Stephen Kade: How Sharks Sense their Food & Environment, August 9, 2018

NOAA Teacher at Sea

Stephen Kade

Aboard NOAA Ship Oregon II

July 23 – August 10, 2018

 

Mission: Long Line Shark/ Red Snapper survey Leg 1

Geographic Area: 30 19’ 54’’ N, 81 39’ 20’’ W, 10 nautical miles NE of Jacksonville, Florida

Date: August 9, 2018

Weather Data from Bridge: Wind speed 11 knots, Air Temp: 30c, Visibility 10 nautical miles, Wave height 3 ft.

Science and Technology Log

Sharks have senses similar to humans that help them interact with their environment. They use them in a specific order and rely on each one to get them closer for navigational reasons, and to find any food sources in the area around them. The largest part of the shark’s brain is devoted to their strong sense of smell, so we’ll start there.

Smell– Sharks first rely on their strong sense of smell to detect potential food sources and other movement around them from a great distance. Odor travels into the nostrils on either side of the underside of the snout. As the water passes through the olfactory tissue inside the nostrils, the shark can sense or taste what the odor is, and depending which nostril it goes into, which direction it’s coming from. It is said that sharks can smell one drop of blood in a billion parts of water from up to several hundred meters away.

Ampullae of Lorenzini and nostrils

Ampullae of Lorenzini and nostrils of a sharpnose shark

Sharks can also sense electrical currents in animals from long distances in several ways. Sharks have many electro sensitive holes along the snout and jaw called the Ampullae of Lorenzini. These holes detect weak electrical fields generated by the muscles in all living things. They work to help sharks feel the slightest movement in the water and sand and direct them to it from hundreds of meters away. This system can also help them detect the magnetic field of the earth and sharks use it to navigate as well.

Ampullae of Lorenzini and nostrils

Ampullae of Lorenzini and nostrils of a sharpnose shark

Hearing– Sharks also heavily use their sense of smell to initially locate objects in the water. There are small interior holes behind their eyes that can sense vibrations up to 200 yards away. Sound waves travel much further in water than in the air allowing them to hear a great distance away in all directions. They also use their lateral lines, which are a fluid filled canal that runs down both sides of the body. It contains tiny pores with microscopic hairs inside that can detect changes in water pressure and the movement and direction of objects around them.

Sight– Once sharks get close enough to see an object, their eyes take over. Their eyes are placed on either side of their head to provide an excellent range of vision. They are adapted to low light environments, and are roughly ten times more sensitive to light than human eyes. Most sharks see in color and can dilate their pupils to adapt to hunting at different times of day. Some sharks have upper and lower eyelids that do not move. Some sharks have a third eyelid called a nictitating membrane, which is an eyelid that comes up from the bottom of the eye to protect it when the shark is feeding or in other dangerous situations. Other sharks without the membrane can roll their eyes back into their head to protect them from injury.

dilated pupil of sharpnose shark

dilated pupil of sharpnose shark

Touch– After using the previous senses, sometimes a shark will swim up and bump into an object to obtain some tactile information. They will then decide whether it is food to eat and attack, or possibly another shark of the opposite gender, so they can mate.

Taste– Sharks are most famous for their impressive teeth. Most people are not aware that sharks do not have bones, only cartilage (like our nose and ears) that make up their skeletal system, including their jaw that holds the teeth. The jaw is only connected to the skull by muscles and ligaments and it can project forward when opening to create a stronger bite force. Surface feeding sharks have sharp teeth to seize and hold prey, while bottom feeding sharks teeth are flatter to crush shellfish and other crustaceans. The teeth are embedded in the gums, not the jaw, and there are many rows of teeth behind the front teeth. It a tooth is damaged or lost, a new one comes from behind to replace it soon after. Some sharks can produce up to 30,000 teeth in their lifetime.

