Mary Murrian: NOAA, Science, Education, and the Bering Sea! July 20, 2014

NOAA Teacher at Sea

Mary Murrian

Aboard NOAA Ship Oscar Dyson

July 4 – 22, 2013

Mission: Annual Walleye Pollock Survey

Geographical Area of Cruise: Bering Sea South of Russia

Date: July 20, 2014

Weather Data from the Bridge

Wind Speed: 15.11 kt

Air Temperature: 9.5 degrees Celsius

Barometric Pressure: 1016.9

Latitude: 5717.3530 N

Longitude: 17317.1393 W

Almost 70 cm long pollock.  That's big!

Almost 70 cm long pollock. That’s big!

Science and Technology Log:

CamTrawl

Kresimir in the Acoustics Lab

Kresimir in the Acoustics Lab

Kresimir Williams, one of the scientists on board the Oscar Dyson, has been with NOAA for over ten years.  He is a Fisheries Biologist.  He was born in Switzerland and moved to Yugoslavia, now Croatia, a year and half later.  Kresimir has always loved fish ever since he was a little boy.  He as many as ten aquariums in his house growing up.  He moved to the United States when he was 17 years old.  His mother is from Croatia, and his dad is from the United States.  Kresimir received his bachelor’s degree from Samford University in Birmingham, Alabama with a degree in Biology and Marine Science.  He received his Master’s degree from Auburn University, in Alabama with a degree in Aquaculture Fisheries.  He continued his education at the University of Washington, where he earned his PhD in fisheries and aquatic sciences.  He currently lives in Seattle with his wife and two children.  Kresimir current interests include integrating new technologies into marine surveys.

Cam trawl attached to trawl net

Cam trawl attached to trawl net

Trawl net with cam trawl attached being deployed to fish

Trawl net with camtrawl attached being deployed to fish

He is a fisheries biologist for NOAA and works on fishery surveys investigating new technology to make the survey process more accurate and effective.  Kresimir, along with fellow scientists Rick Towler and Scott McEntire, invented the camtrawl.  The camtrawl is made up of two small industrial cameras, protected by water proof, pressure resistant housing.  The cameras are attached to the trawl nets when deployed for fishing.  The cameras continuously take pictures (about eight pictures per second) in the net.  It photographs the animals as they swim through the net.

Picture from cam trawl of a lamprey

Picture from camtrawl of a lamprey

Cam trawl picture of a rockfish

Camtrawl picture of a rockfish

When the camtrawl is returned to the ship, the pictures can be downloaded for observation.  Using two cameras in stereo, allows scientists, to accurately length the fish they observe.  Looking at an object from two different perspectives allows you to see how far away an object is.  If you close one eye and look at an object, it is harder to tell how far it is away, however, if you use both eyes you have better depth-perception.  How will seeing the fish inside the net, in the ocean, help with the surveying process?  The camtrawl will make the process more efficient and save time.  Fewer people will be needed to conduct the surveys therefore reducing cost. It uses a non-lethal method of sampling the fish; the codend (the end of the trawl net that collects all the fish) can be left open allowing the fish to swim through easily, so the fish will not be captured and killed. And finally, it allows scientists to sample a greater range of animals sizes. Kresimir is still experimenting with the camtrawl and testing out its’ effectiveness. He is very enthusiastic about its prospects.  I really enjoy viewing the pictures and seeing the fish on the monitor.  I have attached a couple of my favorite pictures for you to view.

The Scientific Method in Action:

The Scientific Method is actively used in science careers and is very similar to the Engineering Design Process.  It is a process that scientists follow to solve problems in order to test a theory or answer a need.   In order for the camtrawl to be invented, Kresimir and Rick had to have an idea or question to get the process started.  Next, the idea had to be constructed, researched, and tested (testing is the fun part) numerous times.  During testing, data is collected and organized and then a conclusion can be generated based on the data.  If the idea is not successful, then it is important to go back to the beginning, make changes, and experiment again. If the idea is successful, then all is good, however, there is always room for improvement.  Scientists continue to test and retest until they get their expected results or prove themselves wrong and learn something totally new in the process.

