Alex Miller, Heading for Home, June 11, 2015

NOAA Teacher at Sea
Alexandra (Alex) Miller, Chicago, IL
Onboard NOAA Ship Bell M. Shimada
May 27 – June 10, 2015

Mission: Rockfish Recruitment and Ecosystem Assessment
Geographical area of cruise: Pacific Coast
Date: Thursday, June 11, 2015

Front row from left: Paul Chittaro, Brittney Honisch, Tyler Jackson; Back row from left: Alexandra Miller, Will Fennie, Toby Auth
Front row from left: Paul Chittaro, Brittney Honisch, Tyler Jackson; Back row from left: Alexandra Miller, Will Fennie, Toby Auth

 

To conclude the discussion of the research on board the Shimada, I would like to profile the remaining scientists: the four fishermen of the night shift, and give a general report of the results of the cruise.

____________________________

Toby Auth, fisheries biologist with Pacific States Marine Fisheries Center (PSMFC), oversees most of the operations of the sorting, measuring and counting of the trawls. He works as a contractor to NOAA under the guidance of Ric Brodeur. Toby holds a BA in Fisheries and Wildlife from the University of Minnesota and he did both his MA and Ph.D. at the University of Maryland in Fisheries Management and he specialized in studying the early life of fish–egg, larval and juvenile stages, collectively called ichthyoplankton, basically anything fish-related that is small enough to sort of float along in the water.

As a researcher, he is most interested in understanding spawning success and food chain interactions of the Pacific coast species that come up in the trawls. Typically, Toby is at sea 30 – 40 days a year, but this year, due to the anomalous warm blob, he expects to be at sea about 50 – 60 days. The anomaly has implications for all fields of marine biology and oceanography.

In the far left of the image stands Dr. Paul Chittaro, of Ocean Associates in Seattle, WA. Paul is at sea on a research cruise for the first time in 10 years, and he’s very happy to be here. He was on board collecting fish in order to examine their otoliths, which are ear bones. Otoliths grow every day, laying down rings, almost like a tree. Analyzing these rings can give information about the fishes travels, diet and ocean conditions when they were alive.

The big guy in the back is Will Fennie, who will begin his Ph.D. at Oregon State University in the fall. The entire cruise he has been eagerly awaiting some juvenile rockfish to come up in the net and finally, in the last few nights, some did. Overall, we caught much less rockfish than in previous years. This could be for any number of reasons.

You can hear interviews with Paul and Will below.

____________________________

I have to give a HUGE thank you to Ric Brodeur, Chief Scientist of this mission, for supporting me as a Teacher at Sea and for reading each and every blog post!

Listen to my interview with Ric to learn more about the impacts of the research done on board the Shimada for these 13 DAS and possibilities for the future.

 

Thanks to XO Sarah Duncan as well, both she and Ric had to read and edit each one!

 

IMG_9442
Front row from left: Yours Truly, Emily Boring, Ric Brodeur; Back row from left: Jason Phillips, H.W. Fennie, Brittney Honisch, Toby Auth, Dr. Paul Chittaro, Amanda Gladics, Samantha Zeman, Curtis Roegner, Tyler Jackson

____________________________

It would take quite some time to tell all the stories of the marine wildlife we have seen on our 13 day cruise, but I would still like to share with you some of the photos and video I and others were lucky enough to capture. Enjoy!

All photos in these two galleries are courtesy of Amanda Gladics, Oregon State University, Seabird Oceanography Lab.

 

 

Personal Log

My experiences on board the Shimada have taught me a lot about myself and my abilities. I’ve done more writing, media processing and chatting with new people in the last two weeks than I have in the last two years. I have a greater understanding of how scientists work in the field and the importance of fisheries to the health of our oceans and the commercial fishing industry and I plan to apply that understanding in my classroom to increase students’ understanding of marine science and awareness of possible careers. To my students: “Get ready, dudes!”

Hopefully, you all have learned a lot about fisheries research, the process of science and the fascinating cast of characters who sailed with the NOAA Ship Bell M. Shimada. Maybe you’re even feeling a little inspired. Now, I know I’m an inland city kid, but I’ve loved the sea since I first saw Free Willy at the age of 7 and I’m not the only one who can trace their love of the sea to a starting point.

All the scientists on board have an origin story: one salient memory that they can credit with being the moment of inspiration for pursuing a life of study and research and a career in the field of science. If you’re curious about the world, you have the potential to be a great scientist. Science is for all people, no matter what age or situation, and these ones just happen to do theirs at sea. So, I want to know: Where will you do yours?

That’s all for now. Thank you for reading and listening and, maybe, sea you again soon!

Alex Miller, Teacher at Sea, signing off.

output_mgo8L7
Bye!

One last huge THANK YOU to the crew and officers of the Shimada for a wonderful cruise!!!

Alex Miller, Riding by the River, June 8, 2015

NOAA Teacher at Sea
Alexandra (Alex) Miller, Chicago, IL
Onboard NOAA Ship Bell M. Shimada
May 27 – June 10, 2015

IMG_9074
Pyrotechnics training

Mission: Rockfish Recruitment and Ecosystem Assessment
Geographical area of cruise: Pacific Coast
Date: Monday, June 8th, 2015

Weather Data:

  • Air Temperature: 12.0°C
  • Water Temperature: 14.0°C
  • Sky Conditions: Overcast
  • Wind Speed (knots/kts) and Direction: 20 kts, NNW
  • Latitude and Longitude: 46°29’98”, 124°59’93”

Yesterday, I spoke with two of the NOAA Corps officers, Ensign Nikki Norton and Commander Brian Parker. Ensign Norton is in her first post as a NOAA Corps officer and Commander Parker has been in the Corps for 21 years. The NOAA Corps’ main responsibility is to oversee all operations of NOAA research vessels and aircraft. In addition to positioning the ship for deployment and hauling back of the various nets and instruments, they help chart the course to make sure that we visit all the transect stations. In fact, we missed an operation at one of the stations, so they are going to do a slight reroute so that we can make up for that lost data point!

Ensign Nikki Norton wore many hats and had many responsibilities during our time at sea. Including serving as the OOD, Officer on Deck, essentially an extension of the CO while on watch in the bridge, she oversaw safety operations and was the medical officer. Interestingly, she holds a Bachelor’s in marine biology from Florida State University, which makes her well suited for overseeing the operations of a research vessel.

You can listen to my conversation with Ensign Nikki Norton below.

 

This morning, I visited the bridge and spoke with the Commanding Officer of the Shimada, Commander Brian Parker. Commander Parker has been a NOAA Corps officer for 21 years, working his way up from ensign to XO (Executive Officer) to CO. NOAA Corps officers work alternating sea and land posts for two-years at a time, and at the end of this year, Commander Parker’s sea post will end and his land post as Port Captain of the NOAA facility in Newport will begin.

You can listen to my conversation with Commander Parker below.

____________________________

We arrived to our second to last transect, the Columbia River line, on Sunday. The Columbia River acts as an important source of food and habitat for certain marine species that the scientists on board the Shimada are studying and they anticipated interesting changes in the physical and biological data that they would collect at these stations.

