David Madden: Tiger Shark! Fish Trap Footage, August 19, 2019

NOAA Teacher at Sea

David Madden

Aboard NOAA Ship Pisces

July 15-29, 2019


Mission: South East Fisheries Independent Survey

Geographic Area of Cruise: Atlantic Ocean, SE US continental shelf ranging from Cape Hatteras, NC (35°30’ N, 75°19’W) to St. Lucie Inlet, FL (27°00’N, 75°59’W)

Date: August 19, 2019

Tiger Shark! NOAA Ship Pisces Underwater Camera Action (video has no dialogue, only music)

This video is a collection of fish trap camera footage recorded during my NOAA Teacher at Sea adventure aboard NOAA Ship Pisces. Very special thanks to the NOAA science team: Zeb Schobernd – chief scientist and especially Mike Bollinger and Brad Teer – camera and gear experts.

Kristin Hennessy-McDonald: Nurse Sharks, Tiger Sharks, and Sandbars, Oh My, September 27, 2018

NOAA Teacher at Sea

Kristin Hennessy-McDonald

Aboard NOAA Ship Oregon II

September 15 – 30, 2018

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 27, 2018

 

Weather Data from the Bridge

Latitude: 2840.20N

Longitude: 8439.79W

Sea Wave Height: 0m

Wind Speed: 2.2 knots

Wind Direction: 39.04 degrees

Visibility: 10 nautical miles

Air Temperature: 30.045

Sky: 75% cloud cover

 

Science and Technology Log

We have moved from the coast of Texas, past Louisiana, Mississippi, and Alabama, to the coast of Florida.  When watching the video from the CTD, we have seen the sea floors go from mostly mud to sand.  The water has decreased in turbidity, and the growth on the sea floor has increased.  The make-up of our catches has changed too.  We moved outside of the productive waters associated with the Mississippi River discharge, so our catch rates have decreased significantly.

Yesterday, we had a fun day of catching sharks I had never seen.  Our first catch of the day brought up a juvenile Tiger shark (Galeocerdo cuvier).  I was excited to be able to see this shark, which is listed as near threatened by the International Union for Conservation of Nature.  On our later catch, we brought up three sharks large enough to require the cradle.  First, we brought up a Sandbar shark (Carcharhinus plumbeus).  Then, we were lucky enough to bring up a Nurse Shark (Ginglymostoma cirratum).  The mouth of the nurse shark has barbles, which it uses to feed from the sea floor.  Our final shark of the evening was a much more developed Tiger Shark.  I was lucky enough to help with the tagging of the animal.

juvenile Tiger Shark
Kristin Hennessy-McDonald with a juvenile Tiger Shark

Nurse Shark
Closeup of a Nurse Shark

Nurse Shark release
Nurse Shark release

Last night, we set a line at the end of day shift, and night shift brought it in.  A few of the day shift science team members decided to stay up and watch some of the haul back, and were rewarded with seeing them bring in, not one, but two Silky sharks (Carcharhinus falciformis), back to back.  From the upper deck of the ship, so that I was not in their way, I was able to observe the night shift work together to bring up these two large animals.

Silky Shark
Night Shift retrieving a Silky Shark

The night shift has gotten some pretty amazing catches, and they have enjoyed sharing them with us at shift change.  The two shifts spend about half an hour together around noon and midnight sharing stories of the time when the other shift was asleep.  The other day, the night shift caught Gulper Sharks (Centrophorus uyato) and Tile Fish (Lopholatilus chamaeleonticeps).  These are two species we have not seen on the day shift, so it was fun to look at their pictures and hear the stories of how they caught these fish.

Gulper Shark
Gulper Shark Photo Credit: Gregg Lawrence

tilefish
Tilefish Photo Credit: Gregg Lawrence

 

Personal Log

When we have a long run between stations, once I have gotten done sending emails and grading student work, we will spend some time watching movies in the lounge.  The ship has a large collection of movies, both classic and recent.  Watching movies keeps us awake during the late night runs, when we have to stay up until midnight to set a line.

The day shift has started to ask one another riddles as we are baiting and setting lines.  It’s a fun way to bond as we are doing our work.  One of my favorites have been: “1=3, 2=3, 3=5, 4=4, 5=4, 6=3, 7=5, 8=5, 9=4, 10=3.  What’s the code?”

Did You Know?

Sharks don’t have the same type of skin that we do.  Sharks have dermal denticles, which are tiny scales, similar to teeth, which are covered with enamel.

Quote of the Day

Teach all men to fish, but first teach all men to be fair. Take less, give more. Give more of yourself, take less from the world. Nobody owes you anything, you owe the world everything.

~Suzy Kassem

Question of the Day

I have a lot of teeth but I’m not a cog
I scare a lot of people but I’m not a spider
I have a fin but I’m not a boat
I’m found in the ocean but I’m not a buoy
I sometimes have a hammerhead but I don’t hit nails

What am I?

Stephen Kade: Shark On! August 29, 2018

NOAA Teacher at Sea

Stephen Kade

Aboard NOAA Ship Oregon II

July 23 – August 10, 2018

 

Mission: Long Line Shark/ Red Snapper survey Leg 1

Geographic Area: Southeastern U.S. coast

Date: August 29, 2018

 

Scientific Journal

Shark On!” was the shout from the first person that sees a shark hooked to the long line that was being hauled up from the floor of the ocean. I heard this phrase often during the first leg of the long line Red Snapper/ shark survey on the NOAA ship Oregon II. We began fishing in the Northwest Atlantic Ocean, off the coast of West Palm Beach, Florida. We traveled north to Cape Hatteras, North Carolina, and back south to Port Canaveral over 12 days this summer.

hauling in the long line
Oregon II scientific crew, Chief Boatswain, and skilled fishermen hauling in the long line.

During our long line deployments each day, we were able to catch, measure, tag and photograph many sharks, before returning them to the ocean quickly and safely. During these surveys, we caught the species of sharks listed below, in addition to other interesting fish from the ocean.  This blog has scientific information about each shark, and photographs taken by myself and other scientists on board the Oregon II. The following information on sharks, in addition to scientific data about hundreds of other marine wildlife can be found online at the NOAA Fisheries site: http://fisheries.noaa.gov.

Great Hammerhead Shark-  Sphyrna mokarran  Hammerhead sharks are recognized by their long, strange hammer-like heads which are called cephalofoils. Great hammerheads are the largest species of hammerheads, and can grow to a length of 20 feet. The great hammerhead can be distinguished from other hammerheads as they have a much taller dorsal fin than other hammerheads.

Great hammerhead
Great Hammerhead in cradle for data collection and return to sea.

When moving through the ocean, they swing their broad heads from side to side and this motion provides them a much wider field of vision than other sharks. It provides them an all around view of their environment as their eyes are far apart at either end of the long hammers. They have only two small blind spots, in front of the snout, and behind the cephalofoil. Their wide heads also have many tiny pores, called ampullae of Lorenzini. They can sense tiny electric currents generated by fish or other prey in distress from far distances.

 

The great hammerhead are found in tropical and temperate waters worldwide, and inhabiting coastal areas in and around the continental shelf. They usually are solitary swimmers, and they eat prey ranging from crustaceans and squid, to a variety of bony fish, smaller sharks and stingrays. The great hammerhead can bear litters of up to 55 pups every two years.

Nurse Shark- Ginglymostoma cirratum Nurse sharks are bottom dwellers. They spend their life in shallow water, near the sandy bottom, and their orangish- pinkish color and rough skin helps them camouflage them. At night they come out to hunt. Nurse sharks have short, serrated teeth that can eat through crustaceans such as crabs, urchins, shrimp, and lobsters. They also eat fish, squid, and stingrays. They have two feelers, or barbels, which hang from either side of their mouth. They use their barbels to search for prey in the sand. Their average adult size is 7.5- 9 feet in length and they weigh between 160-230 lbs. Adult females reach a larger size than the males at 7- 8.5 feet long and can weigh from 200-267 lbs.

