Mission: Acoustic Trawl Survey (Leg 3 of 3) Geographic Area of Cruise: Pacific Ocean/ Gulf of Alaska Date: Monday August 7, 2023
Weather Data Lat 58.31 N, Lon 151.58 W Sky condition: cloudy Wind Speed: 12.43 knots Wind Direction: 357.55° Sea Wave height: 1 ft | Swell: 340°, 1-2 ft Air Temp: 12.35 °C
Science log
The purpose of this trip is acoustic trawl sampling for pollock (Gadus chalchogrammus). There are other projects that people are working on during this leg that I will report on in other upcoming blogs.
Today, at about 5:30 pm we deployed a CTD (Conductivity, Temperature and Depth – Probe). This probe measures the salinity using conductivity, the temperature with a digital thermometer, and records the data all at different depths in the water column. This CTD also records fluorescence which is an easy way to determine the amount of plankton present. The plankton at the surface are producers and have chlorophyll, which reacts to fluorescence and can be recorded. This information will be important when we start taking trawl samples, so the ships crew will routinely send out the CTD while we cover our transects.
Watch the videos below of the crew members deploying and recovering the CTD.
Crew members deploying the CTD
Recapturing the CTD
The data from the CTD collection are shown on the picture of the computer screen below:
CTD Data: Fluorescence, or Chlorophyll (green) and Turbidity (orange) v. Depth on the first graph, and Salinity (yellow) and Temperature (blue) v. Depth on the third graph.
The data from the CTD are presented in graphical form. The first frame shows chlorophyll, which is the green line. The second frame is percent oxygen (which they were not measuring so it remains zero). The third frame shows salinity (yellow line) and water temperature (blue line).
Personal log
Currently we are cruising out to our transect destinations over the continental shelf. The seas are a little rough (6-8 foot waves) and I am enjoying some saltine crackers that help with mild sea sickness. It has been a while since I have been in a large boat in rolling seas.
Three days ago, I flew from Anchorage to Kodiak Island on an a sunny afternoon and met the science team for the cruise. The whole team was extremely welcoming, sharing stories of past cruises, colorful characters and the science behind acoustic trawl sampling. Later, they invited me to go surfing the next day at a beach on the far side of the island.
Through the camaraderie of playing in the waves I was introduced to these amazing people and their knowledge and love of the ocean. They are very professional and willing to share what they are studying. They also have a deep concern for the changes occurring in the ocean and honestly hope that their information can be shared and understood in order to mitigate the impact of change. Sitting on my surfboard I quickly learned I was the beginner, and they were the experts. With the experience of time, they would effortlessly snap up and slice through the waves. Smiles and whoops encouraged each other as the sea crashed into the beach.
Surfing off of Kodiak Island. Photo credit: Mathew Phillips
Surfing off of Kodiak Island. Photo credit: Mathew Phillips
Surf photos courtesy of Mathew Phillips
The next day was spent with the science crew getting ready to bring aboard equipment they will be using, accessing and streamlining the information they need for the data collection, and also a little bit more shore time with fishing and hiking. I hiked up a local mountain called Pyramid.
Overall this has been a great start for a wonderful trip. I love to get my students outside experiencing the real world. After a year of taking both Oceanography and Marine Biology my students get to touch, see and smell the ocean through a field trip. They get to see marine birds and mammals, touch and taste icebergs and smell the brine scent of the ocean. They also get a chance to apply the knowledge and skills that they have learned in my class. The NOAA as Teacher at Sea Program is my field trip. I get to see the science and technology in action and share it with my students, friends and family. Thanks so much for letting me play!
Geographic Area of Cruise: Atlantic Ocean, SE US continental shelf ranging from Cape Hatteras, NC (35°30’ N, 75°19’W) to St. Lucie Inlet, FL (27°00’N, 75°59’W)
Date: August 19, 2019
WAVES: Aboard NOAA Ship Pisces: Dolphins, Flying Fish (video has no dialogue, only music)
This video was captured during my NOAA Teacher at Sea cruise aboard NOAA Ship Pisces. During the cruise I spent lots of time outside on the deck gazing into the blue seascape. Here’s some of the footage I collected.
Geographic Area of Cruise: Atlantic Ocean, SE US continental shelf ranging from Cape Hatteras, NC (35°30’ N, 75°19’W) to St. Lucie Inlet, FL (27°00’N, 75°59’W)
Date: August 19, 2019
Tiger Shark! NOAA Ship Pisces Underwater Camera Action (video has no dialogue, only music)
This video is a collection of fish trap camera footage recorded during my NOAA Teacher at Sea adventure aboard NOAA Ship Pisces. Very special thanks to the NOAA science team: Zeb Schobernd – chief scientist and especially Mike Bollinger and Brad Teer – camera and gear experts.
Geographic Area of Cruise: Atlantic Ocean, SE US continental shelf ranging from Cape Hatteras, NC (35°30’ N, 75°19’W) to St. Lucie Inlet, FL (27°00’N, 75°59’W)
Date: August 8, 2019
All Hands on Deck (video has no dialogue, only music)
I made this video while aboard NOAA Ship Pisces as part of NOAA’s Teacher at Sea program. I thought it might be cool to capture the different kinds of work the crew, NOAA Officers, and scientists were doing. Pretty much everyone thought I was a little weird when asking to video just their hands. Oh well. I think it turned out kinda cool.
Special thanks to the folks aboard Pisces. Keep in mind – if anyone in this video gets a hand modeling contract, I get 40%. Thank you. The NOAA science team was particularly helpful: Zeb Schobernd – chief scientist, Todd Kennison, Brad Teer, Mike Bollinger, Zach Gillum, Mike Burton, Laura Bacharach, Dave Hoke, and Kevan Gregalis.