IMG_8578
The long blue shelf-like line (labeled CR plume in top graph) shows decrease in salinity.

As I’ve mentioned before, the CTD measures temperature, salinity and chlorophyll (a measure of how much plant material is in the water), which are collectively referred to as physical oceanographic data. Dr. Curtis Roegner tracks the data acquired throughout the day at each station by printing the CTD graphs and taping them onto the cabinets of the Chem Lab, creating a visualization of the measurements. He looks for patterns in the data that may help him to better understand the samples acquired from neuston towing. In the graphs, you can see a dramatic change in salinity in the first 10 – 20 m as the ship passes through the fan of fresher water created by the emptying of the Columbia River into the Pacific Ocean. This area, called a plume, is the meeting of two bodies of water so different that you can see a front, a clear border between the salty water of the ocean and the fresh water of the river.

The chem lab, wallpapered with CTD graphs.
The chem lab, wallpapered with CTD graphs.

As a fisheries biologist, Curtis Roegner has several driving questions that guide the work he does on board the Shimada and back at the NOAA Center. Among the work he does, he aims to study how well certain projects in the Columbia River are working to restore salmon populations. Certain species rely on the wetlands of the river to spawn (produce young) and mature in and some of this habitat has been lost to the development of cattle grazing lands. Studying the impact of the Columbia River plume on the Oregon coast may help affect change in environmental policy and agricultural (farming) practices.

I interviewed Curtis about his work and you can hear that talk below.

 

____________________________

Rougher weather kicked up a lot of swells, which the mighty Shimada crashed right through, sending spray all over the decks and outer stairways and producing just enough pitching and yawing to make a walk through a hallway interesting. The Shimada’s size helps keep the rocking and rolling to a relative minimum, but when at sea safety always remains a major concern.

With that in mind, today I participated in an optional pyrotechnic training with some officers, crew and members of the science team. Several different types of flares and smoke bombs are used at sea to draw attention to a ship in need.

In order to avoid a “crying-wolf” type of situation, we practiced this during the day and most likely radioed to all nearby vessels that we were in fact training and not in need of rescue. While I probably won’t be applying this skill in the near future, I decided I couldn’t miss an opportunity to try something new. Above you can see photos of different members of the crew and science team using these tools and below, you can see a video of me operating a flare gun.

 

Lucky for me, we weren’t in an actual danger situation. At the end of the clip, I turn to NOAA Corps officer LT Tim Sinquefield for assistance. After some adjustment of the flare shell, you can see me successfully operating the flare gun below.

 

____________________________

To top off an even more unlikely morning, members of the night shift and I were watching the sun come up and helping Amanda with the bird and marine mammal observations when a pod of Pacific white-sided dolphins came to play off the bow of the ship. They stayed astern (toward the back of the ship) throughout the pyrothechnic training and at times, felt close enough to reach out and touch.

Pacific white-sided dolphins   ride the waves near our port stern, seemingly for the sheer joy of it.
Pacific white-sided dolphins ride the waves near our port stern, seemingly for the sheer joy of it.

Personal Log

As June 10 looms ever closer, I am frantically trying to take everything in. I’m basically operating under the mentality that I can sleep when I’m home. The more I try and experience, the less time I have to document what it is I’m learning on board the ship. But I set out to write eight posts about my time as a Teacher at Sea and I’m going to stay true to that commitment. Stay tuned for the final episode of my cruise aboard the Shimada, coming soon.

Alex Miller, The Sea Around Us, The Seafloor Below Us, June 7, 2015

NOAA Teacher at Sea
Alexandra (Alex) Miller, Chicago, IL
Onboard NOAA Ship Bell M. Shimada
May 27 – June 10, 2015 

Our ship.
Our ship.

Mission: Rockfish Recruitment and Ecosystem Assessment
Geographical area of cruise: Pacific Coast
Date: Sunday, June 7th, 2015

Weather Data:

  • Air Temperature: 12.4°C
  • Water Temperature: 13.3°C
  • Sky Conditions: Overcast
  • Wind Speed (knots/kts) and Direction: 22 kts, N
  • Latitude and Longitude: 45°59’62”, 124°33’97”

________________________

The only piece of equipment on the Shimada I haven’t told you about is the box corer. Jason Phillips has been using the box corer to collect, well, box cores. Box cores are samples of the bottom of the ocean or sea floor (also, seabed). The box core is lowered to various depths (400 m, 300 m, 200 m, 100 m and 60 m), then survey technicians, Jaclyn Mazzella or Phil White, open the jaws of the machine and scoop up a mouthful of whatever is on the bottom, including benthic (referring to bottom of the ocean) creatures.

Once surfaced, Jason subsamples the sediment, sand, mud, small pieces of rocks and debris, removing just a small part of it and storing it until our return to land. Subsampling allows scientists to measure a manageable amount and then generalize about the larger remainder; while this is limiting because it assumes uniformity throughout the box core, the alternative is looking through each piece of sediment individually, something that is time and cost prohibitive. However, he does invest the time necessary to pick out all the creatures collected by the box corer.

Back at his lab, Jason will analyze the sediment, and then he or a colleague will identify all the tiny, tiny organisms, living things, found in the core.

Below, you can see Jason processing the core. He has washed down the smaller pieces of sediment like clay and sand through the holes in the mesh sieve. The sieve traps the smaller pieces of rock and even smaller animals, allowing him to pick them out and place them into preservative for processing when he returns to shore.

Jason and Amanda pick out benthic organisms from a core sample.
Jason and Amanda pick out benthic organisms from a core sample.

Through the study of box cores, Jason hopes to learn more about the creatures that live on the bottom of the sea. He told me many scientists who are doing box cores are simply collecting the sediment for study, they are not looking to see what organisms live in it, and therefore, there is a lot we don’t know. He says, “I would not be surprised if we found a new species in these cores.”

Take a look at some of the creatures Jason has unearthed on this cruise:

Because he has been collecting this data for two years, there are some patterns emerging about sediment conditions in different areas of the seabed. This information may help inform the placement and construction of a proposed wind farm off the Oregon coast.

For at least one day of our cruise, Jason also put out hooked long-lines to try and catch albacore, a type of tuna. Unfortunately, the fish weren’t biting. While albacore are unique among most tuna in that they prefer cooler water, Jason says the late-spring waters off the Oregon coast are still a little too cold for them and since they can swim up to 100 miles a day, they can easily find some more comfortable temperatures. The albacore that have been caught on previous cruises as part of this ongoing study are being tested for radioisotopes that may have originated from the Fukushima-Daiichi nuclear disaster of 2011.

________________________

And, of course, there’s always fun to be had on the Shimada. Below you can watch a video of Jason unearthing a pupa utility-worm from one of his box cores; scientific name (Travisia pupa), affectionately known as the “stink worm.” Will decides we need a closer, um, look.

________________________

Tyler Jackson, a Master’s student at Oregon State University has been working on fisheries genetics since he was an undergraduate. His interest in marine science began when he was a wee recreational fisherman’s son growing up on the US-Canada border in Port Huron, MI.