Touring the Engine Rooms

First Engineer Kyle

First Engineer Kyle

 

I got the chance to tour the engine rooms at the bottom of the Oscar Dyson.  First Engineer, Kyle Chernoff, graciously escorted me and explained how everything works.  He received his bachelors degree in Marine Engineering at California Maritime University.  After graduation he had to take a series of seven coast guard exams in order to be qualified to work as a marine engineer.

Two of the ship's engines

Two of the ship’s engines

One of the evaporator machines

One of the evaporator machines

Besides the controls on the bridge, you can control the direction of the ship from the engine room.  The ship has many back up motors and generators so that if one breaks down or a fire ensues, the ship can continue on its course.  This is reassuring news for me and all of the 29 other crew aboard the ship.  I had to wear ear plugs while walking through the generator room.  It was extremely loud due to the noise the generators make to keep the ship running.  One of the pieces of equipment, I found most interesting, was the evaporator.  The Oscar Dyson has two.  The evaporators use heat to remove the salt from the sea water and convert it into drinking water.  During the process UV (ultraviolet) is used to kill any bacteria in the water to make it safe for drinking.  As well as the evaporators, the ship has a special machine that removes any oil before water is released back into the ocean.  This protects wildlife living in the ocean.  What a great use of resources.

I am in the engine room

I am in the engine room

Personal Log:

While on the bridge this week, I saw porpoises and whales.  I did not get pictures because the ship moves fast and so do the animals.  I had two gorgeous days, where the sun was out and I could feel the heat on my face.  Even the foggy days are nice, however ominous.  It rarely rained and the seas were relatively calm.  Thankfully, I did not have to don my survival suit except during weekly drills.  I participated in a really cool experiment on this trip.  Alyssa, the survey technician, gave me two Styrofoam cups (the exact same size) and asked me to color them, in which, I did. The next morning during the scheduled CTD, Alyssa placed one of my cups into a small net bag and attached it to the CTD device.  The bag was deployed to the bottom of the ocean floor.  Once back on deck of the ship, she retrieved the cup and returned it to me.  It looked the exact same with the exception that it shrunk.   Really awesome!  The air bubbles in the styrofoam cup and the pressure from the depth of the ocean cause this to happen.  It would shrink even more if we were in deeper waters.

Two cups I decorated before deploying into the ocean.

Two cups I decorated before deploying into the ocean.

I only sent the second cup into the ocean.  Notice the difference in size.   Talk about "under pressure"!

I only deployed the second cup into the ocean. Notice the difference in size.
Talk about “under pressure”!

Over the past couple of weeks, I have learned so much.  My voyage on the Bering Sea is quickly coming to an end.  In a couple of days, I will board the small puddle jumper from Dutch Harbor to Anchorage and eventually end up in Delaware.  The science team, NOAA Corps, and crew have been wonderful to work with during my time at sea.  This has truly been an experience of a lifetime.

Puddle Jumper from Dutch Harbor to Anchorage

Puddle Jumper from Dutch Harbor to Anchorage

Another beautiful sunrise on the Bering Sea

Another beautiful sunrise on the Bering Sea

Getting to know the Crew:

LT Greg Schweitzer, XO

LT Greg Schweitzer, XO

NOAA Corps LT Greg Schweitzer, Executive Officer or XO

In my last blog, I introduced you to the Commanding Officer of the Oscar Dyson.  Another vital member of the NOAA Corps and the crew of the Oscar Dyson, is the Executive Officer (XO), LT Greg Schweitzer. He is married and has four children.  He has been with NOAA for seven years and was in the Air Force before that for 10 years.  He received a bachelor’s degree in Meteorology and in Management. He received his Master’s Degree in Environmental Science.  While not at sea, he resides with his family in Kentucky.  He is second in command of the Oscar Dyson.  He  reports directly to the Commanding Officer and oversees the officers, stewards (cooks), engineers, deck crew, survey technicians, and scientists.  He is in charge of the ship’s budget, time cards and attendance, discipline, and port-side logistics.  He started his NOAA career, after a four month officer training, then aboard the NOAA ship Henry Bigelow for 2 ½ years out of Newport, Rhode Island. Because of his past military experience, he became an XO after only six years.  This is his last leg at sea before he starts a new land assignment.