Personal Log

While I had a general knowledge of shark biology before coming on this trip, I’ve learned a great deal about sharks during my Teacher at Sea experience aboard the Oregon II. Seeing, observing, and holding sharks every day has given me first hand knowledge that has aided my understanding of these great creatures. The pictures you see of the sharks in this post were taken by me during our research at sea. I could now see evidence of all their features up close and I could ask questions to the fishermen and scientists onboard to add to the things I read from books. As an artist, I can now draw and paint these beautiful creatures more accurately based on my reference photos and first hand observations for the deck. It was amazing to see that sharks are many different colors and not just different shades of grey and white you see in most print photographs. I highly encourage everyone that has an interest in animals or specific areas of nature to get out there and observe the animals and places firsthand. I guarantee the experience will inspire you, and everyone you tell of the many great things to be found in the outdoors.

Animals Seen Today: Sandbar shark, Great Hammerhead shark, Sharp nose shark

Stephen Kade: The Shark Cradle and Data Collection, August 8, 2018

NOAA Teacher at Sea

Stephen Kade

Aboard NOAA Ship Oregon II

July 23 – August 10, 2018

 

Mission: Long Line Shark/ Red Snapper survey Leg 1

Geographic Area: 31 41 010 N, 80 06 062 W, 30 nautical miles NE of Savannah, North Carolina

Date: August 8, 2018

 

Weather Data from Bridge:

Wind speed 11 knots,
Air Temp: 30c,
Visibility 10 nautical miles,
Wave height 3 ft.

Science and Technology Log

Normally you wouldn’t hear the words shark and cradle in the same sentence, but in our case, the cradle is one of the most important pieces of equipment we use each day. Our mission on the Oregon II is to survey sharks to provide data for further study by NOAA scientists. We use the long line fishing method where 100 hooks are put out on a mile long line for about an hour, and then slowly hauled up by a large mechanical reel. If a shark is generally three feet and weighs 30lbs or less, it is handled by hand to carefully unhook, measure and throw back. If the shark is much larger and cannot be managed safely by hand, it is then held on the line by the ships rail until it can be lifted on deck by the cradle to be quickly measured, tagged, and put back into the ocean.

The shark cradle

The shark cradle

The shark cradle is 10 ft. long, with a bed width of roughly 4 feet. It is made from thick aluminum tubing and strong synthetic netting to provide the bed for the shark to lie on. It is lifted from the ship’s deck by a large crane and lowered over the ships rail into the ocean. The shark is still on the line and is guided by a skilled fisherman into the cradle. The crane operator slowly lifts the cradle out of the water, up to the rail, so work can begin.

A team of 3 highly skilled fishermen quickly begin to safely secure the shark to protect it, and the team of scientists collecting data. They secure the shark at 3 points, the head, body and tail. Then the scientists come in to take 3 measurements of the shark. The precaudal measurement is from the tip of nose to the start of the tail. The fork measurement is from the tip of the nose to the fork of the tail (the place where the top and bottom of the tail meet). Finally there is a total length taken from the tip of the nose to the furthest tip of the tail.

When all measurements are complete, a tag is then placed at the base of the first dorsal (top) fin. First a small incision is made, and then the tagger pushes the tag just below the skin. The tag contains a tracking number and total length to be taken by the person who finds the shark next, and a phone number to call NOAA, so the data can recorded and compared to the previous time data is recorded. The yellow swivel tags, used for smaller sharks, are identical to ones used in sheep ears in the farming industry, and are placed on the front of the dorsal fin. The measurements and tag number are collected on the data sheet for each station. The data is input to a computer and uploaded to the NOAA shark database so populations and numbers can be assessed at any time by NOAA and state Departments of Natural Resources.

removing hook

A skilled fisherman removes the hook so the shark can be released.

longline

The longline is mile long and carries up to 100 hooks.

The shark is then unhooked safely by a skilled fisherman while the other two are keeping the shark still to protect both the shark and the fishermen from injury. The cradle is then slowly lowered by crane back into the ocean where the shark can easily glide back into its environment unharmed. The cradle is then raised back on deck by the crane operator, and guided by the two fishermen. All crew on deck must wear hardhats during this operation as safety for all is one of NOAA’s top priorities. This process is usually completed within 2 minutes, or the time it took you to read this post. It can happen many times during a station, as there are 100 hooks on the one mile line.