In collecting megalopae, a larval form of Dungeness crab, he is trying to determine how closely related the Dungeness crab of areas off the Oregon coast are. He has studied population genetics among adult Dungeness crabs along the West Coast. He hypothesizes that if adult crabs in an area are closely related, larvae settling in the nearshore would be too. However, he tells me that it is not well understood how crab larvae travel throughout the ocean, and then for some to make it back to nearshore and settle to the bottom, maybe near where they came from. Perhaps these extended families get scattered throughout the seas, perhaps not.

Tyler Jackson, Oregon State University
Tyler Jackson, Oregon State University

At the first few stations, the tows were not bringing back enough individuals to give Tyler a large enough sample size to provide a reliable assessment of whether the crabs in that part of the ocean are related or not. Unfortunately, on this cruise Tyler did not get a sample size large enough to use.

In the following video you can see that, after sieving the neuston, Tyler found two Dungeness megalopae (too small of a sample size to test) but quite a lot of red rock crab megalopae. These little creatures are fascinating and pretty adorable.

I also interviewed Tyler about his work and life at sea. You can hear our talk below.

________________________

Two nights ago, I couldn’t sleep at all, and I was thinking about the fact that my time on the Shimada is quickly coming to a close. I was trying to find a way to get even more information from the scientists on board to you. Taped interviews seemed like the perfect solution. I began conducting them yesterday and, after finishing three, realized I’d spoken to three of the four other women of the science crew. And so, here we are having a conversation about gender equity in the sciences.

IMG_9163
The ladies of the science crew. From left: Samantha Zeman, Amanda Gladics, Emily Boring, Brittney Honisch, Alexandra Miller

Using data from a longitudinal study done by the National Science Foundation, in 1973, 88% of doctorate holders working at the university level in life sciences (includes marine biology) were male, just 12% were female. Hearteningly, women have become much more well represented in the life sciences; in 2010, these numbers were 58% and 42%, respectively‡. You can see this same kind of near gender balance on board the Shimada: of the twelve (counting me) members of the science crew, five are women. Women are also well-represented in this blog post.

You can see the numbers breakdown for all the science and engineering fields here.

________________________

I interviewed the four other women of the science crew about their research and life on board the ship, as well as being a woman in the field of life science. You can hear those interviews below.

If you would like to find the parts of the conversations about gender equality in marine science, you may use the time stamps below.

Table of Contents:

  • Amanda Gladics, Faculty Research Assistant, OSU Seabird Oceanography Lab (13.55)
  • Samantha Zeman, Graduate Student and Research Assistant, University of Oregon (7.00)
  • Brittney Honisch, Marine Scientist, Hatfield Marine Science Center (8.50)
  • Emily Boring, Sophomore, Yale University (I did not ask Emily as she is still an undergraduate)

‡Compare this to the numbers for the physical sciences, in 1973, 95% of doctorates employed in academia were male, compared to 5% female; in 2010, 79% male to 21% female.

Additional Reading:

“Why Are There Still So Few Women in Science?” New York Times, 2013

And no less than 4 days later…

“Tim Hunt Resigns After Comments” New York Times, 2015

Twitter Campaign #distractinglysexy

________________________

Question of the Day:

Why are there still so few women in science? What can be done to encourage girls to pursue, and stay, in STEM fields?

Alex Miller: Making Waves, June 5, 2015

NOAA Teacher at Sea
Alexandra (Alex) Miller, Chicago, IL
Onboard NOAA Ship Bell M. Shimada
May 27 – June 10, 2015 

Putting ourselves in the way of beauty. Several members of the science crew joined me to witness this sunset.
Putting ourselves in the way of beauty. Several members of the science crew joined me to witness this sunset.

Mission: Rockfish Recruitment and Ecosystem Assessment
Geographical area of cruise: Pacific Coast
Date: Friday, June 5th, 2015

Weather Data:

  • Air Temperature: 14.0°C
  • Water Temperature: 12.7°C
  • Sky Conditions: Clear
  • Wind Speed (knots/kts) and Direction: 21.9 kts, NNW
  • Latitude and Longitude: 45°00’19”, 124°19’94”

____________________________

Before I go into the events of the research and life onboard the Shimada, let me explain the weather data I share at the beginning of posts at sea. Weather can change quickly out at sea so the ship’s Officer(s) of the Deck (OODs) keep a running record of conditions throughout the cruise. On the Shimada, the OODs all happen to be NOAA Corps Officers, but there are civilian mates and masters on other ships.

Another important reason to collect weather conditions and location information is that it’s need to be linked to the data that is collected. The ship collects a lot of weather data, but I’ve chosen to share that which will give you an idea of what it’s like out here.

IMG_8172
The bridge with a view of the captain’s seat.

First, I’ve shared the temperature of both the air and the water. Scientists use the Celsius temperature scale but Americans are used to thinking about temperatures using the Fahrenheit scale. On the Celsius scale, water freezes at 0°C and boils at 100°C, whereas on the Fahrenheit scale, water freezes at 32°F and boils at 212°F. I won’t go into how you convert from one scale to another, but to better understand the temperatures listed above, temperatures around 10°C are equal to about 50°F.

Second, the sky conditions give you an idea of whether we are seeing blue or gray skies or I guess at night, stars or no stars. Clear skies have graced us intermittently over the past few days, but we’ve seen everything from light showers to dense fog.

Third, is the wind direction and speed. Knots is a measurement used at sea. It stands for nautical miles per hour. 1 knot = 1.2 miles/hour or 10 knots = 12 mph.  The NOAA Marine Weather Forecast allows us to prepare for what might be coming at future stations. Depending on wind speed, some nets cannot be deployed. If wind speeds reach 25-30 kts, the kite-like neuston will literally fly away. If a weather day ends up keeping scientists from collecting data that can be very disappointing and, unfortunately, there’s no way to make up for lost time.

With the wind speeds picking up, so have the swell sizes, making for a rougher ride. As funny as it can be to watch a colleague swerve off their intended path and careen into the nearest wall, chair or person, we have to remember to, “save one hand for the ship,” meaning, be ready to steady yourself.

____________________________

Randy (foreground) and Larry (background) in their culinary kingdom.
Randy (foreground) and Larry (background) in their culinary kingdom.

Considering how well taken care of I’ve been on this cruise, it only seems right to tell you guys all about the heroes of the mess (also galley, basically, it’s the dining area), Larry and Randy. Larry and Randy plan and prepare three meals a day on board the Shimada. There’s always a hot breakfast and our dinners have included steak, mahi-mahi, and I like to think they were catering to the quarter of me that’s Irish when they made corned beef and cabbage last night. This dynamic duo really outdo themselves. Both are trained merchant mariners, meaning they hold their Z-card, and they tell me that working as a chef at sea definitely helps to bring home the bacon.

It feels good knowing that they don’t want us to just have cereal and sandwiches for the two weeks we are at sea.

Larry (background) and Randy (foreground) admiring their hard work.
Larry (background) and Randy (foreground) admiring their hard work.

I especially want to shout out Randy, the denizen of the desserts. So far Randy has made from scratch: bread pudding, chocolate white-chocolate cookies, rum cake and date bars. Good thing for me his mother was a chef because he’s been cooking since around the age of 6.

