  • X- and S-band Sperry Bridge Master RADARs
  • Transas ECDIS Navigation system
  • DGPS receiver
  • GMDSS communications suite including weather fax, satellite telephone, MF/HF and VHF radios
  • MTN internet communications system
  • SCS remote console and master clock display
  • Doppler speed log and depth sounder
  • Sperry primary and secondary gyro compass

Nearly all of these systems are solely controlled from the bridge, allowing scientific and operational systems to be totally independent. All scientific and fishing systems can be monitored from the bridge via remote consoles or SCS interfaces.

IMG_7139

Layout of the bridge. Photo by DJ Kast

Laura Gibson charting on the navigational chart. Photo by DJ Kast

Laura Gibson charting on the navigational chart. Photo by DJ Kast

IMG_7140

Depth Profiler. Photo by DJ Kast

IMG_7141

Multi-beam bottom sounder. Photo by DJ Kast

 

IMG_7131

Gibson letting me steer the ship. That is fear in my eyes. Photo by Laura Gibson

IMG_7130

Starboard steering Console that lets you control the ship while the bongos or CTDs are deployed from the side sampling station. Photo by DJ Kast

IMG_7125

Radar with four contacts! Photo by DJ Kast

IMG_7127

Electronic Chart Photo by DJ Kast

IMG_7122

LT Gibson checking on operations in the bridge. Photo by DJ Kast

IMG_7137

Control and status indicator of watertight doors. Photo by DJ Kast

IMG_7138

Navigation Light switches. Photo by DJ Kast

 

Cool Events on the Ship

Care Package Delivery:

The XO's friend that is "Rowing for Peace" to Turkey. The XO delivered ice cream, ship hats, and a pineapple. Photo by DJ Kast

The CO’s friend that is “Rowing for Peace” to Turkey. The CO delivered ice cream, ship hats, and a pineapple. Photo by DJ Kast

Emergency Drills:

The Bigelow values safety and to make sure that everyone knows what to do in an emergency they do quiet a few surprise drills to keep everybody on their toes.

Door sign with information on where to go for each person during each of the type of drills that occur on the ship. Photo by DJ Kast

Station card with information on where to go for each person during each of the type of drills that occur on the ship. Photo by DJ Kast

The first one was a Fire Drill and an Abandon Ship Drill on Wednesday May 20th, 2015.

Photo of me in a survival suit after the abandon ship drill was announced. Photo by Megan Switzer

Photo of me in a survival suit after the abandon ship drill was announced. Photo by Megan Switzer

Practicing the PLT gun (Pneumatic Line Throwing Gun): This is a gun that is used to help rescue people who have fallen overboard and it is also used to pass lines to other boats. It has a projectile connected to a long line that can travel far distance and connect an overboard victim to the boat.

Here is a video of it being shot:

IMG_7259

A picture of me preparing the PLT gun for launch. Photo by Dennis Carey

Photo by Marjorie Foster.

Photo by Marjorie Foster.

Photo by Marjorie Foster.

Photo by Marjorie Foster.

Hydrophoning Acoustic Buoys!

While we were on the southern part of Georges Bank, the boat used a Hydrophone and geometry to pick up an Autonomous Multi-Channel Acoustic Recorder (AMAR) mooring in Lydonia Canyon. The ship sent signals to it with the hydrophone and the signals it received back were indications of where to send the boat next.

The application of the Pythagoreon Theorum in terms of acoustic sound distances to the buoy to help during retrieval. Oh the applications of MATH! Photo by DJ Kast

The application of the Pythagorean Theorem in terms of acoustic sound distances to the buoy to help during retrieval. Oh, the applications of MATH! Photo by DJ Kast

Geoff Shook sending out messages on the hydrophone. Photo by DJ Kast

Geoff Shook preparing to send out messages on the hydrophone to not only find it but also cause it to release to the surface since it was hundreds of meters down. Photo by DJ Kast

Successful retrieval of the acoustic buoy. Photo by DJ Kast

Successful retrieval of the acoustic buoy. Photo by DJ Kast

 

The back of the shirt that the crew and chief Scientist Jerry gave me. Photo by DJ Kast

The back of the shirt that the crew and chief Scientist Jerry Prezioso gave me. I’m having everyone sign it so that I can hang it up when I get home.  Photo by DJ Kast

All of the crew have been absolutely amazing and have definitely made this the trip of a lifetime. Thank you all so much. -DJ

Last selfie of the trip. Photo by DJ Kast

Last selfie of the trip. Photo by DJ Kast

DJ Kast, Drifter Buoy! May 29, 2015

NOAA Teacher at Sea
Dieuwertje “DJ” Kast
Aboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical area of cruise:
George’s Bank
Date: May 29, 2015, Day 11 of Voyage

Drifter Buoy!

