Susan Dee: Microscopic Sea Life – Days 1-4, May 24, 2018

NOAA Teacher at Sea
Susan Dee
Aboard NOAA Ship Henry B. Bigelow
May 23 – June 7, 2018

Mission:  Spring Ecosystem Monitoring Survey

Geographic Area of Cruise:  Northeastern Coast U.S.
Date: May 24, 2018
Weather Data from Bridge
Latitude: 40°32′
Longitude: 070°45′
Sea Wave Height:  1-2 feet
Wind Speed:  12 knots°
Wind Direction: west
Viability: unrestricted
Air Temperature:  13.5°C
Sky: Few clouds

Science and Technology Log

Tuesday, May 22, I arrived at Newport Naval Base and boarded NOAA Ship Henry B. Bigelow to begin my Teacher at Sea journey by staying overnight on a docked ship.   Day 1 was filled with many new experiences as we headed out to sea.  The Henry B. Bigelow is part of a fleet of vessels commissioned to conduct  fishery surveys. To learn more about the Henry B. Bigelow,  check out this website:  Henry B. Bigelow. The objective of this cruise is to access the hydrographic, planktonic and pelagic components of North East U.S. continental shelf ecosystem.  The majority of the surveys we will take involve  the microbiotic parts of the sea –  phytoplankton, zooplankton and mesoplankton.  Plankton are small microscope organisms in the oceans that are extremely important to the entire Earth ecosystem.  These organisms are the foundation of the entire ocean food web. By studying their populations. scientists can get an accurate picture of the state of  larger ocean organism populations.

Susan and ship

Henry B. Bigelow

Leaving Newport Harbor

Leaving Newport Harbor

Before leaving the dock, I met with Emily Peacock from Woods Hole Oceanographic Institute (WHOI) to learn how to run an Imaging Flow Cytobot instrument that uses video and flow cytometric technology to capture images of phytoplankton. The IFCB was developed by Dr Heidi Sosik and Rob Olsen (WHOI) to get a better understanding of coastal plankton communities. The IFCB runs 24 hours a day collecting sea water and continuously measuring phytoplankton abundance.  Five milliliters of sea water are analyzed every 20 minutes and produces the images shown below.

Imaging Flow CytoBot

Emily Peacock teaching the usage of the Imaging Flow CytoBot (IFCB)

 

Imaging Flow Cytobot IFCB

Imaging Flow Cytobot (IFCB)

phytoplankton

Images of Phytoplankton taken by IFCB

The science party on board is made up of scientists from National Marine Fisheries Service (NMFS) part of NOAA Fisheries Division. The chief scientist, Jerry Prezioso, works out of Narragansett Lab and the lead scientist, Tamara Holzworth Davis, is from the Woods Hole Lab, both from the NOAA Northeast Fisheries Science Center.  Other members of the Science Party are Seabird/Marine Mammal observers and a student  from Maine Maritime Academy.  The Crew and scientist group work together to coordinate sampling stations. The crew gets the ship to the site and aid the scientists in deploying instruments. The scientists collect the data and samples at each station.  The Crew and scientists work together to find the best and most efficient sea route to each  sampling site. Note all the stops for specimen collection on map below. There definitely  has to be a plan!

map of proposed route

Proposed Cruise Track and Survey Locations

 

Personal Log

Because research instrument deployment is done 24 hours a day, the NOAA Corps crew and scientists are divided into two shifts. I am on watch 1200 – 2400 hours, considered the day shift. This schedule is working good for me. I finish duty at midnight, go to sleep till 9:00 AM and rise to be back on duty at noon. Not a bad schedule. Due to clear weather and calm seas, the ship headed east out of Newport Harbor towards the continental shelf and started collecting samples at planned stops.   I joined another group of scientists  observing bird and marine mammal populations from the flying bridge of the ship. Humpback whales and basking sharks breached  several times during the day

It has only been two days but I feel very acclimated to life at sea. I am not seasick, thanks to calm seas and the patch. Finding the way around the ship is getting easier- it is like a maze. Spotting a pod of humpback whales breaching and basking sharks was a highlight of the day. My Biology students back at May River  High School scored great on End of Course Exam. Congratulations May River High School Sharks! Thinking of y’all.

school logo

Love My SHARKS!

Samantha Adams: Day 8 – My, What a Fabulous Smell You’ve Discovered, July 31, 2017

NOAA Teacher at Sea

Samantha Adams

Aboard Hi’ialakai

July 25 – August 3, 2017

Mission: Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Time-series Station deployment (WHOTS-14)

Geographic Area of Cruise: Hawaii, Pacific Ocean

Date: Monday, 31 July 2017

Weather Data from the Bridge:

Latitude & Longitude: 22o45’N, 157o45’ oW. Ship speed: 0.8 knots. Air temperature: 27.9oC. Sea temperature: 27.3oC. Humidity: 72%.Wind speed: 11.2 knots. Wind direction: 93 degrees. Sky cover: Few.

Science and Technology Log:

blog.5.Day8.image1

The WHOTS-13 buoy after a year at sea. These three red-footed boobies will lose their perch soon!

