Geoff Goodenow, May 7, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 7, 2004

Time: 1615
Lat: 18 41N
Long: 158 34W
Sky: scattered cumulus clouds; bright and sunny
Air temp: 26.6 C
Barometer: 1012.04
Wind: 87 degrees at knots 6.7 knots
Relative humidity: 50%
Sea temp: 26 C
Depth: 4558 m

Scientific and Technical Log

We left the shelter of the Kona coast and steamed all night toward Cross seamount arriving there between 0900 and 1000 hours. We trolled a couple lines across it for several hours but pulled in no fish. This is where we wanted to lay the line tonight, but in communicating with a fishing vessel in the area, that crew indicated they have 30 miles of line in the water now. Protocol, I presume, says it’s their place for now so we will respect that and go elsewhere.

Elsewhere is another seamount about 45 miles west and slightly north of Cross. But why are we hanging out at these things called seamounts? Rich (remember, chief scientist) explained to me that above seamounts are local currents called Taylor Columns that sort of swirl around above these features. Small fish tend to concentrate within these and, of course, that attracts the big boys. Cross is well known for that effect due to its shallowness (182 fathoms). The one we are going to is much deeper and consequently does not have as dramatic an impact as Cross.

Here is a bit about a couple tools that we are not using on this ship for this mission. One is called the Acoustic Doppler Current Profiler. It sends out a high frequency signal and allows determination of current direction and speed under the ship. Another is the CTD (conductivity, temperature and depth). This circular array of water sampling bottles is lowered into the water. Temperature and conductivity are monitored and recorded continuously as it moves through the water. On ascent, bottles can be triggered to close at specific depths thereby bringing water samples from different levels in the water column for further testing on board.

Personal Log

More about life on the ship:

There will be no shore time during this trip, but there are several forms of entertainment aboard. Just listening to crew members speak of other places and projects around the globe they have participated in on NOAA vessels is fascinating. There is a small work out room and a couple rooms where we can view videos/cds or watch TV. There is quite a library of viewing materials and books available. Some crew members have their own TVs and stereo equipment in their cabins. On the more mundane side, there is a laundry to do personal items and once a week stewards give us a change of linens and towels.

Communication with home:

We download and upload email three times per day: 0700, 1300, and 1900 hours. Phone calls can be made but they are expensive and generally reserved for emergencies. The ship’s total communications bill can run up to $10,000 per month. So far, a typical day for me has been something like this after breakfast (0700-0800): collect samples from longline catch, assist cleanup, cleanup self, lunch (1100-1200). Check emails, enter some notes to log until tiring of that, R&R (reading, snoozing on shaded deck, interview someone or observe their work) and help with any fish coming in on troll lines. Dinner (1630-1730), R&R, input to log, help set longline (2000 -2130), finish the day’s log and send to Washington (that makes me sound pretty important doesn’t it?), R&R, and to bed 2300-2400 hours.

Since we did not set a line last night and no fish came on by trolling today was kind of slow. I used the time to have a tour of the bridge by executive officer Sarah and electrical technician, John. It was very interesting to learn more about the ship’s scientific monitoring abilities (as briefly and incompletely described above), navigation and safety features for times of distress.

Crew assisted me to string my swordfish bills so to drag along behind us. This is done to get some of the flesh and oils out of them. I am told that this will take a week or more to accomplish.

Questions:

Estimate the distance in miles between yesterday’s and today’s position (today at 2018 hours we are at Lat 18 53 N and Long 158.59 W).

What is a seamount?

Looking at the nautical chart on the bridge I can see the top of Cross seamount is at (a shallow) 182 fathoms. We are headed to one that is 406 fathoms. Between the two the chart shows a maximum depth of 2585 fathoms. What is the depth of the water over the seamounts and the deepest point between them in feet?