Nurse Shark
Nurse Shark- Ginglymostoma cirratum

Nurse sharks are common in the coastal tropical waters of the Atlantic and also in the eastern Pacific Ocean. This species is locally very common in shallow waters throughout the Caribbean, south Florida to the Florida Keys. Large juveniles and adults are usually found around deeper reefs and rocky areas at depths of 10-250 feet during the daytime and migrate into shallower waters of less than 70 feet deep after dark.

 

Juveniles up to 6 feet are generally found around shallow coral reefs, grass flats or mangrove islands in shallow water. They often lie in groups of forty on the ocean floor or under rock ledges. Nurse sharks show a preference for a certain resting site, and will repeatedly go back to to the same caves for shelter or rest after leaving the area to feed.

Tiger Shark- Galeocerdo cuvier  Adult Tiger sharks average between 10 -14 feet in length and weigh up to 1,400 lbs. The largest sharks can grow to 20 feet and weigh nearly 2,000 lbs. They mature between 5 and 10 years, and their life span is 30 years or more. Tiger sharks are named for the brown stripes and patches they have on their sides when they are young. As they get older, they stripes eventually fade away.

 

They will eat almost anything they come across, and have been referred to as the “garbage cans of the sea”. Their habitat ranges from shallow coastal waters when they are young, to deep waters over 1,500 feet deep. They swim in shallow waters to hunt lobster, squid, fish, sea turtles, birds, and smaller sharks.

tiger shark
10.5 foot Tiger shark caught and returned by NOAA ship Oregon II. photo by Will Tilley

They migrate with the seasons to follow prey and to give birth to young. They swim in cool waters in the summer, and in fall and winter they migrate to warm tropical waters. Their young grow in eggs inside the mother’s body and after 13 months the sharks hatch. The mother gives birth to a litter of 10 – 80 pups. Their current status is currently Near Threatened.

 

Stephen Kade
TAS 2018 Stephen Kade returning sharpnose shark to ocean.

Sharpnose Shark- Rhizoprionodon terraenovae Atlantic sharpnose sharks are small for sharks and have a streamlined body, and get their name from their long, pointy snout. They are several different shades of gray and have a white underside.  Atlantic sharpnose sharks can grow to up to 32 inches in length. Atlantic sharpnose sharks have been observed to live up to 18 years. Females mature at around 2 years old in the Atlantic when they reach approximately 24 inches in length. Atlantic sharpnose sharks are commonly found in the western Atlantic from New Brunswick, Canada, right through the Gulf of Mexico. They are commonly caught in U.S. coastal waters from Virginia around to Texas.

Sharpnose shark
Sharpnose shark

Atlantic sharpnose sharks eat small fish, including menhaden, eels, silversides, wrasses, jacks, toadfish, and filefish. The lower and upper jaws of an Atlantic sharpnose shark have 24 or 25 rows of triangular teeth. Atlantic sharpnose sharks mate annually between mid-May and mid-July in inshore waters, and after mating, they migrate offshore to deeper waters.  They also eat worms, shrimp, crabs, and mollusks.

 

Sandbar Shark- Carcharhinus plumbeus.  The most distinctive feature of this stocky, grey shark is its huge pectoral fins, and long dorsal fin that increases its stability while swimming. Females can grow between 6 – 8.5 feet, and males grow up to 6ft. Its body color can vary from a blue to a light brown grey with a pale white underside. The sandbar shark lives in coastal waters, living in water that is 20 to 200 feet deep. Rarely is its large dorsal fin seen above the water’s surface, as the sandbars prefer to remain near the bottom. It commonly lives in harbors, lagoons, muddy and sandy bays, and river mouths, but never moves into freshwater. The sandbar shark lives in warm and tropical waters in various parts of the world including in the Western Atlantic, from Massachusetts down to southern Brazil.

Sandbar shark
Sandbar shark tagged, measured, weighed and ready to go back after photo.

The sandbar shark spends the majority of its time near the ocean floor, where it looks continuously for prey, such as small fish, mollusks, and various crustaceans. Their main diet consists largely of fish. Sandbar sharks give birth to between 1 and 14 pups in each litter. The size of the litter depends on the size of the mother, with large females giving birth to larger litters. Pregnancy is estimated to last between 8- 12 months. Females move near shore to shallow nursery areas to give birth. The females leave coastal areas after giving birth, while the young remain in the nursery grounds until winter, when they move into warmer and deeper water.

 

 

Fun Fact- Remoras, or shark suckers, live in tropical oceans around the world. They have a rigid oval- shaped sucker pad on top of their head that it uses to attach itself to sharks and rays. It is symbiotic relationship where both animals gain something from their temporary union. Remoras mouths are at the top front of the body so while attached to a shark’s body, they do their host a favor by nibbling off skin parasites. They can also eat scraps of leftover food the shark leaves behind while they also enjoy a free ride. The shark gains a day at the spa for a body scrub, and can rid itself of parasites in a way it couldn’t have before!

Personal Journal

It was certainly an unforgettable experience being able to work with the scientific and fishing team for this shark survey. The opportunity to see and handle these sharks up close for two weeks has informed me of so many interesting things about these wonderful and vital members of the ocean.  I can now take this information and share it first hand with students in my classroom, and members of my community. I also want to work to bring a positive awareness to these vital members of the ocean food web so they can thrive well into the future. As an artist, this trip has been invaluable for me, as now I’ve seen the how colorful and varied sharks are and other various anatomy details you just can’t see in books or television. This new awareness will help to make my future paintings more accurate than before.

Anne Krauss: All at Sea (But Learning Quickly), August 14, 2018

NOAA Teacher at Sea

Anne Krauss

Aboard NOAA Ship Oregon II

August 12 – August 25, 2018

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Western North Atlantic Ocean/Gulf of Mexico

Date: August 14, 2018

Weather Data from the Bridge

Conditions at 0030

Latitude: 25° 22.6’ N

Longitude: 84° 03.6’ W

Barometric Pressure: 1017.4 mb

Air Temperature: 28.8° C

Wind Speed: 9.1 knots

 

Science and Technology Log

For the first few days, we steamed, or traveled, to our first station. Each station is a research location where several activities will take place:

  1. Preparing and setting out the longline gear.
  2. Letting the line soak (fish on the bottom) for one hour while other tasks are performed.
  3. Deploying a CTD (Conductivity Temperature Salinity) to collect samples and information about the water.
  4. Hauling back the longline gear.
  5. Recording data from the longline set and haulback.
  6. Collecting measurements and samples from anything caught on the longline.
  7. Depending on what is caught: attaching tags and releasing the animal back into the water (sharks) or collecting requested samples for further study (bony fish).

This is a very simplified summary of the various activities, and I’ll explore some of the steps in further detail in other posts.

During these operations and in between tasks, scientists and crew are very busy. As I watched and participated, the highly organized, well-coordinated flurry of activity on deck was an incredible demonstration of verbs (action words): clean, rinse, prepare, gather, tie, hook, set, haul, calibrate, operate, hoist, deploy, retrieve, cut, measure, weigh, tag, count, record, release, communicate

Last night, I witnessed and participated in my first longline station. I baited 100 hooks with mackerel. I recorded set and haulback data on the computer as the gear was deployed (set) and hauled back in (haulback). I attached 100 numbered tags to the longline gangions (attached to the hooks). I recorded measurements and other data about SHARKS!

We caught, measured, sampled, tagged, and released four sharks last night: a silky, smooth-hound, sandbar, and tiger shark! I’ve never seen any of these species, or types, in person. Seeing the first shark burst onto the deck was a moment I’ll remember for the rest of my life!