It’s deja vu all over again! The WHOTS-14 buoy is stable and transmitting data, and all the in situ measurements necessary to verify the accuracy of that data have been taken. Now it’s time to go get the WHOTS-13 buoy, and bring it home.

WHOTS-13 Buoy Diagram

Diagram of the WHOTS-13 mooring. Image courtesy of the University of Hawaii.

The process of retrieving the WHOTS-13 buoy is essentially the same as deploying the WHOTS-14 buoy — except in reverse, and a lot more slimy. Take a look at the diagram of the WHOTS-13 buoy (to the left), and you’ll notice that it looks almost identical to the WHOTS-14 buoy. Aside from a few minor changes from year to year, the configuration of the buoys remains essentially the same… so the three and a half miles of stuff that went into the ocean on Thursday? The same amount has all got to come back up.

At 6:38AM HAST, a signal was sent from the ship to the acoustic releases on the WHOTS-13 buoy’s anchor. After a year under three miles of water, the mooring line is on its way back to the surface!

 

 

This slideshow requires JavaScript.

From the time the signal was sent to the acoustic releases on the anchor to last instrument coming back on board, recovering the WHOTS-13 buoy took 9 hours and 53 minutes.

Personal Log:

Now that I have witnessed (and participated in, however briefly) both a buoy deployment and retrieval, one of the things that impressed me the most was how well coordinated everything was, and how smoothly everything went. Both deployment and retrieval were reviewed multiple times, from short overviews at daily briefings (an afternoon meeting involving the ship’s officers, crew and the science team) to extensive hour long “walk throughs” the day before the main event. Consequently, everyone knew exactly what they were supposed to be doing, and where and when they were supposed to be doing it — which lead to minimal discussion, confusion and (I assume) stress. Each operation ran like a well choreographed dance; even when something unexpected happened (like the glass ball exploding on deck during deployment of the WHOTS-14 buoy), since everybody knew what the next step was supposed to be, there was always space to pause and work through the problem. Communication is most definitely key!

The other thing that really made an impression was how much emphasis was placed on taking breaks and drinking enough water. It was hot, humid and sunny during both deployment and recovery, and since Hi’ialakai had to be pointed directly into the wind during the operations, there was virtually no wind on the working deck at all. I’ve always thought as the ocean as a place you go to cool off, but, at least for these few days, it’s been anything but! With apologies to Coleridge: “Water, water, everywhere, nor any place to swim!”

Did You Know?

blog.5.Day8.image17

A tangled mess of anything can be called a wuzzle. For example: “I don’t know how my headphones got into such a wuzzle.” The mess of glass balls on the deck is most definitely a wuzzle.

Samantha Adams: Day 6 – Testing… 1 – 2 – 3, July 29, 2017

NOAA Teacher at Sea

Samantha Adams

Aboard NOAA Ship Hi’ialakai

July 25 – August 3, 2017

Mission: Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Time-series Station deployment (WHOTS-14)

Geographic Area of Cruise: Hawaii, Pacific Ocean

Date: Saturday, 29 July 2017

Weather Data from the Bridge:

Latitude & Longitude: 22o 45’N, 157o 56’W. Ship speed: 1.3 knots. Air temperature: 27.8oC. Sea temperature: 27.0oC. Humidity: 72%.Wind speed: 14 knots. Wind direction: 107 degrees. Sky cover: Few.

Science and Technology Log:

The most difficult part of Thursday’s buoy deployment was making sure the anchor was dropped on target. Throughout the day, shifting winds and currents kept pushing the ship away from the anchor’s target location. There was constant communication between the ship’s crew and the science team, correcting for this, but while everyone thought we were close when the anchor was dropped, nobody knew for sure until the anchor’s actual location had been surveyed.

blog.4.Day6.image1

Triangulation of the WHOTS-14 buoy’s anchor location. Look at how close the ‘Anchor at Depth’ location is to the ‘Target’ location — only 177.7 meters apart! Also notice that all three circles intersect at one point, meaning that the triangulated location of the anchor is quite accurate.

To survey the anchor site, the ship “pinged” (sent a signal to) the acoustic releases on the buoy’s mooring line from three separate locations around the area where the anchor was dropped. This determines the distance from the ship to the anchor — or, more accurately, the distance from the ship to the acoustic releases. When all three distances are plotted (see the map above), the exact location of the buoy’s anchor can be determined. Success! The buoy’s anchor is 177.7 meters away from the target location — closer to the intended target than any other WHOTS deployment has gotten.


After deployment on Thursday, and all day Friday, the Hi’ialakai stayed “on station” about a quarter of a nautical mile downwind of the WHOTS-14 buoy, in order to verify that the instruments on the buoy were making accurate measurements. Because both meteorological and oceanographic measurements are being made, the buoy’s data must be verified by two different methods.

