Clare Wagstaff, September 18, 2009

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship Nancy Foster
September 11 – 18, 2009 

Mission: Florida Keys coral reef disease and condition survey
Geographical Area: Florida Keys – Key West
Date: Saturday, September 18, 2009

Contact Information 
Clare Wagstaff Sixth and Eighth Grade Science Teacher Elmwood Franklin School 104 New Amsterdam Ave Buffalo, NY 14216
cwagstaff@elmwoodfranklin.org

Weather Data from the Bridge (information taken at 12 noon) 
Weather: Sunny Visibility (nautical miles): 10
Wind Speed (knots): 0 (in port)
Wave Height (feet): <1
Sea Water Temp (0C): 30.4
Air Temp (0C): 32

Science and Technology Log 

Right: Black-band Disease on Montastraea annularis. Photo courtesy of Mike Henley
Black-band Disease on Montastraea annularis. Photo courtesy of Mike Henley

With the last dive of the cruise over, the group has completed 175 dives, which equates to 7.5 days underwater! Most of the planned coral reef sites have been surveyed even with our lack of a third small boat. The weather has stayed relatively calm and has been surprisingly supportive of our cruise. The mad rush is now to input all the remaining data before we disembark the ship later today.

An area that I have only briefly referred to in previous logs, are the types of coral diseases present and being studied. Chief Scientist, Scott Donahue, commented to me that there has been a trend over the last decade of decreasing coral coverage. This is believed to be related to anthropogenic stresses such as water quality and climate change. By comparing spatial and temporal patterns against trends in coral reef disease, over different geographic regions and reef types, it is hoped that a greater understanding of how these patterns are related to different environmental conditions. The team was specifically looking at ten disease conditions affecting 16 species of Scleractinian corals and Gorgonian sea fans. Although I tried to identify some of the diseases, it was actually quite difficult to distinguish between individual diseases and also other causes of coral mortality.

White-band Disease on Acropora cervicornis. Photo courtesy of Mike Henley
White-band Disease on Acropora cervicornis. Photo courtesy of Mike Henley

Black-band Disease is a crescent shaped or circular band of blackish material that separates living material from white exposed skeleton. It is caused by a cyanobacteria in combination with a sulfide oxidizing bacteria and a sulfur reducing bacteria. White-band Disease displays a margin of white tissue decay. It can start at the base of a colony or in the middle. It affects branching corals and its cause is currently unknown. Corals have a pretty tough time living out in the ocean and have many problems to overcome. If its not a boat’s anchor crushing it could be any number of the following; a parrot fish (predator) eating it; deterioration of the water quality; a hurricane; an increase in major competitors like algae or tunicates, and to nicely top it all, it can always get a disease too!

Most of the scientists on the Nancy Foster are volunteers, giving up their own free time to be part of the trip. Kathy Morrow is a Ph.D. student who has extensively studied the ecology of cnidarians for the past 9 years. She is currently researching her dissertation on the community structure and stability of coral-algal-microbial associations based on studies conducted off the coast of Summerland Key, Florida and St. Thomas, U.S. Virgin Islands. On one of the last dives of the trip Kathy takes time to collect mucus samples (she refers to this fondly as coral “snot”), from a site she has previously visited numerous times over the last few years. The objective is to collect mucus samples so that they can be studied later for their bacteria composition.

Morrow collecting coral mucus. Photo courtesy of Mike Henley.
Morrow collecting coral mucus. Photo courtesy of Mike Henley.

Once Kathy has collected these samples she must process them so that they can be stored until she has the opportunity back in the lab, to analyze them. Although I was not present when Kathy was collecting the samples, I did help her in the wet lab with the final stages of storing her collection of samples. Having collected multiple mucus samples from each of the preselected coral species in syringes, the samples were then placed into a centrifuge to extract the bacteria present. This material is denser, so sinks to the bottom ad forms a darker colored pellet. My job is then to remove the excess liquid, but preserve the bacteria pellet so that it can be frozen and stored for later analysis. Back in the lab at Auburn University, Kathy will chemically breakdown the bacteria to release their DNA. This DNA is then replicated and amplified allowing for Kathy to perform analysis on the bacteria to identify the types present in the corals. Kathy will spend the next year studying these bacteria samples and many more she has collected.

Personal Log 

Here I am helping Kathy Morrow preserving coral mucus specimens. Photo courtesy of Cory Walter
Here I am helping Kathy Morrow preserving coral mucus specimens. Photo courtesy of Cory Walter

So here we are back in port after an amazing time on the Nancy Foster. I was initially concerned about being out at sea with people I did not know, studying an area of science I really knew very little about, in an environment I knew would probably make me sick, but didn’t thank goodness! But everything turned out to be a thousand times better than I could have imagined. I have had seen so much and learnt an amazing amount that my head is spinning with all the ideas I have to use with my classes back at school. Yet, there are things that I just rang out of time to look more closely at and part of me wishes we had been out at sea longer. My second time as a Teacher At Sea, has left me with some wonderful memories of the most professional and dedicated scientists and crew you could wish for, but also of how amazing corals are and how much we still have to learn. Thank you everyone who was involved in making this a truly remarkable and memorable experience.

The 2009 coral research team and Teacher At Sea, Clare Wagstaff on board the Nancy
The 2009 coral research team and Teacher At Sea, Clare Wagstaff on board the Nancy Foster

Clare Wagstaff, September 16, 2009

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship Nancy Foster
September 11 – 18, 2009 

Mission: Florida Keys coral reef disease and condition survey
Geographical Area: Florida Keys – Dry Tortugas National Park
Date: Saturday, September 16, 2009

Contact Information 
Clare Wagstaff Sixth and Eighth Grade Science Teacher Elmwood Franklin School 104 New Amsterdam Ave Buffalo, NY 14216
cwagstaff@elmwoodfranklin.org

Weather Data from the Bridge (information taken at 12 noon) 
Weather: Sunny with scattered showers with thunder storms
Visibility (nautical miles): 10
Wind Speed (knots): 4
Wave Height (feet): 1
Sea Water Temp (0C): 30.6
Air Temp (0C): 30

Science and Technology Log 

Elkhorn coral (Acropora palmata) and numerous Sergeant Majors (Abudefduf  saxatilis)
Elkhorn coral (Acropora palmata) and numerous Sergeant Majors (Abudefduf saxatilis)

Today I am with a new survey group. As the days go by and each of the scientists gets more dives under their belts, there is some fatigue starting to set in. So on a rotation basis, the divers are taking rest days to catch-up on sleep, emails and data entry. This morning I am with Lauri, Lonny and Sarah. The first dive site is about 33  feet deep and although I can see the bottom from our small boat, the water is extremely green and doesn’t allow me to see anything in real detail when I snorkeled. A little disappointed at the clarity of the water, I am definitely perked up by the next site, CR03. At just 8 feet deep, I can see much more and the water appears less green.

A lobster hiding in the coral
A lobster hiding in the coral

This site was something special! Even from above the water, we could observe large and impressive Acropora palmata. It looked like a large underwater forest. There was a massive diversity of fish specie present that appeared to be supported by the micro-ecosystem that the Acropora palmata created by its large lobes that fan out across the ocean floor. They provide plenty of nooks for green moray eels and multiple lobsters I saw to hide in. This coral grows approximately 10cm a year, but as with all coral species, this growth can be affected by various factors including the most recent hurricanes.

We were surveying in an area known as a Sanctuary Preservation Area or commonly a “No Take Zone”, yet a small boat located within the marking buoys appeared to be spear fishing. The Coxswain on our boat noted that the group brought numerous fish up into their boat while we were underwater. Within a short distance we also observed two other lobster pot buoys located within this zone. Lauri, called this into the Nancy Foster and asked that the Chief Scientist report this to the Marine Law Enforcement office, so that they could send a patrol boat out to investigate. This activity is not permitted in this zoned area.

Coral identification 

Diploria strigosa
Diploria strigosa

Today, I tried to indentify all the different varieties of coral I had photographed. Dr. Joshua Voss, the ship’s expert of coral identification looked over my attempt at scientifically naming 30 different photos. Much to my delight, I got 28 correct! Now I just need to remember them when I am underwater! My greatest difficulty seems to be differentiating between Montastraea spp.annularis, faveolata and franksi, as they have quite similar morphotypes. I just have to keep practicing and asking for help when I’m not sure. What makes me feel a little better is sometimes even the pro’s have trouble distinguishing between certain corals, particularly if they are trying to identify a hybrid which is a mixture of two different species.

Personal Log 

Diploria clivosa
Diploria clivosa

I am always amazed at how resourceful divers can be. Somehow duct tape comes in useful wherever you are. Today was no exception! Geoff, who forgot his dive booties (a type of neoprene sock that you wear inside you fins) has made himself a pair out of another team member’s white socks and a few lengths of duct tape. He does look very entertaining, but they do seem to be working!

Acropora palmata
Acropora palmata

I am feeling very privileged to be surrounded by so many intelligent, passionate and brilliant people. Not only are most of people on the survey teams volunteers and so not getting paid, they are also embracing each part of the cruise with a great sense of humor and consistent high spirits. Even though they are all tired (to date they have accumulated 133 dives between them this cruise), they still banter back and forth with one another in a lighthearted way. All but myself and Mike Henley are returning for their third, fourth, even 13th time, to help collect this vital data. Even though diving has many hazards and is dangerous work, these folks are real experts and I truly feel lucky to be around such inspiring people. I have been diving for five years, but I don’t think I will ever look at a reef in the same way again. They have opened my eyes, and now my job is to go back to chilly Buffalo and develop a way to get this across to my 6th and 8th grade science classes. If I can inspire even just one child, like Joshua’s science teacher did for him as a teenager, then perhaps they too will go on to become a marine biologist, who study some of the smallest, yet most important creatures on our planet.