A sandbar shark being measured with a measuring tape in a rope sling.
A sandbar shark being measured on the cradle or sling used for measuring larger, heavier sharks.

Sometimes, we didn’t catch any fish, but we did bring up a small piece of coral, brittle sea stars, and a crinoid. All three are marine animals, so I was excited to see them in person.

In between stations, there was some downtime to prepare for the next one. One of my favorite moments was watching the GoPro camera footage from the CTD. A camera is attached to the device as it sinks down through the depths to the bottom and back up to the surface again. The camera allowed me to visually ‘dive along’ as it collected water samples and data about the water temperature, salinity, pressure, and other information. Even though I watch ocean documentaries frequently and am used to seeing underwater footage on a screen, this was extremely exciting because the intriguing ecosystem on the screen was just below my feet!

Personal Log

Perhaps it is sea lore and superstition, but so far, the journey has been peppered with fortuitous omens. One of my ocean-loving former students and her Disney-bound family just happened to be on my flight to Orlando. Yes, it’s a small world after all. Her work samples were featured in our published case study, reminding me of the importance and impact of ocean literacy education. Very early the next morning, NASA’s promising Parker Solar Probe thunderously left the Sunshine State, hurtling toward the sun. New York’s state motto: Excelsior. Later that morning, a rainbow appeared shortly before the Oregon II left Port Canaveral. Although an old weather proverb states: “rainbow in the morning gives you fair warning,” we’ve had very pleasant weather, and I chose to interpret it as a reassuring sign. Sailing on the Oregon II as a Teacher at Sea is certainly my pot of gold at the end of the rainbow.

 

According to seafaring superstition, women on board, whistling, and bananas are supposed to be bad luck on a boat. On the Oregon II, folks do not seem to put much stock into these old beliefs since I’ve encountered all three aboard the ship and still feel very lucky to be here.

A fruit basket and a bunch of bananas
The rest of the fruit seems to think that bananas are bad luck…the crew doesn’t!

In another small-world coincidence, two of the volunteers on the Second Leg of the Shark/Red Snapper Longline Survey recently graduated from SUNY Potsdam, my undergrad alma mater. What drew us from the North Country of New York to Southern waters? A collective love of sharks.

These small-world coincidences seemed indicate that I was on the right path. Out on the ocean, however, the watery world seems anything but small. The blue vastness and unseen depths fill me with excitement and curiosity, and I cannot wait to learn more. For the next two weeks, the Oregon II will be my floating classroom. Instead of teaching, I am here to learn.

As a fourth generation teacher, education is in my blood. One great-grandmother taught in a one-room schoolhouse in 1894. My other great-grandmother was also a teacher and a Potsdam alumna (Class of 1892). As we traverse the Atlantic Ocean, I wonder what my academic ancestors would think of their great-granddaughter following in their footsteps…whilst studying sharks and snapper at sea. Salt water equally runs through my veins.

 

This slideshow requires JavaScript.

As we steamed, or traveled, to our first station (research location), I wondered about the unfamiliar waters and equipment around me. Before I could indulge my questions about marine life, however, I first needed to focus on the mundane: daily life at sea. In many ways, I was reminded of the first day at a new school. It was junior high all over again, minus the braces and bad bangs. At first, those long-forgotten new school worries resurfaced: What if I get lost? Where is my locker (or, in this case, my stateroom)? What if I forget my schedule? What if I have to sit by myself at lunch? To combat these thoughts, I draw upon a variety of previous travel and life experiences: studying abroad, backpacking, camping, meeting new friends, volunteering, working with a marine science colleague, and sailing on other vessels. Combined, those experiences provided me with the skills to successfully navigate this one.

The Atlantic Ocean and a high flyer buoy
The Atlantic Ocean and a high flyer buoy

I’ve spent the first few days getting acquainted with the layout, personnel, safety rules, and routines of the Oregon II. My students wondered about some of the same aspects of life at sea.

Where do I sleep on the ship?

The staterooms remind me of a floating college dorm, only much quieter. I’m sharing a small stateroom with Kristin Hannan, a scientist. We are on opposite work shifts, so one of us is sleeping while the other is working. I am assigned to the day shift (noon to midnight) while she is assigned to the night shift (midnight to noon). Inside the stateroom, we have berths (similar to bunk beds), a sink, and large metal storage cabinets that are used like a closet or dresser. Space is limited on the ship, so it must be used efficiently and sometimes creatively.

A view of water, a pier, and a pulley
The view as we leave Port Canaveral.

Do you know anyone else on the ship?

No, but I’m meeting lots of new people. They have been welcoming, offering interesting information and helpful reminders and pointers. Those first-day-of-school jitters are fading quickly. I didn’t get lost, but I got a bit turned around at first, trying to figure out which deck I needed for the galley (like the ship’s cafeteria), where we eat our meals. And I only had to eat lunch by myself once. On the first day at sea, I made a PB & J sandwich. Eating that, I felt like a kid again (only without my lunchbox), but it was nice to be at a point in my life where I’m confident enough to be all by myself and feel a bit out of place. That’s how you learn and grow. Everything is new to me right now, but with time, it’ll start to make sense. Pretty soon, the equipment and unfamiliar routines will start to feel more familiar. Hopefully, the sharks will like me.

Did You Know?

The Gulf of Mexico is home to approximately 200 orcas (scientific name: Orcinus orca, also known as killer whales).

Recommended Reading 

As an introduction to biographies in grades 4 and up, I recommend Women and the Sea and Ruth! written and illustrated by Richard J. King, with additional text by Elysa R. Engelman. Ruth and her stuffed shark explore a maritime history museum, learning about the important roles women have held at sea. Inspired by female sea captains, explorers, and naturalists, Ruth imagines herself in the photographs and paintings, part of an actual exhibit in the Mystic Seaport Museum in Mystic, Connecticut. For more information about the intrepid women featured in the book, brief biographical information is provided at the end. Ruth would no doubt be impressed with the seafaring women (and men) aboard NOAA Ship Oregon II.

A children's book about women at sea
Women and the Sea and Ruth! written and illustrated by Richard J. King, with additional text by Elysa R. Engelman; published by Mystic Seaport (2004)

Kate Schafer: A Day in the Life… September 29, 2017

NOAA Teacher at Sea

Kate Schafer

Aboard NOAA Ship Oregon II

September 17 – 30, 2017

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 29, 2017

Weather Data from the Bridge:

Latitude: 29o 11.3′ N
Longitude: 88o 18.3′ W

Few clouds

Visibility 10 nautical miles

Wind speed 8 knots

Sea wave height 1 foot

Temperature Seawater 29.4 o Celsius

Science and Technology Log:

So, as my time on the Oregon II is winding down, I thought I’d share a bit about what it is like to do science on a boat.  First of all, there is a tremendous amount of planning that must go into a successful survey in the weeks and months beforehand.  In addition to all the logistics of going to sea for two weeks, there is the challenge of putting together a crew of scientists that can be away from their day to day jobs and lives, and agree to work 12 hour days, for weeks on end.  Lisa Jones is the Field Party Chief for this survey and must figure out those logistics plus organize the science part as well.  This survey has been going since 1995, and one of the keys to longitudinal data sets is that they keep standard methods throughout, or else the data aren’t comparable.

This can be challenging in all sorts of unforeseen ways.  For example, a few years ago, it became difficult to find the mackerel used as bait on the longlines.  During an experimental survey in the spring, they tried out squid as an alternative and caught a totally different composition of species.  Fortunately, the mackerel became more available again, and the problem is no longer an issue, for now.

MackerelBaitedHooks
Hooks baited with mackerel

Lisa is also the one responsible for working with the captain and his crew to determine sampling locations and a plan for getting to those locations.  There’s a plan at the beginning, but, of course, that changes frequently, due to weather, the locations of other ships and a myriad of other unforeseen circumstances.  The goal is to reach 200 sites per year, with 50% between 5-30 fathoms (1 fathom=6 feet), 40% between 30-100 fathoms, and 10% between 100-200 fathoms.  These percentages reflect the depths of the continental shelf area throughout the sampling region. Below is a sampling map for the 2015 longline survey.