Weather data from the buoy (air temperature, relative humidity, wind speed, etc.) is verified using measurements from the Hi’ialakai’s own weather station and a separate set of instruments from NOAA’s Environmental Sciences Research Laboratory. This process is relatively simple, only requiring a few quick mouse clicks (to download the data), a flashdrive (to transfer the data), and a “please” and “thank you”.

blog.4.Day6.image2

July 28, 2017, 5:58PM HAST. Preparing the rosette for a CDT cast. Notice that the grey sampling bottles are open. If you look closely, you can see clear plastic “wire” running from the top of the sampling bottles to the center of the rosette. The wires are fastened on hooks which, when triggered by the computer in the lab, flip up, releasing the wire and closing the sampling bottle.

Salinity, temperature and depth measurements (from the MicroCats on the mooring line), on the other hand, are much more difficult to verify. In order to get the necessary “in situ” oceanographic data (from measurements made close to the buoy), the water must be sampled directly. This is done buy doing something called a CTD cast — in this case, a specific type called a yo-yo. 

The contraption in the picture to the left is called a rosette. It consists of a PCV pipe frame, several grey sampling bottles around the outside of the frame, and multiple sets of instruments in the center (one primary and one backup) for each measurement being made.

blog.4.Day6.image3

July 28, 2017, 6:21PM HAST. On station at WHOTS-14, about halfway through a CDT cast (which typically take an hour). The cable that raises and lowers the rosette is running through the pulley in the upper right hand corner of the photo. The buoy is just visible in the distance, under the yellow arm.

The rosette is hooked to a stainless steel cable, hoisted over the side of the ship, and lowered into the water. Cable is cast (run out) until the rosette reaches a certain depth — which can be anything, really, depending on what measurements need to be made. For most of the verification measurements, this depth has been 250 meters. Then, the rosette is hauled up to the surface. And lowered back down. And raised up to the surface. And lowered back down. It’s easy to see why it’s called a yo-yo! (CDT casts that go deeper — thousands of meters instead of hundreds — only go down and up once.)

For the verification process, the rosette is raised and lowered five times, with the instruments continuously measuring temperature, salinity and depth. On the final trip back to the surface, the sampling bottles are closed remotely, one at a time, at specific depths, by a computer in the ship’s lab. (The sampling depths are determined during the cast, by identifying points of interest in the data. Typically, water is sampled at the lowest point of the cast and five meters below the surface, as well as where the salinity and oxygen content of the water is at its lowest.) Then, the rosette is hauled back on board, and water from the sampling bottles is emptied into smaller glass bottles, to be taken back to shore and more closely analyzed.

On this research cruise, the yo-yos are being done by scientists and student researchers from the University of Hawaii, who routinely work at the ALOHA site (where the WHOTS buoys are anchored). The yoyos are done at regular intervals throughout the day, with the first cast beginning at about 6AM HAST and the final one wrapping up at about midnight.

blog.4.Day6.image4

July 29, 2017, 9:43AM HAST. On station at WHOTS-13. One CDT cast has already been completed; another is scheduled to begin in about 15 minutes.

After the final yo-yo was complete at the WHOTS-14 buoy early Saturday morning, the Hi’ialakai traveled to the WHOTS-13 buoy. Today and tomorrow (Sunday), more in situ meteorological and oceanographic verification measurements will be made at the WHOTS-13 site. All of this — the meteorological measurements, the yo-yos, the days rocking back and forth on the ocean swell — must happen in order to make sure that the data being recorded is consistent from one buoy to the next. If this is the case, then it’s a good bet that any trends or changes in the data are real — caused by the environmental conditions — rather than differences in the instruments themselves.

Personal Log:

blog.4.Day6.image5

The Hi’ialakai’s dry lab. Everyone is wearing either a sweatshirt or a jacket… are we sure this is Hawaii?

Most of the science team’s time is divided between the Hi’ialakai’s deck and the labs (there are two; one wet, and one dry).  The wet lab contains stainless steel sinks, countertops, and an industrial freezer; on research cruises that focus on marine biology, samples can be stored there. Since the only samples being collected on this cruise are water, which don’t need to be frozen, the freezer was turned off before we left port, and turned into additional storage space.  The dry lab (shown in the picture above) is essentially open office space, in use nearly 24 hours a day. The labs, like most living areas on the ship, are quite well air conditioned. It may be hot and humid outside, but inside, hoodies and hot coffee are both at a premium!

Did You Know?

The acronym “CTD” stands for conductivity, temperature and depth. But the MicroCats on the buoy mooring lines and the CTD casts are supposed to measure salinity, temperature and depth… so where does conductivity come in? It turns out that the salinity of the water can’t be measured directly — but conductivity of the water can.

When salt is dissolved into water, it breaks into ions, which have positive and negative charges. In order to determine salinity, an instrument measuring conductivity will pass a small electrical current between two electrodes (conductors), and the voltage on either side of the electrodes is measured. Ions facilitate the flow of the electrical current through the water. Therefore conductivity, with the temperature of the water taken into account, can be used to determine the salinity.

