Karen Grady: Observations and Data Collection Today Leads to Knowledge In The Future, April 25, 2017

NOAA Teacher at Sea

Karen Grady

Aboard NOAA Ship Oregon II

April 5 – April 20, 2017

Mission: Experimental Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 25, 2017

 

Weather Data:

I am back settled into the crazy weather that is spring in Arkansas. Supposed to be 90 degrees today and then storms tomorrow.

Science and Technology Log

The second leg of the Oregon II’s experimental longline survey is now complete.  The ship and all the crew are safely back in the harbor.  Fourteen days at sea allows for a lot of data to be gathered by the science crew.

Now, an obvious question would be what do they do with all the data and the samples that  were collected? The largest thing from this experimental survey is looking at catch data and the different bait types that were used to see if there were differences in the species caught/numbers caught etc. They are also able to look at species compositions during a different time frame than the annual survey and different depth ranges with the much deeper sets. Fin clips were taken from certain species of sharks. Each fin clip can be tied to a specific shark that was also tagged.  If anyone ever wanted or needed to they could trace that fin clip back to the specific shark, the latitude and longitude of where it was taken, and the conditions found in the water column on that day.  Everything the scientists do is geared towards collecting data and providing as many details as possible for the big picture.

Occasionally sharks are captured and do not survive, but even these instances provide an opportunity to sample things like vertebrae for ageing studies or to look at reproductive stages. Science is always at work.  With the ultrasound machine on board we were able to use it on a couple of the sharpnose sharks and determine if they were pregnant .

 

ultrasound

Ultrasounding female Sharp Nose sharks to see how may pups they were carrying.

 

Parasites… did you know sharks and fish can have parasites on them? Yes, they do and we caught a few on this leg. Sharks or fish caught with parasites were sampled to pass along to other researchers to use for identification purposes. Kristin showed me evidence of a skin parasite on several of the small sharks. It looked like an Etch-A-Sketch drawing.

etchisketch 2

This shark had whole mural on the underside from the parasites

etchisketch 1

Shark underside marred by parasite infection

Red snapper were also sampled at times on the survey to look deeper into their life history  and ecology. Muscle tissue was collected to look at ecotoxicity within the fish (what it has been exposed to throughout out its lifetime); along with otoliths to estimate age. We are using muscle tissue to examine carbon, nitrogen, and sulfur. Each element looks into where that fish lives within the food web. For instance, carbon can help provide information about the basal primary producers, nitrogen can help to estimate the trophic level of the fish within the ecosystem, and sulfur can try to determine if the fish feeds on benthic or pelagic organisms. Otoliths are the ear bones of the fish. There are three different types of ear bones; however, sagittal ear bones (the largest of the three) will be sectioned through the core and read like a tree. Each ring is presumed to represent one year of growth.

 

red snapper1

Red Snapper caught and used for sample collection

paul red snapper

Paul Felts removing a hook

redsnapper head

Sometimes someone bigger swims by while a fish is on the hook

Personal Log

Now that I am home and settled I still had a few things to share. One it was great to get home to my family, but as I was warned by the science crew it does take a couple of days to adjust to the usual schedule.  It did feel good to go for a jog around town instead of having to face the Jacob’s Ladder again!

 

Everyone asks me if I had a good time, if it was scary, if we caught any sharks. I just don’t think there are words to express what an amazing experience this was for me.  Of course, seeing the sharks up close was just beyond words, but it was also being made a part of a working science team that are working year-round to monitor the health of the ocean and the species that live there. For me this was a two-week section of my life where I got to live on the ocean and catch sharks while learning a little about the data the science crew collects and how they use it.  The science crew will all be back out on the ocean on different legs over the next few months.

I confess I am not super hi tech, so I am not proficient with a Gopro so I probably missed out on making the best films. However, I did get some excellent photos and some good photos of some impressive sharks.  Thanks to technology I will be able to create slide shows to my K-12 students so they can see the experience through my eyes.  I am looking forward to showing these slide shows to my students. My elementary students were so excited to have me back that they made me feel like a celebrity.  I was gone a little over two weeks and to my younger students it seemed forever.  Many of the teachers shared some of my trip with the students so they would know where I was and what I was doing.

