Bill Henske, Sharks and Minnows, June 25, 2015

NOAA Teacher at Sea
Bill Henske
Aboard NOAA Ship Nancy Foster
June 14 – 29, 2015

Mission: Spawning Aggregation Survey
Geographical Area: Florida Keys and Dry Tortugas

Date: Wednesday, June 24, 2015

Weather Data from the Bridge: East to southwest winds 15-20 kts. Decreasing to 10 to 15 kts.  Seas 3 to 5 ft. Isolated showers and thunderstorms.

Science and Technology Log

Integrated Tracking of Aquatic Animals of the Gulf Coast

One of the best games you can play in the pool is Sharks and Minnows. The premise of this game is that you and your school are small fish that have to travel from one side of the pool to the other without getting caught by the shark. If you are caught you get turned into a shark for the next round.  Eventually the sharks are well distributed, preventing any minnows from getting through.

Acoustic Monitoring Arrays in the Florida Keys National Marine Sanctuary
Acoustic Monitoring Arrays in the Florida Keys National Marine Sanctuary

I am reminded of this as the fin fish team from FWC sets up a grand game of sharks and minnows for fisheries science.  Over the past week we have been setting up several arrays of acoustic receivers that catch tagged fishes’ signals as they swim through the Florida Keys reef system.  The plan is designed to capture fish moving within and between different parts of the ecosystem.  Any tagged fish coming into Florida Keys National Marine Sanctuary should come into contact with one of the receivers, as will any fish traveling out.  The placement of the receivers on the west and east of the sanctuary create and “entrance” and “exit” for tagged fish.

Within the sanctuary there are now several concentrated grids of receivers in places that make for good fish habitat (aka good fishing spots).  The VR2 receivers can record the identification number of the tagged fish as well as the time and date they connected to the receiver and their distance from the receiver.  When the receivers are collected, that data can be downloaded and a picture of fish movement created.  The data from the FWC’s arrays and tagged fish will be incorporated into a more extensive project called ITAG (Integrated Tracking of Aquatic Animals of the Gulf Coast).   In this project, collaborators share their acoustic tag data and receiver logs with each other, extending the reach of all project.   In the vastness of our marine environments, any one project will produce only a small snapshot of what is happening.  By collaborating between projects, the complexity of fisheries and ecosystems might be more easily untangled.

Sonar profile of one of our sites for an acoustic release receiver.
Sonar profile of one of our sites for an acoustic release receiver.

Today we set up individual stations of a new device which uses an acoustic release.  These are for much deeper sites containing “humps” which are relief features rising 100 to 200  feet about the surrounding sea floor.  Because of the relief, humps offer a large variety of habitats in a small amount of space, creating a highly diverse area for aquatic life.  Since these deeper areas are inaccessible to most divers, the receivers we set out can be triggered to return to the surface.  When data is ready to be collected in a few months, a device will be lowered into the water that communicates with the receiver using sound.  This device, called a VR100, can trigger the receivers to jettison themselves to the surface with the help of two small floats.  At that time the receivers can be collected from a small boat.

Joel from FWC checks the connection to an acoustic receiver that has just been dropped to the sea floor.
Joel from FWC checks the connection to an acoustic receiver that has just been dropped to the sea floor.

This video below shows our deployment of the acoustic release receiver from the side of the Nancy Foster.

 

Personal Log

City in the Sea

The Nancy Foster has been at sea since February of this year.  While it resupplies every few weeks, most of the vital functions for human habitation are performed on board.  The ship is, for its officers, crew, and science passengers, a small floating city.

View of the engine room control panels.
View of the engine room control panels.

Electricity requirements for a large ship are quite high.  If you factor in air conditioning, navigation systems, lighting, motors and pumps, kitchen, and scientific tools, the energy consumption equals a small hamlet.  Amazingly, this electricity is all created on board with the ship’s generator and a copious amount of marine diesel.

The Nancy Foster has a main engine for thrust but several others that act as generators for the thrusters, electricity, and backup power.
The Nancy Foster has a main engine and several others that act as generators for the thrusters, electricity, and backup power.

Food is loaded on at ports but that doesn’t mean it isn’t fresh and delicious.  Each day Bob and Lito prepare breakfast, lunch, and dinner for all of the scientists and crew.  These delicious multi-course meals keep all the members of this floating city very happy.  Just like the hungry generators, the humans energy levels are kept well stocked.

Water, water everywhere but not a drop to drink, except on the Nancy Foster you can just distill it using excess engine heat.
Water, water everywhere but not a drop to drink, except on the Nancy Foster you can just distill it using excess engine heat.