SamplingStations
Sampling stations for 2015 Longline survey from 2015 Cruise report

During a longline set, the line is deployed for one hour before retrieval, with 100 baited hooks.  As the line comes in, each fish is given three to four measurements (depending on the species) and is weighed.  Many of the sharks are tagged, as this provides the possibility of someone finding the tagged shark in the future.  With a tag retrieval, we can learn about how far the organism has traveled and how much and how quickly it has grown.

Shark Cradling team_Shark LL SEP2017
Measuring and tagging shark in the cradle

As I mentioned in my post about the red snappers, the snappers, groupers and tilefish are dissected for their otoliths and gonads.  They can’t be successfully released in most circumstances anyway, due to barotrauma from pulling them quickly to the surface from depth.

YellowEdgeGrouper
A Yellowedge Grouper weighing nearly 20 kg

Sharks are less affected by barotrauma because they don’t have swim bladders to maintain their buoyancy like the bony fishes we’ve been catching.

PullingInShark
Caught on the longline

Here are a couple examples of our data sheets.  As you can see, some sets have more fish than others (in fact the full one, was only one of three pages).  Once all the data are collected, they have to be entered in the computer for later summary and analysis.  Some days it can be a big challenge to get all the data entered before it’s time to start all over again.  Other days, like today, include lots of travel time.

DataSheetEmpty
Only a tilefish on this set…

 

DataSheetFull
Many more on this one…in fact this is only one of three pages

 

Personal Log:

OLYMPUS DIGITAL CAMERA
Tiger shark filling the 10 foot cradle

For me, it has been truly wonderful to get to work as a scientist again, if just for a couple of weeks, especially with such an amazing group of scientists.  I’ve learned so much from my fellow day crew members (Lisa, Christian, Nick and Jason).  They have patiently answered all my questions, even when it was keeping them from getting to dinner.  Lisa Jones has gone above and beyond in her support of me, even though she has had many other responsibilities on her plate.  I also appreciate being made to feel welcome lurking around the night crew’s catches.  Thanks especially to Christophe, Vaden, and Eric for allowing me to hang out in the measuring pit.  I love my job as a teacher, but part of me definitely misses working as a field biologist.  I am grateful for the opportunity and especially thankful for my wonderful family.  I can’t tell you how much I appreciate your support and love.

 

Susan Brown: Let’s Go Fishing, September 4, 2017

 

NOAA Teacher at Sea

Susan Brown

NOAA Ship Oregon II

September 3 – 15, 2017

Mission: Snapper/Longline Shark Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 4, 2017

Weather Data from the Bridge

Latitude: 29 43.931N
Longitude: 086 09.617W
Sea wave height: .5 meters
Wind Speed: 2
Wind Direction: 250 degrees
Visibility: good
Air Temperature: 28.3 degrees Celsius
Barometric Pressure: 1016 mb
Sky: partly cloudy

Science and Technology Log

Numbered tags used for each hook

Mackerel used for bait

Today was my first shift. We are using mackerel to bait the 100 hooks that will be places into the water at a specific station. Each hook is numbered so that we can collect data on which hook brought in a fish and entered into the database. There are several jobs out here from baiting the hooks, placing the buoys, flinging the baited hooks out, and recording data in the computer. My job today is the computer.

entering data on the deployment of the baited hooks

The longline is set and left to sit in the ocean for approximately one hour before we start bringing up the line to see if we have a fish on. Out of the 100 hooks we got one fish, a baby tiger shark and a larger juvenile tiger shark coming in at six feet or so. This tiger shark had several hooks in its mouth as well as a tag so when she was brought up on board, all the hooks were removed and the tag replaced with a new one.

IMG_5947
Removing hooks from the tiger shark’s mouth

The tag that was on the tiger shark was opened up to reveal a small scroll of paper with a unique number so that this shark can be tracked from where it was first picked up to when it ended up with us for the brief visit. Below is a short video of us bringing up the shark in the cradle! [no dialogue or narration.]

We will be setting another line tonight at our second station as we continue to motor southeast following the coast of Florida.

Beside recording data on the sharks, a CTD is deployed to collect data on conductivity, temperature and depth. We will use this data in the classroom to look for trends between the abiotic factors that may influence where we are finding certain shark species and the number of overall sharks at any given station.

The CTD that measure conductivity, temperature and depth

Personal Log

There are many different scientists on board researching different things. I am sharing a stateroom with Dani who is on the night shift. She is looking into how different sharks handle stress. I see very little of her since we are on opposite shifts so we get a quick visit at noon when there is a changing of the guards so of say. Brett and Carlos, as mentioned in an earlier post, are looking into parasites that inhabit the various animals we are bringing up. I will do a separate blog on those two and their research later this week to share what they are finding.

Donning the survival suit during abandon ship drill

Today we had a few drills to practice in case of an emergency. One was a fire drill and the other was an abandon ship drill where I had to don a large neoprene suit in less than two minutes. Here I am in that suit! It was quite cumbersome to put on.

Learning new words as I get acclimated to the ship. Here are a few for you:

The head = bathroom

Stateroom = room where I sleep

Muster = to assemble

Bow = the front of the ship

Stern = the back of the ship

Did You Know?

Military time is used on board this ship. See the photo of the clock below.

Question of the Day: Why use military time?

NOAA clock

Emily Sprowls: Whirlwind Return to Shore, April 11, 2017

NOAA Teacher at Sea

Emily Sprowls

Aboard NOAA Ship Oregon II

March 20 – April 3, 2017

Mission: Experimental Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: April 11, 2017

Weather Data

The weather on the last scheduled day of the cruise was so bad (12 ft. seas! 30 knot winds!) that the ship came into port early on Sunday. The strong winds and waves kicked up and a string of severe storms and tornadoes swept through the area just after my flight home left on Monday morning.

Science and Technology Log

The last few days of the cruise brought in a lot of sharks, fish and data. We were kept pretty busy, putting in and hauling out 3 or 4 lines each shift. In total between both shifts we set 53 stations and caught 679 vertebrate specimens (not counting the invertebrates: sea stars, sea cucumbers and all those isopods)! There were points when this was totally exhausting and repetitive, but then there were moments when we were holding sharks and it was all worth it! We caught some amazing creatures, and some just floated or flew by for a visit like jellyfish and migrant birds.

In between stations the scientists worked to collect and label tissue samples from the specimens needed by different research labs, including fin clips, parasites, muscles, and eye lenses.

Personal Log

To be completely honest, there was a point about two-thirds through the cruise when I felt pretty tired, a little bit nauseous, and like I had already seen and learned so much that I was ready to go home. That happened to be a day when another thunderstorm blew in, and we had to take a break from sampling. That terrific weather break (during which we lounged with popcorn and a not-so-terrific movie) also coincided with the forecast suggesting a possible early end to the cruise. Suddenly, it seemed like my trip was almost over — I realized that I had so many more questions for my new scientist friends and not enough time to learn everything!

Fortunately, the scientists on board were very kind and eager to answer my students’ questions with the best information they could find. We had several engaging discussions while answering the kids’ questions… in fact, at one point we were so engrossed in a conversation about dogfish life history that we were suddenly interrupted by radio calls from the deck and bridge that we had missed hauling in our line! We grabbed all our gear: boots, gloves, life jackets, hardhats, clipboards, cameras, laptop; and ran out on deck as fast as we could muster. We had all forgotten it was April Fool’s Day! Ha!