I am settled back into my regular schedule at school. One awesome thing about my job is that I deal with students from kindergarten through seniors.   I started back with my elementary students yesterday.  Let me just say that young people can make you feel like a Rockstar when you have been gone for 15 days.  I knocked on a classroom door and could hear the students yelling “ she’s here! Mrs. Grady is here!” and then there were the hugs. Young kids are so genuine and they have an excitement and love of learning.  I have to get busy on my power point to share with them.  They wanted a list of sharks we caught, how big they were, etc.  I am getting exactly what I hoped, the students want to understand what I did on the ship, why we did these things and what did I actually learn.

For my last blog, I have decided to share some of my favorite photos from my time on the Oregon II.

This slideshow requires JavaScript.

Cecelia Carroll: Off to Newport, RI! April 27, 2017

NOAA Teacher at Sea 

Cecelia Carroll 

Aboard NOAA Ship Henry B. Bigelow 

May 2 – 14, 2017 

Mission:   Spring Bottom Trawl Survey, Leg IV

Geographic Area of the Cruise: Sailing out of Newport, R. I. Northeast US Coast, George’s Bank – Gulf of Maine

Date: April 27, 2017

I am honored to have been selected to take part in the Teacher at Sea Program. I’ll be driving down to Newport from southern New Hampshire in a few days to begin what should prove to be an amazing adventure working along with the fishery scientists and crew on the NOAA Ship Henry B. Bigelow (FSV 225).

Science and Technology Log

The purpose of the Spring Bottom Trawl Survey is to monitor the fish stocks and invertebrate found on the continental shelf. The scientists will study any changes in ocean conditions and the sea life to make informed decisions for conserving and managing the fishery resources and their habitat.

The Henry B. Bigelow was named in honor of the founding director of the Woods Hole Oceanographic Institution, the “Father of Modern Oceanography.” Henry Bryant Bigelow (1879-1967) was an expert on the Gulf of Maine and its sea life and a member of the Harvard faculty for 62 years. The ship is a state-of-the-art 208-foot research vessel commissioned in 2007. It boasts a “quiet hull” that allows the scientists to observe the sea life using sound waves with limited disturbance to their natural state.

Fish that we expect to observe include: Monkfish, Herring, Skates, Dogfish, Atlantic Salmon, Hake, Cod, Haddock, Pollack, Flounder, Mackerel and more! I’m looking forward to viewing these specimens up close!

Personal Log

I have been teaching middle school mathematics for 26 years at Hampstead Academy, in Hampstead, NH.

426c8d8b374bc156f1a9550985e3b0db_400x400

How does a mathematics teacher find her way to intensifying her interest in the sea? In 2014 I was selected to attend a week at Space Camp in Huntsville, Alabama along with 200+ teachers from around the globe. While there I learned of the SeaPerch program. Soon after, I received a grant from the US Navy for several SeaPerch kits, journeyed down to Newport, RI Naval Base for a day of constructing the SeaPerch ROV, and then set up a SeaPerch program at Hampstead Academy along with a co-teacher and my husband. Cutting pipe, waterproofing the engines, soldering the microcontroller, and all the tasks to complete the build of the SeaPerches was such a proud achievement for the group! We are fortunate to be near enough to UNH in Dover, so with a group of my students, we toured the Jere E Chase Ocean Engineering Laboratory and tested our SeaPerch ROV’s in their wave and deep-water tanks. What a marvelous facility, welcoming student tours and hoping to spark an interest in the oceanography field.

I hope to inspire my students to consider a career in STEM professions, to open their eyes to the possibilities in the field of marine sciences where the work they do can impact the present and future generation.

Thanks you to the Hampstead Academy administration, fellow teachers that are taking over my classes for these two weeks, and for the support of the school community and my family and friends.

Thank you to the dog sitter for Clover!

Thank you to NOAA Teacher at Sea program for this enriching opportunity.

Did You Know?

The Henry B. Bigelow was the first NOAA ship to be named through a ship-naming contest by the winning team from Winnacunnet High School in Hampton, N.H.

Below is a picture of Clover at North Hampton Beach last week when we had some welcoming warm weather for a short spell.

 

Kimberly Scantlebury: Getting Ready to Ship Out. April 26, 2017

NOAA Teacher at Sea

Kimberly Scantlebury

Aboard NOAA Ship Pisces

May 1-May 12, 2017

Mission: SEAMAP Reef Fish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 26, 2017

Weather Data from the Bridge

16806786_610426269901_2847107978351918522_n

At home in New England, where you can enjoy the mountains and the sea all in a day.

Greetings from New Hampshire! Our variable spring weather is getting me ready for the coolness at sea compared to hot Galveston, Texas, where I will ship off in a few days.