Weather Data From the Bridge Lat: 49°11.7′ Long: 123°38.4′
Skies: Broken
Wind: 16kn at 120°
Visibility: 10+ miles
Seas: 2ft
Water temp: 15.5°C
Air Temp: 17.6°C Dry Bulb, 15.6°C Wet Bulb
Science and Technology Log
NOAA celebrated the 50th anniversary of the 1968 launch of Ship Rainier and Ship Fairweather this past spring. These two vessels together have provided 100 years of hydrographc service. Its amazing to consider this vessel has been cutting through the waves for 50 years!
It took a few days for me to get familiar with the layout of Ship Rainier. Let me take you on a video tour of several sections of the ship and welcome you aboard.
First some orientation. The decks are identified with letters – where A represents the lowest level and G is the highest level. “A deck” is actually a collection of tanks and bilge areas…the work of the engineering team mostly takes place on B deck in the engine room. The ship also uses numbers to address areas of the ship – starting with 01 at the bow and 12 at the stern. This way, any location on the ship can be identified by an address.
So lets get started on a tour…
Often, work days start with a meeting on the Fantail of this ship. This is on the D deck – the deck with most of the common spaces on board.
This is a diagram of the fantail.
A typical morning safety briefing before a busy day of launches.
We’ll start our walk at the base of the stairs on the starboard side of the front of the fantail. You’ll see the green coated bollards on several decks. These are used for tying off the ship when in port. The large yellow tank is gasoline for the outboard motors. It is setup to be able to jettison over the side in a fire emergency.
Next, we’ll walk in the weather tight door amidships (center) of the front of the fantail. As we walk forward, notice the scullery (dishwashing area) on the left side followed by the galley (kitchen). To the right is the crew mess (eating area). Continuing ahead, we’ll walk through the DC ready room (Damage Control) and into the wardroom (officers eating area) and lounge.
Next, we’ll start in the Ward room and proceed up the stairs to the E deck. Here we’ll walk by several officers quarters on either side of the hall. Then we’ll turn and see a hallway that goes across the E deck and is home to FOO’s (Field Operations) and XO’s (Executive Officer’s) offices. Then we’ll step out onto the deck and walk towards the deck on the bow (the front of the ship).
Starting once again at the fantail, now we’ll proceed up the steps to the E deck. This is the level where the davits are mounted (small cranes) that support the launches (small boats). After passing the base of the davits, we stop into the boat shop. This is where engineering maintains the engines of all of the launches on board Rainier. Next we walk up to the F level and turn towards the stern to see the launches from alongside. Notice, also, the large black crane in the center of the deck that is used for moving additional equipment and launches. Finally, we’ll walk all the way up the port side to the fly bridge on the G level. Here you’ll see “Big Eyes”, my favorite tool on the ship for spotting things in the distance. As I turn around you’ll see the masts and antennas atop this ship for communications and navigation. The grey post with the glass circle on it is the magnetic compass – which can actually also be viewed from the bridge below with a tube that looks up from the helm position. You might also notice this where the kayaks are stored – great for an afternoon excursion while at anchor!
Here is a quick look in the plot room that is also located on the F deck just aft of the bridge. This is one of two places where the hydrograph scientists work to collect and process the data collected with the MBES systems.
In the front of the ship on the F deck is the bridge. This is the control center for the ship and the location of the helm. There is more detail on the bridge in an earlier post. The sound you hear is a printer running a copy of the latest weather updates.
Finally, visit my C-03 stateroom. My room has two bunks and plenty of storage for two people’s gear. There are four staterooms in this cluster that share two heads (bathrooms). The orange boxes on the wall are EEBDs (Emergency Escape Breathing Devices). These are located throughout the ship and provide a few minutes of air to allow escape in the event of fire. Notice at the top of the steps were back to the hallway and steps just outside of the lounge on D level.
The entire engineering department is not included in these videos and exists mostly on the B level. Please see my second blog post for more detail on engineering systems and several photos!
Personal Log
Sunday, July 8, 1000 hrs.
We’re coming around the northwestern most point of Washington State this morning and then turning south for the Oregon Coast. The ship is rolling a bit in the ocean swells. I’ve come to be very used to this motion. Last night we had a chance to go ashore in Friday Harbor, in the San Juan Islands for a few hours. I was surprised just how ‘wobbly’ my legs felt being back on solid ground for a while. My ship mates tell me this is how it is the first few times back ashore after being at sea!
This has been a great experience – one of plenty of learning and a real appreciation for the work accomplished by this team. I look forward to drawing in all I can in the last day on the ocean.
Who is On Board?
This is our cox’n Mike Alfidi at the helm of Launch RA-3.
This is augmenter Mike Alfidi. Mike has been a cox’n (boat driver) here on Rainier for about two years now, and has quite a bit of past experience in the Navy. Mike is a part of the deck department. His primary duties here are driving small boats and handling equipment on the decks. As an “augmenter,” he makes himself available to NOAA to be placed as directed on ships needing his skills.
One of the things Mike loves about his work is getting to see beautiful places like Southeast Alaska. And, he appreciates updating charts in high traffic areas like the harbor at Pelican. He loves to be a part of history – transitioning survey data from the old lead line to the much more accurate MBES. One of the toughest parts, he says, is riding our rough seas and plotting in less trafficked areas. He did a great job of piloting our launch just as the hydro scientists needed to collect the data we were after!