 Montastraea annularis
Montastraea annularis

As 7pm draws close, the science group gather on the front deck to watch the sunset. It is a beautiful sky, but just to make the evening more special, along come three dolphins riding the wake of the bow of the Nancy Foster. I leap up like a child and run to the edge of the ship to get a closer look, having never seen dolphins in the wild before! They are so graceful and as we all lean over and cheer as the breach the water and splash their fins, you start to wonder, if they are actually watching us as much as we are watching them. Such grace and natural beauty brings another day aboard the Nancy Foster to an end. I’m just not sure how each day keeps topping itself, and with two left to come, who knows what adventures may become this team!

“Animals Seen Today” 

Three bottlenose dolphins (Tursiops truncates) riding the wake of the Nancy Foster 

Bottlenose dolphins riding in the Foster’s wake
Bottlenose dolphins riding in the Foster’s wake

Clare Wagstaff, September 15, 2009

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship Nancy Foster
September 11 – 18, 2009 

Mission: Florida Keys coral reef disease and condition survey
Geographical Area: Florida Keys – Dry Tortugas National Park
Date: Saturday, September 15, 2009

Contact Information 
Clare Wagstaff Sixth and Eighth Grade Science Teacher Elmwood Franklin School 104 New Amsterdam Ave Buffalo, NY 14216
cwagstaff@elmwoodfranklin.org

Weather Data from the Bridge (information taken at 12 noon) 
Weather: Partially sunny, with scattered showers and thunder storms
Visibility (nautical miles): 10
Wind Speed (knots): 2
Wave Height (feet): 1
Sea Water Temp (0C): 30.6
Air Temp (0C): 30

Science and Technology Log 

I am starting to get used to the scientific names of the corals, but it is taking a while. I keep wanting to refer to them by their common name which is generally descriptive of their physical appearance, but makes little to no reference to which other coral it is more closely related to Dr. Joshua Voss, one of the scientists on board pointed out that the common names could vary depending on who is identifying them, yet the scientific name remains the same. Hence why the whole team refers to the scientific names when referring to the corals.

So what are corals? 

Parts of a coral (http://oceanservice.noaa.gov/education/kits/ corals/media/supp coral01a.html)
Parts of a coral

Corals are members of the Animal Kingdom and are classified in the Phylum Cnidaria. People often mistake    these creatures for plants, because they are attached to the rock, show little movement, and closely resemble plants. Corals consist of a polyp, which are a cup-shaped body with one opening, which is its mouth and anus.

Zooxanthellae (zoo-zan-thel-ee) are single cell plants (photosynthetic algae) that grow within the polyps’ tissue. It forms a mutalistic symbiotic relationship with the polyp. The algae gets a protected environment and the compounds it requires for photosynthesis, whilst the algae provides the polyp with the materials necessary to produce calcium carbonate, which is the hard “shell” that surrounds the polyp.

So why is this cruise surveying corals? 

Clare Wagstaff, Teacher At Sea, snorkeling
Clare Wagstaff, Teacher At Sea, snorkeling

There has been a decreasing trend in coral coverage over the last decade. One theory is that this is due to anthropogenic stress related to water quality and climate change.  Coral’s require certain environmental factors to be within sensitive boundaries, such as water temperature, salinity, clarity of water, and water movement. Although most species only grow a few centimeters each year, they are the backbone to a massive underwater ecosystem, hence their extreme importance to the success of our oceans. By studying the trends in species distribution, size and disease over various geographic regions, their corrolations can be desricbed in better detail.

Personal Log 

Palythoa spp. observed covering most of the reef at station RK02 and Watercress Alga (Halimeda opuntia). Polythoa is not a coral and in fact competes with coral for space in the reef.
Palythoa spp. observed covering most of the reef at station RK02 and Watercress Alga (Halimeda opuntia). Polythoa is not a coral and in fact competes with coral for space in the reef.

This morning I once again join Team C that composes of Dr. Joshua Voss, Kathy Morrow and Mike Henley to survey three dive sites called RK01, RK02 & RK03. We have now got into a comfortable routine and everyone seems to work well together. Unfortunately, this cannot be said for the boat, NF4! During our last dive on Monday, the boat started to leak oil and is now out of commission for the rest of the cruise. Instead we are on the much smaller and less luxurious, NF2, which also happens to be much slower! However, after the usual dive brief we set out for a day of adventures upon the open sea. The second dive site today proved to be the best for snorkeling and I was able to observe a large variety of plants and animals from on the surface.

“Did You Know?” 

Here I am pointing to the waterspout
Here I am pointing to the waterspout

Waterspouts are simply tornadoes over water. They are common in tropical areas where thunderstorms regularly occur, such as the Florida Keys! Today we saw a prime example of one within a few miles of the NANCY FOSTER.

“New Term/Phrase/Word” 

Anthropogenic – caused or produced by human activities such as industry, agriculture, mining, and construction.

The final survey site, RK03 was very shallow at around 8 ft. The dive team decided to make their observations snorkeling rather than diving. Unfortunately, Kathy was so engrossed in her work that she did not see a moon jellyfish swim right into her face! She put on a very brave front and we quickly returned to the NF2 and back to the NANCY FOSTER. The medial treatment for such a sting is to drench the area in vinegar, which neutralizes the nematocysts that may still be clinging to the skin. Luckily, Kathy made a quick recovery, even if she did smell a little like vinegar for the rest of the day!

Clare Wagstaff, September 13, 2009

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship Nancy Foster
September 11 – 18, 2009 

Mission: Florida Keys coral reef disease and condition survey
Geographical Area: Florida Keys – Dry Tortugas National Park
Date: Saturday, September 13, 2009

Contact Information 
Clare Wagstaff Sixth and Eighth Grade Science Teacher Elmwood Franklin School 104 New Amsterdam Ave Buffalo, NY 14216
cwagstaff@elmwoodfranklin.org

Weather Data from the Bridge (information taken at 12 noon) 
Weather: Sunny with scattered showers and thunderstorms
Visibility (nautical miles): 10
Wind Speed (knots): 14
Wave Height (feet): 1-2
Sea Water Temp (0C): 29.8
Air Temp (0C): 32

Science and Technology Log 

Hermit crabs at Fort Jefferson
Hermit crabs at Fort Jefferson

Today the dive plan was to survey some of the deeper sites in the FKNMS (Florida Keys National Marine Sancturay) Tortugas Ecological Reserve, referred to as Sherwood Forest. The dive depth varied between 65 to 80 feet. That meant that snorkeling would probably result in me observing very little. My slightly sunburned forehead, needing to get some of my logs composed in more detail, as well as the diving situation, gave me a prime opportunity to stay on the boat for the majority of the day.

So this morning after the dive brief I waved off the team and set out to do some exploring of the ship and do a little more research about what happens before the team actually gets into the water.

The survey teams are planning on making two separate dives on each site to complete the whole of the radial arc transect. The amount of gas each diver requires, depends on a number of variables, including depth, level of physical fitness and amount of activity undertaken in the water. Scuba diving is also limited by a number of factors such as available air, blood nitrogen level, etc.

What is scuba diving? 

Scuba is an acronym for Self Contained Underwater Breathing Apparatus. The first commercially successful scuba was developed by Emile Gagnan and Jacques-Yves Cousteau, in 1943 and is now widely used around the world as a recreational sport. Sports divers are normally restricted to 130ft, where as technical deep divers can reach depths much greater. During this trip the maximum dive site depth will not exceed 80ft.

Dive brief – Safety First! 

The Wet Lab on the Nancy Foster
The Wet Lab on the Nancy Foster

Before each dive the cruise’s Dive Master, Sarah Fangman gives the scuba divers a brief run through of the priorities for today’s diving. As usual, this means safety is the top priority and Sarah highlights important factors, such as watching your air consumption and making sure that each diver returns with at least 500psi, that each team goes over their dive plan (how deep, for how long, what they will do during the dive), check that all equipment is functioning correctly, and that all the dive data is being recorded. This means prior to the divers getting into the water, their tanks air pressure, Nitrox percentage, name, and time of entry into the water must be logged. Once the dive has ended and the divers are back on the boat, they must once again record their tank air pressure (must be more than 500psi), their bottom depth and sometimes time in the water. Even after the dive is done, the whole team is responsible for each other and has to monitor everyone’s condition for at least the next 30 minutes.

What do the divers breath? 

The divers are breathing Nitrox. Regular scuba has a very specific ratio of nitrogen to oxygen; it tries to mimic the air found on the surface of the Earth as closely as possible. Nitrox diving, on the other hand, tweaks this mixture to maximize bottom time (i.e., the diver’s time spent underwater) and minimize surface intervals (i.e., the time the diver must stay on the surface before diving back in). Before each dive, the individual diver must check his or her own tank for the gases composition and record the oxygen content on their tank. This is because at depths oxygen can actually become toxic.

Science Data Processing 

wagstaff_log3b
A coral species count and bleaching data sheet showing the tally of Montastraea annularis

There are two main areas on the Nancy Foster designated for the science research, the wet lab and the dry lab. The dry lab is where the computers for data entry and processing are located. It is here that the survey team meetings happen every morning and afternoon to discuss which dives site will be surveyed and how the data entry process is going.

Lauri MacLaughlin is the ship’s resident expert on each dive site and gives a detailed map of each site. This includes compass bearings relating to certain underwater features and the GPS coordinates. The wet lab, is just as the name suggests, wet! This is where any experiments can be carried out and also where the scuba tanks are refilled with Nitrox.

Data entry 

wagstaff_log3cEach of the scientists has to transcribe all the data they observed at each dive site. Underwater, the two scientists that are recording data each have a clipboard with the relevant waterproof data forms attached. These forms have a standardised and detailed table, which they then write on using a regular pencil. The data collected on three sheets refers to coral disease, coral bleaching count (for quantity of each species and percentage of bleaching) and coral measurements.