I just finished a Thanksgiving style turkey meal prepared by these two and all this told, I’m thankful there’s an exercise room on board with a stationary bike. Seriously though, these guys are doing a lot to make the ship feel like a home. With the disruption in my sleep cycle, I’ve been sleeping through some meals. Like 50% of meals. They noticed. When I came walking into dinner yesterday, after sleeping through two meals, they were full of concern and questions. Awww.

So, on behalf of all the crew and scientists, I want to say thank you for all that you do!

____________________________

Wednesday night, or Thursday morning–days tend to run together when you’re working the night shift–the net picked up an unusual jelly that Ric had to key out using a jelly identification manual. Using photos in the Pacific Coast Pelagic Invertebrates by Wrobel and Mills, Ric identifies this jelly as the Liriope (sp. ?). While Ric is an accomplished biologist, he specializes in fish identification, so the question mark after the scientific name of this jelly represents the need for a jelly expert to confirm the identification as Liriope. But what’s in a name, right? What’s really interesting about this jelly is that it usually inhabits warm water areas between 40S and 40N. We were towing north of the 44th parallel!

Liriope (?)
Liriope (sp. ?)

That wasn’t the only unusual sighting we had. Amanda, who does her surveys exclusively in the Northeast Pacific, meaning relatively close to shore (12 – 200 km) saw, for her first time in the wild, the Hawaiian petrel, a bird whose name alone suggests that Oregon is too far north to be seeing them. Additionally, it’s being more of an offshore bird makes it even more unlikely to see as far east as we are.

All images in this slideshow were taken by Amanda Gladics, Faculty Research Assistant, Oregon State University. 

This slideshow requires JavaScript.

Her initial reaction to the sighting was mild surprise that she saw something she didn’t quite recognize, she decided to grab her camera and photograph the bird so she could take a second look at it. Later, she realized just how rare of a sighting she had made. After consulting with Josh Adams at USGS, it was confirmed that the bird was a Hawaiian petrel.

Though most of the community nests on the big island of Hawaii, smaller colonies are found on Oahu and Kauai, and Adams explained that they tend to loop around areas of high pressure when foraging (searching) for food. It just so happens that such an area is within our transect range. If you look at the image to the right you can see this area as a loop marked with 1024 (mb, millibars, a pressure measurement) just off the coast of Oregon.

Map of pressure systems
Map of pressure systems and precipitation in the Pacific. Note the high pressure system of the coast of Oregon (1024 mb). Photo courtesy of Amanda Gladics.

Amanda has also sent her images to Greg Gillson and Peter Pyle, two experts in the field; Gillson confirms the sighting as a Hawaiian petrel and is notifying the Oregon Birding Association Records Committee. She is still waiting to hear back from Pyle.

Super cool!

____________________________

Considering these two events alongside some warmer water temperatures the CTD and ship sensors have picked up in our transect area, the conclusion several of the scientists are reaching is that these unusual sightings are coincident with an El Niño event this year. El Niño events occur in a cycle. They are a disruption of the normal ocean temperatures, leading to anomalously warm temperatures in the Pacific Ocean. This can affect weather and climate and perhaps it can also affect animal behavior. There’s also that warm blob to consider. You yourself can see that the water temperature is warmer here than it was at our earlier transects.

For more information on how NOAA monitors El Niño events, please follow this link.

____________________________

Personal Log

In an effort to gain a deep understanding of all the research taking place on board the ship, I’ve started transitioning back to the day shift. After investing five days in training myself to stay up all night, I’m now trying to sleep through the night. My body is utterly confused about when it’s supposed to be asleep, so right now it’s settled on never being asleep. I’ve been able to catch naps here and there but I’m resorting to caffeine to keep me going.

However, there’s always a silver lining. This morning I climbed to the flying bridge for a bit of solitude with the rising sun. Few things can compare to a sunrise on a ship while it’s traveling northeast and to top it all off the swells crashing against the bow were so high that, at times, I could feel the sea spray. So I thought I would make this .gif so you can share this moment too.

output_z5EhoP
#shiplife

Until next time, scientists!

____________________________

Question of the Day:

Amanda can only survey when the ship is traveling faster than 7 kts. If the ship travels at 7 knots for 1 hour, how many nautical miles does it cover? Standard miles?

Alex Miller: Working the Night Shift, June 3, 2015

NOAA Teacher at Sea
Alexandra (Alex) Miller, Chicago, IL
Onboard NOAA Ship Bell M. Shimada
May 27 – June 10, 2015 

IMG_8309 (1)
The full moon lights up the night on top of the flying bridge.

Mission: Rockfish Recruitment and Ecosystem Assessment
Geographical area of cruise: Pacific Coast
Date: June 3, 2015

Weather Data:

  • Air Temperature: 13.3°C
  • Water Temperature: 14.8°C
  • Sky Conditions: Partly Cloudy, I could still see some stars
  • Wind Speed (knots/kts), Direction: 5.5 kts, NNE
  • Latitude and Longitude: 43°29’84”, 124°49’71”

_________________________

Later on Monday, once all the night-shifters had risen from their beds and were beginning to get ready for the bongos and mid-water trawls, I took a tour of the engines with marine engineer and NOAA crewmember, Colleen. We started in the control room. With up to four engines operating at any one time, Colleen says it’s a relief that computer systems help to automate the process. As part of her four-year degree program at Seattle Maritime Academy, she learned how to operate the engines manually as well, but I think we can all agree computers make life easier.

Before moving on to the actual engine room, Colleen made sure I grabbed some ear protection. For a one-time visit they’re probably more for my comfort than to protect from any real damage, but because she’s working with the engines every night, it’s important to protect against early-onset hearing loss. Once the plugs were in, we were basically not going to be able to talk so Colleen made sure that I knew everything I was going to see before we proceeded.

Colleen in the control room.
Colleen in the control room.

First, we made our way past the fresh water tanks. I was really curious about how we get fresh water on the ship, since we’re in the middle of the Pacific Ocean. The Shimada produces freshwater using two processes. Reverse osmosis produces most of the water, using high pressure to push the seawater across a membrane, a barrier that acts like a filter, allowing the water molecules to pass through but not the salt. This is an energy intensive process, but the evaporators use the excess energy produced by the engines to heat the seawater then pass it through a condensing column which cools it, and voilá, freshwater!

Next, we came to the four diesel engines. Four engines. These four engines are rarely all on at one time but never will you find just one doing all the work. That would put too much strain on and probably burn out that engine. While they burn diesel fuel, like a truck, instead of using that energy to turn a piston like the internal combustion engine of that same truck, they convert that energy to electricity. That electricity powers the two motors that ultimately make the ship go.

Panoramic view of the engine room, engines 1 and 3 can be seen in foreground and engines 2 and 4 in the background.
Panoramic view of the engine room, engines 1 and 3 can be seen in foreground and engines 2 and 4 in the background.

A ship the size of the Shimada requires a lot of power to get moving, but Colleen tells me it gets decent mileage. Though the ship’s diesel tank can hold 100,000 gallons, there’s only about 50,000 gallons in the tank right now and the ship only needs to refuel every couple of months.