My buoy and I- ready to deploy!  Photo by Jerry Prezioso

My buoy and me ready to deploy! Photo by Jerry Prezioso

NOAA has an Adopt a Drifter program! The program is meant to work with K-16 teachers from the United States along with international educators. This program provides teachers with the opportunity to infuse ocean observing system data into their curriculum. This occurs by deploying or having a research vessel deploy a drifter buoy. A drifting buoy (drifter) is a floating ocean buoy equipped with meteorological and/or oceanographic sensing instruments linked to transmitting equipment where the observed data are sent. A drifting buoy floats in the ocean water and is powered by batteries located in the dome. The drifter’s sea surface temperature data are transmitted to a satellite and made available to us in near real-time. The teachers receive the WMO number of their drifting buoy in order to access data online from the school’s adopted drifter. Students have full access to drifting buoy data (e.g., latitude/longitude coordinates, time, date, SST) in real or near real-time for their adopted drifting buoy as well as all drifting buoys deployed as part of the global ocean observing system. They can access, retrieve, and plot as a time series various subsets of data for specified time periods for any drifting buoy (e.g., SST) and track and map their adopted drifting buoy for short and long time periods (e.g., one day, one month, one year).

I am receiving one from the Chief Scientist onboard the NOAA Ship Henry B. Bigelow so the students in all my programs can access it, and this will be helpful to convey modeling of currents, and can help build models of weather, climate, etc .I was so excited when I found out that the chief scientist would be giving me a drifter for me and my students to follow. I decorated the buoy with programs that have inspired me to apply to the Teacher at Sea Programs, the current programs I am working for at USC (JEP & NAI), my family, and my mentors.

Representing the USC Readerplus Program that hosts my Wonderkids Programs.  Photo by Jerry Prezioso.

Representing the USC Readerplus Program that hosts my Wonderkids Programs. Photo by Jerry Prezioso.

Quick change into my NOAA Teacher at Sea Shirt. Thank you so much for all these opportunities.  Photo by Jerry Prezioso.

Quick change into my NOAA Teacher at Sea Shirt. Thank you so much for all these opportunities. Photo by Jerry Prezioso.

Special recognition to JEP, USC Dornsife, and my Young Scientist Program & NOAA TAS! Photo by DJ Kast

Special recognition to JEP, USC Dornsife, and my Young Scientist Program & NOAA TAS! Photo by DJ Kast

USC Wonderkids and USC Seagrant Logos. Photo by DJ Kast

USC Wonderkids and USC Seagrant Logos. Photo by DJ Kast

 

 

Thanks to NMEA and the USC Wrigley Institute, USC Catalina Hyperbaric Chamber for continuously supporting my ocean going adventures. Photo by DJ Kast

Thanks to NMEA (National Marine Educators Association) and the USC Wrigley Institute, USC Catalina Hyperbaric Chamber for continuously supporting my ocean going adventures (Plus my favorite gastropod, Spanish Shawl Nudibranch for color). Photo by DJ Kast

Representing Rossier, USC QuikSCience, and the NOAA Henry B. Bigelow Ship. Photo by DJ Kast

Representing Rossier, USC NAI, USC QuikSCience, and the NOAA Ship Henry B. Bigelow Ship. Photo by DJ Kast

 

 

 

 

 

 

 

 

 

 

 

Important family that have always supported me with my science education career. Photo by DJ Kast

Important family that have always supported me with my science education career. Photo by DJ Kast

 

My list of ocean educators that inspire me to always strive for more. Photo by DJ Kast

My list of ocean educators that inspire me to always strive for more. Plus a shout-out to the Level the Playing Field Institute, and their USC (Summer Math and Science Honors) SMASH program.  Photo by DJ Kast

Special thanks to the schools participating in the USC Young Scientist Program and USC Wonderkids Programs. Photo by DJ Kast

Special thanks to the schools participating in the USC Young Scientist Program and USC Wonderkids Programs. Photo by DJ Kast

 

 

JEP HOUSE and Staff!