It is currently 50 F and raining with a light wind, the perfect weather to reflect on this upcoming adventure.

Science and Technology Log

I am excited to soon be a part of the 2017 SEAMAP Reef Survey. The National Oceanic and Atmospheric Administration (NOAA) writes the objective of these surveys is, “ to provide an index of the relative abundances of fish species associated with topographic features (banks, ledges) located on the continental shelf of the Gulf of Mexico in the area from Brownsville, Texas to Dry Tortugas, Florida.” The health of the Gulf is important from an ecological and economic perspective. Good science demands good research.

We will be working 12 hour shifts aboard the NOAA Ship Pisces. I expect to work hard and learn a lot about the science using cameras, fish traps, and vertical long lines. I also look forward to learning more about life aboard a fisheries research vessel and the career opportunities available to my students as they think about their own futures.

Personal Log

I’ve been teaching science in Maine and New Hampshire for eight years and always strive to stay connected to science research. I aim to keep my students directly connected through citizen science opportunities and my own continuing professional development. Living in coastal states, it is easier to remember the ocean plays a large role in our lives. The culture of lobster, fried clams, and beach days requires a healthy ocean.

I love adventure and have always wanted to “go out to sea.” This was the perfect opportunity! I was fortunate to take a Fisheries Science & Techniques class with Dave Potter while attending Unity College and look forward to revisiting some of that work, like measuring otoliths (ear bones, used to age fish). I have also benefited from professional development with The Bigelow Laboratory for Ocean Sciences and other ocean science experiences. One of the best parts of science teaching is you are always learning!

11264902_575518814721_8101743023779813565_n

Science teachers benefit from quality professional development to stay informed in their content areas.

There was a lot of preparation involved since I am missing two weeks of school. I work at The Founders Academy, a public charter school in Manchester, New Hampshire. We serve students from 30 towns, but about a third come from Manchester. The school’s Vision is to: prepare wise, principled leaders by offering a classical education and providing a wide array of opportunities to lead:

  • Preparing students to be productive citizens.
  • Teaching students how to apply the American experience and adapt to become leaders in today’s and tomorrow’s global economy.
  • Emphasis on building ethical and responsible leaders in society.

I look forward to bringing my experiences with NOAA Teacher at Sea Program back to school! It is difficult to leave my students for two weeks, but so worth it. It is exciting to connect with middle and high school students all of the lessons we can learn from the work NOAA does. My school community has been very supportive, especially another science teacher who generously volunteered to teach my middle school classes while I am at sea.

13417611_591938624291_8919445317025949442_n

I am grateful for the support at home for helping me participate in the NOAA Teacher at Sea Program.

My boyfriend too is holding down the fort at home and with Stone & Fire Pizza as I go off on another adventure. Our old guinea pigs, Montana & Macaroni, prefer staying at home, but put up with us taking them on vacation to Rangeley, Maine. I am grateful for the support and understanding of everyone and for the opportunity NOAA has offered me.

Did You Know?

NOAA Corps is one of the seven uniformed services of the United States.

NOAA is the scientific agency of the Department of Commerce. The agency was founded in 1970 by consolidating different organizations that existed since the 1800’s, making NOAA’s scientific legacy the oldest in the U.S. government.

IMG_0993

As a science teacher, it is funny that I really do have guinea pigs. Here is our rescue pig Montana, who is 7-8 years old.

Mark Wolfgang: If a Fish Laughs in the Ocean and No One is There to Hear it, Does it Really Make a Sound? April 21, 2017

NOAA Teacher at Sea

Mark Wolfgang

Aboard NOAA Ship Reuben Lasker

April 11 – April 22, 2017

 

Mission: Spring Coastal Pelagic Species (Anchovy/Sardine) Survey

Geographic Area of Cruise: Pacific Ocean

Date: April 21, 2017

Weather Data from the Bridge:

Lat: 38o 2.4’N        Long: 123o 6.2’W
Air Temperature: 13.9oC (57oF)
Water Temperature: 12.9oC (55oF)
Wind speed: 12 knots (13.8 mph)
Barometer:   1014.97 mbar
Conditions:  Clear skies and the seas are pretty smooth

Scientific and Technology Log:

DSC00196

The Acoustics room on the Reuben Lasker

Today, I decided to learn more about the other key research part of the Coastal Pelagic Survey.  As the trawling is happening at night and the egg and larval collections during the day, acousticians are listening to what is below us.  Using this information, research scientists can assess the population of coastal pelagic species (CPS).  The acoustics room is full of stacks of computers, servers, monitors and organized wires.  NOAA researchers collect enormous amounts of data as we move down the 80 mile transects across the Pacific Ocean.  On this leg, we have not found many large schools of sardines or anchovies, but the data from acoustic-sampling did lead us to some jack mackerel.  I am going to try to explain some of the technology they use on the Reuben Lasker.reuben-lasker-acoustic-sampling

Simrad EK60 and EK80:  These are two sonar systems that use multiple frequencies to listen to the ocean right below the ship.  In the diagram, it is seen in green.  The EK80 is newer and is being tested on the Reuben Lasker.  It collects enormous amounts of data and acousticians are looking at how best to use that data.

Simrad ME70: This multibeam sonar (seen in orange in the diagram) listens to the water below and around the ship.  It would almost look like a fan.  This does not only tell us what is below, but what is beside the ship as well.

DSC00191

The Simrad ME70

Simrad SX90: This is a long-range sonar (shown in gray) that looks at the surface for a good distance around the ship.  When I was there, they were analyzing 450 meter radius around the ship.  This is where the UAS would come in to use.  If a school of sardines or anchovies are seen on this sonar, they could possibly deploy the drone to fly over the school and take photographs.  Researchers could then analyze those photographs and collect appropriate data.  Researchers can also potentially use this system to see how the ship moving through the water effects the behavior of the school.

DSC00190

The Simrad SX90

Simrad MS70:   The MS70 is a multibeam sonar that also analyzes the water off the side of the ship.  It almost fills in the imaging gap left by the ME70.

DSC00187

The Simrad MS70

DSC00195

K-SYNC

All of these sonars are linked together by a program called K-SYNC.  This program makes sure that the sonars don’t “ping” at the same time and cause interference with all of the systems.  The Reuben Lasker also a very quiet propulsion system to limit the interference of the sound of the ship moving through the water.  The ship also has 3 hydrophones that can be used to listen to marine mammals.

Together these five sonar systems give the Reuben Lasker an incredible view of what is in the water under and around the ship.  This informs the trawls at night and together gives a good picture of the CPS in the waters of coastal California.

Personal Log:

So what do we do during the time we are not working?  The ship is full of movies, an exercise room, and snacks are available all day.  I have been able to read a couple books, watch a few movies with the science team, work on my blog and talk to crewmembers, and even watch some TV (including seeing the Penguins play a couple hockey games).  When you are on shift, there will be some downtime and then a bunch of activity as the net is pulled in.  I have also tried to soak in the clean ocean air and take moments just to enjoy the experience.  My Teacher At Sea voyage has been enjoyable, but I am looking forward to arriving back in San Francisco on April 22nd and flying home that night to be with my family.

Did you know?

Sonar, an acronym for SOund Navigation And Ranging, is a technique that uses sound to navigate, communicate, or detect objects on or under the surface of the water.  American naval architect, Lewis Nixon, invented the first sonar-like device in 1906.  Because of the demands of WWI, Paul Langevin constructed the first sonar set to detect submarines in 1915.

 

Mark Wolfgang: Up, Up, and Away…, April 20, 2017

NOAA Teacher at Sea

Mark Wolfgang

Aboard NOAA Ship Reuben Lasker

April 11 – April 22, 2017

 

Mission: Spring Coastal Pelagic Species (Anchovy/Sardine) Survey

Geographic Area of Cruise: Pacific Ocean

Date: April 20, 2017

Weather Data from the Bridge:

Lat: 37o 21.1’N         Long: 123o 45.5’W
Air Temperature: 14.7oC (58.46oF)
Ocean Temperature: 13.3oC (56oF)
Wind speed:  17 knots (19.5 mph)
Barometer:   1026.44 mbar
Conditions:  Mostly sunny with wind and moderately choppy seas

Scientific and Technology Log:

4.18 UAS1

The UAS launched from the Reuben Lasker

Over the past few days, a new technology was brought to the Coastal Pelagic Species Survey: the Unmanned Aircraft Systems (UAS).  For NOAA, the drones are a new way to obtain unique views of wildlife and beautiful landscapes.  UAS also offers an innovative method for scientific researchers to obtain important information about marine mammals.  This data will provide data that can further support the conservation of these protected species.