Tally charts and acronyms are a plenty, making it difficult for me to understand the hand-jotted notes of the various scientist. Each of them describes the species of coral by its scientific name. However, my limited knowledge is based upon the common name for most species. I did help Lauri input some of her data today. The tally charts of the number of observed specie are simple enough that I can read and enter the data, along with the size of the first ten individuals of each species. However, after that, the real experts need to get involved! This data must be entered after each dive into a spreadsheet database so that all the information can be collaborated and processed by the end of the cruise.

Personal Log 

Geoff Cook entering data from his dive onto a central database in the dry lab.
Geoff Cook entering data from his dive onto a central database in the dry lab.

This evening our group had the chance to go for a night snorkel around the sea wall of Fort Jefferson. This use to be a fort during the civil war and in more recent years it has been a prison. The objective of the snorkel trip was to hopefully witness the coral spawn. Scientists’ observations indicate a strong connection between the coral spawn and seasonal lunar cycles. Though the polyp release cannot be guaranteed to happen on an exact date, approximately three to ten days after the full moon in late August, early September, the majority of corals in the Caribbean spawn in the late evening. Spawning is when the male and female polyps release their gametes (sperm and eggs). This synchronizing means that there is a greater chance of fertilization. Clues that spawning may take place are swelling that appears at the polyps mouth/anus, where the gametes are released from, as well as brittle stars and fire worms gathering in readiness for a feeding frenzy!

Clare Wagstaff barely visible behind two Caribbean Reef Squid. Photo courtesy of Mike Henley.
Clare Wagstaff barely visible behind two Caribbean Reef Squid. Photo courtesy of Mike Henley.

Unfortunately, we did not witness the spawning but we did observe a green moray eel, two Caribbean reef squid, a conch, a scorpion fish, and multiple sea urchins, sea stars, and moon jellyfish. Perhaps one of the most unusual sights of the night was witnessed on our way back to the dock after our snorkel. We observed a tree trunk covered in hundreds of hermit crabs, varying in size.  They made a horrible crunching sound as they climbed over each other on their way up the tree and as we accidentally stepped on them in the dark!

One of my lasting memories of the evening will be the night sky. It was the most brilliant picture I have ever seen. With no light pollution for miles and a clear evening sky, it made the most perfect picture. It looked like there wasn’t a clear inch in the sky for any more stars to fit in it. It was just beautiful and a great way to end the day!

 

Clare Wagstaff, September 12, 2009

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship Nancy Foster
September 11 – 18, 2009 

Mission: Florida Keys coral reef disease and condition survey
Geographical Area: Florida Keys – Dry Tortugas National Park
Date: Saturday, September 12, 2009

Contact Information 
Clare Wagstaff Sixth and Eighth Grade Science Teacher Elmwood Franklin School 104 New Amsterdam Ave Buffalo, NY 14216
cwagstaff@elmwoodfranklin.org

Weather Data from the Bridge (information taken at 12 noon) 
Weather: Sunny with scattered showers and thunderstorms
Visibility (nautical miles): 10
Wind Speed (knots): 10
Wave Height (feet): 2
Sea Water Temp (0C): 30
Air Temp (0C): 30

Science and Technology Log 

Mike Henley, Kathy Morrow and Dr. Joshua Voss, the survey team aboard NF4.
Mike Henley, Kathy Morrow and Dr. Joshua Voss, the survey team aboard NF4.

With another early start under our belts, the science team and I are up, breakfast eaten, briefed on today’s mission, and ready to embark on another day of coral surveying. The ship deployed three v-hulled small boats for us to reach our dive sites. The divers have been split up into three teams and I get to go along with Joshua, Kathy and Mike on the NF4. Out of the boats, this is the newest and fastest, much to the delight of our science team! Having done the practice run yesterday at the QA site, the divers seem keen and eager to get into the water and identify the coral.

So how do they actually survey the area? 

Each group works in a team of three, surveying a radial arc belt transect. Each of the sites has already been previously marked, normally with a large metal or PVC pipe inserted into the area to be surveyed.

Screen shot 2013-03-10 at 11.57.12 AM

Mike is the line tender, which means that his job is to hold the ten meter line straight out from the post, just a few feet above the coral. He slowly moves the line around the pole in an arc. The line is marked at eight and ten meters. At each of these lengths a short marker hangs down to signal the two-meter survey area. The objective is then for Kathy and Joshua to observe the coral and note the number of species of coral present, their size and how they interact with each other, while also recording the presence of disease (type and percentage cover) within the 113.1m2 area.

Screen shot 2013-03-10 at 11.58.01 AM

Chief Scientist, Scott Donahue showed me some of the months of paperwork that was required for this mission to happen. Scott stated that he started work on preparing for this trip nearly four years ago, first requesting time aboard the Nancy Foster and then proceeding with recruiting scientists and permits. Today we are required to have a ‘Scientific Research and Collecting Permit’ for the surveys in Dry Tortugas National Park.

Personal Log 

Survey team of Kathy Morrow (top, middle), Mike Henley (top, left) and Dr. Joshua Voss (bottom, right) surveying site LR6.
Survey team of Kathy Morrow (top, middle), Mike Henley (top, left) and Dr. Joshua Voss (bottom, right) surveying site LR6.

What a great day! I am starting to find my feet and get more comfortable with how the ship works, getting to know the science team, and learning more about the actual coral. I haven’t been sea sick, which seems pretty remarkable to me considering my past history with boats! The sun has been shining and the water is clear and reasonably warm at around 30 oC.

Even though the water may sound warm, I am still wearing my wetsuit, much to the amusement of some of the other divers who are complaining that they are too warm in the shorty wetsuits (only to the knee and elbow). I classify myself as part of the “wimp divers” association. I was quite content and comfortable in my 3mm, full body wetsuit and had hours of enjoyment snorkeling around. However, wearing a full wetsuit does let you forget that there are some parts of your body that still get exposed to sunlight. The tops of my hands are bright red and are nicely sunburned from being in the water most of the day with no sunscreen on them! Oh well, I’ll remember next time.

“Did You Know” 

Being a novice at coral identification, Blade Fire coral (Millepora complanta) looks similar to Fused Staghorn coral (Acropora prolifera). However, they are actually very different. Fire coral is a hydroid and is in fact more closely related to the Portuguese Man ‘O’ War than other classes of coral! Hydrozoans usually consist of small colonies of polyps that are packed with stinging cells called nematocysts on the tentacles of the polyps. Watch out though, it can give you a very nasty sting and rash!

For more information: http://www.reef.edu.au/asp_pages/secb.asp?FormNo=18 

“Animals Seen Today” 

Long-spined Urchin (Diadema antillarum) and Boulder star coral (Montastraea annularis)
Long-spined Urchin (Diadema antillarum) and Boulder star coral (Montastraea annularis)

The variety of marine wildlife observed was much greater today than previous dives. The dive sites were much shallower, which meant that as a snorkeler I could really observe much more and in more detail. At only eight to ten feet in depth and with good visibility, this made for a great and interesting dive. One of the science team commented that it was good to observe these echinoderms in the coral reefs. They eat algae that can negatively compete with the coral. So there presence is excellent news for the coral.

Clare Wagstaff, September 11, 2009

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship Nancy Foster
September 11 – 18, 2009 

Mission: Florida Keys coral reef disease and condition survey
Geographical Area: Florida Keys – Key West
Date: Saturday, September 11, 2009 (Day 1)

Contact Information 
Clare Wagstaff Sixth and Eighth Grade Science Teacher Elmwood Franklin School 104 New Amsterdam Ave Buffalo, NY 14216
cwagstaff@elmwoodfranklin.org

Weather Data from the Bridge (12 noon) 
Weather: Overcast early am and sunny pm
Visibility (nautical miles):  10
Wind Speed (knots):  2
Wave Height (feet): <1
Sea Water Temp (0C): 30.4
Air Temp (0C): 27.5

Science and Technology Log 

“The first few days are always a settling in period,” commented one of the scientists this morning. It seems as if there is so much to do and already there may not be enough time!  The majority of the science crew and I arrived yesterday afternoon into the warm and sunny Key West. A pleasant change to the cold, Autumnal weather I had been experiencing in Buffalo, NY. We boarded our new home for eight days, the NOAA ship Nancy Foster. The objective of the eight-day research cruise is to survey multiple preselected coral reef sites and study the coral for its condition and the presence of disease. The assessment of each dive site will be done by a group of NOAA qualified SCUBA divers who are also trained scientists, mainly marine biologists. This study has been performed for the last 13 years and has so far amassed a large quantity of data that has produced technical memorandums, peer review papers, and an EPA (Environmental Protection Agency) publication based on the data from cruises 1997 through to 2002 cruises.

I have been kindly invited along as a Teacher At Sea to witness the science team in action and serve as part of the project’s outreach messaging service. The objective is to give the general public a broader understanding of the cruise’s mission.

The science team on board the Nancy Foster is made up of the following people:

Scott Donahue – Chief Scientist NOAA’s Florida Keys National Marine Sanctuary Interesting Fact: Scott’s main inspiration to study lobsters early on in his academic research, was partially based on the fact that he loves to eat them! Scott commented that there are always a few lobsters leftover after a study, but that they never go to waste!

Geoff Cook – Co-Principal Investigator George Mason University, Virginia. Interesting fact: Geoff is currently writing his dissertation for his Ph.D. on comparing bacterial communities associated with diseased and apparently healthy corals.

Lauri MacLaughlin – Co-Principal Investigator NOAA’s Florida Keys National Marine Sanctuary Interesting Fact: Lauri has close to 2,000 dives logged and has personally mapped the majority of the coral reef sites this cruise is studying. She has a special rapport with the ocean and corals, knowing individual coral heads and jokingly referring to them as her “babies!”