JEP House and Dornsife Represent! Photo by DJ Kast

JEP House and Dornsife Represent! Photo by DJ Kast

Important JEP People's.  I forgot to take a final picture of this but this included Brenda, Adrienne, and Mandy. Photo by DJ Kast

Important JEP People’s.
I forgot to take a final picture of this but this included Brenda, Adrienne, and Mandy. Photo by DJ Kast

I am teaching a marine biology class this summer for the USC Neighborhood Academic Initiative program. I am so excited to be following the drifter buoy # 39708. It was launched at 8:53 EDT on May 28th, 2015 and its first official position is: 41 44.8 N 065 27.0 W. I will definitely be adapting a few of the lesson plans on the following site and creating my own to teach my students about weather, climate, and surface currents.

http://www.adp.noaa.gov/lesson_plans.html

Deployment:

To deploy the buoy, you literally have to throw it overboard and make sure it hits nothing on its way down. When it is in the water, the cardboard wraps dissolve away, and the cloth drogue springs open, filling with water and causing the buoy to drift in surface water currents instead of wind currents.  The tether (cable) and drogue (long tail that is 15 meters long) will unwrap and extend below the sea surface where it will allow the drifter to float and move in the ocean currents

Photo of the drogue deployed in the water. From the NOAA Adopt a Drifter Program website.

Photo of the drogue deployed in the water. From the NOAA Adopt a Drifter Program website.

Deploy the Buoy! Photo by Jerry Prezioso

Deploy the Buoy! Photo by Jerry Prezioso

My buoy in the Water! Photo by DJ Kast

My buoy in the Water! The cardboard wraps will dissolve away, and the cloth drogue will spring open and fill with water allowing the buoy to drift in surface water currents instead of wind currents.   Photo by DJ Kast

Since I was now an expert drifter buoy deployer, I was also able to deploy a buoy from the St. Joseph’s school in Fairhaven, Massachusetts. This drifter buoy’s tracking number is: 101638 and launched on May 28th, 2015 at 8:55 EDT and its first official position is: 41 44.9 N 065 27.0 W

Photo of me with the St. Joseph buoy that will also be deployed. Photo by Jerry Prezioso.

Photo of me with the St. Joseph buoy that will also be deployed. Photo by Jerry Prezioso.

Ready to deploy. Photo by: XO LCDR Patrick Murphy

Ready to deploy. Photo by: XO LCDR Patrick Murphy

Tracking the buoy (from Shaun Dolk):

The easiest way to track these buoys in real-time is to use the Argos website https://argos-system.clsamerica.com/cwi/Logon.do.

Guest account:  Username: BigeloTAS and Password: BigeloTAS.

  1. Once logged in, select the “Data access” tab on the top left side of the screen.
  2. Select “Mapping”; a pop-up window will appear.
  3. Ensure “by ID numb. (s)” is selected from within the “Platform:” option (top left).
  4. Enter your desired ID number in the search field at the top of the screen.
  5. Enter the number of days for which you’d like data (20 days is the maximum).
  6. Select “Search” to generate a trajectory plot for the given parameters.

**Please note, because you can only view the 20 most recent days of data, you’ll need to save the data if you wish to view the entire track line!**

To save data into Google Earth format, simply click on the Google Earth image (second tool from the right on the map settings bar, found just below the “Search” tab). You’ll need to save data at least every 20 days to ensure no interruptions in your final track line. Of course, to view the track line in its entirety, open Google Earth and ensure all of the data files are selected. If you desire to look at the data, not the track lines, go to “Data access”, then “Messages”, and enter your desired ID numbers. Again, data is only accessible for the most recent 20 days, so if you’d like to download the data for archival purposes, go to “Data access”, then select  “Message download”. From here, you’ll want to save the data in .csv, .xls, or .kml format.

My buoy 39708 is transmitting properly and providing quality data! Below are some of the maps of its early trajectory and its current movement so far.