Oregon2 crew
NOAA Corps Officers LCDR Lecia Salerno, LT Reni Rydlewicz and ENS Chelsea Parrish

I am so grateful to the entire crew for their hospitality and their willingness to teach me about their jobs. They shared not only their homes on the boat, but also their own stories and knowledge about the work we were doing. I was lucky to share my first boat experience with Ensign Parrish, who was on her first cruise as a newly minted NOAA officer. Her infectious smile and clear love for being at sea, all while learning the ropes of the Oregon II, helped pull me right along with her enthusiasm.

The main person responsible for my excellent experience aboard was the Field Party Chief.

Baby tiger shark
The amazing shark wrangler Kristin Hannan with a young tiger shark!

Kristin Hannan was friendly and generous with her time, all while coordinating stations with the bridge, managing the scientific crew, and preparing for the next research trip. She was also indefatigable! By the time I would get my baiting gloves off, catch my breath, and get ready to help clean up, she had already finished scrubbing the barrels and decks! Most endearing, however, were her encyclopedic knowledge of shark anatomy and population ecology, and her love of all things shark (even the movie JAWS), tempered by a clear, rational, scientific perspective on issues facing the Gulf of Mexico.

Eventually, the trip drew to a close. As we approached the final sampling stations, there were many species I had hoped to see that hadn’t come up yet. It was as if all I had to do was wish for them and they appeared in the final hauls: Stingrays – CHECK! Big bull shark – CHECK! Beautiful baby tiger shark — CHECK! Adorable spinner shark — CHECK!

I started to see why this work was so addictive and attractive to the crew. But, at the end, I was definitely ready to be on stable land and order whatever I wanted from a restaurant. Going home to my incredibly spacious queen-sized bed and enormous 50 square foot bathroom was also quite nice! I loved my adventure at sea, while I also so admire the tenacity and grit that the scientists and crew on the Oregon II have for living the boat life for much, much longer than two fun weeks. Thank you!

Kids’ Questions

What types of sharks will you catch in the Gulf?

On our leg, we caught the following shark species:

Scalloped hammerhead
Scalloped hammerhead

  • Blacknose shark , CARCHARHINUS ACRONOTUS
  • Spinner shark, CARCHARHINUS BREVIPINNA
  • Blacktip shark, CARCHARHINUS LIMBATUS
  • Sandbar shark, CARCHARHINUS PLUMBEUS
  • Gulper shark, CENTROPHORUS GRANULOSUS
  • Little gulper shark, CENTROPHORUS UYATO
  • Tiger shark, GALEOCERDO CUVIERI
  • Dusky smoothhound shark, MUSTELUS CANIS
  • Gulf smoothhound, MUSTELUS SINUSMEXICANUS
  • Sharpnose shark, RHIZOPRIONODON TERRAENOVAE
  • Scalloped hammerhead shark, SPHYRNA LEWINI
  • Cuban dogfish shark, SQUALUS CUBENSIS

 

 

Clearnose skate
Clearnose skate

We also caught the following batoid species:

  • Southern stingray, DASYATIS AMERICANA
  • Roughtail stingray, DASYATIS CENTROURA
  • Bullnose ray, MYLIOBATIS FREMINVILLII
  • Clearnose skate, RAJA EGLANTERIA

 

What is the most populous type of shark in the Gulf of Mexico?

Sharpnose sharks were the most common in our sampling (we caught 247!) Bonnethead sharks are the more common species closer to shore, and blacktip sharks tend to be more common out farther to sea.

Are some shark species more or less sensitive to pollution?

Bull sharks are tolerant of extremes in water conditions (they have been found in the Mississippi River!), so they may be less sensitive to pollution. In general, hammerhead species are more sensitive and younger sharks are also in sensitive life stages, so they might be more sensitive. This is exactly the kind of questions that scientists might be able to answer more definitively someday using the large amounts of data collected by the Oregon II.

What are sharks’ lifespans?

Each shark species is different, but generally they live a long time. Small sharpnose sharks can live about 10 years. Dogfish can live up to 70 years. Other sharks average about 30 years. There is speculation that a Greenland shark has lived over 100 years! These long lifespans are part of the reason many shark populations are vulnerable because it takes them a long time to reach maturity and they do not reproduce quickly. Life history information about sharks is important to know as the NOAA scientists help manage fisheries.

 

 

Barney Peterson: What Are We Catching? August 28, 2016

NOAA Teacher at Sea

Barney Peterson

Aboard NOAA Ship Oregon II

August 13 – 28, 2016

Mission: Long Line Survey

Geographic Area: Gulf of Mexico

Date: Sunday, August 28, 2016

Weather Data is not available for this post because I am writing from the Biloxi/Gulfport Airport.

WHAT ARE WE CATCHING?

This is a long-line survey.  That means we go to an assigned GPS point, deploy hi-flyer buoys, add weights to hold the line down, add 100 baited hooks, leave it in place for an hour, and retrieve everything.

mackerel-bait-fish
Mackerel is used to bait the hooks.

As the equipment is pulled in we identify, measure and record everything we catch.  Sometimes, like in the case of a really large, feisty shark that struggles enough to straighten or break a hook or the lines, we try to identify and record the one that got away.  We tag each shark so that it can be identified if it is ever caught again.  We tally each hook as it is deployed and retrieved, and the computer records a GPS position for each retrieval so scientists can form a picture of how the catch was distributed along the section we were fishing.  The target catch for this particular survey was listed as sharks and red snapper.  The reality is that we caught a much wider variety of marine life.

We list our catch in two categories: Bony fish, and Sharks.  The major difference is in the skeletons.  Bony fish have just that: a skeleton made of hard bone like a salmon or halibut.  Sharks, on the other hand, have a cartilaginous skeleton, rigid fins, and 5 to 7 gill openings on each side.  Sharks have multiple rows of sharp teeth arranged around both upper and lower jaws.  Since they have no bones, those teeth are embedded in the gums and are easily dislodged.  This is not a problem because they are easily replaced as well.  There are other wonderful differences that separate sharks from bony fish.

Bony Fish we caught:

The most common of the bony fish that we caught were Red Groupers (Epinephelus morio), distinguished by of their brownish to red-orange color, large eyes and very large mouths.  Their dorsal fins, especially, have pointed spikes.

chrissy-with-enormous-grouper
Chrissy holding an enormous grouper

We also caught Black Sea Bass (Centropristus striata) which resemble the groupers in that they also have large mouths and prominent eyes.

sea-bass
Black Sea Bass

A third fish that resembles these two is the Speckled Hind (Epinephelus drummondhayi).  It has a broad body, large mouth and undershot jaw giving the face a different look.  Yes, we did catch several Red Snapper (Lutjanus campechanus), although not as many as I expected.  Snappers are a brighter color than the Red Groupers, and have a more triangular shaped head, large mouth and prominent canine teeth.

red-snapper
Red Snapper

The most exciting bony fish we caught was barracuda (Sphyraena barracuda).  We caught several of these and each time I was impressed with their sleek shape and very sharp teeth!

barracuda
TAS Barney Peterson with a barracuda

Most of the bony fish we caught were in fairly deep water.

 

Sharks:

We were fortunate to catch a variety of sharks ranging from fairly small to impressively big!

The most commonly caught were Sandbar Sharks (Carcharhinus plumbeus): large, dark-gray to brown on top and white on the bottom.

sandbar-shark
Sandbar Shark

Unless you really know your sharks, it is difficult for the amateur to distinguish between some of the various types.  Experts look at color, nose shape, fin shape and placement, and distinguishing characteristics like the hammer-shaped head of the Great Hammerhead (Sphyrna mokarran) and Scalloped Hammerhead (Sphyrna lewini) sharks that were caught on this trip.

great-hammerhead
Great Hammerhead Shark

The beautifully patterned coloring of the Tiger Shark (Galeocerdo cuvier) is fairly easy to recognize and so is the yellowish cast to the sides of the Lemon Shark (Negaprion brevirostris).