Samantha Adams: Day 1 – Things You Never Think About, July 24, 2017

NOAA Teacher at Sea

Samantha Adams

Aboard NOAA Ship Hi’ialakai

July 25 – August 3, 2017

Mission: Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Time-series Station deployment (WHOTS-14)

Geographic Area of Cruise: Hawaii, Pacific Ocean

Date: Monday 24 July 2017

Weather Data from the Bridge:

Latitude & Longitude: 21o22’N, 157o57’ W. Ship speed: 0 knots. Air temperature: 82oF. Humidity: 74%.Wind speed: 8 knots. Wind direction: East-South-East. Sky cover: Broken.

Science and Technology Log:

One of the first things you learn to do as a teacher is to plan for things to go wrong. When you put a lesson together, you try to identify potential problem areas, and then try to figure out how you could address those problems when they do arise, or try to avoid them altogether. One of the next things that you learn is that the biggest problem is invariably going to be something you never anticipated being a problem at all. Deploying a research buoy, it turns out, works essentially the same way.

Bird Wire

WHOTS stations are massive, self-contained buoys, designed to stay at sea for up to eighteen months, collecting data the entire time. There are redundant systems on top of redundant systems. Multiple meteorological instruments, measuring exactly the same thing, sprout from the buoy’s tower like misshapen mushrooms. If one instrument fails, there is always another — to ensure that, no matter what, the data is collected. And surrounding it all, like the spines of a porcupine, is the bird wire.

Anything that floats on the ocean winds can be a perch for birds, and the WHOTS buoys are no exception. I’ve been told that after a year at sea, the buoy is absolutely disgusting. I’ve seen some of the mess New York City pigeons can create, and I’m willing to bet that what I’m imagining cannot even come close. I’ll find out for myself later this week, when we retrieve the WHOTS buoy that was deployed last year! 

Ick factor aside, birds (and their waste products) pose a real danger to the instruments on the buoy’s tower. If something is pecked or perched on or — use your imagination — otherwise damaged, the instruments may record corrupted data, or no data at all. Which is why there are redundant systems, and why Monday morning was spent making the buoy look like a porcupine. But wait! There’s more! It turns out all bird wire is not created equal. All of the spikes are made of stainless steel, but the spikes can be mounted on different things. Bird wire with a stainless steel base is more effective at repelling birds (because the spikes are closer together)… but the spikes have to be welded into the base, which magnetizes the bird wire. And if this wire is placed the instruments, it can affect their internal compasses and, in turn affect the data the bird wire is intended to protect! Bird wire with a plastic base is less effective (because the spikes are further apart), but much safer for the buoy’s instruments.

This slideshow requires JavaScript.

Cayenne Pepper, Copper and Things Covered in Tape

The tower of the WHOTS buoy isn’t the only thing that is absolutely disgusting after spending a year at sea. Everything that spends the year below the surface of the ocean (which will be described in a post later this week) comes back absolutely disgusting, too. And it’s not as though it can all just be thrown away. Of particular importance are the instruments attached under the buoy and about every 10 meters (down to 150 meters) along the buoy’s mooring line. All of these instruments must be returned to the manufacturer for calibration (to make sure they were working properly). But there’s a catch — they must be returned clean! Which means that everything that has been growing on them while they’ve been under water must be scrubbed, scraped or peeled off. To make the job easier, the search is always on for ways to keep things from growing on the instruments in the first place. This is called antifouling.

One antifouling method is painting. There are specialized antifouling paints available, but they can be toxic. So the paint that covers the exterior of the buoy contains cayenne pepper (!), which has proven to be as effective as specialized paint, but is much safer. Another antifouling method used on many of the instruments under the buoy involves replacing some stainless steel components with specially made copper ones, as copper also naturally impedes growth. And a third method that’s very popular is simply to cover the instruments with a layer of electrical tape, which can just be peeled off — no scrubbing or scraping involved!

blog.2.Day1.image4

MicroCats covered in black electrical tape. Notice the bracket on the top of each instrument — they are custom-made, out of copper, to make the cleaning process that much easier when the buoy is retrieved next summer.

blog.2.Day1.image5

Instruments on the bottom of the buoy. Once deployed, these instruments will be approximately three feet under water, which is why so much copper is used.

Personal Log:

blog.2.Day1.image3

“You’re lucky you weren’t here when we had to load for three months!”

Throughout the day, refrigerated trucks pulled up on the dock next to the Hi’ialakai. They were not full of delicate scientific instrumentation, but something just as vitally important to the cruise — food! The same crane that had been used to hoist instruments on board was also used to carry pallets of food from the dock to the deck of the ship. Then it was passed from hand to hand (by members of the ship’s crew, the science team, the ship’s officers, and the Teacher at Sea) all the way down to the galley’s refrigerators and freezers. The ice cream was handled with particular care — no surprise there!

 

 

Did You Know?

Woods Hole Oceanographic Institution’s acronym — WHOI — has a pronunciation! You can say it like “hooey”. Or “whoo-ey!” It means the same thing either way!