Geoff

Geoff Goodenow, May 4, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 4, 2004

Latitude: 19 19
Longitude 156 05
Sunny with scattered clouds
Air temp 26C
Barometer 1013.75
Wind 130 degrees at 9 knots
Relative humidity 59%
Sea temp 26.5
Ocean depth 2770 meters

Scientific and Technical Log

This morning we hauled in the longline. This is the first time this team has used the larger hooks and herring (as opposed to squid) for bait as a means of avoiding taking of turtles. In that sense, we had tremendous success — no turtles. But on the downside, we caught only two fish — a mahi mahi (Coryphaena hippurus),still alive, and a wahoo (Acanthocybium solandri) which had died on the line. Eyes, liver, blood, and muscle tissue were taken from both. For the experiments on vision that Kerstin is doing only live eyes are useful.

Some surface plankton tows were conducted over a couple hours this afternoon. Several eggs were gathered and preserved. More tows will be conducted after the longline is set.

When nothing else was going on, two lines were trolled off the stern.   This method yielded 4 fish including bigeye tuna (Thunnus obesus), skipjack tuna (Katsuwanus pelamis) and yellowfin tuna (T. albacares). These were sampled as above and in addition we kept stomachs for later study of contents. So 400 hooks sitting in the longline for 12 hours so far isn’t looking nearly as effective as a good old fishing line and a lure.

Tonight at 8PM we again set the longline, this one about 20 miles north of last night’s set. Because the winds are still very strong outside the shelter of the big island we are a bit restricted as to where we can go to fish right now. Winds are to becomes calmer over the next 48 hours.

Here is the longline set up in more detail than before. A spool holding about 40 miles of line sits parallel to length of ship on port side approx. mid-ship. Line feeds off to a pully along side of ship which directs line 90 degrees to stern. Via a couple more pullies the line goes to starboard side of stern. A team on the stern takes care of it from here. At center is person with basket of hooks attached to metal or monofilament leads with a clip on the other end. He withdraws the hook and clip, passing the hook to his right and the clip to his left while pulling the leader from the basket. The hook is baited, while the clip is passed to the next man to the left. On a signal about every 12 seconds, the leader is clipped to the line as it pours off the stern and the baited hook is tossed. A light stick goes on every fourth leader or so to attract fish. Better luck to us tonight!

Personal Log

My role this morning as line was retrieved was to record information (catch location, length, weight, sex) about each fish brought aboard and to assist in gathering muscle tissue samples for Brittany who is not present on this cruise as well as for others. Again I was brake man and bait boy on the longline tonight.

The afternoon hours seem to be those of least to do unless the troll lines are hot. Today I felt settled enough in the stomach to dare to enter a very confined space and enjoy my first shower at sea. Then I sought out a shady spot on the upper deck where I parked myself for a bit of reading. The wind was light and sea calm; I had a nice view of the west side of Hawaii. The lush, green slopes were interrupted in several places by lava flows. I had the opportunity to talk with the captain about many aspects of the ship, weather, ocean currents much of which I will try to incorporate into upcoming reports. But I was particularly interested in our rough weather of Sunday and he explained it as follows. As we crossed open water we were encountering winds of 20-25 knots, but as we entered the channel between Maui and Hawaii wind speeds were 35-40 knots. The reason for the increase is that both islands have very high mountains so the air is being funneled through a rather narrow slot and speeding up. This produced 10-12 foot waves with very short periods, and the ability to create a lot of discomfort in those at sea.

Tonight as we work, the light of a full (?) moon dances on the water.

Question:

One more (easy) location question for the astronomy buffs: Our latitude today is about 19 degrees north. What is the altitude of the North star (Polaris) as we view it from here? What is its altitude at your latitude?

OK, so we know where we are, but how did the Hawaiian islands get here? All of these islands are of volcanic origin. The Hotspot theory explains how the islands formed here. Briefly describe this theory.

Which of the islands (easternmost or westernmost) are the oldest in the Hawaiian Island chain? How long ago are the oldest islands estimated to have formed?

The Galapagos Islands also formed according to the hotspot theory. Which islands in that chain are oldest (eastern or western islands)? How old are the oldest of those islands?

For those who are wondering, yes, I do expect to be able to post some pictures, but we are not quite set up yet at this end to do so. That’s all for now,

Geoff