After a quick pass by the mechanics for the rudder, the fin-shaped piece of equipment attached to the hull that controls the direction the ship is traveling we arrived at our last stop: Shaft Alley. Those two motors I told you about work together to turn a giant crankshaft and that crankshaft is attached to the propeller which pushes water, making the ship move. When I was down there the ship was on station, where it was holding its location in the water, so the crankshaft was only turning at 50 RPM (rotations per minute).

It was a pleasure getting a tour from Colleen!

_________________________

Throughout the night, the Shimada revisits the same transect stations that it visited during that day, but uses different nets to collect samples at each station. To the right, you can see a map of the stations; they are the points on the map. Each line of stations is called a transect. Looking at the map it’s easy to see that we have a lot of work to do and a lot of data to collect.

The transects and stations within them that the Shimada will survey at.
The transects and stations within them that the Shimada will survey at.

Why does this have to happen at night? At night, the greatest migration in the animal kingdom takes place. Creatures that spend their days toward the bottom layers of the ocean migrate up, some as far as 750 m (almost 2,500 ft)! Considering they’re tiny, (some need to be placed under the microscope to be reliably identified) this is relatively very far. And they do it every day!

To collect data on these organisms, three types of nets are used, two of which are not used during the day. Along with the surface-skimming neuston (which is used during the day), the bongo net, so named because it has two nets and looks like a set of bongo drums, and the Cobb trawl which is a very large net that needs to be deployed off the stern (back of the boat).

The operation of the bongo net is similar to the neuston, it is lowered off the starboard (when facing the bow, it’s the right side) side of the boat. Dropping down to 100 m below the surface and then coming back up, the bongo is collecting zooplankton, phytoplankton and fish larvae. The samples are poured from the cod-end into a strainer with a very fine mesh and since the water is full of those tiny bits, the straining can take a bit of time and some tambourine-like shaking.

The Cobb trawl on deck, waiting to be deployed.
The Cobb trawl on deck, waiting to be deployed.

These samples are then fixed (preserved) in ethanol and they will be analyzed for diversity (how many different species are present) and abundance (how many individuals of each species is present). The bongo is the net of choice for this survey because once scientists go to process the data, the double net provides a duplicate for each data point. This is important for statistical purposes because it ensures that the area that is sampled by one side of the net is similar enough to the area sampled by the other side of the net.

Below you can see video of the bongo net after it’s been hauled back. Scientists are spraying it down to make sure all organisms collect in the cod-end.

 

 

_________________________

Once the bongos are done, comes the real action of the night shift. The mid-water trawls take 15 minutes. I’ve become really great at communicating with the bridge and survey technicians who are operating the nets so that I can record data for the beginning and ending of the trawls. Once the catch is on deck, the survey technicians empty the cod-end into a strainer. The scientists prepare to sort, count and measure the species of interest. If the catch is large or particularly diverse, this can be a significant task that requires all hands on deck.

With four trawls a night, some with 30-50 minutes transit time with nothing to do in between, fatigue can set in and make the work hard to finish. To make it through the night, it takes great senses of humor and playful personalities. A little theme music doesn’t hurt either. The scientists of the night shift, under the direction of Toby Auth, a fisheries biologist with Pacific State Marine Fisheries Commission working as a contractor to NOAA and Chief Scientist Ric Brodeur, are Brittney Honisch, a marine scientist with Hatfield Marine Science Center, Paul Chittaro, a biologist with Ocean Associates working as a contractor to NOAA, Tyler Jackson, a fisheries science graduate student, and Will Fennie.


The data collected during these trawls provides a snapshot of the ecosystem. This data will help NOAA Fisheries Service understand the health of the ocean ecosystem as well as how large certain populations of commercially important fish are such as hake and rockfish.

In the meantime, it provides for some late night fun. Over the course of the nights that I’ve spent in the wet lab, we have uncovered some bizarre and fascinating creatures.

But in my opinion the real star of the trawls was the young female dogfish. A dogfish is a type of shark. I know what you’re thinking and no, she did not try to bite us. But dogfish do have two spines, one at the base of each dorsal (back) fin. We all fell in love, but, ultimately, had to say goodbye and return her to the sea.

This slideshow requires JavaScript.

Thank you for your patience as I’ve gathered the images and video to make this and future posts as informative as possible. Stay tuned for Episode 5 coming soon!

Personal Log

First off, a heartfelt CONGRATULATIONS to the first 8th grade class at Village Leadership Academy. I wish I could be there when you walk across that stage on June 4th.

_________________________

Little did I know when I started hanging out with the scientists of the night shift that it would become a way of life. Each night I managed to stay up later and later and finally last night I made it through all four catches and almost to 0800, the end of the night’s watch. After dinner (some call it “breakfast”), I slept a full eight hours, and it felt completely normal to be greeted with “Good Morning!” at 3:30 in the afternoon.

Speaking of the night’s watch, I’m really grateful that someone was able to get one of my favorite TV shows last Sunday. And Game 7! The Blackhawks are in the finals! Even though I can’t call anyone back home to discuss my theories or that amazing goal by Seabrook in the third period, I can email and it feels like I’m missing less.

The only person I can’t email is my cat, Otto! I can’t wait to snuggle him until he scratches me.

output_GIG1yZ
Otto the cat. He loves snuggling.

Question of the Day:

Comment with answers to these questions and I’ll shout your name out in the next post!

What is your favorite animal we have seen so far?

Acknowledgements:

Thanks to Paul Chittaro for assisting in the use of iMovie for this post!

Alex Miller: Smooth Sailing So Far, May 31, 2015

NOAA Teacher at Sea
Alexandra (Alex) Miller, Chicago, IL
Onboard NOAA Ship Bell M. Shimada
May 27 – June 10, 2015

View of the Hatfield Marine Science Center and NOAA dock as the Shimada pulled away.
View of the Hatfield Marine Science Center and NOAA dock as the Shimada pulled away.

 

Mission: Rockfish Recruitment and Ecosystem Assessment
Geographical area of cruise: Pacific Coast
Date: Sunday, May 31, 2015

Weather Data: 

  • Air Temperature: 11.1°C
  • Water Temperature: 11.8°C
  • Overcast skies
  • Wind Speed (kts) and Direction: 15, SSE

Science and Technology Log

Last of the bridge we'll see for some time.
Last of the bridge we’ll see for some time.

We finally weighed anchor and set sail at 1032 Friday morning. Fog blanketed the shores of Newport as we passed below the Yaquina Bay Bridge and out into the channel created by the North and South Jetties. One of our last sights from shore was Chief Scientist Ric Brodeur’s wife, who had come to see us off. The fog was so thick that before we had even reached the end of the jetty her lime green jacket was hidden from view.

Emily and I and several of the other scientists watched our departure from the flying bridge, the highest observational deck on board the ship. It provides an almost unobstructed 360-degree view of the surroundings—making it perfect for Amanda’s surveys—but it’s also right next to the foghorn, which had to be blown every two minutes until we reached greater visibility. Needless to say, we all found somewhere else to watch the waves.

IMG_7894
Visibility was low as we left Newport.