Latitude: 35.190807
Longitude: -111.65127
Sea wave height: NA
Wind Speed: 7 Mph
Wind Direction: W
Humidity: 21%
Air Temperature: 20 degrees C (68 degrees Fahrenheit)
Barometric Pressure: 29.81″ Steady
Sky: scattered clouds
panoramic view from the stern heading home
Personal Log
And just like that, it’s over. I am back in Flagstaff and have finally stopped feeling the boat rocking while on solid ground. Students have been working on a shark project in my absence and we are finishing it up this week. My first day back was a day of show and tell. The students were excited and full of questions about my trip. As I presented to my students, I realized how much I learned and how much more I still want to know! Here are some pictures from Monday.
jaws of a blacktip shark
checking out the longline and gangions
blacknose jaws and sharpnose jaws
barb from a southern stingray
barb from southern stingray
red snapper otolith
As I reflect back on my adventure, I have many thoughts and wonder how the fourth and final leg is going. I think back to last year when I first learned I was selected to be on this adventure and how impossible it was to imagine that I was actually going to work with sharks. Then, as the date loomed closer, trying to best prepare for something that was a big unknown to me. And then I was at the dock looking at the Oregon II tied up for the weekend. I recall when I first reached the dock in the evening looking at the ship and thinking wow, pinch me, this is really happening. I remember being awed and out of my element those first few days just learning to navigate the ship. And then the first haul in! Now that was a rush as we pulled in not only small sharpnose sharks but larger sandbar sharks that needed to be cradled. It was unbelievable watching as the team worked and I was thrust into being a viable team member. After a week, it was a game I had to see if I could bait the hooks as fast as the veteran scientists. I automatically logged the fin clips and helped enter the data we had collected. Working on the ship became the new normal — knowing what to to do at each station’s deployment of the line and the haul back. I was feeling competent in my role. Even pulling in some sharks became routine…routine! Wow, had I come a long way. And then, just like that, I was on my last haul back and heading back into port.
Here are some of my favorite videos and photos from the adventure.
Below a time lapse of what a haul back at night looks like
Eye See you (Smooth-Hound shark)
Measuring a sandshark
And a video of my favorite shark- the great hammerhead being released out of the cradle.
And a baby hammy
So here I am, back in Flagstaff, reflecting back on my adventure. Did it really happen? I have pictures to prove it and stories I am sharing but it does seem like a lifetime ago that I was touching a shark and looking into the doe eyes of a ten foot hammerhead shark. The more I talk about what I have done, the more I realize how much I learned and how much more I still don’t know. The two weeks flew by but I am grateful for it. So for those of you out there reading this blog, make time for adventures, get out there and do it, follow your passion and immerse yourself. You might be surprised at what you can do!
Geographic Area of Cruise: Pacific Ocean; U.S. West Coast
Date: 07/22/2017
Weather Data from the Bridge: (Pratt, Kansas)
Date: 08/02/2017 Wind Speed: SE at 5 mph
Time: 18:40 Latitude: 37.7o N
Temperature: 29o C Longitude: 98.75o W
Science and Technology Log:
During my last few days aboard the Reuben Lasker before steaming to Bodega Bay for a small boat transfer on July 30th, we were fishing off of the southern Oregon coast. The ship continued to run the longitudinal transect lines using acoustics and collecting data using the continuous underway fish egg sampler (CUFES) during the day and performing targeted trawls for coastal pelagic species (CPS) at night. The weather and the pyrosomes picked up as we moved down the Oregon coast to northern California, but on what would turn out to be the last trawl of my trip in the early morning hours of July 28th, we had our biggest catch of the trip with over 730 kg in the net. Once again we saw 3 of the 4 CPS fish species that are targeted for the survey including the Pacific sardine, Pacific mackerel, and jack mackerel, but no northern anchovies were to be found. The science crew worked efficiently to process the large haul and collect the data that will be used to provide the Southwest Fisheries Science Center (SWFSC) with information that can be used to help understand the dynamics of CPS in the California Current. The data collected from the CPS fish species includes length and weight, otoliths (used to age the fish), gender and reproductive stage, and DNA samples. The information from these different parameters will provide the biologists at SWFSC with information that can be used to understand the nature of the different populations of the CPS fish species that are being studied.
Jack mackerel to process (Photo Credit: Nina Rosen)
Sorted Pacific sardines to be processed
Tubs of pyrosomes
Kip checking reproductive maturity on jack mackerel (Photo Credit: Nina Rosen)
Kip and Sue record length/weight data (Photo Credit: Nina Rosen)
I am home now in southcentral Kansas, but as I am writing this, I can picture the science team beginning preparations for a night of trawling probably just north of Bodega Bay. By now (22:00) it is likely that a bongo tow and the conductivity, temperature and depth (CTD) probe samples have been collected providing data that will be used to calibrate and maximize the effectiveness of the acoustics for the area. Lanora and the rest of the team will have prepped the lab for a night of sampling, weather data will be recorded, and someone (maybe Nina or Austin) will be on mammal watch on the bridge. It all seems so familiar now; I hope the rest of the survey goes as well as the first half of the second leg. I will be thinking about and wondering how the science team of the Reuben Lasker is doing somewhere off the coast of California as I settle in for the night. One thing I am sure of, after spending two weeks aboard the ship, is that the entire crew on the Reuben Lasker is working together, diligently, as a team, using sound scientific practices to produce the best data possible to guide decisions about the fisheries resources in the California Current.
Video Transcription: (Narration by Kip Chambers)
(0:01) Ok, we’re preparing to remove otoliths from a jack mackerel. It’s for the Coastal Pelagic Species survey on the Reuben Lasker, July 27, 2017.
(0:22) We have Phil, from Washington Fish & Game, who’s going to walk us through the procedure.
(0:30) The otoliths are essentially the fish’s ear bones. They help with orientation and balance, and also have annual rings that be used to age the fish.
(0:48) And so the initial cut is – looks like it’s just in front of the operculum and about a blade-width deep.
(1:01) And the secondary cut is from the anterior, just above the eyes and kind of right level with the orbital of the eyes, back to the vertical cut.
(1:22) It’s a fairly large jack mackerel. And, once the skull cap has been removed, you can see the brain case, and you have the front brain and kind of the hind brain where it starts to narrow…
(1:42) … and just posterior to the hind brain, there are two small cavities, and that was the right side of the fish’s otolith,
(1:55) … and that is the left side. And that is very well done. Thank you Phil.