 

According to NOAA Unmanned Aircraft Systems Program website (uas.noaa.gov):

“Unmanned Aircraft Systems (UAS) can revolutionize NOAA’s ability to monitor and understand the global environment. There is a key information gap today between instruments on Earth’s surface and on satellites – UAS can bridge that gap. Operated by remote pilots and ranging in wingspan from less than six feet to more than 115 feet, UAS can also collect data from dangerous or remote areas, such as the poles, oceans, wildlands, volcanic islands, and wildfires. Better data and observations improve understanding and forecasts, save lives, property, and resources, advancing NOAA’s mission goals.”

4.17 UAS14

The drone being launched from a small boat in rainy weather.

On the Reuben Lasker, they are testing to see how the drones can be used to support the Coastal Pelagic Species Survey.  On board for this leg is Jake Barbaro, a NOAA UAS pilot.  Jake’s background is in fisheries biology (focusing on plankton) and he is now a member of the NOAA Corps.  Normally, the UAS is used to watch dolphins, whales, and other marine mammals, but it may provide a way to gain information about coastal pelagic species.  It should allow the NOAA research to collect data closer to the shoreline.

I had the opportunity to watch a couple missions using the UAS drone.  To fly, the conditions have to be just right, which can be challenging during spring in the Pacific.  We had several days where the wind was too high or there was too much fog to allow the drone to take off.

4.18 UAS Landing1

The UAS being launched directly from the ship.

The first test was taking a small boat about 1 mile from the Reuben Lasker and launching the drone into the air.  They were able to complete one flight, but the rain prevented a second one.  They have a limited battery life so they cannot waste time.  The second mission was on a much nicer day and they launched the drone from the forward deck.  These two missions went off very well.  The drone lifted to about 400 feet above the ship, taking pictures and they came to land smoothly back on the deck.
Yesterday, they were able to take the drone out on a small boat and complete two flights with the drone.  One was right above the Reuben Lasker and the other was closer to the shore.  If conditions are right, they would like to do one more mission.  It was very impressive.  It will be interesting to see how they will use this technology to support the Coastal Pelagic Species Survey.

OLYMPUS DIGITAL CAMERA

The Reuben Lasker from about 400 feet in the air.

Personal Log:

It is about time.  I have been seeing pyrosomes in my sleep, but tonight we did not see many pyrosomes.  I had a feeling it was going to be a good night.  The sunset was beautiful and I saw the best star display while I was on mammal watch.  Thirty minutes before every trawl, a couple of the science team goes up to the bridge to watch for marine mammals.  I have not seen any (partly because it is so dark).  They keep the bridge dark, illuminating things with only red light, so that they can have the best visibility into the dark ocean.  The night was dark, so you could see so many stars….just beautiful.  In our first trawl, most of our catch were market squid.  In our second trawl near the Farallon Islands, we caught 5 jacksmelt and market squid.  It was great to see something more than pyrosomes.

DSC00173

Jacksmelt

I have enjoyed getting to know the science team and other volunteers.  It is interesting to hear their stories and how they started working at NOAA.  Some people work 6 pm to 6 am, some work 12 pm to 12 am, and some work 12 am to 12 pm.  I have had the opportunity to get to know all of them and each of them have a unique story about how and why they are here.  They have all be very friendly and welcoming to me.  I have discovered that there are so many different careers out there and so many different pathways to get to those careers.  It is clear to me that these individuals love their job and the ocean.  They may go “to sea” a couple times a year, but the rest of their time is in the lab in San Diego where they sort and classify the collections or work with the data.  Some of them have quite a lot of experience at sea.  I am glad that they have allowed me to tag along.

Did you know?

The Farallon Islands are a breeding ground for Great White Sharks because of the large elephant seal population. The male sharks return to the islands every year, but the larger females visit every other year.  Unfortunately (or fortunately) we did not see any Great White Sharks since they breed in the fall.  Although, I did make the comment that we may need a bigger boat.  I am sure they haven’t heard that joke before.