Other sharks we caught were Black-nose (Carcharhinus acrontus), Atlantic Sharp-nosed (Rhizoprionodon terraenovae), Nurse Shark (Ginglymostoma cirratum), Blacktip (Carcharhinus limbatus) and Bull Sharks (Carcharhinus leucus).

Several of the sharks we caught were large, very close to 3 meters long, very heavy and very strong!  Small sharks and bony fish were brought aboard on the hooks to be measured against a scaled board on the deck then weighed by holding them up on a spring scale before tagging and releasing them.  Any shark larger than about 1.5 meters was usually heavy and strong enough that it was guided into a net cradle that was lifted by crane to deck level where it could be measured, weighed and tagged with the least possibility of harm to either the shark or the crew members.  Large powerful sharks do not feel the force of gravity when in the water, but once out of it, the power of their weight works against them so getting them back into the water quickly is important.  Large powerful sharks are also pretty upset about being caught and use their strength to thrash around trying to escape.  The power in a swat from a shark tail or the abrasion from their rough skin can be painful and unpleasant for those handling them.

PERSONAL LOG

The Night Sky

I am standing alone on the well deck; my head is buzzing with the melodies of the Eagles and England Dan.  A warm breeze brushes over me as I tune out the hum of the ship’s engines and focus on the rhythm of the bow waves rushing past below me.  It is dark! Dark enough and clear enough that I can see stars above me from horizon to horizon: the soft cloudy glow of the Milky Way, the distinctive patterns of familiar favorites like the Big Dipper and the Little Dipper with its signature bright point, the North Star.  Cassiopeia appears as a huge “W” and even the tiny cluster of the “Seven Sisters” is distinct in the black bowl of the night sky over the Gulf of Mexico.  The longer I look the more stars I see.

This is one of the first really cloudless nights of this cruise so far.  Mike Conway, a member of the deck crew came looking for me to be sure I didn’t miss out on an opportunity to witness this amazingly beautiful show.  As I first exited the dry lab and stumbled toward the bow all I could pick out were three faint stars in the bowl of the Big Dipper.  The longer I looked, the more my eyes grew accustomed to the dark, and the more spectacular the show became.  Soon there were too many stars for me to pick out any but the most familiar constellations.

As a child I spent many summer nighttime hours on a blanket in our yard as my father patiently guided my eyes toward constellation after constellation, telling me the myths that explained each one. Many years have passed since then.  I have gotten busy seeing other sights and hearing other stories.  I had not thought about those long ago summer nights for many years.  Tonight, looking up in wonder, I felt very close to Pop again and to those great times we shared.

 

Jeff Miller: Wrestling Sharks for Science, September 9, 2015

NOAA Teacher at Sea
Jeff Miller
Aboard NOAA Ship Oregon II
August 31 – September 14, 2015

Mission: Shark Longline Survey
Geographical Area: Gulf of Mexico
Date: September 9, 2015

Data from the Bridge
Ship Speed: 9.4 knots
Wind Speed: 6.75 knots
Air Temp: 29.4°C
Sea Temp: 30.4°C
Seas: <1 meter
Sea Depth: 13 meters

GPS Coordinates
Lat:  N 29 25.103
Long:  W 092.36.483

Science and Technology Log
The major goal of our mission is to survey shark populations in the western Gulf of Mexico and collect measurements and biological samples.  The sharks are also tagged so if they are re-caught scientists can learn about their growth and movements.

Sharks are members of the class of fishes called Chondrichthyes,which are cartilaginous fishes meaning they have an internal skeleton made of cartilage.  Within the class Chondricthyes, sharks belong to the subclass Elasmobranchii together with their closest relatives the skates and rays.  There are about 450 species of living sharks that inhabit oceans around the world.

Sharks, or better put their ancient relatives, have inhabited the oceans for approximately 450 million years and have evolved a number of unique characteristics that help them survive and thrive in virtually all parts of the world.  The most recognizable feature of sharks is their shape.  A shark’s body shape and fin placement allow water to flow over the shark reducing drag and making swimming easier.  In addition, the shark’s cartilaginous skeleton reduces weight while providing strength and flexibility, which also increases energy efficiency.

Blacktip shark
Measuring a blacktip shark on deck. The blacktip shark shows the typical body shape and fin placement of sharks. These physical characteristics decrease drag and help sharks move more efficiently through water.

When I held a shark for the first time, the feature I noticed most is the incredible muscle mass and strength of the shark.  The body of a typical shark is composed of over 60% muscle (the average human has about 35-40% muscle mass).  Most sharks need to keep swimming to breathe and, therefore, typically move steadily and slowly through the water.  This slow, steady movement is powered by red muscle, which makes up about 10% of a sharks muscle and requires high amounts of oxygen to produce fuel for muscle contraction.  The other 90% of a sharks muscle is called white muscle and is used for powerful bursts of speed when eluding predators (other sharks) or capturing prey.

Since sharks are so strong and potentially dangerous, one lesson that I learned quickly was how to properly handle a shark on deck.  Smaller sharks can typically be handled by one person.  To hold a small shark, you grab the shark just behind the chondrocranium (the stiff cartilage that makes up the “skull” of the shark) and above the gill slits.  This is a relatively soft area that can be squeezed firmly with your hand to hold the shark.  If the shark is a bit feisty, a second hand can be used to hold the tail.

Holding a sharpnose shark
Smaller sharks, like this sharpnose shark, can be held by firmly grabbing the shark just behind the head.

Larger and/or more aggressive sharks typically require two sets of hands to hold safely.  When two people are needed to hold a shark, it is very important that both people grab the shark at the same time.  One person holds the head while the other holds the tail.  When trying to hold a larger, more powerful shark, you do not want to grab the tail first.  Sharks are very flexible and can bend their heads back towards their tail, which can pose a safety risk for the handler.  While holding a shark sounds simple, subduing a large shark and getting it to cooperate while taking measurements takes a lot of focus, strength, and teamwork.

Holding a blacktip shark
Teamwork is required to handle larger sharks like this blacktip shark, which was caught because it preyed on a small sharpnose shark that was already on the hook.

 

Measuring a blacktip shark
Collecting measurements from a large blacktip shark.

 

Holding a blacktip shark
Holding a blacktip shark before determining its weight.

When a shark is too big to bring on deck safely, the shark is placed into a cradle and hoisted from the water so it can be measured and tagged.  We have used the cradle on a number of sharks including a 7.5 foot tiger shark and a 6 foot scalloped hammerhead shark.  When processing sharks, we try to work quickly and efficiently to measure and tag the sharks to minimize stress on the animals and time out of the water.  Once our data collection is complete, the sharks are returned to the water.

Tiger shark in the cradle
Large sharks, like this tiger shark, are hoisted up on a cradle in order to be measured and tagged.

Personal Log
We are now in full work mode on the ship.  My daily routine consists of waking up around 7:30 and grabbing breakfast.  After breakfast I like to go check in on the night team to see what they caught and determine when they will do their next haul (i.e. pull in their catch).  This usually gives me a couple hours of free time before my shift begins at noon.  I like to use my time in the morning to work on my log and go through pictures from the previous day.  I eat lunch around 11:30 so I am ready to start work at noon.  My shift, which runs from noon to midnight, typically includes surveying three or four different stations.  At each station, we set our baited hooks for one hour, haul the catch, and process the sharks and fishes.  We process the sharks immediately and then release them, whereas we keep the fish to collect biological samples (otoliths and gonads).  Once we finish processing the catch, we have free time until the ship reaches the next survey station.  The stations can be anywhere from 6 or 7 miles apart to over 40 miles apart.  Therefore, our downtime throughout the day can vary widely from 30 minutes to several hours (the ship usually travels at about 10 knots; 1 knot = 1.15 mph).  At midnight, we switch roles with the night team.  Working with fish in temperatures reaching  the low 90°s will make you dirty.  Therefore, I typically head to the shower to clean up before going to bed.  I am usually in bed by 12:30 and will be back up early in the morning to do it all over again.  It is a busy schedule, but the work is interesting, exciting, and fun.  I feel very lucky to be out here because not many people get the opportunity to wrestle sharks.  This is one experience I will always remember.