Photo sent by Shaun Dolk

Early Trajectory! Photo sent by Shaun Dolk

Map-2015-05-29-15-40-17

Photo sent by Shaun Dolk

PS for Science- Otoliths

While we were deploying the buoys one of the engineers named Rahul Bagchi brought over a strainer that is attached to the water intake pipe. The strainer was covered in Sand Lances.

Sand Lances on the inside of the strainger. Photo by Dj Kast

Sand Lances on the inside of the strainer. Photo by DJ Kast

IMG_7567

Sand Lances on the outside of the strainer. Photo by DJ Kast

 

 

 

 

 

 

 

 

 

Fortunately, there are another two scientists on board that need sand lance samples for their research purposes and they were collected. My research scientist friend Jessica needs the otoliths or fish ear bones for part of her research on cod, since sand lances are eaten cod. Otoliths are hard, calcium carbonate structures located behind the brain of a bony fish. Different fish species have differently shaped otoliths. They are used for balance and sound detection-much like our inner ears. They are not attached to the skull, but “float” beneath the brain inside the soft, transparent inner ear canals. The otoliths are the most commonly used structure to both identify the fish eaten by consumers up the food chain, and to age the fish itself.

Otoliths and time scale. Photo by NOAA NEFSC

Otoliths and time scale. Photo by NOAA NEFSC

Otoliths with the winters pointed out. Photo by: Bedford Institute of Oceanography

Otoliths with the winters pointed out. Photo by: Bedford Institute of Oceanography

The otoliths also have daily growth bands. Alaskan Fishery scientists manipulate the daily growth bands in salmon larvae creating an otolith tag that identifies where the fish came from by controlling the growth rate of their fish populations.

Photo of a tagged otolith from the Sawmill Bay fishery in Alaska. Photo from: Alaskan Fisheries

Photo of a tagged otolith from the Sawmill Bay fishery in Alaska. Photo from: Alaskan Fisheries

New material (protein and calcium carbonate) is added to the exposed surface of the otolith over time, showing a fish life history (otolith start growing at day 1 even in larval stages). The lighter zones have higher calcium deposit which is indicate summers, while darker zones have higher protein levels which indicate winter. One pattern of a light and dark zone indicate a year and is consequently how the fish is aged.

Tiny white speck is the sand lance otolith. Photo by DJ Kast

Tiny white speck is the sand lance otolith. Photo by DJ Kast

The sand lances Jessica and I were dissecting for otoliths. Photo by DJ Kast

The sand lances Jessica and I were dissecting for otoliths. Photo by DJ Kast

She also took a base of the tail for her research as well. Photo by DJ Kast

She also took a white muscle sample from the dorsal surface of the fish for her research as well. Photo by DJ Kast

Jessica Lueders-Dumont is using the otoliths for three main purposes in relation to her Nitrogen Isotope work.

1. She is hoping to see the changes from year 1 to the adult years of the fish to give an accurate fish life history and how they relate to the rest of the Nitrogen isotopes in the area’s food chain.

2. To see how current nitrogen isotopes compare to the archeological otoliths found in middens or sediment sites, since otoliths can be preserved for hundreds of years.

3. She is trying to create a baseline of nitrogen 15 in the Gulf of Maine so that she can see biogeochemical evidence of the N15 she finds in plankton in higher trophic levels like fish.

I will definitely be dissecting some fish heads with students to check for otoliths and using a microscope to age them.

PSS for Science:

The chief scientist and I decided we should put some Styrofoam Cups under pressure. This polystyrene foam is full of air pockets. This is important because the air pockets (volume) shrink with increasing pressure, essentially miniaturizing the cups.