 

 

Personal Log

It is amazing for me to see and participate in the long line fishing process. I find it similar to watching medical television shows like “ER” where you see a highly skilled team of individually talented members working together quickly and efficiently to perform an operation. It can be highly stressful if the shark is not cooperating, or the conditions aren’t ideal, but each member always keeps their cool under this intense work. It’s also amazing to see the wealth of knowledge each person has so when an issue arises, someone always knows the answer to the problem, or the right tool to use to fix the situation, as they’ve done it before.

Animals Seen Today: Sandbar shark, Tiger shark, Sharpnose Shark, Sea Robin, Toadfish, Flying Fish

Stephen Kade: Conductivity, Temperature, and Depth, August 5, 2018

NOAA Teacher at Sea

Stephen Kade

Aboard NOAA Ship Oregon II

July 23 – August 10, 2018

 

Mission: Long Line Shark/ Red Snapper survey Leg 1

Geographic Area: 30 54 760 N, 76 32 86.0 W, 40 nautical miles E of Cape Lookout, North Carolina

Date: August 5, 2018

Weather Data from the Bridge:

Wind speed 11 knots,
Air Temp: 30.c,
Visibility 10 nautical miles,
Wave height 1 foot

Science and Technology Log

While our main mission aboard the NOAA Ship Oregon II is to survey and study sharks and red snapper, it is also very important to understand the environmental conditions and physical properties of the sea water in which these animals live. The CTD instrument is used to help understand many different properties within the water itself. The acronym CTD stands for Conductivity (salinity), Temperature, and Depth. Sensors also measure dissolved oxygen content and fluorescence (presence of cholorphyll).

CTD

The CTD instrument itself is housed in a steel container and is surrounded by a ring of of steel tubing to protect it.

Conductivity is a measure of how well a solution conducts electricity and it is directly related to salinity, or the salt that is within ocean water. When salinity measurements are combined with temperature readings, seawater density can be determined. This is crucial information since seawater density is a driving force for major ocean currents. The physical properties and the depth of the water is recorded continuously both on the way down to the ocean floor, and on the way back up to the surface.  There is a light, and a video camera attached to the CTD to provide a look at the bottom type, as that is where the long line is deployed, and gives us a good look at the environment where our catch is made. These data can explain why certain animals gather in areas with certain bottom types or physical parameters. This can be particularly important in areas such as the hypoxic zone in the Gulf of Mexico. This is an area of low oxygen water caused by algal blooms related to runoff of chemical fertilizers from the Mississippi River drainage.

The CTD instrument itself is housed in a steel container and is surrounded by a ring of of steel tubing to protect it while deployed and from bumping against the ship or sea floor. Attached water sampling bottles can be individually triggered at various depths to collect water samples allowing scientists to analyze water at specific depths at a particular place and time. The entire structure is slowly lowered by a hydraulic winch, and is capable of making vertical profiles to depths over 500 meters. An interior computer display in the ship’s Dry Science Lab profiles the current location of the CTD and shows when the winch should stop. We have found this to be a tricky job, during large wave swells, as the boat rocks quite a bit and changes the depth by a meter or more. The operator must be very careful that the CTD doesn’t hit the ocean floor too hard which can damage the equipment.

Dry Lab

An interior computer display in the ship’s Dry Science Lab profiles the current location of the CTD and shows when the winch should stop.

The data collected while deployed at each station is instantly uploaded to NOAA servers for immediate use by researchers and scientists. The current data is also available the general public as well, on the NOAA website. Once safely back aboard the Oregon II, the CTD video camera is taken off and uploaded to the computer, The CTD must be washed off and the lines flushed for one minute with fresh water, as the salt water from the ocean can damage and corrode the very sensitive equipment inside. The instrument is also calibrated regularly to ensure it is working correctly throughout all legs of the long line survey.