Kathleen Gibson, Hammerheads on the Line, August 4, 2015

NOAA Teacher at Sea
Kathleen Gibson
Aboard NOAA Ship Oregon II
July 25 – August 8, 2015

Mission: Shark Longline Survey
Geographic Area of the Cruise: Atlantic Ocean off the Florida and Carolina Coast
Date:  Aug 4, 2015

Coordinates:
LAT   3323.870N
LONG    07736.658 W

Great Hammerhead Photo Credit: Ian Davenport
Great Hammerhead (Photo Credit: Ian Davenport)

Weather Data from the Bridge:
Wind speed (knots): 28
Sea Temp (deg C): 29.2
Air Temp (deg C):  24.2

Early this morning the night shift caught and cradled a great hammerhead shark (Sphyrna mokarran). This is a first for this cruise leg. I’m sure that just saying “Hammerhead” conjures an image of a shark with an unusual head projection (cephalofoil), but did you know that there are at least 8 distinct Hammerhead species?  Thus far in the cruise we have caught 4 scalloped hammerheads (Sphyrna lewini), one of which I was fortunate to tag.

Science and Technology Log

All eight species of hammerhead sharks have cephalofoils with differences noted in shape, size, and eye placement, to name a few. Research indicates that this structure acts as a hydrofoil or rudder, increasing the shark’s agility. In addition, the structure contains a high concentration of specialized electro sensory organs (Ampullae of Lorenzini) that help the shark detect electric signals of other organisms nearby.  The eye placement at each end of the cephalofoil allows hammerhead sharks to have essentially a panoramic view with only a slight movement of their head – quite handy when hunting or avoiding other predators.

 

Comparison of Scalloped and Great Hammerhead Sharks

Comparison of Scalloped and Great Hammerhead Sharks
Image Credit: NOAA Fisheries Shark Species

Great hammerhead sharks are highly migratory. They are found worldwide in tropical latitudes, and at various depths. There are no  geographically Distinct Population Segments (DPS) identified. The great hammerhead, as its name implies, is the largest of the group and average size estimates of mature individuals varies between 10-14 ft in length with a weight approximately 500 lb.; the largest recorded was 20 ft in length. The one we caught was ll ft. in length.

Great Hammerhead Photo Credit: Ian Davenport
Great Hammerhead
Photo Credit: Ian Davenport


Great Hammerhead
Great Hammerhead

As with most shark species, the numbers declined rapidly between 1975 and 1995 due to the fin fishing industry and focused sport fishing often fueled by fear and misinformation. One has to wonder what the average length was before that time.

Scalloped Hammerhead sharks are the most common hammerhead species. Their habitat overlaps that of the great hammerhead, though they are more often found in slightly shallower waters. In contrast to the great hammerhead, scalloped hammerheads are only semi-migratory, and scientists have identified Distinct Population Segments around the world.  This is important information when evaluating population size and determining which groups, if any, need regulatory protection.

Weighing a small Scalloped Hammerhead Photo Credit: Ken Wilkinson
Weighing a small scalloped hammerhead
Photo Credit: Ken Wilkinson

 

Scalloped Hammerhead on deck. Photo: Erica Nuss
Scalloped hammerhead on deck
Photo: Ian Davenport

The average life expectancy for both species is approximately 30 years.  Males tend to become sexually mature before females, at smaller weights; females mature between 7-10 years (sources vary). In my last log I discussed shark reproduction – Oviparous vs. Viviparous. (egg laying vs. live birth).  All hammerheads are viviparous placental sharks but reproductive patterns do differ. Great hammerheads bear young every two years, typically having 20-40 pups. A great hammerhead recently caught by a fisherman in Florida was found to be pregnant with 33 pups. Scalloped have slightly fewer pups in each brood, but can reproduce more frequently.

 

Career Spotlight – NOAA Corps

Setting and retrieving the Longline requires coordination between Deck Operations and the Bridge.  Up until now I’ve highlighted those on deck. Let’s learn a bit about two NOAA officers on the Bridge.

The NOAA Corps is one of the 7 Uniformed Services of the United States and all members are officers. The Corps’ charge is to support the scientific mission of NOAA, operating and navigating NOAA ships and airplanes.  Applicants for the Corps must have earned Bachelor’s degree and many have graduate degrees.  A science degree is not required but a significant number of science units must have been completed.  It’s not unusual for Corps recruits to have done post-baccalaureate studies to complete the required science coursework.  New recruits go through Basic Officer’s Training at the Coast Guard Academy in New London, Connecticut.

Lt. Lecia Salerno – Executive Officer (XO) – NOAA 

Lt. Lecia Salerno at the Helm
Lt. Lecia Salerno at the  helm or the Oregon II during Longline retrieval.

Lt. Salerno is a 10-year veteran of the NOAA Corps and has significant experience with ship operations.  She was recently assigned to the Oregon II as the XO. This is Lecia’s first assignment as an XO and she reports directly to Captain Dave Nelson. In addition to her Bridge responsibilities, she manages personnel issues, ship accounts and expenditures. During these first few weeks on her new ship, Lt. Salerno is on watch for split shifts – day and night – and is quickly becoming familiar with the nuances of the Oregon II.  This ship is the oldest (and much loved) ship in NOAA’s fleet, having been built in 1964, which can make it a challenge to pilot. It’s no small task to maneuver a 170-foot vessel up to a small highflyer and a float, and continue moving the ship along the Longline throughout retrieval.

Lecia has a strong academic background in science  and in the liberal arts and initially considered joining another branch of the military after college.  Her  assignments with  NOAA incorporate her varied interests and expertise, which she feels makes her job that much more rewarding.

Lt. Laura Dwyer on the Bridge of the Oregon II
Lt. Laura Dwyer on the Bridge of the Oregon II

Lt. Laura Dwyer- Junior Officer – NOAA Corps

Laura has always had a love for the ocean, but did not initially look in that direction for a career.  She first earned a degree in International Business from James Madison University.  Her interest in marine life took her back to the sea and she spent a number of years as a scuba diving instructor in the U.S. and Australia.  Laura returned to the U.S.  to take additional biology coursework.  During that time she more fully investigated the NOAA Corps, applied and was accepted.

Laura has been on the Oregon II for 1.5 years and loves her work.  When she is on shift she independently handles the ship during all operations and also acts as Navigator.  What she loves about the Corps is that the work merges science and technology, and there are many opportunities for her to grow professionally. In December Laura will be assigned to a shore duty unit that is developing Unmanned Underwater Vehicles (UUV).

Personal Log

Measuring a Sharpnose Photo: Kristin Hannan
Notice the white spots on the dorsal side of this atlantic sharpnose, characteristic of this species.
Photo: Kristin Hannan

It’s amazing to think that just over a week ago I held my first live shark.  We caught over  30 sharks at our first station and our inexperience showed.  At first even the small ones looked like all teeth and tail, and those teeth are not only sharp but carry some pretty nasty bacteria. It took all of us (new volunteers) forever to get the hooks out quickly without causing significant trauma to the shark–or ourselves.  A tail smack from this small-but-mighty tiger shark pictured below left me with a wedge-shaped bruise for a week!

Immature Male Tiger Shark. He's cute but he taught me a lesson with his tail.
Immature Male Tiger Shark.
He’s cute but he taught me a lesson with his tail.