I have done this before using the help of Karl Huggins at the USC Wrigley Institute’s Catalina Hyperbaric Chamber. We had a TA that wanted to teach about SCUBA diving so we had her students decorate Styrofoam cups and a head and placed it in the chamber. Apparently the Styrofoam was too good of a quality because it re-expanded on the way back up. http://www.youtube.com/watch?v=f6DDBFovht0

Also, I also found out you can do this with a pressure cooker- oh the experiments I will do when I get back. 😀

Before photos:

Front view of my NOAA TAS cup. Photo by DJ Kast

Front view of my NOAA TAS cup. Photo by DJ Kast

Back side of the NOAA TAS cup. Photo by DJ Kast

Back side of the NOAA TAS cup. Photo by DJ Kast

Just wanted it to say how amazing it has been on the NOAA Henry B. Bigelow. Photo by DJ Kast

Just wanted it to say how amazing it has been on the NOAA Ship Henry B. Bigelow. Photo by DJ Kast

I made a cup for my programs as well. Photo by DJ Kast

I made a cup for my programs as well. Photo by DJ Kast

USC Wonderkids Program on a Styrofoam cup before shrinkage. Photo by DJ Kast.

USC Wonderkids Program on a Styrofoam cup before shrinkage. Photo by DJ Kast.

Saying hi to all of my students from inside one of the cups. Photo by DJ Kast

Saying hi to all of my students from inside one of the cups. Photo by DJ Kast

In the mesh bag, and attached to the Rosette for shrinkage. Photo by DJ Kast

In the mesh bag, and attached to the Rosette for shrinkage. Photo by DJ Kast

After Photos: the Styrofoam cups went down to 184 m or 603 ft on the Rosette/ CTD in South George’s Basin.

Shrunken Cups in the Mesh bag attached to the Rosette. Photo by DJ Kast

Shrunken Cups in the Mesh bag attached to the Rosette. It went down to 184 m or 603 ft Photo by DJ Kast

Look at these tiny cups! Photo by Jerry Prezioso

Look at these tiny cups! Photo by Jerry Prezioso

Cups compared to the original size (front). Photo by DJ Kast.

Cups compared to the original size (front). Photo by DJ Kast.

Cups compared to the original size (back). Photo by DJ Kast.

Cups compared to the original size (back). Photo by DJ Kast.

DJ Kast, Interview with Megan Switzer and the Basics of the CTD/ Rosette, May 28, 2015

NOAA Teacher at Sea
Dieuwertje “DJ” Kast
Aboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical area of cruise:
Gulf of Maine
Date: May 28, 2015, Day 11 of Voyage

Interview with Student Megan Switzer

Chief Scientists Jerry Prezioso and graduate oceanography student Megan Switzer

Chief Scientist Jerry Prezioso and graduate oceanography student Megan Switzer

Megan Switzer is a Masters student at the University of Maine in Orono. She works in Dave Townsend’s lab in the oceanography department. Her research focuses on interannual nutrient dynamics in the Gulf of Maine. On this research cruise, she is collecting water samples from Gulf of Maine, as well as from Georges Bank, Southern New England (SNE), and the Mid Atlantic Bight (MAB). She is examining the relationship between dissolved nutrients (like nitrate and silicate) and phytoplankton blooms. This is Megan’s first research cruise!

In the generic ocean food chain, phytoplankton are the primary producers because they photosynthesize. They equate to plants on land. Zooplankton are the primary consumers because they eat the phytoplankton. There are so many of both kinds in the ocean. Megan is focusing on a particular phytoplankton called a diatom; it is the most common type of phytoplankton found in our oceans and is estimated to contribute up to 45% of the total oceanic primary production (Yool & Tyrrel 2003). Diatoms are unicellular for the most part, and a unique feature of diatom cells is that they are enclosed within a cell wall made of silica called a frustule.

Diatom Frustules. Photo by: 3-diatom-assortment-sems-steve-gschmeissner

Diatom Frustules. Photo by: Steve Schmeissner

Diatoms! PHOTO BY:

Diatoms! Photo by: Micrographia

The frustules are almost bilaterally symmetrical which is why they are called di (2)-atoms. Diatoms are microscopic and they are approximately 2 microns to about 500 microns (0.5 mm) in length, or about the width of a human hair. The most common species of diatoms are: Pseudonitzchia, Chaetocerous, Rhizosolenia, Thalassiosira, Coschinodiscus and Navicula.

Pseudonitzchia. Photo by National Ocean Service

Pseudonitzchia. Photo by National Ocean Service

Thalassiosira. Photo by: Department of Energy Joint Genome Institute

Thalassiosira. Photo by: Department of Energy Joint Genome Institute

Photo of Coscinodiscus by:

Photo of Coscinodiscus

Diatoms also have ranges and tolerances for environmental variables, including nutrient concentration, suspended sediment, and flow regime.  As a result, diatoms are used extensively in environmental assessment and monitoring. Furthermore, because the silica cell walls are inorganic substances that take a long time to dissolve, diatoms in marine and lake sediments can be used to interpret conditions in the past.