Phill collecting jack mackerel otoliths (Photo Credit: Nina Rosen)
Jack mackerel otoliths (Photo Credit: Nina Rosen)
I wanted to use a portion of this section of the blog to share some comments that were expressed to me from the members of the science team as I interviewed them before I left last week. The first “interview” was with Dave Griffith, the chief scientist for the survey. Dave was kind enough to provide me with a written response to my questions; his responses can be found below.
Chief Scientist Dave Griffith
Q1: Can you tell me a little bit about your background, including education and work history?
Q1: I was born and raised in a small suburb of Los Angeles county called Temple City. Located in the San Gabriel valley at the base of the San Gabriel mountains, it was the perfect place to exercise the love and curiosity of the animals I could find not only in my backyard but also in the local mountains. It wasn’t until I reached high school that I realized I had a knack for sciences especially biology. This interest and appeal was spurred on by my high school teacher, Al Shuey. With little concept of a career, I continued on to a junior college after high school still not sure of my direction. Here I dabbled in welding, art, music and literature but always rising to the surface was my love of sciences. My fate was sealed.
I entered San Diego State’s science program and was able to earn a bachelor’s degree and a master’s degree of science. For my dissertation I studied the re-colonization capabilities of meiofaunal harpacticoid copepods in response to disturbed or de-faunated sediments within Mission Bay. While studying for my masters, I was hired by Hubbs-Sea World Marine Laboratory as the initial group of researchers to begin the OREHAP project which is still operational today. The OREHAP project’s hypothesis was that releasing hatchery reared fish into the wild, in this case white seabass (Atractocion nobilis), would stimulate the natural population to increase recruitment and enhance the population. At the time the white seabass population numbers were at their all time low. During that time of employment at HSWML, I was also teaching zoology at SDSU as a teaching assistant in the graduate program. I was also the laboratory manager and in charge of field studies at Hubbs. My plate was pretty full at the time.
I heard about the opening at the SWFSC through a colleague of mine that I was working with while helping her conduct field work for her Ph.D. at Scripps. I applied and was hired on as the cruise leader in the Ship Operations/CalCOFI group for all field work conducted within CFRD (now FRD) working under Richard Charter. That was 1989. I have now been the supervisor of the Ship Operations/CalCOFI group since 2005.
My main objective on the Coastal Pelagic Fish survey as the cruise leader is to oversee all of the operations conducted by personnel from FRD during the survey. All scientific changes or decisions are made by the cruise leader using science knowledge, logic, common sense and a healthy input from all scientists aboard. I am the liaison between the scientific contingent and the ship’s workforce as well as the contact for the SWFSC laboratory. The expertise I bring out in the field is specific to fish egg identification, fish biology, field sampling techniques, knowledge of the California Current Large Ecosystem and sampling equipment.
Q2: What have you learned from your time on the Reuben Lasker during the 2nd leg of the Pelagic Species Survey?
Q2: First, that you never have preconceived ideas of what you expect to find. You always come out with knowledge of previous studies and a potential of what you might see, but the ocean always will show you and demonstrate just how little you know. When I was beginning in this career I was able to witness the complete dominance of a northern anchovy centric distribution change to a Pacific sardine centric distribution and now possibly back again. It’s mind boggling. I remember one of my colleagues, one of the pre-eminent fish biologists in the field, Paul Smith say to me during these transitions say, “Well, you take everything you’ve learned over the past 40 years, throw it out the window and start over again.” Yeah, the ocean environment will do that to you.
Q3: What advice would you give to a 1st year college student that was interested in pursuing a career in marine science?
Q3: Keep an open mind. Once you enter a four year university you will see areas of study that you never thought or believed existed. Have a concept of where you want to be but don’t ignore the various nuances that you see along the way. Go for the highest degree you feel capable of achieving and do it now because it becomes so much more difficult as you get older or the further away you get from academics if you begin working in a science position.
And last, and I feel most important. Read. Read everything. Journals, magazines, classics, modern novels, anything and everything and never stop. Communication is such an incredibly important part of science and you need to have a command of the language. Not only is reading enjoyable but it will make you a better writer, a better speaker and a better scientist.
Personal Log:
I am back home in Kansas now after wrapping up my assignment on the Reuben Lasker and I have started to contemplate my experiences over the last couple of weeks. There are so many facets related to what I have learned during my time on the ship; the technology and mechanics of such a large research vessel are both fascinating and daunting at the same time. There are so many moving parts that all have to come together and work in a very harsh environment in order for the ship to function; it is a testament to the men and women that operate the boat that things operate so smoothly. As impressive as the technology and research is on the Reuben Lasker, it is the people that have made the biggest impact on me.
You can see from Dave’s response above that there are some incredibly talented, dedicated individuals on the ship. I would like to share with you some of my observations about some of those people that I worked with including Dave Griffith. Dave is not only an outstanding scientist that has spent a lifetime making important contributions to fisheries science, he is also an incredibly well rounded person and an encyclopedia of knowledge. I would like to take this opportunity to personally thank Dave for his patience, and willingness to listen and provide insight and advice to me during my time on the ship. In my upcoming blog, I will provide more information about the other members of the science team that I had the pleasure to work with while on board. Until then please enjoy the pictures and video from my last week on the Reuben Lasker.
Video Above: My 360 degree introduction video from the Atacama Desert, Chile.
I am very excited and grateful to be a 2017 National Oceanic and Atmospheric Administration (NOAA) Teacher at Sea (TAS). The TAS program has existed since 1990 and their mission is to provide real world research experience for kindergarten through college-level teachers. The application process opens in the fall and teachers are notified in the spring if they are selected. This year there are 29 teachers who have either already sailed or, like me, are about to embark. Check out the TAS FAQ’s page to learn more about the program: NOAA TAS Frequently Asked Questions.