DSC00186

The Farallon Islands

Karen Grady: It’s Not ALL About The Sharks! April 18, 2017

NOAA Teacher at Sea

Karen Grady

Aboard NOAA Ship Oregon II

April 5 – April 20, 2017

Mission: Experimental Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 18, 2017

 

Weather Data

Latitude 2827.10
Longitude 09148.6
75 degrees
Sunny
No precipitation
Winds at 10 KTS
Waves at 2-4 FT

Science and Technology Log

There are always many things happening on a research vessel. As we moved from station to station, scientists Paul Felts and Kevin Rademacher have been deploying a trolling camera with a lure attached. I asked Kevin about the camera and he explained what they are trying to accomplish.  The ultimate goal of this experimental camera system is to help develop an index of abundance for pelagic species (billfish, dolphinfish, King mackerel, tunas, etc) to be used in stock assessments for those species.  Currently, there are no fishery independent indices for adults of these species. We are trying to achieve this by attaching a camera in front of a hook-less trolling lure. If it is successful, the plan is to deploy it when running between stations on all of our surveys. This would give us enough samples to hopefully create an annual index for these species.

This trip they have taken the system from the idea and initial system build back at the lab, and are trying it in the real world; modifying portions that are not working to get it to work. What is desired is towing the system to where the lure is acting as potential prey, is not being negatively affected by the vessel’s propeller wash or bubbles from the vessel or waves, at a vessel’s transit speed, and is depth adjustable.

a

The scientists were working opposite watches and during watch changes they would share what they had observed and discuss small changes that they wanted to make to obtain better results.   The camera allowed them to watch video footage to assess how clearly the lure could be viewed under the water as it traveled behind the ship.  The ship’s crew up in the bridge worked with the scientists requests for the changes in speed they needed for short periods of time while the trolling camera was in the water during a transit to another station.

The longline hooks often yield other species besides sharks. On one set we caught 3 king snake eels, Ophichthus rex, that have long bodies, that are very stoutly built.  Instead of a tail fin they have a fleshy nub.  One of them was almost as long as scientist Paul Felts is tall.  This species is distributed in the Gulf of Mexico.  It is often caught around oil rigs.  The species is consumed on a very small scale and is prepared and sold in Florida as “keoghfish”. This a burrowing species that inhabits mud, sand and clay between 15-366 meters deep.  King snake eels may reach sizes up to 11 feet.

 

2

Paul Felts weighs a large King Snake eel

 

3

King Snake eels don’t like to stretch out for measurements. It took a few extra hands to get this large one to cooperate.

 

Personal Log

What is a day in the life of this NOAA Teacher at Sea like?

We are on the downhill side of this cruise. It has been full of so many amazing things. I miss my family and will be ready to see them, but am so thankful for this experience.  Life on the ship is quite a unique experience. There are 29 of us on this cruise. But because of working 12-12 approximately half are working while the others are sleeping and having some down time.  This means we don’t see each other except around shift changes.  You are very aware of not banging things, or accidentally letting the motion of the boat slam a door because someone is always sleeping.   The berths are small but functional.  I am sharing a berth with the XO, LCDR Lecia Salerno, who is also on day watch.  You can see from the photo below that the space in any of the berths is limited.  I have the top bunk which is kind of scary for those who know how graceful I am, but as of yet I haven’t had any mishaps.

4

This is a typical berth on the Oregon II. Usually one crew member has it for 12 hours then they switch. This allows for uninterrupted sleep and  a little privacy on a small ship with 29 crew members onboard.

 

What is a day like onboard the Oregon II for me? I wake up around 8 am and try to convince myself to do a few minutes on the Jacob’s Ladder and a few weights for upper body.  Breakfast for me is a power bar, each watch usually eats two meals in the galley and mine are lunch and dinner.  There is time to do laundry if the washer is available. Twenty-nine people using one washer and dryer calls for everyone to be courteous and remember to get your laundry done and out of the way.  I usually spend about an hour reading or working on blogs and even some new plans for my students next year. I am lucky that the boat has wifi that bounces in and out so I can use I-message and stay in touch with some of my family and friends as well as facebook, and email.

5

Crew’s lounge where we watched the occasional movie, and I wrote all my blogs.

 

Lunch is at 11 and our watch eats and gets out of the way because we are on at noon and need to let the other watch get into the galley for their lunch. Did I mention the galley only has 12 seats and that courtesy is the big thing that makes life on the ship work?  When we aren’t baiting hooks, setting out the line, or pulling in the line we hang out in the dry lab.  There are computers in the dry lab and the scientists are able to work on emails, and data that is being gathered.  There is also a television and we have watched some random things over the long shifts.  Lots of laughter happens in this room, especially the more tired we get.  I will also admit that we joined the rest of the internet world in stalking April the Giraffe until she had that baby!!! There is time between sets to go do a little bit of a workout and sometimes I take advantage of this.  An important activity is hydration. You do not realize how the warm weather on the deck depletes your system.  There are notes posted reminding us to stay hydrated.  It is also important for me to keep a little food in my stomach to ward off any seasick feelings.  I try not to snack at home, but dry cereal or a piece of toast have become my friends on this cruise.  Other than the first night at sea I have not had any real queasy moments so I am going to continue this pattern as long as we are moving.  One thing is that I tend to snack and drink a lot of water.  Dinner is at 5 and occasionally it falls about the time we have to set out a line or pull in a line. This means we eat really fast and get back to work.