An experience he really enjoyed during his NOAA career, was working on his first land assignment in Fernandina Beach, Florida.  He worked for NOAA’s Protected  Resource Division. Part of the XO’s job was to go out, on a small boat, off the coast of Florida and Georgia, to help disentangle North Atlantic Right Whales. The XO describes the whales as curious animals that spend most of their time at the surface of the water. Because they like to hang out on the surface of the water, they easily get tangled in nets and crab pots. Right Whales are on the critically endangered list.  In the past, they were hunted to almost extinction.  They got their name because they are easy to see and catch, so therefore fishermen, called them the Right Whales to fish.  There are approximately 350 North Atlantic Right Whales living at this time. They eat mainly plankton and krill. The Right Whales are migratory animals.  They are located off the Florida-Georgia coast during the winter where they calve and then travel up the east coast to Cape Code in the summertime.  They swim along the Atlantic Ocean, right outside of Delaware. Check out this website for more information on the North Atlantic Right Whales.

I asked the XO if he had any advice for my students.  He said to remember that there is no perfect path and that students should be open to new opportunities and be willing to take on new adventures. He lived in Kentucky until he was out of high school.  He never imagined he would ever leave. His Air Force and NOAA careers have given him opportunities, he might never had experienced.  He also adds, that it is important to go out and contribute and remember that there is still a lot of unknown discoveries on our planet, just waiting to be explored.

North Atlantic Right Whale: http://www.biologicaldiversity.org/

North Atlantic Right Whale: http://www.biologicaldiversity.org/

Meet the Scientist:  Carwyn Hammond

Carwyn working in the wet lab with Emily

Carwyn working in the wet lab with Emily

Title: NOAA Research Fisheries Biologist—10 years

Job Responsibilities:  Commercial fishing gear research: she looks for ways to modify the fishing gear to reduce impacts to the seafloor habitat and reduce bycatch (animals caught in net other than intended; i.e.  Dolphin caught in a crab fisheries net) of commercially important species.  She works directly with commercial fisheries as well as helps conduct surveys for NOAA.

Education:  Undergraduate Degree in Marine Resource Development at the University of Rhode Island; Master’s Degree in Fisheries at the University of Washington.

Hometown: She was born in Brooklyn, NY and moved to Hancock, MA at the age of six.

Current Residence: Seattle, Washington

Why pursue this career?  When deciding on a career, she asked, “What degree will let me play in the ocean?” and that is how she got started in the fisheries field of work.

Recently, she and her co-worker, Craig Rose, won the best paper award for their work on RAMP or Reflex Assessment Mortality Predictor.  Medical doctors use RAMP to check patients’ vital signs or reflexes such as tapping your knee to see if your leg reacts or kicks.  They applied this method to crabs.  On crabs they check six different reflexes: flare (legs moving up and down), leg retraction (pulling on leg), chela (claws), eyes, mouth, and abdomen.  Checking their vital signs allows scientists to help fishermen modify their fishing gear in order to reduce the mortality rate of their catch.

Good advice:  I asked Carwyn, “What would you tell kids interested in pursuing a science career?”she responded, “follow your gut and never stop asking questions”.

Meet the Scientist:  Dr. Mikhail A. Stepanenko

Mikhail helping process a trawl

Mikhail helping process a trawl

Title:  Senior Biologist, Northern Pacific Fish Resources Laboratory, Russia

Job Responsibilities:  In charge of pollock stock assessment and providing data for total allowable catch for Russia.  Building a international relationship with the United States of America.  He works closely with the New Fisheries Agreement between Russia, United States, Japan, Korea, and China, which works on improving fishery management for all fish.  He works on both Russian and United States fishery vessels, including NOAA’s Oscar Dyson as part of the science team.

Home: Vladivostok, Russia where his wife currently lives.  He has two daughters and four grandchildren, all of whom reside in the United States.

Why pursue this career?   He has always had a dream to be a seaman and he loves sport fishing.  He has an interest in animals and marine biology.

Mikhail has been working in the fisheries industry since graduating university in 1968.

 

New Riddle from the Oscar Dyson Crew:  Why does a wet deck remind you of music?

 Scroll to the bottom of my blog for the answer!