Where is Kodiak, Alaska?
Video Above: Google Earth view of where I will be starting my Teacher at Sea cruise.
Kodiak, Alaska is a small fishing village on Kodiak Island. There are two ways to get to the island – by air or by sea. I will be flying to Kodiak from Anchorage and will board the NOAA vessel Oscar Dyson. This is my 3rd time visiting Alaska but my first time at sea. I got engaged in 2014 on top of the Harding Icefield in Kanai Fjords National Park.
Having just arrived home from one of the driest deserts in the world (Atacama, Chile) I am reminded that the desert is my home. I have lived in Phoenix, Arizona, far away from the sea, for the past 25 years. I love the warm sunny heat of the desert but not when it gets over 110 degrees. So I am looking forward to a change in weather and scenery. Alaska is beautiful in the summer with really long days of sunlight. I am hoping to see a whole new view of this rugged wild state during my three seeks at sea. I just hope I don’t get sea sick!
Science and Technology Log
I have three objectives for my TAS adventure. They are:
To be able to describe how and why we research pollock.
To be able to describe life at sea on a NOAA ship and the careers associated with the NOAA Corps.
To be able to describe navigation techniques and how they have changed over time.
My ultimate goal is be able to bring this information back to the classroom. I have always been fascinated with navigation. Reading maps is an important part of being a geologist and I wonder how similar or different it will be at sea. As a geology student I leaned how to map the contact between two rocks. So I am really curious to learn how you chase fish in the sea. Please feel free to leave a comment below if you have any questions or want me to investigate something while at sea.
Personal Log
When you apply to the TAS program they ask you which type of research cruise (hydrographic, oceanographic, or fisheries) you would prefer. I checked both hydrographic or oceanographic because of my geology background. I teach about weather, climate change, and have always been curious about how we map the ocean. So I am a little nervous about being on a fisheries cruise for 3 weeks. But I am also excited about the opportunity to learn and explore something completely outside my norm. My family finds this amusing because as a kid all I did was fish.
Me fishing around 9 years old.
Here is a photo of me fishing at age 9. During the summer time, while living in New Hampshire, I use to fish everyday. But around the age of 12 that changed. I became less interested in the biological world and more into the physical world (geology, physics, chemistry, etc.). I stopped fishing and haven’t picked up a pole in over 35 years. Even when I was into fishing as a kid, I still didn’t like touching them. Now I will be spending 3 weeks studying Alaska pollock (walleye pollock) off the coast of Alaska. As a result of this experience, I wonder if the girl in this photo will rise like a phoenix and fall back in love with fishing. Hmm – at the moment I’m thinking it’s a 50-50 chance! What do you think? Leave me a message in the comments below.
Did You Know?
The word fish (noun) has an old English connection meaning any animal living exclusively in water. (Source: Online Etymology Dictionary)
Mission: Sea Scallop Survey Geographic Area of Cruise: Northeast Atlantic Ocean Date: June 7, 2017
Weather Data from the Bridge Latitude: 41 30.90 N
Longitude: 69 18.76 W
Air Temp 14.1° Celsius ( 57.3° Fahrenheit)
Wind speed 4.7 Knots (5.4 mph)
Science and Technology Log
Due to the poor weather delay on the 6th, June 7th was our first day out for the crew I am working with. Our ship is divided into two crews so we can work our operations around the clock. The crew I am working with works from noon to midnight, while the other crew works midnight to noon. On the 7th, were able to drop the dredge and attempt to collect scallops to assess the health, size, and population of those organisms.
Sometimes the dredge brings up more than scallops! This goosefish uses it’s illicium which act like fishing lures to attract fish close enough to be gulped by its large mouth.
We work those hours mainly using the collection process of dredging the ocean floor for scallops, but along the way, several other bottom dwelling ocean creatures are caught in the dredge.
A crane operator with the help of two deck workers lowers the dredge into the water. Once the dredge is in place to go into the water the crane operator releases cable until the dredge reaches the ocean floor. Depth readouts are calculated beforehand to determine how deep the dredge will need to drop. With this information the dredge cable is let out at a 3.5:1 ratio, meaning for every meter of ocean depth we are in, 3.5 meter of cable is let out. With this ratio the dredge is dropped with an angle that keeps it flat to the ocean floor. The crane operator is also reading a line tension readout in the crane booth to determine when the dredge has hit the ocean floor. We are typically in 200–350 ft of water when these dredges occur. The dredge travels behind the boat for 15 minutes, and is then pulled in.
On the dredge is a sensor called the “Star-Oddi.” This sensor detects the pitch and roll to make sure it was lying flat on the bottom of the ocean. The Star-Oddi also collects temperature and depth information as the dredge is traveling. The sensor is taken out of the dredge once it is brought up so watch-chief can see if the dredge was functioning properly throughout the tow.
University of Maine student Dylan Benoit is taking out the Star-Oddi after a dredge.
Once the dredge is hauled up, it is dumped onto a large metal table that the science crew stands around. Two of the Hugh R Sharp’s vessel technicians then scoop the collected haul to an awaiting science crew.
The dredge is unloaded with a good haul of scallops.
The science crew will then divide the haul into several different collection pails. The main objective of this crew is to collect scallops. Scallops collected are organized into different sizes. Fish are also collected and organized by a NOAA scientist who can properly identify the fish. At some of the dredge stations we collect numbers of crabs, waved whelks, and sea stars as well.
This dredge was especially sandy. In a typical day we reach around 6-8 dredge stations during our twelve hour shift. Here I am sorting through the sand looking for scallops, fish, crabs, and wave whelks.
Once the haul is collected and sorted, our science team takes the haul into a lab station area. In the lab, several pieces of data are collected. If we are at a station where crabs and whelks are collected, then the number of those are recorded as well. Fish taken from the dredge are sorted by species, some species are weighed and measured for length. Some of the species of fish are measured and some are counted by NOAA scientists.