6

The stewards cook three meals a day out of this small galley kitchen. They did a great job of giving us menus with lots of options.

When it is time to set a line we all go out on deck and we bait 100 hooks. The hooks will be baited with either chunks of mackerel or squid.  There is nothing glamorous about this at all. If you aren’t paying attention you can even take a shot of squid or mackerel juice to the face.   When it is time to get the line in the water there are jobs for each of us.  One person puts the high flyer in the water, this marks the start and end of the line of hooks and has a flashing light for night time.  One person attaches a number to each hook’s line and hands it to the slinger who puts the hook over the side and hands the line to one of the fisherman to attach to the line and send it on its way.  One person mans the computer and inputs when the high flyer, three different weights and each hook go over the side.  The computer records the bait used, the wave height, cloud cover, precipitation, longitude and latitude of each hook.  I told you the scientists’ collect a lot of data on these cruises.  The last person scrubs the barrels clean and places them up front on the bow for the haul back.  The deck gets washed down.  The crew works hard to keep the ship clean.

8

I had no idea how much squid ink or juice one person could get on them until I learned to bait a hook with squid for long-line. Mackerel is SOOOO much better!

7

Putting the high flyer over the rail. One marked the beginning and end of each line we put out.

When the crew on the bridge gives us the 10 minute call we all dawn our life jackets, grab our gloves and head to the bow to see what we might have caught. The deck crew is getting ready to pull in the high flyer, the computer gets set up and all the necessary equipment for collecting data is laid out.  We have two measuring boards, a small sling for weighing bigger sharks on deck, two types of taggers, scales, scissors, tubes for fin clips, pliers, measuring tape, bolt cutters, data sheet, and hard hats for all.   One person works the computer, recording if we caught a fish, or whether or not there was any bait left on the hook, another person takes the line and hook and places it in a barrel ready to be baited next time, the number is removed and placed on a cable, two people are ready to “play” with the sharks and fish, meaning they will do the measurements, weights and any tagging, and one person fills out the data sheet.  It all works very quickly and efficiently.  Sometimes it gets a little crazy when we have fish and sharks on several hooks in a row. I spent most of my time doing the data recording and I must say my experience working the chutes with tagging and vaccinating cattle sure came in handy when it came to keeping the information straight.

11

Science team works check if a female bull shark is pregnant using an ultrasound machine

10

Measuring a sharp nose shark

9

Sometimes the more active sharks took more than one person to remove the hook so we could release them.

The day watch comes on shift at midnight, but they usually show up around 11:30 to visit and see what has happened on our shift. By midnight we are free to go.   I stop in the galley for a quick sandwich made of toast and ham.  Next up is the much needed shower.  We use mackerel and squid for bait and let’s just say the juice and squid ink tends to fly around the deck when we are baiting hooks.  Then you get the salty sea air, handling sharks, red snapper, king snake eels, and it makes a hot shower is much anticipated.  Lastly, I crawl into my top rack (bed) and adjust to the pitch and roll of the ship.

Did You Know

Typically, biologists can age sharks by examining cross sections of shark’s vertebra and counting the calcified bands, much like you can count the rings on a cross section of a tree trunk. The deep-water sharks we are looking for are trickier to age because their vertebra do not become as calcified as sharks found in shallower depths.

Mark Wolfgang: What Does It Take? April 18, 2017

NOAA Teacher at Sea

Mark Wolfgang

Aboard NOAA Ship Reuben Lasker

April 11 – April 22, 2017

Mission: Spring Coastal Pelagic Species (Anchovy/Sardine) Survey

Geographic Area of Cruise: Pacific Ocean

Date: April 18, 2017

Weather Data from the Bridge:

Lat: 36o 52.3’N         Long: 121o 53.9’ W

Temperature: 12.62oC (54.7oF)

Wind speed: 4 knots (4.6 mph)

Barometer:  1016.96 mbar

Conditions: Blue skies with a few clouds, smooth seas

Scientific and Technology Log:

I have been blessed to work with a great science team and I hope I have been helpful.  There is a mixture of talents and strengths, but a common love for the oceans.  Since there is always a need for reliable data, the entire team does their job with precision.