Once the ship had moved farther offshore, some of the fog cleared but the moisture in the air was still enough to cause concern for the computers so Amanda went to the bridge, an enclosed deck that houses the navigational instruments that the captain and other officers use to drive the ship. Here she began setting up her survey equipment.

Up to this point, I’d been getting a lot of great advice about handling the first few hours on board the moving ship. Some people suggested I lay down, but the go-getter in me wanted to work. Using a program that is linked to the ship’s GPS, Amanda taught me how to code the observations she was making of the seabirds and marine mammals. As she kept her eyes glued on the 90-degree quadrant made by making a quarter port (while facing the front of the ship, counter clockwise or left, for you digital folks) turn from the bow (front of the ship) (in the image at the top of this post, you can see a panoramic view of quadrant I, the port bow of the ship), she would call out codes for the species, distance from the ship and behavior of the bird she observed. If she were to spot any marine mammals–pinnipeds (pin-eh-peds) (seal and sea lions) or cetaceans (ceh-tay-shins) (dolphins and whales)–that gets entered in a separate database.

Amanda surveying from the flying bridge.
Amanda surveying from the flying bridge.

Amanda has to be prepared to work alone as she is the only ornithologist on the ship, but with a Teacher at Sea and other volunteers on board willing to learn and help out, she’s able to rely on us to share some of the work. She and I were working as quite the well-oiled machine for a solid 20 minutes before I made peace with the fact that I did not have my sea legs. To my great relief, it’s something you can sleep off.

__________________________

While at sea, the most important thing to remember is to be safe, so once we had been underway for a few hours, the ship’s crew and team of scientists went through drills to practice safety protocols for two of the three significant events that could happen at sea. A 10-second blast on the horn sounded the alarm for the fire drill, and all crew and scientists mustered (gathered) in their assigned locations. Next, 7-short, and 1-long blast signaled the start of the abandon ship drill. The need to abandon ship is highly unlikely, but out at sea you need to be prepared for anything. Most importantly, you need to know how to get into your survival suit, and fast.

Emily and I decided to practice since we were both first-timers to these impressive red neoprene onesies. Since they’re designed to be large enough to fit over your shoes and warm clothes, they can be awkward to put on, especially when you get to the zipping part. And who cares how they look when the water is 8-10° Celsius, a temperature that could cause hypothermia or fatal loss of body temperature.

Emily and I managed to get the survival suits on!
Emily and I managed to get the survival suits on!

__________________________

Saturday was spent sampling a little bit of everything. Of course I paid a visit to Amanda up on the flying bridge to hear about how the birding (and marine mammal-ing) was going. Often, I find Emily there assisting with data entry. Since Amanda can only survey when the ship is traveling faster than 7 knots, traveling from station to station gives her time to look, but sometimes these distances are short and our time at the stations, releasing the various equipment needed for different scientists’ data collection, can be long. This is when Amanda goes off effort (not collecting data) for longer periods of time and during these times, Emily and I have taken to teaming up to check out what’s going on in the wet lab.

IMG_7970
Jaclyn releases the neuston tow into the water.

Home to most of the science crew, the wet lab is wet. Initially, I thought foul weather gear was meant for, well, foul weather, but between the hauling in, spraying down and rinsing of the samples caught in the nets, everyone in the wet lab is wearing theirs full-time. Also, everyone must wear hard hats and PFDs (personal flotation devices, also known as life jackets) when out on deck as the equipment is being released or hauled in. Safety first, as always!

My cabin mate, Jaclyn Mazzella, and Phil White, are the two survey technicians on the Shimada. They help release and monitor the nets and equipment that are being used on this research cruise. More on these two interesting cats later.

Emily and I working hard to haul in the CTD.
Emily and I working hard to haul in the CTD.

While in the wet lab, Emily and I witnessed the CTD being hauled in. CTD stands for conductivity, temperature and depth. Conductivity is a measurement of salinity, or how salty the ocean water is. The way it works is by passing an electric current through the water and measuring how fast it travels. This is connected to how salty the water is because when salt is dissolved in water, it separates into ions, these particles carry a charge and allow electric current to pass through. More conductive water will be salty, less conductive water will be less salty or fresh. 

We know that temperature provides a measurement of how hot or cold something is. In this case, we’re measuring the temperature of the water. It is mostly cold off the Oregon coast, though the scientists on board have been discussing a recent unexplained area of warmer water, dubbed the “warm blob.” Biologists aim to discover if the warm blob is going to have an impact on the fisheries.

As the CTD is lowered and raised, it can take measurements of these and other factors which allow biologists to compare the diversity and number of species they collect in their nets to the data collected. One of those nets is the neuston tow, a net that skims the surface of the water. It is one of several nets that are being used to collect samples from different layers of the ocean. The scientists on board expect to find jellies and larvae of different species in this net.

Curtis filters the cod-end of the neuston and finds a whole bunch of Vallela vallela.
Curtis filters the cod-end of the neuston and finds a whole bunch of Vellela vellela.

I got a chance to see the neuston being released. After it was hauled in, Dr. Curtis Roegner, a fisheries biologist with NOAA, detached the cod-end–a small container at the bottom of the net that collects everything the net caught–and filtered out the contents. Inside were a bunch of beautiful blue jellies! These guys are commonly known as by-the-wind sailors thanks to their interesting sail adaptation that allows them to harness the power of the wind to aid in their dispersal (scattering) throughout the ocean. I helped Sam Zeman, a biologist with the University of Oregon, Tyler and Curtis measure the diameter–the length at the widest point–of the bodies of the jellies.

Vallela vallela, by the wind sailors.
Vellela vellela, by the wind sailors.
Curtis, Tyler and I working to measure and record the lengths of the sails on the Vallela vallela. (Thanks to Sam for taking this picture!)
Curtis, Tyler and I working to measure and record the lengths of the sails on the Vellela vellela. (Thanks to Sam for taking this picture!)

Personal Log

The more time I spend on the Shimada, the more determined I am to figure out how time travel works so I can go back and thank my September 2014 self for putting in the Teacher At Sea application. I’ve been on the ship for three days now and I love being able to go anywhere, day or night, and be able to observe and assist in research and data collection, but also just sit and talk with people who have all followed many different paths that led them to this ship, for these two weeks.

You might think my biggest struggles right now would be seasickness (which I’m not!) or missing my friends and family, but honestly, the hardest part is keeping the blog down to a readable length. There’s an enormous amount more happening here than I have the room to tell you but I will try and cover everything before our time is up.

Lastly, it’s true, I miss my friends and family, a lot, but there are certain creature comforts here that help ease the transition from land to sea. NOAA certainly knows how to keep morale and productivity up, with a well-stocked kitchen open 24 hours, meals prepared on site by talented cooks, and a TV lounge for socializing with a selection of over 500 movies, it’s easy to feel at home. And when finding a work-life balance is not possible, it’s necessary, all of this helps.

Well, that’s all for now, catch the next installment coming soon to a computer screen or mobile device near you!

Acknowledgements

Special thanks to Prof. Mary-Beth Decker consulting on the spelling of Vellela vellela and Brittney Honisch for teaching me a good way to remember port vs. starboard. When facing the front of the ship, port is left and both words have four letters.