 

Did you know?

Did you know, during a new moon (the moon is not shining) out at sea, giant schools of anchovies glow on the ocean surface? 

Did you know the Oscar Dyson uses  500,000 gallons of fuel a year? 

 

Key Vocabulary:

Ultraviolet

Evaporation

Scientific Method

Engineering Design Process

Stereo

Meteorology

 

Squid

Squid

Sea stars or starfish

Sea stars or starfish

So cute! A the underside of a skate

So cute!  The underside of a skate

I'm holding a skate

I’m holding a skate

Answer to riddle:  If you don’t C sharp, you’ll B flat.

Rita Salisbury: Underwater Navigation, April 24, 2013

NOAA Teacher at Sea
Rita Salisbury
Aboard NOAA Ship Oscar Elton Sette
April 14–29, 2013

Mission: Hawaii Bottomfish Survey
Geographical Area of Cruise: Hawaiian Islands
Date:
April 24, 2013

Weather Data from the Bridge:

  • Humidity 71%
  • Wind SpeedS 8 mph
  • Barometer30.07 in (1016.2 mb)
  • Dewpoint65°F (18°C)
  • Visibility

Science and Technology Log

I wish everyone could see how hard the scientists work on solving problems as they crop up. Their collaboration skills are top-notch. Everyone has something to contribute and their ideas are listened to respectfully. Solutions belong to everyone on the team. It also seems to me that there is a lot of “cross-training” going on, too. Everyone has a specialty, but others are capable of taking over or filling in for that person. That goes for the deck crew as well as the scientists. Every event has a planning meeting in which roles are defined and strategy determined.

Every large event gets a planning meeting to go over the details.

Every large event gets a planning meeting to go over the details.

One of the thrusters on the AUV had to be replaced and the new one is considerably heavier than the original one. That means that the whole buoyancy of the AUV is impacted. It needs to be a little light so its natural course is to float to the surface. The new thruster changed the weight of the AUV so the scientists had to calculate and design a remedy for the issue. They decided to add high density foam to the AUV to increase the buoyancy. They used high density foam because regular foam would compress at the depths to which the AUV submerges. This AUV is designed to go down 2000 meters, but others go as deep as 6000 meters.

High-density foam used for bouyancy

High-density foam used for bouyancy

In order to confirm that their calculations for the amount and placement of the new foam were correct, the AUV was put over the side of the ship and tests were run. It was always attached to the crane, as a precaution, but the cables were slack and the AUV had the opportunity to be tested. Once the tests were run, the scientists reviewed the results and decided to send the AUV out on a mission.

I asked Jeremy Taylor, one of the scientists, about how the AUV navigates underwater to the various coordinates pre-programmed into it. If it starts at Point 0, 0, how does it get to Point X,Y? Global Positioning Satellites are not any help since GPS doesn’t reach underwater.  Jeremy explained to me that the AUV actually navigates by altitude, not depth. It has 4 beams positioned on the frame in various locations that combine their information to tell the AUV how far above the sea bed it is. This kicks in when the AUV is about 35 meters above the bottom. From that information, the AUV keeps a certain distance above the sea floor and can then navigate over formations on the floor that stand between the AUV and its’ destination, the Point X,Y location. Using the altitude navigation system means the AUV’s navigation is fairly simple and the person who programs it doesn’t have to worry about going around or over obstacles.

Personal Log
As one of the scientists, Erica Fruh, explained the reasoning behind the high-density foam being used for buoyancy, it made me think of a video on the Galapagos Islands that I have shared with my students. In the video, an ROV is deployed in the depths off the coast of one of the islands in the Galapagos chain. Someone put a Styrofoam head (the type used to hold wigs) in a basket on the outside of the ROV. After the dive, which went to considerable depths, the head was retrieved and measured. The weight of the water had compressed the head to about 1/4 of its original size. It was a very graphic demonstration of the compression that occurs in the depths of the sea.

Did You Know?
The pressure at 3000 feet deep in the ocean is 100 times more that of air at sea level. Check out this link for a visual of wig heads and styrofoam cups: http://oceanexplorer.noaa.gov/explorations/04etta/logs/aug27/aug27.html