There is no sewage processing on board the ship.  Ship waste is carried in large tanks until it can be released into open ocean, far from land.  Once in the ocean, its nutrients are quickly consumed by hungry phytoplankton and converted into energy for the next level of the food chain.  Food waste is also separated from recycling and “garbage”.  Food waste, after being ground, is composted at sea.

With 40 people on board eating, showering, and using the head, the ship needs to produce water on a continual basis.  The ship keeps a reserve supply and when it goes down, The Nancy Foster has a device that uses excess heat from the engines and generators to distill water from the ocean.

Every day the Science Chief and project leaders determine a schedule and make staff assignments.
Every day the Science Chief and project leaders determine a schedule and make staff assignments.

Cities need organization and a specialized workforce to get all of these things done.  The NOAA Corps Officers make sure the ship stays on course and its mission objectives are met.  The ships crew ensures the small craft are launched safely, everyone is fed, and the ship keeps humming and running smoothly.  The science staff are visitors, enjoying all of the amenities of the ship while using its resources to complete their scientific missions.  Many of the science staff cruise with the Nancy Foster every year, while for some, it is their first time.

How did you get here?

I asked several of the scientists on board what they wanted to do when they were in middle school and how they became involved in marine science and research.  My middle school students are just starting to think about who they are and who they want to be.  I wanted to get some background information on how some of the scientists here got their start.

J. – A biologist had no clue what he wanted to do when he was in middle school and this trend continued until college! He loved fish and applied for an entry level fisheries job and has been at it ever since.

R. – Thinks she wanted to be a writer in middle school based on a paper she read from back then.  After pursuing her interest in ecology she is now writing about conservation issues for NOAA.

S. – She always loved science and math – After studying geology she had a chance to go to sea.  Loved it more than her geology work and now scans the sea floor of the Gulf of Mexico.  She won’t tell you where the treasure is!

P. – He took a test when he was in middle school that said he was not particularly interested in anything.  What he always liked was fish. After a couple related jobs he has worked in fisheries for many years.

S. – When he was in middle school he wanted to be rich and work in biology.  He now works in biology!

One of the major commonalities among the scientists is that they followed, or in some cases, rediscovered their interest.  As a teacher, I hope I can help my students find what they are passionate about.

By the numbers:

226 scuba dives
5 ROV dives
5 Reef Visual Census (RVC) surveys
20 Drop camera ‘dives’
40 New stands and receivers deployed
4 sea turtles
61 square miles of seafloor mapped
1 Teacher at Sea Hat not lost

Susan Kaiser: Ready, Set, SCIENCE!! July 29, 2012

NOAA Teacher at Sea
Susan Kaiser
Aboard NOAA Ship Nancy Foster
July 25 – August 4, 2012

Mission: Florida Keys National Marine Sanctuary Coral Reef Condition, Assessment, Coral Reef Mapping and Fisheries Acoustics Characteristics
Geographical area of cruise: Florida Keys National Marine Sanctuary
Date: Friday, July 29, 2012

Weather Data from the Bridge
Latitude:  24 deg 36 min N
Longitude:  83 deg 20 min W
Wind Speed: 5.8 kts
Surface Water Temperature: 29.5 C
Air Temperature: 29.5 C
Relative Humidity: 67.0%

Science and Technology Log

Marine Scientist, Danielle Morley, ready for the signal to dive and retrieve a VR2.
Marine Scientist, Danielle Morley, ready for the signal to dive and retrieve a VR2.

Science is messy! Extracting DNA, observing animals in their native habitat or dissecting are just a few examples. On board NOAA Ship Nancy Foster it may even be stinky but only for a little while. That is because the divers are retrieving the Vemco Receivers also called VR2s for short. These devices have been sitting on the ocean floor quietly collecting data on several kinds of grouper and snapper fish. Now it is time to download the VR2s recorded information and give them new batteries before placing them at a new site. So, why are they stinky? Even though the VR2s are enclosed inside another pipe, sea organisms have begun to grow on the top of the VR2. They form a crust that is stinky but can be scraped away with a knife. Any object left in the ocean will soon be colonized by sea creatures such as oysters, algae, and sponges to name a few. These organisms will grow and completely cover the area if they are undisturbed. This crust smells like old seaweed drying on an ocean beach.

VR2 ready to download data and replace batteries.
Clean VR2 ready to download data and replace batteries.

Really, it isn’t too bad and after a while you don’t notice it so much. Besides this is the only way scientists can get the numbers out of the VR2. These numbers tell scientists which fish have been swimming by and how often. Some of the VR2s have collected over 21,000 data points but most have fewer. This information alone helps scientists understand which areas of the ocean floor each species of grouper and snapper prefer as their home or habitat. These data points can even paint a picture of how these fish use the habitat space over the period of an entire year.