Julia Harvey: The Nearest Land is 3 Miles Down, June 28, 2016

NOAA Teacher at Sea

Julia Harvey

Aboard NOAA Ship Hi’ialakai

June 25 – July 3, 2016

 

Mission: WHOI Hawaii Ocean Timeseries Station (WHOTS)

Geographical Area of Cruise: Pacific Ocean, north of Hawaii

Date: June 28th, 2016

 

Weather Data from the Bridge
(June 28th at 2pm)

Wind Speed: 12 knots

Temperature: 26.2 C

Humidity: 81%

Barometric Pressure: 1016.3 mb

 

Science and Technology Log

The Aloha Station is about 100 miles north of Oahu, Hawaii and was selected because of its closeness to port but distance from land influences (temperature, precipitation etc).  The goal is to select a site that represents the north Pacific, where data can be collected on the interactions between the ocean and the atmosphere. Woods Hole Oceanographic Institution Hawaii Ocean Time Series (WHOTS) has used this site for research since 2004.  You can find real time surface and meteorological data and archived data at the WHOTS website.

We are stationed in the vicinity of mooring 12 and 13 in the Aloha Station to begin intercomparison testing.  CTD (conductivity/temperature/depth) casts are conducted on a regular schedule. This data will help align the data from mooring 12 to mooring 13. If CTDs don’t match up between the two moorings then efforts will be made to determine why.

Mooring 13 is being inspected to make sure sensors are working. Photographs have been taken to determine measurement height of the instruments and where the water line is.

When I was aboard the Oscar Dyson, there were multiple studies going on besides the Walleye Pollock survey. The same is true on the Hi’ialakai. The focus is on the mooring deployment and recovery but there are a professor and graduate student from North Carolina State University who are investigating aerosol fluxes.

Professor Nicholas Meskhidze earned his first Physics degree from Tbilisi State University (Georgia).  He completed his PhD at Georgia Institute of Technology (USA).  He is now an Associate Professor at NC State University Department of Marine Earth and Atmospheric Sciences.

Meskhidze’s study on this cruise is looking at sea spray aerosol abundance in marine boundary layer and quantifying their flux values. Sea spray is formed from breaking waves. Sea spray analysis begins by collecting the aerosol. Using electrical current, particles of a given size (for example 100 nanometer (nm)) are selected for. This size represents the typical size of environmental climatically important particles (70-124 nm). The next step is to remove all other particles typically found in the marine boundary layer, such as ammonium sulfate, black carbon, mineral dust and any organics. The remaining particles are sea salt.

Sea spray analysis

Dr. Nicholas Meskhidze with the sea spray analysis equipment

Meskhidze is looking at the fluxes of the salt aerosols.  Sea salt aerosols are interesting.  If a salt aerosol is placed in 80% humidity, it doubles in size.  But then placed in 90% humidity, it quadruples in size. Due to their unique properties, sea salt aerosols can have considerable effect on atmospheric turbidity and cloud properties.

Aerosols are key components of our climate but little is known about them. Climate models are used to predict future climatic change, but how can one do this without understanding a key component (aerosols)?

little is known

Source: IPCC Fourth Assessment Report, Summary for Policy Makers

 

Personal Log

The galley (ship’s kitchen) is a happening place three times a day.  The stewards are responsible for feeding 30-40 people.

Chief Steward Gary Allen is permanently assigned to the Hi’ialakai. He has worked for NOAA for 42 years and he has stories to tell. He grew up in Tallahassee, Florida and his early work was at his father’s BBQ stand. He attended Southern University on a football scholarship and majored in food nutrition. After an injury, he finished school at Florida A & M. He worked for a few years in the hotel food industry, working his way up to executive chef. Eventually he was offered the sous chef job at Brennan’s in New Orleans. He turned it down to go to sea.

Chief Steward Allen Gary

Chief Steward Allen Gary

In 1971, he sailed for the first time with NOAA. The chief steward was a very good mentor and Gary decided to make cooking at sea his career. He took a little hiatus but was back with NOAA in 1975, where he would spend 18 years aboard the Discoverer and would become chief steward in 1984. He would sail on several other ships before finding his way to the Hi’ialakai in 2004.

In the 42 years at sea, Gary has seen many changes. Early in his career, he would only be able to call home from ports perhaps every 30 days. Now communication allows us to stay in contact more. He is married to his wife of 43 years and they raised 3 daughters in Seattle.

I asked him what he enjoys the most about being at sea. He has loved seeing new places that others don’t get to see. He has been everywhere, the arctic to Antarctica. He enjoys the serenity of being at sea. He loves cooking for all the great people he meets.

I met Ava Speights aboard the Oscar Dyson in 2013 when she was the chief steward and I was participating in the walleye pollock survey as a Teacher at Sea. She has been with NOAA for 10 years.

Ava Speights (on the right) and me

Ava Speights (on the right) and me

She and a friend decided to become seamen. Ava began working in a shipyard painting ships. In 2007, she became a GVA (general vessel assistant) and was asked to sail to the Bahamas for 2 weeks as the cook. This shifted her career pathway and through NOAA cooking classes and on the job training, she has worked her way up to chief steward.