Alex Miller: Delayed but Still Determined, May 28, 2015

NOAA Teacher at Sea
Alexandra (Alex) Miller, Chicago, IL
Aboard and Inport NOAA Ship Bell M. Shimada
May 27 – June 10, 2015

Mission: Rockfish Recruitment and Ecosystem Assessment
Geographical area of cruise: Pacific Coast
Date: Thursday, May 28th, 2015

Personal Log

A panoramic view from Yaquina Point, gray whales can often be seen from the Point on their migration route, one of the longest in the animal kingdom.
A panoramic view from Yaquina Point, gray whales can often be seen from the Point on their migration route, one of the longest in the animal kingdom.

Greetings from NOAA Ship Bell M. Shimada!

From my time onboard I have learned it takes a lot of people to run a ship this size, which helps explain why, due to a staffing issue, we have been delayed until tomorrow, Friday, at 1000. All scientists and crew are being asked to assemble on deck at 0800 for a briefing where I imagine we will go over responsibilities and safety precautions before heading out to sea.

Our run has changed its course slightly since cutting down to 13 DAS (days at sea); we will now cruise between Southern Oregon and Gray’s Harbor, WA, with all the same mission objectives. While we haven’t gone anywhere yet, this time in port is affording me the opportunity to explore Newport and assist in and observe research that is being done by the scientists on land.

Newport has a considerable number of marine science facilities and most of the scientists I will be working with have or will have labs here in which they process the data they collect while in the field—the field can either be the sea or the land, depending on the study—and while the various organizations at the Hatfield cooperate and share research findings (as all good scientists do), there are distinctions in terms of what each scientist studies and, essentially, who pays them to do it.

The lighthouse at Yaquina Point.
The lighthouse at Yaquina Head.

Let’s start at the beginning. Most of the scientists going on this cruise of the Shimada are biologists. Biologists are scientists who study living things (bio-life, ology-study of) and so far I have met two kinds. Amanda’s specific field of biology is ornithology (making her an ornithologist), which specializes in the study of birds. Will Fennie, among others who you will hear more about, is an ichthyologist, a scientist who studies fish. For both, they will work at sea and on land to first collect and then process the information or samples (known as data in the scientific community). As I mentioned before, Amanda works with the Seabird Oceanography Lab at Oregon State University and starting in the fall semester, Will will begin his Ph.D. studies there as well. Other scientists on board are affiliated with other schools, like University of Oregon and Yale University, and some NOAA employs directly. You’ll meet some of them later on.

So, while I may not be at sea, I’m taking every opportunity I can to learn about how these scientists work, what their lives are like on and off the ship and what the significance of their research is. Yesterday, I rode with Amanda up to the Yaquina Head Outstanding Natural Area (it’s a beautiful name, really, but hereafter I will refer to it as Yaquina Head). Yaquina Head is home to Oregon’s tallest and second oldest lighthouse, one of a series that were built along the coast to guide fisherman home. It also happens to be home to a unique nesting site, also known as a colony, for many species of seabird, including the western gull and common murre.

Common murres return to their nesting sites once the eagles are out of sight.
Common murres return to their nesting sites once the eagles are out of sight.

We were there to try and adjust an antenna that was meant to pick up VHF signal (very high frequency, just one of several different radio signals that can be used) for a common murre she and her lab mates had previously tagged. Scientists use trackers (or “tags”) for a variety of reasons because they allow them to collect information on the birds’ location. This information will be put into a computer program that can then organize it so scientists can look for trends. Trends are patterns in data, which scientists analyze to gain new understanding or develop theories (ways to explain why these trends exist). For example, maybe the data will show a trend of no pings at the colony for several hours and scientists might theorize that eagles came to hunt during that time, scaring the murres away.

All of that was just hypothetical, but in fact, eagles had been hunting at Yaquina Head earlier that morning so thousands of murres were off the colony and sitting in the water. If you click on the first image in this post and zoom in you can see what look like black dots in the water. Each one is a seabird. As Amanda and her lab technician, Ian, worked to try and get the signal to come in clear without static, I wandered and watched for birds. I was also hoping to spot a spout, the tell tale sign of a whale or dolphin, but, alas, no luck.

In the end, the antenna issue was not resolved. Amanda said another member of her lab would be able to come out and take a look at it, another upside of being able to work in collaboration with others. At sea, she will mostly work solo, keeping a careful watch for various seabird and marine mammal species, but she’s already recruited me for data entry so that while she watches, I can help keep track of which species are spotted, what they were doing when they were spotted, and which direction they were traveling. All of this will be GPS stamped and stored to create a database of information, which will be shared among labs and researchers at different universities and institutions. When it’s operating at its best, science is a collaborative endeavor with the end goal being better understanding of our world.

Amanda and Ian adjust the VHF antenna to try and catch 24-hour presence-absence data for a tagged common murre.
Amanda and Ian adjust the VHF antenna to try and catch 24-hour GPS data for a tagged common murre.

________________________________

Today, I wanted to hike on the South Jetty to get a bit of exercise so I caught a ride with Will who was heading out to surf. If you choose to be an oceanographer or marine biologist, odds are you’ll end up living most of your life by the ocean, so if, like Will, you enjoy being in the water, it’s certainly something to consider.

A panoramic view of the South Jetty and the beaches of Newport.
A panoramic view of the South Jetty and the beaches of Newport.

Hiking out on the South Jetty, the path is easy-going for the first 150 feet or so, after that the distances between the rocks require a more careful eye and take up a bit more of your attention. Every now and then I would stop and try to catch a decent close-up picture of some of the seabirds that were constantly flying overhead.

IMG_7629
A cormorant flies by me.

The sheer number of animals that live off the Oregon coast can keep your head turning for hours, which is good because I was trying to split my time between watching the horizon for spouts and snapping photos of the gulls, cormorants and murres. My eyes may have been playing on tricks on me—I really, really want to see a whale—but I swore I saw a spout. A big part of me wanted to take off running down the jetty to get a closer look, but that was a near impossibility unless I wanted to run the risk of jumping from rock to slippery, yellow-lichen covered rock. I did however manage to get a few of the types of photos I was hoping to get.

IMG_7611
A flock of what appear to be cormorants.

After a quick coffee run, Will and I decided to check out the Oregon Coast Aquarium. While it can boast being a member of the top-10 best aquariums in the country, I think its real claim to fame is its former celebrity resident, Keiko the orca (killer whale), star of Free Willy, the 90s film that launched a generation of children who wanted to grow up and become marine biologists.

The aquarium focuses on education about the different marine life native to the Oregon coast, with exhibits on sea otters, harbor seals and California sea lions as well as the mysterious giant Pacific octopus. We were lucky to catch the rotating exhibition on shipwrecks, which focused both on the process by which archaeologists discover, unearth and study artifacts from shipwrecks in order to learn the story of their demise and how they become teeming centers of life, functioning as artificial habitat, once they make their way to the ocean floor.