Personal Log

TAS Stephen Kade

TAS Stephen Kade

I am having such a great time during my Teacher at Sea experience. In the 9 days aboard ship so far, we have traveled the entire coasts of Mississippi, Arkansas, Florida, South Carolina, and North Carolina. Never in my life did I think I would get an opportunity to do something like this as I’ve dreamed about it for decades, and now my dreams have come true. I’m learning so much about fishing procedures, the biology of sharks, navigational charting, and the science of collecting data for further study while back on land at the lab. I can’t wait to get home and spread the word about NOAA’s mission and how they are helping make the world a better place, and are advocating for the conservation of these beautiful animals!

 

Animals Seen: Sharpnose shark, Tiger Shark, Grouper, Red Drum fish, Moray Eel, Blue Line Tile fish

Stephen Kade: Oregon II Spotlight: Chelsea Parrish, August 2, 2018

NOAA Teacher at Sea

Stephen Kade

Aboard NOAA Ship Oregon II

July 23 – August 10, 2018

Mission: Long Line Shark/ Red Snapper survey Leg 1
Geographic Area: 30 54 760 N, 76 32 86.0 W, 40 nautical miles E of Cape Lookout, North Carolina
Date: August 2, 2018
Weather Data from the Bridge:
Wind speed 11 knots,
Air Temp: 25.c,
Visibility 10 nautical miles,
Wave height 3 foot

 

Spotlight: ENS Chelsea Parrish

During my NOAA Teacher at Sea experience, I have truly been inspired and impressed by how many important roles of our operation on the Oregon II are fulfilled by females. One of the most important crew members is Ensign (ENS) Chelsea Parrish who is one of our OOD’s. or Officers of the Deck. I think her story will inspire my daughter and female students to aim high for their future!

As a young child, Chelsea was inspired by her father who spent 20 years in the US Navy. She loved hearing stories about his role working aboard Navy submarines, and all of the interesting things one must do to work below the sea. After high school she attended the Savannah State University, in Georgia. She was able to train aboard the R/V Savannah where she learned about biological, chemical, physical, and geological oceanographic studies in estuaries and continental shelf waters in the southeastern US Atlantic and Gulf coasts. She earned her Bachelor degree in Biology, and received her Masters degree in Marine Science. While she didn’t need her Masters to get into her field, she knew that in the long run it would put herself above others in a highly competitive field and would be an advantage in the future.

A year into graduate school, she attended a conference, where she learned about the NOAA Corps. The NOAA Corps is one of the seven federally uniformed services of the United States, and is made up of scientifically and technically trained and commissioned officers. It was there that she met Lt. Commander Adler, whom she kept in contact with. Just a short time later, she was called for an open opportunity to join the NOAA Corps. She had 17 weeks of real world training at the Coast Guard Academy for Officer Candidate School (OCS). It was there that she learned how NOAA is different than the US Navy. The Navy focuses on various military actions, while NOAA Corps focus is on science and their motto is: “Science, Service, Stewardship”. It was then Chelsea knew she came to the right place to fulfill her professional goals.

After graduating from training, she earned her Officer of the Deck qualification aboard Oregon II in September, 2017. She will be aboard completing her assignment in January, 2019. Chelsea has many important duties to perform on the ship, including steering the ship. This entails following the chart that the CO (Commanding Officer, or Captain) has planned out to fulfill the mission of the ship. In our case the mission is long line fishing of Red Snapper and Sharks at many stations along the southeastern US and the Gulf of Mexico. While the CO is off duty, she must keep him informed of any changes that need to made to the Navigation trackline to ensure there is a safe navigational watch during her shift, which is normally 4 hours at a time.

The most common thing to happen that happens to create a change in course is foul weather, but there are many unforeseen events as well. Chelsea must study reports from the US Coast Guard which let her know various events happening in the region we are sailing. This can be other ships performing science missions, merchant navy ships of other countries in the area, oil drilling operations, or in our case yesterday, live ammunition firing exercises by the US Navy.