4.16 Otolith12

Fishery biologist Bev Macewicz teaches me to remove the otilith from an anchovy

I have enjoyed my conversations with them as we wait to get to a trawl location or for the nets to come in.  There are all possible careers available on the oceans.  From the NOAA Corps of officers, to the deckhands and fishermen, to the guys who work in the acoustic labs, to the engineers that make sure the ship is running properly, to the chief steward and second cook, to the science team, there are so many different potential careers if you love a life at sea.  I interviewed a few members of my science team.

Sue Manion, Chief Scientist:

DSC00046

Chief Scientist, Sue Manion, watches the deployment of a bongo net.

Sue has a B.S in Fisheries Biology from Michigan State University and worked with an aquaculture program with the Peace Corps in the Dominican Republic.  When she was in elementary school, she loved the outdoors and animals, both domestic and wild.  She
always knew she would become a wildlife biologist.  Her first position with NOAA was a temporary job as a Marine Mammal observer on a tuna fishing boat.  Sue told me that she loves the outdoor, physical work and never imagined she would get a permanent position as a sea-going fisheries biologist on the ocean.

Favorite part of the job:

“The most enjoyable part of my job is the outdoor, physical work.”

Dream job:

“I would be raising horses and running a wildlife sanctuary.”

I asked Sue, what advice would you give to a student who wanted to pursue a career in marine sciences?

“Take all the science, math, computer, and writing classes available. Learn all you can about working with hand tools and small electrical tools.”

Ed Weber, Research fisheries biologist

Ed has a B.S in Biology from the University of Michigan, M.S. in Fisheries and Wildlife Science from New Mexico State University, and a Ph.D. in Fisheries and Wildlife Biology from Colorado State University.  Ed told me he knew he wanted to do some type of

DSC00164

Ed Weber preserves specimens collected from a pairovet

biology work, but never considered a career in academia and became interested in fisheries after doing a work-study position at the USGS Great Lakes Science Center.  Most
of his experience was with freshwater fisheries and he never expected to be working in oceanography.  He was hired because of his skills in statistical analysis and programming and is “still learning a lot of oceanography.”

Favorite part of the job:

“I like the days when I finish an analysis and go home feeling like I know something that I didn’t know the day before, and neither did anyone else. Most of these are very small incremental research advances that won’t change the world, but it’s still a lot of fun.”

I loved his advice for interested students:

“I think the most important and valuable skills are those that make you a good scientist in any discipline. I suggest early-career scientists focus on critical thinking, the ability to read and synthesize information from a variety of sources, and the ability to write well. Specific tools and techniques can always be learned later. A final piece of advice is something I learned by example from one of the best fisheries biologists I know. That is to approach research with a sense of humility. Never hesitate to admit what you do not know, even if you become a world expert in your area. Then go out and find the person who does know and ask that person about the problem. An honest and humble approach to science will make you a much better than you might have thought you could be.”

Personal Log:

I think I am finally “getting my sea legs.”  I am not referring to sea sickness or getting around the ship.  The last few days, I committed myself to experiencing as much as I can since my time aboard the Reuben Lasker is ending.  I have had a lot of moments where I looked around and smiled because I never thought I would experience something like this.  I hoped for a little more biodiversity in the trawls, but that is science field work.  You get the data that you get.  As I was sorting through seemingly endless pyrosomes, I had to take a moment and realize all that I have seen.  I saw fish and marine invertebrates I only have read about.  I saw a drone take off from a ship (I will share more about that later).  I saw humpback whales swimming in pods from the bridge.  I saw Pebble Beach golf course from the ocean.  How many teachers get that opportunity?  I am a lucky guy and am committed to “soaking it all in.” I am looking forward to seeing my family soon, but I will live for each day.

Did you know?

Phronima is a genus of amphipods that live throughout the world’s oceans.  These semitransparent animals attack salps.  They use their mouths and claws to eat the animal and hollow out its gelatinous shell.  The females enter this cavity and lay their eggs inside.  Phronima propels the salp through the water as the larvae develop which provides them fresh food and water.  Hollywood used this animal as the model for the queen alien in the 1979 science fiction horror film, Alien.

 

4.13 Phronima

Phronima sp.