Josh Voss, Ph.D. – Co-Principal Investigator Robertson Coral Reef Program 

Lonny Anderson – Survey Team Member NOAA’s Florida Keys National Marine Sanctuary, Florida. Interesting Fact: Lonny used to help his parents with their commercial spear fishing business, catching grouper and red snapper off Daytona Beach. Now Lonny is working to protect the things he used to kill!

Paul Chetirkin – Videographer Monterey Bay National Marine Sanctuary 

Mike Henley – Survey Team Member Smithsonian’s National Zoological Park, Washington D.C. Interesting Fact: Mike is interested in all invertebrates and will happily skip the panda bear exhibit at the zoo in preference to watching the cutle fish!

George Garrett – Survey Team Member City of Marathon 

Sarah Fangman – Cruise Dive Master and Survey Team Member NOAA’s Gray’s Reef National Marine Sanctuary 

Interesting Fact: Originally from Minnesota, as a young child Sarah went to the Grand Cayman on vacation. She became so captivated with the underwater life there that even when she got extremely sunburned she still wanted to snorkel and was only allowed to fully clothed! Sarah has also ventured 10,000 ft down in the submersible ALVIN in the Gulf of Mexico.

Kathy Morrow – Survey Team Member Auburn University, Alabama. Interesting Fact: Kathy is actually studying coral “snot” as part of her Ph.D. program. Strangely enough, she is extremely passionate about it and has had a great interest in marine biology since she went to Sea Camp in 6th grade!

Cory Walter – Survey Team Member Mote Marine Laboratory’s Tropical Research Lab, Florida. 

Day one begins with a 7am breakfast followed by a gear check and a brief meeting with the science team. The ships Operations Officer and Chief Scientist go over the day’s dive plan. The objective today is to ensure that all the divers are identifying the correct species of coral, correctly estimating their size, and identify any coral disease present.

The dive teams quickly collected all the necessary dive gear and prepared to board two small boats borrowed from the Florida Keys National Marine Sanctuary. These take us from the Nancy Foster to the shallower dive sites. The first location today is set within the Florida Keys Marine Sanctuary and is located near to one of the 5 lighthouses in the area that mark the shallow reefs. Certain areas have been marked off with buoys that signal a “No Take Zone”, where extractive activities are not allowed (e.g. fishing, collecting coral, catching lobsters).

Each of the dive sites that we will be surveying has a unique name. The sites to be surveyed were originally randomly generated by a computer program when the research first began in 1997. The first dive site we visit today is called Sand Key Reef also referred to as SK01. This is the location for QA/QC dive survey, which stands for quality assurance/quality control. The objective is for each diver to assess the same area of coral and identify each species over 10cm in diameter (except Agarica (all species) and Dichocoenia stokesii which are measured if they are over 5cm). This site is always used to establish a baseline in identification. Inter and intra quality assurance takes place, checking not only each diver against each other, but also against themselves by each diver repeating the surveying process of surveying this site twice.

Where are we? 

A map of the Florida Keys National Marine Sanctuary
A map of the Florida Keys National Marine Sanctuary

The Florida Keys is a chain of islands at the southern most tip of Florida. About 100,000 years ago the area was under the waters of the Atlantic Ocean and existed as a string of living coral reefs at the edge of the continental shelf. The sea level was 25 feet higher then than today. As the last glacier period (the Wisconsin) began, the ocean receded and the sea level dropped, exposing the coral reefs. The combination of various environmental factors killed the coral, but left bedrock of limestone exposed as land. As the climate and sea level changed over the preceding years, the lower elevation limestone has partially resubmerged and allowed living corals to attach and grow again, forming a new coral reef “highway”, 4 to 5 mile offshore. The science team will be surveying coral reef sites inside the Florida Keys National Marine Sanctuary and Dry Tortugas National Park.

Staghorn Coral (Acropora cervicornis), in the same family as the Elkhorn (Acropora palmata)
Staghorn Coral (Acropora cervicornis), in the same family as the Elkhorn (Acropora palmata)

On the third dive site for the day, Lauri MacLaughlin pointed out multiple Elkhorn Corals (Acropora palmata) whose appearance is just as its name suggests! Lauri noted that these were relatively young corals, perhaps just a few years old due to their size. She also stated that they had reproduced through sexual reproduction because there was no fragmentation of their flattened branches, which would happen in asexual reproduction. This coral is on the United States Endangered Species list and classified as threatened.

Because we departed early this morning on board the sanctuary boats, the science team missed the safety drills that are performed within 24 hours of each ship departing port. Instead the Operations Officer, Abigail Higgins gave us a run down of the safety procedures. We were also required to try on our survival emersion suits.

Personal Log 

The science team and Teacher at Sea, Clare Wagstaff (right) in their survival suits
The science team and Teacher at Sea, Clare Wagstaff in their survival suits

Well here I am at last! My second attempt at being a NOAA Teacher At Sea! In May of 2008 I was on board the JOHN COBB studying harbor seals when the engine crankshaft broke just a few days into the mission. The JOHN COBB was not only the smallest, but also the oldest ship in NOAA’s fleet. With a crew of just eight, everyone knew each other well and lived in very close proximity. However, the NANCY FOSTER is very different. At 187ft in length it is nearly doubles the size of the JOHN COBB. In fact, the NANCY FOSTER has it beaten on almost all fronts regarding scale. Built originally as a Navy yard torpedo test (YTT) craft, she was outfitted in 2001, to conduct a variety of oceanic studies along the U.S. Atlantic and Gulf coasts and within the Caribbean Sea. It is crewed by 21 people and can accommodate 15 scientists. It seems quite strange to be at sea again on a NOAA ship, but in such very different circumstances. I keep comparing it to the JOHN COBB and I still feel a little sad that I was on the JOHN COBB’s last mission before it was decommissioned.

I am sharing the smallest room with one of the ships crew, Jody Edmond.  Jody is a Mate in Training. It is a simple, yet comfortable room, with two bunks, a small wardrobe, a desk and a sink. However, for two people to both standup in the same space let a lone get dressed or brush your teeth, it is very difficult due to the cramped conditions! Jody is living on the boat full time and so has a lot more “stuff” than I, so I am trying very hard not to take up too much room. Because the ship needs to be constantly manned 24 hours a day, the crew on the bridge is on a shift system working 12-4 (am and pm), 4-8 (am and pm), or 8-12 (am and pm). Some of the crew even work a schedule of 12 hours on and then 12 hours off, a pretty long day! Jody is on the 12-4 shift, which means during the majority of the time I am a wake she is sleeping. This isn’t uncommon so everyone on the ship has to be respectful of the noise level and keep relatively quiet during all hours of the day near the sleeping berth areas.

One of the many barracuda that would circle around snorkelers
One of the many barracuda that would circle around snorkelers

Unfortunately, although I am a qualified NAUI (National Association of Underwater Instructors) scuba diver, I am not certified by NOAA (National Oceanic and Atmospheric Administration) to dive. This means that during the dives I will only be able to snorkel and so I must watch from above what the scientists are doing below. I thought this would lead to some frustration on my part, as I would love to be working side by side with the science team 30 feet below the surface.

However, while the divers survey the area, I snorkel around on the surface watching them. I am not alone though! I am surrounded by moon jellyfish and one rather large barracuda that seemed to take quite a liking to me. I am very careful to avoid swimming into the jellyfish, which can cause a nasty sting and keep my hands close to my body incase the barracuda thinks my fingers might be dinner!

“New Term/Phrase/Word” Hyperplasia – is a general term referring to the proliferation of cells within an organ or tissue beyond that which is ordinarily seen. This can be seen in coral species such as symmetrical brain coral (Diploria strigosa). Geoff Cook described this as a coral looking like Arnold Schwarzenegger or a coral having Botox!

A brain coral
A brain coral

Coral Mucus or “coral snot”– secreted by the coral. When too much dirt (sediment) collects on the sticky mucus layer, the coral sloughs it off and makes a new one, acting as a replaceable defense mechanism. Some corals also use it to catch food and it is loaded with microbes, not unlike our skin.

“Who are they?”

Florida Keys National Marine Sanctuary 
Established in 1990 it was done so to protect a spectacular marine ecosystem. It encompasses 2,800 square miles. It is the only sanctuary that completely surrounds a community, that of all the Florida Keys.

NOAA 
National Oceanic and Atmospheric Administration Formed in 1970, it is a Federal agency focused on the conditions of the oceans and the atmosphere. It encompasses, daily weather forecasts, severe storm warnings and climate monitoring to fisheries management, coastal restoration and supporting marine commerce.

 “Did You Know?” Key West got its name after the Spanish conquistadores reportedly found a beach in the southern most islands stern with the bleached bones of the Native Americans. They called the key, Cayo Hueso (pronounced KY-o WAY-so) or “Island of bones”. Bahamian settlers pronounced the Spanish name as Key West!

Flamingo Tongue on a common sea fan (Gorgonia ventalina)
Flamingo Tongue on a common sea fan (Gorgonia ventalina)

“Animals Seen Today” 

Among many different species of coral and other animals, was a personal favorite of mine Flamingo Tongues. These are a variety of snail that are predators that feed on gorgonians (sea fans). 

Clare Wagstaff, June 9, 2008

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship John N. Cobb
June 1-14, 2008

Mission: Harbor seal pupping phenology and critical habitat study
Geographical Area: Southeast Alaska
Date: June 9, 2008

CO of the COBB and a NOAA diver heading down to explore the hull of the  COBB. They took knifes with them expecting to find netting caught, but no such luck.
Divers heading down to explore the hull of the COBB. They took knifes with them expecting to find netting caught, but no such luck.