She is not assigned to a specific ship. She augments, meaning she travels between ships as needed. She works 6 months of the year, which allows her to spend time with her 2 daughters, 1 son, 2 stepdaughters and 4 grandchildren. Her husband is an engineer with NOAA. Her niece is an AB (able bodied seaman) on deck. Her son is a chief cook for Seafarer’s.  And her daughter who just graduated high school will be attending Seafarer’s International Union to become a baker.  Sailing must run in her family.

She loves to cook and understands that food comforts people. She likes providing that comfort.  She has also enjoyed traveling the world from Africa to Belgium.

2nd Cook Nick Anderson

2nd Cook Nick Anderson

Nick is 2nd cook and this is his first cruise with NOAA. He attended cooking school in California and cooked for the Coast Guard for 6 years where he had on the job training. In 2014, he studied at the Culinary Institute of America and from there arrived on the Hi’ialakai. He also is an augmenter, so he travels from ship to ship as Ava does.

 

 

 

Did You Know?

The Hi’ialakai positioned mooring 13 in an area with a 6 mile radius known as the Aloha Station. Check out all of the research that takes place here at Station Aloha. There is a cabled observatory 4800 meters below the ocean surface. A hydrophone picks up on sounds and produces a seismograph. Check the results for the night the anchor was dropped.

Seismograph

Seismograph during Mooring Deployment

Click here to hear whales who pass through this area in February.

Pacific Sunset

Pacific Sunset

Julia Harvey: More to a Mooring than meets the Eye, June 26, 2016

NOAA Teacher at Sea

Julia Harvey

Aboard NOAA Ship Hi’ialakai

June 25 – July 3, 2016

 

Mission: WHOI Hawaii Ocean Timeseries Station (WHOTS)

Geographical Area of Cruise: Pacific Ocean, north of Hawaii

Date: June 26th, 2016

Weather Data from the Bridge

Wind Speed: 15 knots

Wind Direction: 100 degrees (slightly east southeast)

Temperature: 24.5 degrees C

Barometric Pressure: 1014.7 mb

Science and Technology Log

One of the primary objectives of this WHOTS project is to deploy WHOTS-13 mooring. This will be accomplished on our second day at sea.

Site of Mooring-13 courtesy of WHOTS Project Instructions

Site of Mooring-13
(courtesy of WHOTS Project Instructions)

The mooring site was chosen because it is far enough away from Hawaii so that it is not influenced by the landmasses. Mooring 13 will be located near mooring 12 in the North Pacific Ocean where the Northeast Trade Winds blow. Data collected from the moorings will be used to better understand the interactions between the atmosphere and the ocean. Instruments on the buoy record atmospheric conditions and instruments attached to the mooring line record oceanic conditions.

A look at interactions between the atmosphere and the ocean.

A look at interactions between the atmosphere and the ocean. [R. Weller, WHOI]

 

 

 

 

 

There is a lot more going on than just plopping a mooring in the sea. Chief Scientist Al Plueddemann from Woods Hole Oceanographic Institution and his team began in-port prep work on June 16th. This included loading, positioning and securing the scientific equipment on the ship.  A meteorological system needed to be installed on the Hi’ialakai to collect data critical to the mission.  And then there was the assembly of the buoy which had been shipped to Hawaii in pieces.  Once assembled, the sensors on the buoy were tested.

Meteorological Station on the Bow

Meteorological Station

As we left Oahu, we stopped to perform a CTD (conductivity/temperature/depth) cast. This allowed for the testing of the equipment and once water samples were collected, the calibration of the conductivity sensors occurred.

Sunday, June 26th, was the day of deployment. Beginning very early in the morning, equipment was arranged on deck to make deployment efficient as possible. And the science team mentally prepared for the day’s task.

Predeployment

The deck before deployment began. The buoy is the blue item on the left.

Promptly at 7:30 am, deployment began. The first stage was to deploy the top 47 meters of the mooring with sensing instruments called microcats attached at 5 meter intervals. A microcats has a memory card and will collect temperature, conductivity and pressure data about every three minutes until the mooring is removed next year.

Sensing instruments for the morring

Microcats for recording oceanic conditions

readied microcats

Microcats readied for deployment. They are lined up on the deck based on their deployment depth.

This portion of the mooring is then attached to the surface buoy, which is lifted by a crane and lowered overboard. More of the mooring with instruments is lowered over the stern.

The remainder of the mooring is composed of wire, nylon, 68 glass balls and an anchor.  At one point, the mooring wire became damaged. To solve this problem, marine technicians and crew removed the damaged portions and replaced the section with wire from a new spool. This process delayed the completion of mooring deployment but it showed how problems can be solved even when far out at sea.

After dinner, the nylon section of the rope was deployed. Amazingly, this section is more than 2000 meters long and will be hand deployed followed by a section of 1500 m colmega line. It was dark by the time this portion was in the water. 68 glass floats were then attached and moved into the water. These floats will help in the recovery of the mooring next year. The attachment to the anchor was readied.

glass floats for recovery

These glass floats will help when the mooring is recovered next year.