Chelsea Parrish

ENS Chelsea Parrish on the bridge of NOAA Ship Oregon II

Chelsea is also the environmental compliance officer aboard the ship, and she must follow specific rules set up by the EPA (Environmental Protection Agency) to ensure Oregon II is environmentally responsible while at sea. She must be sure there aren’t any issues with fuel, garbage, or any other foreign substance being put in the ocean while at port, or at sea. She also keeps a recycling log to track all activity and incidents that occur. Chelsea also runs the ship store and keeps track of all the items to be sold to the crew and volunteers aboard the ship.

Finally, Chelsea is the go- to rescue swimmer aboard Oregon II, and is the first to jump into the ocean if there is someone overboard to be retained from our ship, or another at sea near us. I saw her in action during our drills at the beginning of our trip and I was impressed at how quickly the crew launched our rescue boat, so Chelsea could rescue our life ring that acted as our “person overboard”. She also took a 3 week class to get certified as a NOAA working scuba diver. This certification allows her to be in the ocean to find, and/or fix any issues we have with the ship while at sea that can’t be fixed from the deck or rescue boat. She is certified to dive down to 130 feet below the surface.

It certainly is impressive how much Chelsea has accomplished in her 28 years. I hope this post inspires all my students, but especially the girls to go out into the world and do anything they can dream of, as that is exactly what Chelsea did. When her time aboard Oregon II is over, Chelsea plans to be a Cetacean Photogrammetry Specialist in La Jolla, California. She will be getting to get her FAA drone license to fly hexacopter drones from ships. Her duties will be to find, count and track marine mammals such as seals, dolphins, and whales. She said she loves helping NOAA fulfill their mission of helping marine animals and data collecting to further the study of these creatures and helping ensure their survival in the future.

Personal Log:
Now that I am almost a week into the survey, I am starting to fall into the rhythm  of working on the ship. The 12 hour work days are certainly long, but we do get breaks between stations to rest, converse, and prepare for the next run. If it’s a good station and we haul in a lot of catch, we often spend time talking about each of the things we caught and become like kids on Christmas if it’s something new and interesting. We also spend time logging all the data we collect into the computer for later research on land.
We have seen just about all the different weather scenarios you could imagine, and have endured bright, 93 degree cloudless days, and windy days with 6 foot waves and pouring rain. We’ve had to call off a few stations until our way back south down the coast due to  poor conditions, because on all NOAA ships, the motto is “Safety First”. The real trick is working during the big wave conditions and learning how to function as a human being while the boat is rocking and rolling all about for the entire day. I’m getting better at anticipating where my next step will land and compensating for the constant shifting gravity under my feet. It will make walking on earth again seem so easy!
Animals Seen Today: Sandbar sharks, Scalloped Hammerhead Shark, Blue Line Tile Fish, Grouper, Atlantic Spotted Dolphins, Squid

 