In the dry lab the midnight to noon science crew takes measurements and records data.
Also in this lab station, all of the collected scallops are measured for their shell height. A small sample of scallops are shucked (opened) to expose the meat and gonads, which are individually weighed and recorded. Once opened we also identify if a scallop is diseased, specifically looking for shell blisters, nematodes, Orange-nodules, or gray meats.
Scallop disease guide posted in the dry lab.
Also at this station, the gender of the scallop is identified. You can identify the gender by the color of the gonad. Males have a white gonad, while a female’s looks red or pink. Finally at this station, commensal organisms are checked for. A common relationship we have seen during this trip is that of the scallop and red hake. The red hake is a small fish that is believed to use the scallop shell as shelter while it is young. As they get older, red hake have been identified to be in the depression around the scallop, still trying to use the scallop for shelter, even though it can no longer fit inside.
A shucked clam that had a red hake living inside of it when it was collected in the dredge.
After that has happened the shells are cleaned and given an ID number. These scallop shells are bagged up, to be further examined in NOAA labs by a scientist that specializes in scallop aging.
These scallops have been shucked, and now their shells will be researched by a scallop aging expert at NOAA. My job is to be the recorder for the cutter. I do the final cleaning on the scallop shells, tag them, and bag them.
If you’d like to know how this process works, watch the video below. The watch-chief, Nicole Charriere, of the science crew members I work with, explains the process in this short clip.
Transcript:
(0:00) Nichole Charriere. I’m the watch chief on the day watch, so working with Terry. I’ve been working at the Northeast Fisheries Science Center for about 6 ½ years. When we’re out here on deck, basically, we put a small sensor on the dredge that helps monitor the pitch, the roll, and kind of whether the dredge is fishing right side up or upside down. And we offload that sensor after every tow, put a new one on, and that sensor will tell us basically how that dredge is fishing, because we always want the dredge to be in contact with the bottom, fishing for the entire 15 minutes if we can.
(0:45) The dredge is deployed 15 minutes for the bottom and then it comes back up and then the catch is dumped on the table. Then depending on how far away the next station is, sometimes we take out crabs and whelks, and we account for the amount of starfish that are in each tow because those are predators of scallops. So we want to make sure that we’re kind of tracking the amount of predation that’s in the area. And you usually find if you have sometimes a lot of starfish, a lot of crabs of certain sizes, you’ll find less starfish. I mean you’ll find less scallops.
(1:22) After the entire catch is sorted, we’re bringing it to the lab. We have scallops, we have scallops “clappers,” which are dead scallops that still have the hinge attached, and that’s important for us because we can track mortality. Once the hinge kind of goes away, the shell halves separate. Can’t really tell how recently it’s died. But while that hinge is intact, you can tell it’s basically dead recently. So you kind of get a decent idea of scallop mortality in that area like that.
(1:52) Scallop, scallop clappers, we kind of count fish, we kind of measure usually commercially important ones as well. Then we take scallop meat weights, so we open up the scallop– Terry’s been doing a lot of that too– open up the scallop, we kind of blot the meat weight so it’s like a dry meat weight, and we measure, we weigh the gonad as well, and that kind of tracks the health of the scallop.
(2:21) And then the rest of us are doing lengths of the scallop, and that’s so that we get a length frequency of the scallops that are in the area. Usually we’re looking for about… if you look at the graph it’s like a bell curve, so you kind of get an average, and then you get a few smaller scallops and a few larger scallops. And that’s pretty much it. We’re taking length frequencies and we’re looking at the health of the scallops.
Personal Log
From the time I woke up on Tuesday till about the time I went to bed that night, sea-sickness was getting the best of me. I listened to the advice of the experienced sailors on board, and kept working through the sickness. Even though I felt sick most of the day, and I just wanted the day to end at that point. However, I was rewarded by sticking it out, and not going to my room to lay down, by one of the most incredible sites I’ve ever seen. From about 4pm til about 8pm, many humpback whales were all around our boat. We had a little down time waiting to get to the next dredge spot, so I was watching the horizon just trying to get my sea-sickness in check. As I was sitting by the side of the boat, I saw a whale towards the bow of the ship. I got out my camera and was in the right place at the right time to get a video of it. It was one of the most amazing sites I’ve ever seen.
Video of a humpback whale diving near R/V Hugh R. Sharp
Fluke of a humpback whale diving next to R/V Hugh R. Sharp
Did You Know?
The typical bleached white sand dollars that most people are accustomed to seeing as decorations are not the actual look of living sand dollars. In one of our dredge catches, we collected thousands of sand dollars, and only a couple were bleach white in color. Sand dollars are part of the echinoderm family. They move around on the ocean floor, and bury themselves in the sand. The sand dollars use the hairs (cillia) on their body to catch plankton and move it towards their mouth. The bleached white sand dollars that most people think of when they think of a sand dollar is just their exoskeleton remains.
NOAA Teacher at Sea
Rita Salisbury
Aboard NOAA Ship Oscar Elton Sette
April 14–29, 2013
Mission: Hawaii Bottomfish Survey Geographical Area of Cruise: Hawaiian Islands Date: April 26, 2013
Weather Data from the Bridge: Wind: NE 3KT
Pressure: 1017.1 mb
Air Temperature: 74 F (23C)
Water Temperature: 78 F (25 C)
Science and Technology Log
Jamie Barlow and Bo Alexander getting ready to deploy the BotCams
I was extremely fortunate to be invited to ride along on a day-long BotCam deployment aboard the Huki Pono along with IT Scott Wong. Dr. Kobayashi got approval for it and before I knew it I was descending down a rope ladder and on my way in a small boat to rendezvous with the Huki Pono to work with scientists Jamie Barton, Chris Demarke, and Bo Alexander.