Final Log 

I write this last log sat at the dinning table in the galley of the JOHN N. COBB. The last few days have been difficult here on the ship. Unfortunately the mechanical difficulties that the vessel suffered on June 3, have proven to be a little more serious than was originally hoped. The initial diagnosis was of some sort of obstruction, probably fishing line from a trawler, caught in the propeller. After the final leg of our journey, being towed by a much larger NOAA ship, the Rainier, and then finally the last mile by a tug boat, the COBB limped into port in Juneau. Here, the CO and two experienced NOAA divers explored the hull of the ship but unfortunately found nothing obviously wrong to report. With external problems to the ship ruled out, the crew looked internally into the ship’s engine. The engine on the COBB is 59 years old. Similar types where used in the past in trains and submarines. This engine is massive, about 20ft long by 4ft wide. In fact the ship was actually built around the engine, meaning any serious problems with it are extremely difficult to get to and fix. After closer inspection by Sam and Joe, the COBB’s engineers, they discovered that the crankshaft had a large fracture in it. With only two engines of this type known to still be in use, the COBB being one of them, finding a spare crankshaft to replace it is likely to be difficult. It seems as if the COBB may have sailed for the last time under her own power.

A huge crack in the crankshaft, which is essential as it connects all the cylinders of the engine together and makes them rotate.
A huge crack in the crankshaft, which connects all the cylinders of the engine and makes them rotate.

One of the biggest aspects of our cruise was meant to be the last week: studying the haulout sites in two large glacial areas in Tracy Arm and Endicott Arm. With the COBB out of action, I decided to jump onboard a tourist cruise that took a small group of us to the Tracy Arm fjord. It has two picturesque tidewater glaciers are set at the end of this long fjord. Along the journey down the fjord, the step cliff face rises vertically out of the water.  The captain maneuvers the small boat around massive icebergs, with the thought of the Titanic always in the back of my head, I am pleased he goes so slowly. These massive chunks of ice that have broken off a glacier and can float for many miles down stream and out to open water. They can be made of ice, possibly a thousand years old, and are very impressive floating ice blocks with an intense, bright blue color. Light is made up of many colors, all blended together. When light hits an object, some of its colors are absorbed, while others pass through it. Which colors are absorbed depends on the composition of the object: what it is made up of. In this case, the densely packed ice is thick and absorbs red and yellow light, leaving only blue light to be seen. Thinner ice appears white as all light passes through it.

A massive floating iceberg located in Tracy Arm fjord.
A massive iceberg located in Tracy Arm fjord.

As we got closer to the North Sawyer glacier: seal pups galore! It seemed every direction I looked there was a mother and her pup! Dave had spoken about this area to me and pointed out things to look for. Some distance off from our boat, I could see two juvenile bald eagles sat on the ice in very close proximately to a larger seal. Apparently the afterbirth leaves pinkish / red stains visible on the ice, is a tasty meal for these birds, and they were sat there waiting for the opportune moment to enjoy it! There was though one seal that stood out for all the hundred of others. This seal had a transmitter attached to the top of his head and what I later found out to be, a heart rate monitor around its chest! The seal did look a very strange sight and was easily spooked back into the safety of the water. Earlier this season, Dave had been helping the Alaskan Fish and Game department tag seals in the Endicott Arm area, some 40 miles from here so this seal had traveled some distance. The transmitter attached to its head relays information of its location and details from its heart rate monitor. Measuring the heart rate of the seal is used to study the stress placed on the animal in regards to cruise boats and their close proximity. A seal under stress will expel more energy as it swims away from the danger. Being in the water also means that more energy is expelled in thermoregulation to maintain its body temperature. From this sighting Dave was able to report back to the Fish and Game department that this seal had been spotted, alive and well!

Just one group of many of the seals present in Tracy Arm.
Just one of many of the seals in Tracy Arm.

Although this seal did look quite funny to the human observers, it should think it lucky that it was just a little bigger; otherwise a video camera would have been attached too! Not to worry though. As the seal molts, as they do each year, the transmitter and heart rate monitor, which is glued onto the seal’s fur, will come off! While the boat was sat stationary in the water near the South Sawyer glacier, there was a loud cracking sound. This signaled a carving of the ice from the face of the glacier. It sent ice crashing into the water with some force and in turn a wave was created that sent our boat rocking. Over the 45 minutes we were there, this braking up of the glacial ice happened four times. Looking out to the seals on the ice in this area, I wondered why they would stay on the ice so close to where this was happening, as it couldn’t be a pleasant ride with all the rocking. As it happens, these seals love this area, for exactly that reason. As the ice hits the water, it mixes the water below, sending the seal’s food source such as shrimp, closer to the surface. Basically the carving action brings dinner just one step closer to them – buffet service with a great view!

A tagged harbor seal with a transmitter attached to its head and a heart rate monitor to its chest.
A tagged harbor seal with a transmitter on its head and a heart rate monitor on its chest.

I have had just the best time onboard the JOHN N. COBB. Although my cruise was much shorter than I had expected, I saw many wonderful things that I had never done so before. I think that if you have to be stranded anywhere for a week, Alaska seems like a pretty good option to me!

Teacher at Sea, Clare Wagstaff in front of South Sawyer glacier.
Teacher at Sea, Clare Wagstaff in front of South Sawyer glacier.

Clare Wagstaff, June 5, 2008

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship John N. Cobb
June 1-14, 2008

Mission: Harbor seal pupping phenology and critical habitat study
Geographical Area: Southeast Alaska
Date: June 5, 2008

NOAA Teacher At Sea Clare Wagstaff, Jon and Dave getting ready to depart the COBB in the JC-1.
NOAA TAS Clare Wagstaff, Jon and Dave getting ready to depart the COBB

Weather Data from the Bridge 
Weather: Overcast
Visibility (nautical miles): 10
Wind Speed (knots): 6
Wave Height (feet): 0
Sea Water Temp (0C): 8.8
Air Temp (0C): 11

Science and Technology Log 

We are still anchored just outside of the native Alaskan village of Kake. Apparently another NOAA ship, the Rainier, is on its way to tug us back to Juneau late tonight. There was good news though! Dave knew of some haulout sites that he had observed and recorded data from in 2004. They were within approximately seven miles of where John N. COBB was located. So once again, we boarded the JC-1 and off we went!

Equipment on the Skiff 
The skiff is only a small-motorized boat but it can safely carry seven people and is essential in getting scientists to places unreachable by the COBB. The JC-1 is equipped with GPS, which also includes a Fathometer and depth gauge. Other basic equipment includes a magnetic compass and tachometer. Essential to any mission in the skiff is a console mounted and handheld radio so that we can stay in communication with the COBB. The operator of the skiff is required to have radio contact with the ship every hour and state our location for safety reasons. Flares, line bags and a first aid kit, all mean that our expeditions out on the JC-1 should be safe and enjoyable!

Seal Observations    
Although we saw lots of seals today, none of them from a distance of less than 200 meters. It seems these seals where much more skittish than at other areas we had previously visited and for good reason. Today’s haulout sites were within a few miles of a local village. Here, native Alaskan’s are still allowed to hunt seals. The seals we observed today seemed fully aware of their possible fate if they allowed us to get to close. On a more positive note, I am getting better at making estimates of numbers from a distance and spotting the pups in a large group. When they retreat to the water it is quite easy to spot mother and pup, as they tend to be very close together, with one head much larger than the other!

Harbor seals near Kake.
Harbor seals near Kake.

Recording the Data 

Dave Withrow uses the GPS to record new sites as well as plot routes to old sites.
Dave Withrow uses the GPS to record new sites as well as plot routes to old sites.

So what happens to all the data that we collect out at sea? Dave processes all the results we collect into a spreadsheet. Here the data is organized by ‘waypoint’ (name of location and/or latitude and longitude); it also displays the number of adult seals and pups, a long with environmental data such as tide height. Through some fancy GPS work, Dave can also record and download the route we took in the skiff, our speed and time. Plotting all this information together, gives a clear picture of patterns in the results collected. With his digital camera, Dave can also download the photos he has taken of the seals and through the wonders of modern technology synchronized them with the GPS information. This then links pictures taken at a specific site electronically to the recorded data.

In the past five years of this study, the proportion of adult seals present with a pup has remained approximately the same: 25% on rock substrate and approximately 70% on ice. Unfortunately because we have been unable to study many sites this season, the data we collected is inconclusive. However, with the effects of global climate change it seems unlikely that these percentages, particularly of pups on ice haulout sites, will continue to be as high. Adding to this data over the preceding years seems an absolute necessity for scientists to get a greater picture of the harbor seal population and its relating habitat.

A sea squirt? I will have to look it up when I get home.
A sea squirt? I will have to look it up when I get home.

Personal Log 

For the first time on the COBB, I slept through the night and well past my usual 04:00! I think I am starting to get used to this way of life. The crew on board the ship are light hearted, yet committed to their jobs: a good combination to be around onboard a ship like the COBB. Yet being stuck in Kake is really frustrating. Breaking down out at sea is not quite the same as doing it in a car: things take a lot longer to happen out here! Knowing that I will probably not get to see the glaciers, being so close is pretty heartbreaking. I’m keeping my fingers, toes and anything else crossed that the COBB gets fixed and ASAP!

“Animals Seen Today” 

While Dave and I were exploring the tidal pools on one of the small islands around Kake, we found this interesting creature. Partially buried in water, Dave dug it out to expose a rather funny shaped animal that ejected water from one end!

The bald eagle, majestic and beautiful!
The bald eagle, majestic and beautiful! 