The anchor weighs 9300 pounds on deck and will sit at a depth of 4756 meters. That is nearly 3 miles below the ocean surface. The crane is used to lift the anchor overboard. The anchor will drop at 1.6 m/s and may take about 50 minutes to reach the bottom.  As the anchor sinks, the wire, nylon and the rest of the mooring will be pulled down. Once it reaches the bottom, the mooring will be roughly vertical from the buoy to the anchor.

 

Mooring Structure

Mooring Structure

Personal Log

I sailed aboard NOAA ship Oscar Dyson in 2013 so I already had a general idea of what life aboard a ship would be. Both ships have workout areas, laundry facilities, lounges, and of course messes where we all eat. But on the Hi’ialakai, I am less likely to get lost because of the layout. A door that goes up is near a door that goes down.

On our first day aboard, we held two safety drills. The first was the abandon ship drill. As soon as we heard 6 short and 1 long whistles, we grabbed our life jacket, survival suit and a hat. We reported to our muster stations. I am assigned to lifeboat #1 and I report the starboard side of 0-3 deck ( 2 levels up from my room). Once I arrived, a NOAA officer began taking role and told us to don the survival suit. This being my first time putting the suit on, I was excited. But that didn’t last long. Getting the legs on after taking off shoes was easy as was putting one arm in. After that, it was challenging. It was about 84 F outside. The suit is made of neoprene. And my hands were the shapes of mittens so imagine trying to zip it up. I finally was successful and suffered a bit to get a few photos. This was followed by a lesson for how to release the lifeboats. There are enough lifeboats on each side of the ship, to hold 150% of the capacity on board.

Survival Suit & Julia

Abandon Ship drill with Survival Suit

Safety is an important aspect of living aboard a NOAA ship. It is critical to practice drills just like we do at school. So when something does happen, everyone knows what to do. A long whistle signals a fire. All of the scientists report to the Dry Lab for a head count and to wait for further instruction.

I am reminded of how small our world really is.  At dinner Saturday, I discovered one of the new NOAA officers was from Cottage Grove, Oregon. Cottage Grove is just a short drive south of Eugene. She had a friend of mine as her calculus teacher.  Then a research associate asked me if I knew a kid, who had graduated from South Eugene High School and swam in Virginia. I did. He had not only been in my class but also swam with my oldest son on a number of relay teams growing up. Small world indeed.

 

Did You Know?

The Hi’ialakai was once a Navy surveillance ship (USNS Vindicator) during the Cold War. NOAA acquired it in 2001 and converted it to support oceanic research.

 

 

 

Donna Knutson: The Atlantic Sea Scallop – More Than Meets the Eye, June 21, 2016

NOAA Teacher at Sea Donna Knutson

 Aboard the Research Vessel Hugh R. Sharp

June 8 – June 24, 2016

 

2016 Mission: Atlantic Scallop/Benthic Habitat Survey
Geographical Area of Cruise:
Northeastern U.S. Atlantic Coast
Date:
June 21, 2016

The Atlantic Sea Scallop – More Than Meets the Eye

Mission and Geographical Area: 

The University of Delaware’s ship, R/V Sharp, is on a NOAA mission to assess the abundance and age distribution of the Atlantic Sea Scallop along the Eastern U.S. coast from Mid Atlantic Bight to Georges Bank.  NOAA does this survey in accordance with Magnuson Stevens Act requirements.

Science and Technology:

Latitude:  41 16.296 NIMG_3250 (2)better me

Longitude:  68 49.049 W

Clouds: overcast

Visibility: 5-6 nautical miles

Wind: 21.1 knots

Wave Height: 4-6 occasional 8

Water Temperature:  59 F

Air Temperature:  64 F

Sea Level Pressure:  29.9 in of Hg

Water Depth: 101 m

Science Blog:

Sea scallops are unique from clams, molluscs and other bivalves.  All of them are filter feeders, but the sea scallop filters out larger sized particles such as diatoms and large protozoans that are larger than 50 micrometers. Clams filter feed on smaller animals and particles that are too small for the scallop to retain and therefore flow right through their digestive system.

Older scallop found in a protected area.

Older scallop found in a protected area.

Dr. Scott Gallager is looking inside the stomachs of scallops.  His hypothesis is that microplastics are traveling down to the bottom of the ocean, and if they are, the scallop will siphon them into their stomach along with their food.

Microplastics are, as the name suggests, small pieces of plastic measured in micrometers.  They may enter the ocean as an object such as a plastic water bottle, but over time with the turbulence of the ocean and the sun’s ultraviolet radiation break down into smaller and smaller pieces.

Another way microplastics are entering the ocean is through the cleaning products we use.  Many shampoos, detergents and toothpastes have small beads of plastic in them to add friction which aid the products cleaning potential.  Untreated water, such as runoff, has the likelihood of flowing into the ocean bringing microplastics with it.

Small colorful scallops.

Small sea scallops.

If a sea scallop ingests microplastics the same size as its food, the scallop will not be getting the nutrients it requires.  Large quantities of micro plastics falling to the bottom of the ocean would obviously cause the health of scallops to deteriorate.