Engine Room: The Heart of NOAA Ship Oregon II

Mission: Long Line Shark/ Red Snapper survey Leg 1
Geographic Area:32 nautical miles SE of Key West Florida
Date: July 28, 2018
Weather Data from the Bridge: Wind speed 11 knots, Air Temp: 27.6c, Visibility 10 nautical miles, Wave height 1 foot
Science and Technology Log: As we move through the Gulf of Mexico headed to our first research station, I didn’t have a job most of the day, so I sought to find out more information about what makes the great Oregon ll function to serve it’s crew of 28. One of the Engineers kindly offered me a tour of the engine room to see what lies below the service decks.
The ship is powered by twin 900 horse power engines that turn the propeller shaft up to 12 knots. When sailing between work stations, generally both engines are used, and when long line fishing begins, only one engine provides power as the ship moves around 2- 3 knots. The ship holds up to 70,000 gallons of fuel, and when both engines are running,1,000 gallons are used daily. There is also a bow thruster engine near the front of the ship that is much smaller and helps with finer movements at the dock, in stations, or when seas get rough.
IMG_1931
IMG_1932
There are 2 large electrical power generators that provide electricity to the ship for the multitude of research computers and data collectors. While out at sea, Oregon ll is always tracking weather data, water quality, live radar from above the ship, and also sonar from below the ocean. The generators also provide power for all the creature comforts you would need in any living environment, as this ship is the crew’s home during each leg of the trip. At times when less power is needed, one generator is shut down to conserve energy for later use.
The Oregon ll  also provides it’s own clean water for equipment and human consumption. The Water Purification System uses Reverse Osmosis to take salt water from the ocean and turn it into potable water to wash, cook, clean with, and drink. A Reverse Osmosis System uses high pressure and pushes impure water through a semi-permeable membrane which allows clean water through the membrane, while allowing impurities (such as salt, bacteria, and sediment) to be blocked from coming through, and discharges the impurities back into the ocean.
IMG_1928
Personal Log: I am having a great time getting to know the crew and their many jobs around the ship, and how each one affects the other. This symbiotic relationship is the heart of what makes every mission successful. There are the Ship’s Officers who chart the course, drive the ship, and oversee all Crew Members. The Deck Department makes sure the work areas are safe and equipment is working correctly. The Fishermen are in charge of the process of the Long Line Survey, from preparation, to process, to clean-up. The Engineering Department makes sure the interior of the ship and it’s equipment are functioning properly, which is a very wide ranging. I certainly wish I had these guys around my house during those tricky repairs!
The Steward Department is in charge of ordering, cooking, serving, and cleaning up of all meals for the crew. Finally, the Electronic Department has the complicated job of installing, operating, and fixing any electronic equipment. Let me tell you, there are miles of wires running through this ship and all of it is used to make the mission successful. All data is continually collected, and preserved for later study. Some of the water and weather data is uploaded to the NOAA website for the public’s use as well.
I really enjoyed hearing the wide ranges of places in America the Oregon ll crew come from. It is also impressive to hear the various places all around the world they’ve sailed before joining NOAA, and which other NOAA ships they’ve been crew members on. The diverse experience each crew person has in their field has really helped the mission many times over since I’ve been here. One thing I know is true is that each of them is happy to tell you about their families, and how much they love them and miss them while they’re away. Many of them have long seasons away from the ones they love, and count the days until they can come home.
Fun Fact: NOAA Ship Oregon ll turned 50 years old last year, and was honored for making the half century mark of service. It was built in 1967, right in it’s home port of Pascagoula, Mississippi
Animals Seen Today: Bottlenose Dolphin, Atlantic Spotted Dolphins, Flying Fish, Jelly Fish

Stephen Kade: Looking Forward to NOAA Ship Oregon II, July 24, 2018

NOAA Teacher at Sea

Stephen Kade

Aboard NOAA Ship Oregon II

July 26 – August 10, 2018

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area: Gulf of Mexico

Date: July 24, 2018

Personal Log

Hello,

My name is Stephen Kade, and I’m a middle school art teacher at OL Smith Middle School in Dearborn, Michigan. I’ll be joining the crew of the NOAA Ship Oregon II for a few weeks this summer as part of the 2018 NOAA Teacher at Sea program. We’ll be starting in Pascagoula, Mississippi, and working along the Gulf of Mexico to the Florida Keys, and then moving north in the Atlantic to Cape Canaveral, Florida. We’ll be long line fishing for red snapper and sharks to research. I can’t wait to get aboard and find new ways I learn learn about these fish, and how I can use art to help bring awareness to, and advocate for, all threatened and endangered sea creatures and their ocean environments.

This opportunity is a great chance for me to fulfill a lifelong dream of working with sharks as a marine biologist (at least for a few weeks).  As I study in preparation for the coming trip, I’ve realized  the many hours of my life spent watching nature documentaries have paid off, as I’ve retained more knowledge of sharks than I thought! I’m also trying to study more about the crew and their roles on the ship, and all the working schedules and procedures to keep myself and other crew safe while we work. I’m finding this process is much like prepping for a lesson as a teacher and bringing many social and logistical resources together to create a strong foundation for learning while working.

I’ll be posting several times during the trip to keep everyone up to date with my findings during the adventure of a lifetime. This photo is of my art students and me in class, after creating their Endangered Animal Awareness Posters for our first annual Night of the Arts 2018.