Clare Wagstaff, June 4, 2008

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship John N. Cobb
June 1-14, 2008

Mission: Harbor seal pupping phenology and critical habitat study
Geographical Area: Southeast Alaska
Date: June 4, 2008

Weather Data from the Bridge (information taken at 1200) 
Weather: Overcast and light rain
Visibility (nautical miles): 10
Wind Speed (knots): 16
Wave Height (feet): 1 – 2
Sea Water Temp (0C): 8.2
Air Temp (0C): 12

Day 4 

Oh what a rough night! Our anchor site was in a rather exposed channel just east of Warren Island and the ship was definitely rolling. So much so, I found the best way to secure myself in bed was to wedge my body in between the mattress and the woodened bed frame! At approximately 02:00 this morning the U.S. Coast Guard (USCG) cutter, the Anacapa, arrived from Juneau to tow us part of the way back to port. The USCG boarded the 250-ton COBB around sunrise and secured a towing line for the long return journey.

USCG Cutter Anacapa. It towed us from Warren Channel (55054’N 133049’W) to Kake (56057’N 133056’), 90 nautical miles to Juneau!
USCG Cutter Anacapa. It towed us from Warren Channel to Kake, 90 nm to Juneau!

Disappointed that this might signal the end of the cruise, Dave and I were left with little to do but read, listen to music and partake in a few hours of whale watching as the Anacapa pulled us along at approximately seven knots. At around 18:00 the USCG left us for another mission and the COBB was once again anchored down for the night near the small town of Kake. From the ship this native Alaskan town appears very small and quite rundown, although I did see a very new looking building that said ‘High School’ on it. Now once again stranded, the responsibility falls on the CO and XO to find us another tow the last 90 nautical miles back to Juneau. But with tugboats in the area all already with a full schedule and being astonishingly expensive, it seems unlikely that the journey home will be a quick or cheap one! However, the crew and I do get cell phone reception here, so all is not lost. A quick phone call back to our loved ones helps us all feel a little better about the day’s events.

Science and Technology Log – Whale Identification 

Although Dave and I were not able to venture out in the skiff today, I was able to observe, at a great distance, a number of humpback whales. But identification of these marine mammals is not as easy as it seems. Whales are mammals in the order Cetacea, along with dolphins and porpoises. Cetaceans spend their entire life in water: feeding, mating, giving birth and raising their young in this aquatic environment. They have adapted to breathe through a blowhole on the top of the head. The species we will most commonly observe during our cruise fall into two suborders: toothed whales (Odontoceti) and baleen whales (Mysticeti).

For the huge mass that a whale occupies, rarely do you see the majority of its body for identification. To accurately identify the correct species you need to make a number of observations regarding three main areas. Identification starts with observations of the whale’s blow (expelled air), in regards to the shape, height and angle. Baleen whales have two nostrils and toothed whales have one, which influence the pattern created by the blow. If observed head on, this is a simple way to distinguish between the two suborders. So far on this cruise though our observations have been from such a great distance away (minimum of half a mile away) that it has been difficult for me, a beginner, to make any accurate observations.

Screen shot 2013-04-19 at 9.01.39 PM

The next observation to make is of a whale’s dorsal fin that is located on its back and displayed, if present, when it surfaces and/or dives. If present, its size, shape and location should be recorded. The last basic observation is of a whale’s fluke and its shape. The most common whale seen in the southeast Alaska is the humpback. Protected from commercial harvest since 1966, it is still endangered and so seeing it is a very special occurrence. A humpback whale’s general characteristics are a two-nostril blow that is generally broad and bushy. It normally blows between four and ten times before diving. The dorsal fin is exposed as it blows but it is small in comparison to the rest of its body mass and located two thirds of the way along its back. Finally, its broad flukes tend to exhibit an irregular trailing edge and are displayed as it dives. The markings displayed on the whale’s fluke are unique to the individual, like that of a fingerprint, and allow scientists to track individual whale through sightings. Of course this is over simplifying things, but it gives me as a beginner a place to start!

“Did You Know” 

The Northern Right whale was named the ‘right’ whale by commercial whalers because it was easily approached, floats when killed, and is rich in oil. Today it is endangered and protected since 1935. Estimates suggest the population in the Alaska region could be as low as 100-200 individuals.

Clare Wagstaff, June 3, 2008

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship John N. Cobb
June 1-14, 2008

Mission: Harbor seal pupping phenology and critical habitat study
Geographical Area: Southeast Alaska
Date: June 3, 2008

Weather Data from the Bridge (information taken at 1200) 
Weather: Overcast
Visibility (nautical miles): 10
Wind Speed (knots): 12
Wave Height (feet): 3
Sea Water Temp (0C): 8
Air Temp (0C): 10.5

Setting off in the JC-1 skiff for a morning of harbor seal observations.
Setting off for a morning of seal observations.

Science and Technology Log 

This morning Skilled Fisherman (Mills), Dave and I headed out at low tide to explore an area called Big Port Walter. This is located in the next bay over from Little Port Walter where the COBB had docked for the night. Dave had not explored this area before and so he was keen to see if there were any new locations he could record. Sure enough, not long into the ride in the skiff, we came across a rocky reef and a group of harbor seals. Carefully, Mills brought the skiff around to the opposite side of the small island for us to disembark and walk gingerly over the slippery rocks covered with kelp and algae to get a closer look at these beautiful mammals. We were careful to keep a low profile and not make any large silhouettes that could alert them to our presence.

Identifying a Harbor Seal 

The question is, who is watching whom? Seals are mammals and so have hair covering their bodies. The underbelly of the seals pictured appears still wet, but their backs have dried in the sun and so appear more fur like
The question is, who is watching whom? Seals are mammals and so have hair covering their bodies. The underbelly of the seals pictured appears still wet, but their backs have dried in the sun and so appear more fur like

The similarities between the Alaskan Pinniped species can make the initial positive identification of a harbor seal (Phoca vitulina) challenging to the untrained eye. In the locations we are studying on this cruise the only seal species likely to be encountered is the harbor seal. However, these seals still have relatives that look very similar to them. Harbor seals, sea otters, California sea lion and Steller (Northern) sea lion are all carnivorous mammals in the suborder Pinnipedia. These animals have developed adaptations for deep diving, swimming, thermoregulation, water conservation and great sensory adaptations and can be easily misjudged in the water for one another.

So how can we tell them apart? Sea lions have external ear flaps (these are absent in seals) and use their long front flippers for propulsion. Otters are generally smaller and spend a large proportion of their time floating on their backs. A seal though does not do this, has shorter front flippers and is not as agile on land. Their appearance reminds me of an over inflated sausage-shaped balloon! Graceful underwater, they struggle and look awkward on land. Dave informed me that both the male and female harbor seals appear the same size and shape, making it difficult to tell them apart. Today I observed a variety of different colors of fur, ranging from nearly all white through to nearly all black. The fur markings also vary. Spots, rings, and blotches are common variations. These colorations and fur patterns of a seal are believed to be quite random. A mother lighter and more spotted in pattern does not guarantee an offspring of the same appearance. To date, I have only observed one pup, although Dave, with his keen eyes and experience, has recorded quite a few. Pups have no obvious markings to identify them by. However, they are smaller and will be generally located next to its larger mother, possibly even suckling. Although seals tend to haul out in large groups for safety, the mothers of particular young pups may be located towards the edge of the crowd.

The disused factory in Large Port Walter.
The disused factory in Large Port Walter.

Further Exploring 

We recorded a total of 17 seals and three possible pups this morning but our exploration didn’t end there! Further down into the bay we came across an old abandoned salting or canning factory probably for Herring, estimated to be from around the 1950’s. Broken down and severely rusting from the extreme elements and the effects of saltwater, it looks like something from a sci-fi movie! Its location here was probably due to the ready supply of fresh water from the impressive waterfalls and fast running stream close by. Its sheltered location probably protected it from the bigger storms and the deep water of the bay would have meant larger ships could have transported goods easily to and from it. 

NOAA Teacher At Sea, Clare Wagstaff, in her survival suit on the beach at Lovers Cove, Big Port Walter.
NOAA Teacher At Sea, Clare Wagstaff, in her survival suit on the beach at Lovers Cove, Big Port Walter.

Personal Log 

Today has been full of highs and lows. Seeing my first group of seals up close was something magical! Although we only observed them for approximately ten minutes, to see them so close and in the wild was amazing. Each seal seemed to have a personality. One scratching its face, another making grunting noises at another seal that appeared to be too close. As Dave and I sat there, it became obvious that a few of the seals were aware of our presence, their heads poking up looking at us. It made me wonder, who was really studying whom?!

Disaster on the COBB! 

Unfortunately, the rest of the COBB’s day was not so successful. Around 17:00 hours the crew heard a loud gratering sound coming from the ship as we were making our way to San Fernando Island. According to CO Chad Cary, a propulsion casualty has left us now anchored near Warren Island (550 54’N 1330 49’W) and the US Coast Guard is in transit to tow us part of the way back to Juneau. Hopefully, there a dive team will be able to assess the damage to the ship. If the damage is minor and easily repairable, then we will resume the mission focusing on last leg of the planned trip, the glacier area. But things aren’t looking too hopeful and we will probably be docked back in Juneau for sometime. Selfishly I don’t want to go home yet. There is so much to see here that three days is not enough! Looks like tomorrow will be a long day. 

Clare Wagstaff, June 2, 2008

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship John N. Cobb
June 1-14, 2008

Mission: Harbor seal pupping phenology and critical habitat study
Geographical Area: Southeast Alaska
Date: June 2, 2008

Weather Data from the Bridge 
Weather: Overcast
Visibility (nautical miles): 10
Wind Speed (knots): 12
Wave Height (feet): 1
Sea Water Temp (0C): 7
Air Temp (0C): 10.5

Science and Technology Log 

Late last night the JOHN N. COBB reached our anchor site at Tebenkof Bay (56O 23’N 134O 10’W). Situated just off the southern end of Chaptam Straight, the gentle rocking of the boat and the dull drone of the ship’s engine and generator had sent me off to sleep very quickly the night before. Keen to start the day though, and with the early morning sun shining in through my room’s porthole, I got up to a hearty breakfast and made ready to depart the COBB for a day of exploring. Around 06:30 the Chief Bosun (Joe), Dave, and I boarded the small skiff, referred to as the JC-1. The objective was to go visit known seal haulout sites that Dave had visited the year before. At each site the aim was to count the number of harbor seals present focusing particularly on the number of pups.