In the Gulf of Maine, the seafloor sediment is constantly being re-suspended by tidal currents, bottom trawling, and storm events, and throughout most of the region there is a layer of re-suspended sediment at the bottom called the Bottom Nepheloid Layer. This layer is approximately 5-30 meters thick, and this can be identified with light attenuation and turbidity data. Megan uses a transmissometer, which is an instrument that tells her how clear the water is by measuring how much light can pass through it. Light attenuation, or the degree to which a beam of light is absorbed by stuff in the water, sharply increases within the bottom nepheloid layer since there are a lot more particles there to block the path of the light. She also takes a water sample from the Benthic Nepheloid Layer to take back to the lab.

Marine Silica Cycle by Sarmiento and Gruber 2006

Marine Silica Cycle by Sarmiento and Gruber 2006

Megan also uses a fluorometer to measure the turbidity at various depths. Turbidity is a measure of how cloudy the water is. The water gets cloudy when sediment gets stirred up into it. A fluorometer measures the degree to which light is reflected and scattered by suspended particles in the water. Taken together, the data from the fluorometer and the transmissometer will help Megan determine the amount of suspended particulate material at each station. She also takes a water sample from the Benthic Nepheloid layer to take back to the lab. There, she can analyze the suspended particles and determine how many of them are made out of the silica based frustules of sinking diatoms.

 This instrument is a Fluorometer and is used to measure the turbidity at various depths. Photo by: DJ Kast

This instrument is a Fluorometer and is used to measure the turbidity at various depths. Photo by: DJ Kast

She collects water at depth on each of the CTD/ Rosette casts.

Rosette with the 12 Niskin Bottles and the CTD. Photo by DJ Kast

Rosette with the 12 Niskin Bottles and the CTD. Photo by DJ Kast

Rosette with the 12 Niskin Bottles and the CTD. Photo by DJ Kast

Rosette with the 12 Niskin Bottles and the CTD. Photo by DJ Kast

Up close shot of the water sampling. Photo by DJ Kast

Up close shot of the water sampling. Photo by DJ Kast

CTD, Rosette, and Niskin Bottle basics.

The CTD or (conductivity, temperature, and depth) is an instrument that contains a cluster of sensors, which measure conductivity, temperature, and pressure/ depth.

Here is a video of a CTD being retrieved.

Depth measurements are derived from measurement of hydrostatic pressure, and salinity is measured from electrical conductivity. Sensors are arranged inside a metal housing, the metal used for the housing determining the depth to which the CTD can be lowered. Other sensors may be added to the cluster, including some that measure chemical or biological parameters, such as dissolved oxygen and chlorophyll fluorescence. Chlorophyll fluorescence measures how many microscopic photosynthetic organisms (phytoplankton) are in the water. The most commonly used water sampler is known as a rosette. It is a framework with 12 to 36 sampling Niskin bottles (typically ranging from 1.7- to 30-liter capacity) clustered around a central cylinder, where a CTD or other sensor package can be attached. The Niskin bottle is actually a tube, which is usually plastic to minimize contamination of the sample, and open to the water at both ends. It has a vent knob that can be opened to drain the water sample from a spigot on the bottom of the tube to remove the water sample. The scientists all rinse their bottles three times and wear nitrile or nitrogen free gloves to prevent contamination to the samples.

On NOAA ship Henry B. Bigelow the rosette is deployed  from the starboard deck, from a section called the side sampling station of this research vessel.

The instrument is lowered into the water with a winch operated by either Adrian (Chief Boatswain- in charge of deck department) or John (Lead Fishermen- second in command of deck department). When the CTD/Rosette is lowered into the water it is called the downcast and it will travel to a determined depth or to a few meters above the ocean floor. There is a conducting wire cable is attached to the CTD frame connecting the CTD to an on board computer in the dry lab, and it allows instantaneous uploading and real time visualization of the collected data on the computer screen.