________________________________

For our last night in port, Ric wanted to bring together as many of the scientists and crew as he could to give everyone an opportunity to get to know each other a bit before we made way. I met Tyler Jackson, a marine biologist from Oregon State University who is studying crab populations and Emily Boring, an undergraduate from Yale University. She’s just finished her freshman year, and she’s taking advantage of her summer to learn a bit more about a career she’s been interested in since she was in fourth grade. I would say that Emily is making a great choice to learn more and she’s definitely getting a head start if a life of research is what she ends up wanting.

________________________________

In darkness, we drove across the Yaquina Bay Bridge for the last time, the lights from restaurants and homes outlined the coast and traced down the docks, drawing our eyes to the Shimada, illuminated and waiting for us to take to the sea.

shimada at night
Good night Shimada. 

Did You Know?

Giant Pacific octopus are highly intelligent and have such sophisticated camouflage that they can mimic color and texture of their surroundings, allowing them to hide and then pounce on their prey.

 

Correction:

You were told there would be seabirds in that panoramic picture and unfortunately, there are not. There are seabirds in this picture below.

IMG_7415

 

Alex Miller: A Sailor’s Life is a Life for Me (for the Next 15 Days), May 26, 2015

NOAA Teacher at Sea
Alexandra (Alex) Miller, Chicago, IL
Soon to Be Aboard NOAA Ship Bell M. Shimada
May 27 – June 10, 2015

 

Representing the Teacher At Sea program
Representing the Teacher At Sea program

Mission: Rockfish Recruitment and Ecosystem Assessment
Geographical area of cruise: Pacific Coast
Date: Tuesday, May 26, 2015

Personal Log

Ahoy! Alex Miller, Teacher At Sea, here reporting to you from Newport, OR where in just under 24 hours NOAA Ship Bell M. Shimada will be underway for 15 DAS (days at sea) which will be filled with fisheries research, seabird surveys and other oceanographic endeavors that I will do my best to report faithfully and in vivid detail. For all images and video, click for a larger view.


 

Preparing for Sea

My adventure started with my arrival into PDX, the airport in Portland, OR, yesterday afternoon around 2:00PM. I was lucky enough to have the generous Amanda Gladics, a biologist from Oregon State University, pick me up and give me a place to stay before our trip down to the coast this morning. Apparently no one told either of us that we were going to have plenty of time onboard the ship to get to know each other because, after grabbing some snacks to make it through those upcoming night shifts, we sat up in her living room and talked until both of us looked around wondering why it was suddenly dark outside and we were both starving.

We set out at 0700 this morning in order to be in Newport by 1000. (NOAA and other maritime organizations use the 24-hour clock, which begins at midnight and counts up, so from here on out I will be using that format for time keeping). Amanda and I drove (well, she drove, I talked) down this morning so that she could attend a lab meeting with other scientists to prepare for her time onboard the Shimada.

A view from the front seat along Route 34.
A view from the front seat along Route 20.

As we drove in along Route 20 and through the Yaquina Valley, all I could see for miles were forests of Douglas Firs. Timber is a major industry in the Pacific Northwest and the timberlands out here cycle through periods of harvest, planting and new growth. Amanda remembers a section that was planted when she moved away from Newport just 6 years ago and those trees look to be almost 40 feet tall already! So for most of the 2.5 hours from Portland to Newport, our landscape was uninterrupted green, and then we came around a bend in the road and the tree line abruptly stopped, giving way to the steely gray ocean and my future home for the next two weeks.

Crossing the Yaquina Bay Bridge to reach the Hatfield Marine Science Center, I learned just how unskilled I am at taking pictures in a moving car, so after I met NOAA researcher, Ric Brodeur, Chief Scientist of our cruise, I took a hike up a nearby dune (which I later learned is affectionately called “Mount NOAA” because it is the sand that was dug out to make room for the large NOAA ships to dock without getting stuck on the bottom of the bay) to try and capture some images that actually do justice to this beautiful place. Later today Ric will take me to make sure I have all the waterproof gear I’ll need and then we’ll load up all the equipment and either have dinner onboard the ship or maybe get a chance to explore a seaside restaurant. No matter what we do for our last meal before launch, last night was my last night on land. I’ll sleep onboard the Shimada tonight to be ready for launch at 0800 tomorrow.

Once the cruise is underway, the researchers onboard have several goals they hope to accomplish during their time at sea. When NOAA ships go to sea, they have a mission statement that describes their main purpose for heading out; often however, other researchers can benefit from being at sea as well and will join the cruise but have other research goals in mind. Ric Brodeur and other researchers from Oregon State University plan to use these 15 DAS (Days at Sea) to characterize the plankton groups found just off the coast. Essentially, I’ll be helping them find and net samples to figure out what these groups are like. They’re paying special attention to young–referred to as larval or juvenile depending on age and development level–pelagicmeaning they are found near the surface of or in the first 10-30 m of ocean–rockfish and plankton. I’ll keep you informed of the goals of the other scientists I meet onboard the ship.

From atop Mount NOAA, the NOAA Ship Bell M. Shimada. It's 208 ft. long!
From atop Mount NOAA, the NOAA Ship Bell M. Shimada. It’s 208 ft. long!

 

A Bit About Me

Back in Chicago, I am a member of the Village Leadership Academy family of schools. As the science teacher at the Upper School, I aim to bring my students relevant content that will prepare them to be informed leaders that are capable of confronting future challenges. Our school teaches a social justice focused curriculum so my goal as an educator is to instill a love of learning about the natural world, but also a sense of stewardship and responsibility to the other creatures that share our home. Social justice and environmental justice are inextricably linked and too often, the most vulnerable populations, human and animal alike, bear the brunt of the abuses of the environment.

Me and several of my younger students canoeing at the forest preserve.
Me and several of my younger students canoeing at the forest preserve. Photo credit: Silvia Gonzalez

I believe education and awareness are part of the biggest reasons ocean conservation is not a hot-topic issue for all Americans. Just look at how much of the country is inland! While my students and I may take a field trip to the wonderful Shedd Aquarium every now and then, the ocean, and the life within it, cannot help but remain an abstract concept for someone who has never seen it. I wish I could take them all on the ship, but for now, I hope that my experiences as a Teacher at Sea will help to open eyes to the reality of the oceans and shed more light on the importance of maintaining their health and creating a more environmentally-just future, not just for marine life, but for all life on this planet.


 

Signing Off

That’s all for now! Stay tuned over the next two weeks as the Shimada travels up and down the coast between Flint Rock Head, CA and Gray’s Head, OR, trawling for young rockfish and keeping its eyes peeled for seabirds and marine mammals.

Commercial fishing boats are docked for the night, with the Yaquina Bay Bridge in the distance.
Commercial fishing boats are docked for the night, with the Yaquina Bay Bridge in the distance.

 

Did You Know?

The NOAA Corps is one of the seven uniformed services of the United States of America. This means there is a chain of command, with the Executive Officer or XO in charge of overseeing all operations and issuing orders to maintain those operations onboard each NOAA ship. I’ll be sure to follow orders and do my part to make the cruise run smoothly!

Prints found atop Mount NOAA. Comment if you think you know what animal left these behind.
Prints found atop Mount NOAA. Comment if you think you know what animal left these behind.