Equipment Required 

All of us on the JC-1 were dressed in cold weather and rain gear, even though it appeared to be a nice day, rain is always likely around this area! Dave kindly lent me his insulated Mustang survival gear to wear and I was very grateful! For conducting his research, Dave has certain pieces of equipment that he always brings when observing seals. To find the location of a known haulout site or to record the location of a newly discovered one, he has a handheld GPS that can accurately log coordinates. To observe the seals more closely Dave uses a pair of gyro-stabilized binoculars. These are essential as being on the water for most observations means the images produced through these binoculars are much clearer not as wobbly. For safety reasons, he also carries a satellite phone in case of emergencies and an PEPIRB in case of emergencies. A PEPIRB or Personal Epirb is a device that when activated, immediately notifies the US Coast Guard of your exact position by satellite. The data Dave collects is recorded on site in a waterproof notepad and through photographs that he regularly takes of the animals he observes.

An Ideal Site? 

The harbor seals typically haul out at low tide and seem to prefer sunny and warmer periods during the day, roughly between 11:00 and 16:00 hours. Unfortunately today, because of the tide cycle we were venturing out as the tide was gradually rising and much earlier in the day then is optimal to see the seals on land. However, there were a few seals present but their numbers were greatly reduced when compared to last year’s data. Dave did not seem overly concerned though because of the time of day we were making the counts. What was surprising was that certain sites we past looked like ideal locations for the seals to haulout on to. Seals like a variety of substrate (rock or sand), a reef with a steep drop off into the water, wind speed not above 35-40mph and good visibility to be able to see predators. We saw a number of sites that fit this description but there was a distinct lack of seals to be found at them, with no real explanation why. Researchers still have more to learn about seals and hopefully this cruise will add more data to help understand their behavior and choices.

Sea otters around Tebenkof Bay. Note the female in the center of the photograph carrying a baby on her stomach
Sea otters around Tebenkof Bay. The female in the center of the photograph carryies a baby on her stomach

Sea Otters 

One of the most interesting animals we observed today was a large number of sea otters. The otters regularly haul themselves out on to the rocks, like seals do, and seem to frequently be in the same area as the seals. While watching them in the water, a large number of the females were floating or swimming with a youngster on their stomachs! Otters, unlike seals, have little insulation so this technique demonstrated could be a method to protect the young from the elements and keep them safe near the parent. The key to making good observations of any of these wild animals is to approach them slowly and avoiding doing so head on. As we got closer, Jon would switch off the engine so as not to frighten or startle them. Unfortunately, when they do feel threaten, both the sea otters and harbor seals retreat back into the water. This happened on a number of occasions when we got a little too close for their comfort. This obviously makes the observations, identification and assessment of population numbers more challenging.

The entrance to Little Port Walter harbor. The ‘White House’ is where the researchers and seasonal workers live. Photograph courtesy of Dave Withrow.
The entrance to Little Port Walter harbor. The ‘White House’ is where the researchers and seasonal workers live.

Biological Field Station – Little Port Walter 

After approximately two and a half hours of observations we returned back to the COBB. The ship then set course for Little Port Walter, a NOAA Biological Field Station. It is a remote location but manned all year round. “Our nearest neighbors are only six miles away,” comments caretaker, Brad Weinlaeder. Access to this area is via boat or seaplane, so when the COBB docks here with a shipment, possibly four or five times a year, it receives a welcoming reception. Set in a beautiful bay off Chatham Strait, the residents say it gets the most rain anywhere in North America: and it is not hard to believe as a downpour starts as we arrive! The beautiful temperature rainforest around the bay is thanks to the plentiful rainfall it receives each year. But there’s a reason to have a research station in this location, and that reason is salmon. Each year the hatchery on site breeds a variety of fish for release into the wild, the most recent fish to be released where king salmon.

Tagging a Fish 

Brad Weinlaeder showing the incubation trays for the salmon eggs at the Biological Field Station at Little Port Walter.
Brad Weinlaeder showing the incubation trays for the salmon eggs at the Biological Field Station at Little Port Walter.

Although king salmon are not native to this particular section of water (the water is not cold enough), being the biggest and most rare specie of salmon gives them reasons to be studied. The eggs and sperm are collected from trapped king salmon when they reach sexual maturity and return to Little Port Walter, four to five years later. The fertilized eggs, the size of a pearl, are then incubated in early August for nine months until they are released. Unfortunately, that means that we had missed their release by just a few weeks. The process of producing these fish requires a variety of steps including identifying the fish by visual methods and internal tagging. The adipose fin (located between the dorsal and caudal fin) is simply cut off before the captive bred fish is released. Apparently this does not give the fish a survival disadvantage, but is a visual sign that it has been bred in captivity. Each fish released from the hatchery also has a small, stainless steal, identification tag placed in its nose.

When this fish returns to Little Port Walter at sexual maturity, the fish is collected and the tag removed. So small is this tag that that Brad comments, “it’s like trying to find a needle in a hay stack!” Yet this tag gives vital background information about the fish that is then used in selecting the best fish to breed with. Unfortunately removing the tag is fatally invasive. There are other methods for tracking fish that would allow it to survive such as using a small microchip, just like the ones used in identifying cats and dogs today. However, at ten times the price and requiring much more precision to insert it into the fish, is not a practical option on a large scale here. Especially as the fish are caught on their return migration and are already in the last stages of life. Held in giant fresh water tanks, the king salmon matures on a high protein pellet diet that not only they like, but so does the local bear population. It is common practice around Little Port Walter to carry a gun with rubber bullets. A wide shot fired is hopefully just enough to scare them away! This year the hatchery released 214,000 king salmon out into the wild. With an average 3% survival rate, only 1.5% will make it through their four to five year life span to return back to Little Port Walter. Fishermen will catch the other 1.5%.

Other Research 

There is a great deal of other research going on here at Little Port Walter. Currently in progress is the study of rockfish and their preferred habitat substrate in relation to predation. In the past scientists have also studied slug migration and tree ring analysis for the presence of iodine as it relates to fish populations. What makes this marine research station so important is that it has data going back to 1936, when it first opened. Researcher’s come from thousands of miles to compare what they find, to data that is already known and recorded here at Little Port Walter. Pretty fascinating stuff!

View of the hatchery where the salmon are placed when they are approximately 5-6cm long. Here they are fed and fresh water from upstream constantly flows into these holding tanks.
The hatchery where the salmon are when they are approximately 5-6cm long. They are fed and fresh water from upstream constantly flows into the holding tanks.

Personal Log 

Unfortunately, today was the day I experienced by first bout of sea-sickness! I had begun to feel that I had got my ‘sea legs’. But I had spoken too soon! After returning from our morning of observations, the COBB departed for Little Port Walter. In the late morning the ship began to cross Chatham Straight. The COBB was hitting 4-6ft high waves and crossing them at an angle called courtering. This means that the boat was yawing, which is a combination of a pitching motion (see-saw action) and rolling (side to side), basically bobbing around like a cork! As the motion got stronger, my stomach got weaker and I ended up out on the starboard deck trying to look at the horizon and stop feeling ill. Thankfully though the effects wore off quickly as the ship’s ride became smoother. Hopefully the rest of the cruise will be smoother!

Question of the Day for Miss Wagstaff’s Science Class 

Research in the field can be very different to research done in a laboratory at school. From the description written above about today’s seal study, try to think about the ways they differ. Consider such factors as time, variables, data collection etc.

Clare Wagstaff, June 1, 2008

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship John N. Cobb
June 1-14, 2008

Mission: Harbor seal pupping phenology and critical habitat study
Geographical Area: Southeast Alaska
Date: June 1, 2008

Weather Data from the Bridge (information taken at 1200) 
Weather: Overcast
Visibility (nautical miles): 10
Wind Speed (knots): 15
Wave Height (feet): 1
Sea Water Temp (0C): 13.4
Air Temp (0C): 11.3

Science and Technology Log 

The first morning on the JOHN N. COBB started early. I am a little apprehensive about the cruise. I have never been on a ship for any great length of time, so this will truly be a test of my sea fairing legs! Today will be a full day of traveling to Tebenkof Bay, situated south of Juneau it is reached by traveling down Stephen’s Passage and through part of Chatham Straight. The COBB travels at maximum of ten knots an hour. The wind, currents, sea conditions, the ship’s hull speed and horsepower can all affect this speed. This means that it will take us approximately 13 hours to reach our destination. My stateroom is located on the main deck and is next to the galley (the kitchen). Here three hearty meals are produced each day for the crew. The ship has three decks, with sleeping quarters spread out over all the levels. The crew generally works in rotation with six hours on, six hours off, to maintain the COBB. This requires all aboard the ship to be considerate of others sleeping at any hour of the day or night. The amenities on the ship are basic but comfortable and include two toilets (called the ‘head’), and a shower. The COBB carries all the water it requires for the entire two weeks cruise, so water conservation is a high priority. No long showers for anyone! On the upper deck is the bridge. It is here that the Commanding Officer (referred to as the CO or Captain) and Executive Officer (XO) control the vessel.

The JOHN N. COBB Crew 

Screen shot 2013-04-19 at 8.57.48 PMChad Cary, Commanding Officer (CO) 

Has authority over all embarked personnel and employees whenever aboard ship. Chad has been ‘Captain’ of the JOHN N. COBB for just over two years and is also the Safety Officer, so he has a lot of responsibility. He has a science background with a degree in Environmental Science and a Masters in Geography. Chad states that being away from his home and family is the hardest part of the job, especially as he is about to become a father for the first time very soon!