Have you been wondering what the VR2s are listening for? You may be surprised to learn it is a signal called a ping from a tracking device that was surgically implanted while the fish is still underwater! The ping is unique for each individual fish. The surgeries were completed when the study began in 2008. First, the fish are caught in live traps. If the trap is in deep water (>80ft) divers descend to perform the surgery on the ocean floor. The fish’s eyes are covered and it is turned upside down. Then a small incision is made in their abdomen and the tag is inserted below the skin. Stitches that dissolve over time are used to close the incision. Once the fish has recovered a bit it is released. An external tag is also clipped into the dorsal fin so other people will know the fish is part of a scientific study. Fish caught in the upper part of the water column may be brought up to the surface slowly and kept in a holding tank while the surgery performed on the boat. Scientists have noted the fish are less stressed by being caught, handled and tagged using this method.  This is a factor for collecting enough data to gain a real understanding of these fishes behavior.

Scientists at the Florida Fish and Wildlife Conservation Commission (FWC) are able to conduct this study with support from a National Oceanic and Atmospheric Administration (NOAA) grant. They have also worked with other agencies on this research including the Florida Keys National Marine Sanctuary (FKNMS)  the area where the VR2s are positioned. Since 2008 they have learned a great deal to better understand how grouper and snapper use habitat. Both fish are good for eating and are found on the menu in many restaurants around the world. They are commercially harvested and fished by recreational fishermen like you and me. Fishing is a big industry in all coastal locations and especially in Florida. In fact, commercial fishing alone accounts for  between 5-8% of total income or jobs in the local economy of the Florida Keys.  Knowledge gained from this study will help FWC and FKNMS guide decisions about fishing and recreation in the FKNMS and be aware of negative impacts to these fish populations in the future. Stinky air is small sacrifice to help preserve populations of groupers and snappers.

Jeff Renchen describes the features of the ROV.
Jeff Renchen describes the features of the ROV.
Mrs. Kaiser wearing the virtual reality glasses. Photo by Jeff Renchen
Mrs. Kaiser wearing the virtual reality glasses. Photo by Jeff Renchen

You can see that exploring marine habitats takes time, trained people and resources. Luckily a device has been developed to help scientists explore the ocean floor in an efficient and safe way. This little gem is called a Remotely Operated Vehicle or ROV. It is a cool science tool operated with a joy-stick controller.  The ROV can dive and maneuver at the same time it sends images back to the operator who is using a computer or wearing virtual reality glasses. Yes, I said virtual reality glasses! The operator can see what the ROV can “see” in the depths of the ocean. I had the opportunity see the ROV in the lab and then ride with the ROV team as they tested the equipment and built their skills manipulating this tool in dive situations. The beauty of the ROV is that it can dive deeper than is allowed for a human diver (>130 feet) and it can stay down for a longer period of time without stopping to adjust to depth changes like a human. If a dive site has a potential risk due to its location or other factors, the ROV can be sent down instead. Scientists can make decisions based on the ROV images to make a plan for a safe live dive and save time and resources. Science is messy, sometimes, but it is cool too!

Personal Log

The weather has been simply amazing with calm crystal clear seas and very smooth sailing. Still, spending the day in the sun saps your energy. However, that feeling doesn’t last too long after a nice shower and a trip to the mess to enjoy a delicious meal prepared in the galley. There Chief Steward Lito Llena and 2nd Cook Randy Covington work their magic to cook some terrific meals including a BBQ dinner one evening on the upper deck. They have thought of everything, especially dessert! I will be paying for it later by running extra laps when I get back home but it will be worth it.

Mrs. Kaiser's stateroom on the NOAA Ship Nancy Foster.
Mrs. Kaiser’s stateroom on the NOAA Ship Nancy Foster.

My stateroom is a cozy spot with everything one would need and nothing more. A sink is in the room but showers and toilets are down the hall a few doors. One item that is missing is a window. It is so very dark when the lights are off you can’t see your hand in front of your face. It is easy to over sleep! Surprisingly noise has been minimal since the rooms are very well insulated. I share this space with three female scientists but we each have a curtain to turn our bunks into a tiny private space. I enjoy climbing up in my top bunk, closing my little curtain and reading my book Seabiscuit, An American Legend before being rocked to sleep by the ship.

NOAA Ship Nancy Foster officers and crew have been wonderful hosts on this cruise. All have patiently answered my questions and helped me find my way around to do what I need to do. I am curious about their life at sea and the opportunities it affords them to see new places, meet new people and engage in new experiences too. I hope to learn more about their careers as mariners before this voyage ends. The ship truly is a welcome place to call home for these two weeks.