 

CTD data on the computer screen. Photo by: DJ Kast

CTD data on the computer screen. Photo by: DJ Kast

The water column profile of the downcast is used to determine the depths at which the rosette will be stopped on its way back to the surface (the upcast) to collect the water samples using the attached bottles.

Niskin Bottles:

Messenger- The manual way to trigger the bottle is with a weight called a messenger. This is sent down a wire to a bottle at depth and hits a trigger button. The trigger is connected to two lanyards attached to caps on both ends of the bottle.  When the messenger hits the trigger, elastic tubing inside the bottle closes it at the specified depth.

Todd with the manually operated Niskin Bottle. Photo by: DJ Kast

Todd holding a messenger to trigger the manually operated Niskin Bottle. Photo by: DJ Kast

IMG_7209

Todd with the manually operated Niskin Bottle. Photo by: DJ Kast

Todd with the manually operated Niskin Bottle. Photo by: DJ Kast

Manual CTD fully cocked and ready to deploy. Photo by DJ Kast

Manual CTD fully cocked and ready to deploy. Photo by DJ Kast

Here is a video of how the manual niskin bottle closes: https://www.youtube.com/watch?v=qrqXWtbUc74

The other way to trigger Niskin bottles is electronically. The same mechanism is in place but an electronic signal is sent down the wire through insulated and conductive sea cables (to prevent salt from interfering with conductivity) to trigger the mechanism.

Here is a video of how it closes electronically: https://www.youtube.com/watch?v=YJF1QVe6AK8

Conductive Wire to CTD. Photo by DJ Kast

Conductive Wire to CTD. Photo by DJ Kast

Photo of the top of the CTD. Photo by DJ Kast

Photo of the top of the CTD showing the trigger mechanism in the center. Photo by DJ Kast

Top of the Niskin Bottles to show how the white wires are connected to the top.

Top of the Niskin Bottles shows how the lanyards are connected to the top. Photo by DJ Kast

The pin on the bottom is activated when an electronic signal is sent through the conductive sea cables. Photo by DJ Kast

The pin on the bottom is activated when an electronic signal is sent through the conductive sea cables. Photo by DJ Kast

Using the Niskin bottles, Megan collects water samples at various depths. She then filters water samples for her small bottles with a syringe and a filter and the filter takes out the phytoplankton, zooplankton and any particulate matter. She does this so that there is nothing living in the water sample, because if there is there will be respiration and it will change the nutrient content of the water sample.

Filtering out only the water using a syringe filter. Photo by DJ Kast

Filtering out only the water using a syringe filter. Photo by DJ Kast

Photo by: DJ Kast

Syringe with a filter on it. Photo by: DJ Kast

This is part of the reason why we freeze the sample in the -80 C fridge right after they have been processed so that bacteria decomposing can’t change the nutrient content either.

Diatoms dominate the spring phytoplankton bloom in the Gulf of Maine. They take up nitrate and silicate in roughly equal proportions, but both nutrients vary in concentrations from year to year. Silicate is almost always the limiting nutrient for diatom production in this region (Townsend et. al., 2010). Diatoms cannot grow without silicate, so when this nutrient is used up, diatom production comes to a halt. The deep offshore waters that supply the greatest source of dissolved nutrients to the Gulf of Maine are richer in nitrate than silicate, which means that silicate will be used up first by the diatoms with some nitrate left over. The amount of nitrate left over each year will affect the species composition of the other kinds of phytoplankton in the area (Townsend et. al., 2010).

The silica in the frustules of the diatom are hard to breakdown and consequently these structures are likely to sink out of the euphotic zone and down to the seafloor before dissolving. If they get buried on the seafloor, then the silicate is taken out of the system. If they dissolve, then the dissolved silicate here might be a source of silicate to new production if it fluxes back to the top of the water column where the phytoplankton grow.

Below are five images called depth slices. These indicate the silicate concentration (rainbow gradient) over a geographical area (Gulf of Maine) with depth (in meters) latitude and longitude on the x and y axis.

Depth slices of nitrate and silicate. Photo by: This is the type of data Megan is hoping to process from this cruise.

Depth slices of nitrate and silicate. Photo by:  GOMTOX at the University of Maine
This is the type of data Megan is hoping to process from this cruise.