Screen shot 2013-04-19 at 8.57.55 PMJesse Stark, Acting Executive Officer (XO) 

Second in command to the CO and has primarily administrative duties. Jesses has 20 years of experience working on fishing vessels and ferries. He has a degree in Wildlife Management and thinks the one of the best aspects of the job is having the open water as his office.

Screen shot 2013-04-19 at 8.58.01 PMBill Lamoureux, Chief Steward (CS) 

Responsible for provisioning, feeding and berthing of the ship. Bill has worked for many years onboard a variety of vessels, including an Alaskan king crab ship further north. Bill always provides a feast for all those aboard and his homemade soups each lunch are legendary.

wagstaff_log2cMills Dunlop, Skilled Fisherman 

Participates in any required onboard activities necessary to complete the ships mission. Deploying and retrieving of equipment and personnel. This is Mills’ first season aboard the COBB, but he has been raised on the water all his life. With a witty personality, Mills comments that being on the water is both the most enjoyable and worst aspect about being a crewmember!

wagstaff_log2dDave Taylor, Fisherman 

Participates in any required activities necessary to complete the ship’s mission. Dave is in his second season working on the COBB. The biggest advantage to working at sea is his constant access to his favorite past time, fishing! In fact last year Dave caught an 110lb halibut off this ship!

wagstaff_log2eDave Withrow, Chief Scientist  

Shares the response with the Commanding Officer for the success of the mission. Dave has many years experience in research, having a degree in fisheries and psychology, he completed graduate work on Steller sea loins and was also as a killer whale trainer at an aquarium in Washington State. Dave has many fascinating stories about his research adventures: he needs to write a book!

Safety Is the Top Priority! A safety drill is required to take place within the first 24 hours at sea for “Abandon Ship” and “Fire”. Abandon ship is signaled by seven or more short blasts, then one long blast on the ship’s whistle, followed the announcement to abandon ship. The procedure in this instance is to report to your assigned life raft on the bridge deck. You should be wearing long sleeves, gloves and a hat, and bring with you your survival suit. This bright orange suit can protect a crewmember in the cold Alaskan waters for up to three days. In addition to aiding as a floatation device and protection from the cold, its bright orange color and strobe light gives the person wearing it, in the case of an emergency, the ability to survive in the harshest of conditions until rescued.

wagstaff_log2fPersonal Log 

I was initially surprised at how many people it took to operate a vessel such as the COBB. Having seen the ship in action for a few hours now, I can see why they are all needed. Technically there are many aspects to running a ship safely. Jobs include, but are not limited to: navigating the vessel, maintaining the engine room and feeding the hungry crew.

It functions like a small army, with everyone in their place doing their specific job. Each person is necessary for the others to operate and complete their tasks. I do feel a little out of place at the moment, as I am yet to do anything to help the crew or Dave. I am sure over the next few days though that will change. Everyone has been very patient with me repeatedly asking questions about every aspect of the cruise: “How do you know that was a Humpback Whale?” “What is a Fathom?” “Why do you measure distance in nautical miles rather than land miles?” “Which side is port?”

It’s only the first day, yet while standing on the bridge we spot a humpback whale! At some distance off, the crew assured me that that wouldn’t be the best view I would get of one, but I was still very excited! What a truly amazing place and beautiful day!

Question of the Day for Miss Wagstaff’s Science Class  

In science you are constantly asked to provide evidence to support you ideas and conclusion. With is in mind: which job aboard the COBB do you think is the most important? Be able to support you decision.

Clare Wagstaff, May 31, 2008

NOAA Teacher at Sea
Clare Wagstaff
Onboard NOAA Ship John N. Cobb
June 1-14, 2008

Mission: Harbor seal pupping phenology and critical habitat study
Geographical Area: Southeast Alaska – Juneau
Date: May 31, 2008

NOAA Teacher At Sea, Clare Wagstaff, at the Mendenhall Glacier near Juneau, AK
NOAA Teacher At Sea, Clare Wagstaff, at the Mendenhall Glacier near Juneau, AK

Pre-departure (-2 days) 

From door to door, it took me roughly 21 hours to get from Buffalo, NY to Juneau AK, but it was definitely worth it! Flying in from Seattle the view from the air was just breathtaking. Massive mountain rangers visible from the air thousands of feet up looked just like grey and white crumpled up pieces of paper reaching up through the sky. Flying above the clouds, these magnificent mountain formations poked up through the fluffy, white, marshmallow-like skyline below, WOW! Still a little overwhelmed at where I was and having arrived late into Juneau, I headed straight for my hotel to grab a few hours of sleep.

Juneau’s Location 

Juneau is the capital city of Alaska and it is situated in part of the panhandle that stretches south and east of the main body of the state. This area is predominately covered by Sitka spruce and Western Hemlock trees that make up the Tongass National Forest. This forest is in turn part of the largest temperate rainforest in the world. Juneau is braced on the side of the snow capped Mt. Juneau (3576ft) and Mt. Roberts (3819ft). These mountains make up part of a range of coastal mountains that protect Juneau from the harsher extremes experienced in the Gulf of Alaska. Juneau is a relatively small city, yet during the summer months, huge cruise ships dock daily and consume Juneau, turning it into a major tourist attraction. This is also the only state capital in North America not to be accessible by road. Juneau is located 58O 18’ N latitude, 134O 25’ W longitude, compared to my hometown of Buffalo, NY 420 52’N, 780 55’ W.

Pre-departure (-1 day) 

A juvenile black bear seen while hiking near the Mendenhall Glacier.
A juvenile black bear seen while hiking near the Mendenhall Glacier.

Sunrise was at around 4:00am this morning! Juneau is on AST (Alaskan Standard Time), which is four hours behind Buffalo, which is on EST (Eastern Standard Time). Because I was still disorientated with the time zone changes (four in one day!), 4:00am felt more like 8:00am and time to rise and shine! Juneau will receive just over 18 hours of sunlight each day during this expedition and I’m hoping that will give me a chance to experience as much as I can in the two weeks. Back home in Buffalo the daylight hours will be shorter with just in excess of 15 hours of daylight each day. Today is sunny and bright, unexpected for Juneau. Typically it receives 225 days of rain a year! I am hoping though that I have brought the good weather with me for the trip.

The Scientific Objectives of the Cruise 

The cruise is supported by the National Oceanic and Atmospheric Administration (NOAA) and its branches: the National Marine Mammal Laboratory (NMML), the National Marine Fisheries Service (NMFS) and the Alaskan Fisheries Science Center (AFSC). I will be joining Dave Withrow, Chief Scientist on board the JOHN N. COBB for a cruise based out of Juneau, AK. The objective is to visit known haulout sites of  harbor seals at, or near, low tide base initially around areas off lower Chatham Straight. The return leg of the voyage will focus on haulout sites at three main glacial sites. Similar research cruises have been carried out in previous years to examine the critical habitat for harbor seals, particularly in regards to glacial ice during the pupping season. We will determine which haulout sites are used for pupping, how many pups are born, and the approximate size and age of the pups present. Dave has a wide range of experience in the field, having worked for NOAA since 1976 and he has studied a variety of fish and marine mammals. Dave’s enthusiasm for his research and keenness to pass on his knowledge is contagious and makes me extremely excited to be apart of this expedition.

The JOHN N. COBB docked in the National Marine Fisheries Service (NMFS) Subport in Juneau.
The JOHN N. COBB docked in the National Marine Fisheries Service (NMFS) Subport in Juneau.

Local Sightseeing 

Prior to our departure Dave kindly got me acquainted with the local area and took me to the Mendenhall Glacier located just north of Juneau. A tidal glacier, it is retreating and fed by the Juneau icefield that also supports numerous other glaciers around the area. What a surprise! A bear! While Dave and I were hiking around the Mendenhall Glacier a small juvenile black bear appeared within a few feet of us. Apparently oblivious to the humans around it, she happily kept eating the young shoots and sprouting vegetation. A US Forest Service Wilderness Ranger close by explained that this was not an uncommon sighting, especially with so many people around on the viewing platform near the glacier. “The adult bears are cautious of people and the juveniles know this,” said the Ranger. “When humans are around the youngsters know that it is safe to come out and feed.” Bears are easily distinguishable from one another. Bears differ in facial features, along with fur colorations and other marks such as scars. The ranger identified her as a regular to the area: a two and a half year old female, and cinnamon in color. Although she had struggled to survive her first year alone, this season she seemed much healthier. A glacier and bear in one day, not a bad start to my Alaskan experience!

The JOHN N. COBB 

Dwarfed by the massive cruise ships in dock, Dave and I arrived at the JOHN N. COBB in the early afternoon, our home for the next two weeks. The COBB is the oldest and only wooden vessel in NOAA’s fleet of 17 ships. It’s relatively small size of 93 feet long and shallow draft of 12 feet means that this ship can reach areas larger vessels might not. It was built in 1950 and named after John Nathan Cobb (1868 – 1930), the first dean of the University of Washington School of Fisheries. The COBB requires a skilled crew of eight to operate it and can accommodate up to four scientists on board. Each crewmember has a specialized job to maintain the running of the ship and allow Dave and I to undertake the scientific research as efficiently and safely as possible.

wagstaff_log1cInteresting Fact 

Although the metric system is widely used in science today, even being employed by NASA in space, sailing has still retained the mariner traditional system. It uses the following in its measurements: Fathom = depth of water (6 feet to one fathom). Nautical mile = distance over water (1 nautical mile is equal to one minute of latitude at the equator, or 6,076.12 feet). Knots = speed (1.6877 feet per second or 0.5144 meters per second). Time is measured using the 24-hour clock, so 2:00am would be 02:00 and 2:00pm would be 14:00.  

Miss Wagstaff’s Science Class Question  

Why does Juneau, AK currently (May 31, 2008) have more daylight hours than Buffalo, NY?