Another interesting story of the sea scallop is its “attachment” to the red hake.  It is not a   physical attachment.  There appears to be a sentimental attachment between the two even though that is obviously not possible.

The red hake is a fish that starts out its life as a small juvenile without any protection.  It finds a home and refuge inside a sea scallop shell.  The sea scallop almost befriends the little red hake and allows it to live behind its photoreceptive eyes, next to the mantle.

The fish curls its body into the same contour shape as the scallop.  The little fish can swim in at times of danger and the scallop will close its shells to protect them both.  After the threat has passed the scallop opens its shells and the little red hake can swim out.

Red hake did not make it in before closing time.

There seems to be some commensalism between the two.  Commensalism is the relationship between two different species where each live together without any one feeding off of the other.  They live in harmony with each other neither hurting the other.  It is not known whether the fish feeds on the scallops’ parasites or if they just coexist together.

It is clear something is happening between the two, because after the red hake grows and no longer fits inside the shell, the fish will still live next to the scallop.  It now will curl itself around the outside of the shell.  Looking at HabCam pictures, it appears to curl around a scallop even if the scallop is no longer alive.  Could it really be the same scallop it lived in as a minnow?

DSCN7843 (2)RED HAKE AND SCALLOP

Red hake curled around its scallop. Picture taken from the HabCam.

Red hake numbers increase in areas where there are larger, more mature, sea scallops present.  What connects two together?  Is there some chemical connection where the fish can identify the scallop it “grew up” with? 

Why is the red hake red?  The red hake is part of the cod family.  The other fish such as the silver hake, spotted hake, white hake and haddock do not act like red hake.  Red hake are the same color as the scallop. Coincidence?  Maybe.

Is the red hake now protecting the scallop as it curls around it?  The scallop protected the young fish for as long as it could, so now is the Red hake returning the favor?  The main predator of the scallop is the starfish.  A starfish would have to climb over the fish to get to the scallop.  The red hake would not allow the starfish to get that far.

Red hake have a swim bladder that erupt when brought to the surface.

Red hake have a swim bladder that erupt when brought to the surface.

Is the red hake still just protecting itself?  When curled around the scallop, the fish blends in with the scallops red color and is in a sense camouflaging itself from its enemies. In this sense, the scallop is still allowing the red hake to hide, but this time in plain sight.

The Atlantic sea scallop is more interesting than expected.  It is curious how the scallop seems to realize how close it is to other scallops.  Without having a fully functioning brain, just groupings of neural ganglia, acting as a control center for a bodily functions or movement, how can the scallop decide the best place to live?  Do they move in search of a better habitat?  How do they know to disperse within their area so they are relatively the same distance apart as seen on the HabCam?  Is it competition for food?

Could it be their photosensitive eyes can’t tell the difference of movement of a predator to that of another scallop?  They seem to be able to tell the difference between a sea fish predator and one that is not.  Why are they so tolerant of the red hake?  More questions than answers.

The HabCam is a wonderful tool for studying these questions and more.  So little is understood about the habitats within the oceans.   It has been easier to study space than to study the depths of our own planet.  This is a very exciting time in oceanic research.  The HabCam will reveal what has been covered with a blanket of water.

Personal Blog:

We spent a little more time at Woods Hole.  Jim, the ship’s captain, hired a crew of scuba divers to scrub off the barnacles growing on the rudder.  I was lucky enough to find a tour of some of the labs at Woods Hole.  Scott called around to his colleagues and discovered there was a tour for teachers occurring at that moment when we arrived.

Alvin the deep sea submersible in dry dock.

Alvin the deep sea submersible in dry dock.

I quickly was sent on a campus bus with Ken, a man working in the communications department, also with a science degree.  I think he said it was in physical geology.  Everyone around here has multiple degrees and they are often opposite what you would imagine.  Such diversity makes some very interesting people to chat with.

In the teacher tour was a former TAS (Teacher at Sea). She was here because she won a touring trip to Woods Hole, so we had some time to chat over lunch about our experiences.  We agreed the TAS is one of the best teacher development opportunities out there for all teachers and I think we convinced a third to apply for next year.

I never got the long walk I had planned on, but a much better one learning more about Woods Hole.  Ken even took me to see Alvin, the deep sea submersible that lives on the Atlantis.  The Atlantis was leaving Alvin behind on its latest mission so Ken showed it to me.  The navy is using it this time.

I’ve been feeling great and even got on the exercise bike.  Today we will be HabCaming the entire day.  It is a nice rest compared to the physical work of dredging from the last two days.  Both HabCam and dredging have their benefits.  Together they create a much better understanding of what’s below us.DSCN7966 (2) lobsters

While I’ve been writing this the wind has picked up 10 knots.  The waves are 4-6 ft high with an occasional 8ft and it doesn’t look like it will let up.  The HabCaming continues but it is harder to keep it level.  They are considering going in early if the weather continues to get worse.  I believe Tasha said we were a bit ahead of schedule so that wouldn’t be so bad for the survey.  Before that happens, there is more dredging to do.