The BotCams are designed to descend to the sea floor, attract fish with bait, and video record the fish that are in range of the camera. The BotCam is then retrieved, the video uploaded, and then the BotCam is deployed again until the mission is completed. The videos are saved and someone then reviews them and classifies the fish by species and counts how many there are of them. The results are added to a multi-year study of the fisheries in the area.
The BotCams are heavy and deploying and retrieving them takes a lot of skill, so I stayed out of the way while that was going on. However, there were things I was able to do, and the three scientists walked me through them.
Throwing the grappling hook to catch the buoy line
The first thing I got to do was to throw the grappling hook to retrieve the buoys for a BotCam. Captain Al of the Huki Pono skillfully brought the boat up next to the buoys at a good angle and I was able to snag the buoy line with my first throw every time. Then I got out of the way so the hundreds of meters of line that attached the buoys to the BotCam was pulled on board. Once the BotCam was pulled to the surface, a cable from the winch on the back of the ship was attached to it and the BotCam was pulled to the back work area and pulled on board. The video was retrieved, the bait renewed, and the BotCam was ready for deployment again. On this day, the crew was working with two BotCams, but they had a third one on board that they also use, depending on the requirements of the day. (The Bluejay is my school mascot and came along for the ride.)
Setting the buoys to mark the location of the BotCam. Uli Uli Manu is along for the ride.
Slinging line as the BotCam drops to the sea floor
Once re-baited, and with new video plugs, the BotCam was ready to be dropped at a pre-determined spot. The dropsites have already been entered into a GPS unit so the captain navigates from one site to the next using a handheld GPS. The depth of the new location determined how much line would be attached. When the captain said it was time, the scientists triple-checked everything, including each other’s work, and swung the BotCam off the deck and into the water. The line that attaches the BotCam to the buoy is quickly fed out after the weighted BotCam and then the buoys are tossed out last, which are the other two jobs I was able to do. Then it’s time to go the next location and either retrieve or deploy another BotCam. This went on all day long, without any breaks. Lunch was eaten while traveling from one BotCam location to another.
Photo courtesy of Dr. Don Kobayashi
While I was onboard the Huki Pono, the Sette deployed the AUV for a lengthy mission. I was able to see some of the video footage when I returned to the Sette and the clarity was amazing! The AUV’s path was blocked by a large outcropping for a while and it was really interesting to watch the video while the AUV worked its way free of the rock.
An AUV capture of almaco jack, a type of kahala. Photo courtesy of Dr. Don Kobayashi
The AUV was deployed again yesterday, and it is just as exciting to watch now as it was for the first mission. I know that it has a few failsafe procedures built into it, such as dropping the weights that help keep it down and aborting the mission, but it is still thrilling to watch the last line removed that tethers it to the ship and see it descend on its own power. The bright yellow skin makes it visible for many meters under the surface, but eventually it goes so deep that it cannot be seen any longer. The scientists monitoring the acoustics can “see” where the AUV is in relation to the position of the ship. They have named the AUV “Popoki” which is Hawaiian for cat.
Second Assistant Engineer (2AE) Megan keeping an eye on the control readout
The Chief Scientist, Dr. Don Kobayashi, arranged a tour of the engineering department of the ship. Chief Engineer Harry Crane met us in the forward mess and explained what we would be seeing. After handing out earplugs to protect our hearing from the 115 decibel environment, we were off. We were able to see the 600 amp 600 volt motor for the bow thruster used to maneuver in tight quarters or to make minor adjustments of the ship’s position. Then we were shown the sewage system next to the laundry room. The waste is collected and then cleaned by running electrical current through it before it is discharged. It holds about 6,000 gallons of waste, which is roughly what a tractor-trailer tanker holds. The giant Caterpillar diesel engines spin generators to provide electric power to run the propulsion motors, making the Sette a hybrid of diesel electric power. The water that is used to cool the engines is the same water that is used, as waste energy, to help run the evaporators that create the ‘fresh’ water needed for the ship. We also saw the halon and CO2 fire suppressant system, the main control room, and the shafts the turn the propellers (or screws), and the hydraulic system used to turn the rudder. One of the things that struck me the most about the whole tour was how very clean all of the areas were. Anyone who works around machinery knows it can be a messy environment with leaks and spills, but the Oscar Elton Sette was clean as a whistle.
Chief Engineer Harry Crane, Chief Scientist Don Kobayashi, Jessica Chen, and me touring the engineering department of the ship
Uli Uli Manu keeping an eye on things
Personal Log
This ship is like a large, extended family in many ways. The mess and the kitchen are central to the community with 3 wonderful meals served every day. But just like home, the kitchen is always open for anyone to make a snack. The other evening, one of the stewards, Allen Smith, stayed late to help me find the ingredients I needed to make a cake as a thank you to everyone on board. It was served as desert the next evening and the medical officer, “Doc” Tran, who really enjoys cooking, asked for my recipe and said that anytime they serve it from now on, they will call it the Rita Cake. Like I said before, everyone on this ship is very nice and they go out of their way to make me comfortable.
Did You Know?
GPS stands for Global Positioning System. A GPS device is an electronic unit that determines a location within a few feet, displaying coordinates in latitude and longitude. The handheld GPS receives signals from geosynchronous satellites. It only needs signals from 3 satellites to calculate a location, but a signal from a fourth satellite can fix the altitude of the location and the exact time. The more signals that are received from satellites, the more accurate the reading.
One of my duties has been to find out information about everyone on board for blog entry. The Chief Sci and I talked about it and decided to borrow an ice-breaker that we use at my school from time to time called “Two Truths and a Lie.” It has been interesting, to say the least, to start to gather the statements from different people on board. I cannot wait until I have enough data to publish it, but the best thing has been getting to know people even better.
Additional Section
I finally saw a humpback whale breaching while I was on the Huki Pono! It was about a quarter of a mile away, so I didn’t get any good pictures, but it was still exciting.
I also was able to see some kawakawa (False Albacore) off the bow of the ship. They are quite lovely fish, with a brilliant blue hue and a streamlined appearance. There were about a dozen of them and they would race in one direction and then change course, often breaking through the surface of the water to appear as if they were flying. I was disappointed when they finally wandered off.
One thing I have wondered about is the lack of seagulls around here. I just assumed that anywhere there was salt water, there would be seagulls. Jamie Barlow said they simply are not part of the ecosystem here. There might be an occasional one that shows up on its way somewhere else, but they don’t stick around. That surprises me, especially when you consider the Taape, or Bluelined Snapper. They are an introduced species that was introduced in the mid-1950s because Hawaii did not have a shallow water snapper. The species has flourished in these Hawaiian waters so why doesn’t the seagull show up and start competing in a niche?
NOAA Teacher at Sea Nicolle Vonderheyde Onboard NOAA Ship Pisces June 14 – July 2, 2010
Nicolle von der Heyde NOAA Ship Pisces Mission: SEAMAP Reef Fish Survey Geographical Area of Cruise: Gulf of Mexico Date: Friday, June 25, 2010
Weather Data from the Bridge
Time: 1000 hours (10 am) Position: latitude = 27°53.9 N longitude = 093º 51.1 W Present Weather: 5/8 cloudy (cumulonimbus/cumulus clouds) Visibility: 10 nautical miles Wind Direction: E Wind Speed: 4 knots Wave Height: 1 foot Sea Water Temp: 30.5°C Air Temperature: dry bulb = 29.2°C, wet bulb = 26.3°C
Science and Technology Log
Video from the camera array
Echo Sounder
The technology on this ship is amazing! The picture on the left is video of what the camera array filmed yesterday. The fish just swim around and sometimes they even come right up to the camera like they are “kissing” it. Then they back away and swim off. It’s beautiful to watch. The picture on the right is the EK60 Echo Sounder. The red line that you see shows the bottom of the seafloor. The blue above the red line is the water itself and the white specks that you see are fish. The most recent reading is located on the right side of the screen. The echo sounder sends a “ping” to the computer and that “ping” is a fish. Sometimes we can see definite shark outlines in the images below our ship. If you look at the bottom right hand corner of the echo sounder photo, you will see a large white speck along the red line. This indicates a large fish (possibly a shark) trolling the bottom of the ocean. When we came upon the dead sperm whale, the Electronics Technician (ET) came to the lab and told us there were a lot of “large fish,” most likely Mahi Mahi or even sharks, swimming under the ship.
Techonology on the Pisces
The Pisces would not be able to operate without the engineers who make sure that everything onboard is functioning properly, including the 4 massive diesel generators that power the ship, the freshwater generators that convert seawater into fresh drinking water, and the hydraulics that power the cranes to lift the cameras in and out of the water. Chief Engineer Garet Urban leads the team of engineers, oilers, and electrical experts who take care of all the mechanical issues on board the ship.
First Engineer, Brent Jones, took us on a tour of the very impressive engine room on the lower deck of the Pisces. He showed us the incinerator which burns all the trash, oil filters, and other waste at a temperature of 1200°C (2192°F). Paper, plastic, and aluminum is brought back to shore and recycled. Before entering the engine room, we were told to put in earplugs because the sound can damage your eardrums. In addition to not being able to hear a thing inside the engine room, the heat is incredible! The engineers need to be careful to stay hydrated while working in these conditions.
Engine Room
Generators in the Engine Room
The Pisces is powered by 4 diesel fuel generators which generate electricity that drives two large electric motors. The photo above on the right shows one of the generators in yellow. The engineers are constantly monitoring the mechanics of the ship to make sure everyone on board has a safe and productive voyage while conducting scientific research on board.
Personal Log
Every week the ship is required to conduct emergency drills. Yesterday after dinner, the alarm sounded 6 short bursts and an announcement came on saying, “This is a drill…abandon ship, proceed to your muster stations…this is a drill.” We had to go to our rooms and grab our PFD’s (personal flotation devices), survival suits, a long sleeve shirt, long pants, and a hat. We then proceeded to the 0-1 deck where two officers were in charge of making sure that everyone on their list was present and accounted for. After attendance was taken the drill was over; however Melinda and I wanted to try on the survival suits because no matter who you are, you can’t help but look and feel silly in what the crew refers to as a “Gumby suit” – for obvious reasons. Two of the officers joined us in this cumbersome and entertaining task.
Emergency Drill
Melinda Storey and I in our Gumby Suits
Getting into my gumby suit
Never has the routine of an emergency drill seemed more significant than the next morning, shortly after arriving in the lab, when the general alarm sounded and an announcement came on saying, “This is NOT a drill…smoke has been detected near the bow thrusters on the lower deck…repeat, this is NOT a drill.” It took a second for me to register that this was a real emergency and we all quickly moved to the conference room – the muster station for the scientific party. On the way into the room, I smelled something burning and heard in my head the ominous words of one of the scientists during a previous fire drill, “One of the worst things that can happen at sea is a fire.” Now I was nervous. The Chief Scientist called the bridge to let them know that we were all accounted for and asked if we could move because we smelled smoke. We moved to the main deck and waited…not very long actually. Within a matter of minutes an announcement signaled that the fire was secure and we were free to carry on with our business.
The bow thrusters had overheated and fortunately, someone was working near them when the smoking started. Because the ship conducts fire drills on a regular basis, including the simulation of putting out specific types of fires, everyone knew where to go and the crew had the smoking under control very quickly. It was reassuring to know that the crew is so prepared to handle emergencies at sea. I will never again complain about the routine task of emergency drills, especially at school. Preparation and planning is the key to keeping everyone safe.