Since then we have caught hundreds of sharks.  We’ve caught so many Atlantic Sharpnose that on occasion it seems mundane.  Then I catch myself and realize how amazing it is to be doing what I’m doing– holding a wild animal in my hands, freeing it from the circle hook (finally!), looking at the detailed pattern of its skin, and feeling it’s rough texture, measuring it and releasing it back into the sea.

Sandbar Shark on the Line
A beautiful sandbar shark on the line.

I’m pleased to be able to say that my day shift team has become much more confident and efficient.  Our mid-day haul yesterday numbered over 40 sharks, including a few large sharks that were cradled, and it went really smoothly.

Weighing in. Hook out - No Problem! Photo: Jim Nienow
An Atlantic Sharpnose weighing in at 2.1 kg.
Photo: Kristin Hannan

 

Out it Comes - No Problem Photo: Ian Davenport
Taking a closer look at an Atlantic Sharpnose shark.
Photo: Ian Davenport

At this point I’ve had a chance to work at most of the volunteer stations including baiting hooks, throwing off the high-flyer marker, numbering, gangions, throwing bait, data entry,  tagging shark, removing hooks, and measuring/ weighing.  A highlight of last night was getting to throw out the hook to pull in the high-flyer marker at the start of retrieval.  I’m not known for having the best throwing arm but it all worked out!

Ready to Throw Photo: Kristin Hannan
Ready to Throw
Photo: Kristin Hannan

Got it! Photo: Kristin Hannan
Right on Target!
Photo: Kristin Hannan

 

Question of the Day:  What is this?

Can you identify these?
Can you identify these?

NOAA SHARK FACTS: Bite off More that you can chew

For more on hammerheads: click

For my incoming  Marine Science students — Investigate two other hammerhead species. How are they distinguished from great hammerheads?

 

Leah Johnson: All About the Fish, July 24, 2015

NOAA Teacher at Sea
Leah Johnson
Aboard NOAA Ship Pisces
July 21 – August 3, 2015

Mission: Southeast Fishery – Independent Survey
Geographical Area of Cruise: Atlantic Ocean, Southeastern U.S. Coast
Date: Friday, July 24, 2015

Weather Data from the Bridge:
Time 12:38 PM
Latitude 033.235230
Longitude -077.298950
Water Temperature 25.88 °C
Salinity -No Data-
Air Temperature 28.3 °C
Relative Humidity 78 %
Wind Speed 5.76 knots
Wind Direction 355.13 degrees
Air Pressure 1011.3 mbar

Science and Technology Log:
When the traps are reeled in, the GoPro camera attachments are unclipped and brought into the dry lab. The cameras are encased in waterproof housing that can withstand the higher pressure at the seafloor. One camera is placed on the front of the trap, and one camera is placed on the back. Each video card captures ~45 minutes of footage. The videos will be carefully scrutinized at a later date to identify the fish (since many do not enter the traps), describe the habitat, and also describe the fish behavior. While aboard the ship, the videos are downloaded and watched just to make sure that the cameras worked properly, and to gain a general idea of what was happening around the trap. Occasionally, there are some really exciting moments, like when a tiger shark decided to investigate our trap!

tiger sharkThis tiger shark appeared in the video from both trap cameras as it circled.

While the cameras are being prepped in the dry lab for the next deployment, we are busy in the wet lab with the fish caught in the traps. The first step is identification. I could not identify a single fish when the first trap landed on the deck! However, I am slowly learning the names and distinctive features of the local fish. Here are a few examples of the fish that we have hauled in so far:

Once the fish are identified, they are sorted into different bins. We record the mass of each bin and the lengths of each fish. Most of the smaller fish are returned to the ocean once the measurements are recorded. Some fish are kept for further measuring and sampling. For each of these fish, we find the mass, recheck the total length (snout to tail), and also measure the fork length (snout to fork in tail) and standard length (snout to start of tail).

I measured the fish while one of my crew mates recorded the data.

I measured the fish while one of my crew mates recorded the data.

The fish is then ready for sampling. Depending on the species of fish, we may collect a variety of other biological materials:

  • Otoliths (ear stones) are made of calcium carbonate, and are located near the brain. As the fish grows, the calcium carbonate accumulates in layers. As a result, otoliths can be used – similarly to tree rings – to determine the age of the fish. I retrieved my first set of otoliths today!
  • Muscle tissue (the part of the fish that we eat) can be used to test for the presence of mercury. Since mercury is toxic, it is important to determine its concentration in fish species that are regularly consumed.
  • Gonads (ovaries in females or testes in males) can be examined to determine if a fish is of reproductive age, and whether it is just about to spawn (release eggs / sperm into the water).
  • The stomach contents indicate what the fish has eaten.

This toadfish had snail shells in its stomach!

This toadfish had snail shells in its stomach!

The soft tissues are kept in bags and preserved in a freezer in the wet lab. Sample analyses will take place in various onshore labs.

Personal Log:
It is important to remember that this ship is home to most of the people on board. They live and work together in very close quarters. There are daily routines and specific duties that individuals fill to keep Pisces running smoothly. Cooperation is key. I do my best to be useful when I can, and step aside when I cannot. Despite my inexperience at sea, everyone has been incredibly kind, patient, and helpful. I am lucky to be surrounded by so many amazing people who are willing to show me the ropes!

Did You Know?
The lionfish is an invasive species in the Atlantic Ocean. Its numbers are increasing in waters off the Southeastern U.S. coast. These fish have few predators, and they are consuming smaller fish and invertebrates which also sustain local snapper and grouper populations.

lionfish

This lionfish was in one of our traps yesterday.

Stephen Tomasetti: Sharks of the Gulf, August 24, 2014

NOAA Teacher at Sea
Stephen Tomasetti
Aboard NOAA Ship Oregon II
August 11 – 25, 2014

Mission: Shark/Red Snapper Longline Survey
Geographical Area of Cruise: Gulf of Mexico
You can view the geographical location of the cruise here at anytime: http://shiptracker.noaa.gov
Date: Sunday, August 24, 2014

Weather Data from Bridge:
Air Temperature: 31.5 Degrees C
Water Temperature: 31.1 Degrees C
Wind Speed: 7.88 Knots
Barometric Pressure: 1009.4 Millibars

Science and Technology Log:

Today I’ll walk you through the sharks and other fish we’ve caught along leg two of the NOAA Oregon II longline survey. Unfortunately, due to red tide, many sharks had moved out of the areas we were in, so we caught substantially less sharks than usual. But, we still caught quite a few. Check them out:

Atlantic sharpnose
Atlantic sharpnose shark

Name: Atlantic sharpnose shark

Sci. Name: Rhizoprionodon terraenovae

Description: These sharks are very common both inshore and offshore. They often have white spots along the side. You can also tell them by their long labial furrows (grooves around the mouth).

Scientist Andre Debose and volunteer Sarah Larsen work up a blacktip
Scientist Andre Debose and volunteer Sarah Larsen work up a blacktip shark

Name: Blacktip shark

Sci. Name: Carcharhinus limbatus

Description: These sharks can be pretty feisty. They are surprisingly strong (even the little ones). You can identify them by the black marking on the tip of their pectoral fins and the lower lobe of their caudal fin.

Scientist Michael Felts with a Florida smoothhound (photo cred: Joan Turner)
Scientist Michael Felts with a Florida smoothhound (photo cred: Joan Turner)

Name: Florida smoothhound

Sci. Name: Mustelus norrisi

Description: These are my favorite sharks that we’ve caught. They are beautiful. They have small, blunt teeth and are missing a precaudal pit (before the caudal fin). They are long sharks, with second dorsal fins that are very large.

A young tiger shark
A young tiger shark

Name: Tiger shark

Sci. Name: Galeocerdo cuvier

Description: These sharks are known for being fierce hunters and apex predators. They are beautiful sharks with dark spots/stripes along the sides and dorsal fin. They can reach over five meters!

Sandbar shark
Sandbar shark

Name: Sandbar Shark

Sci. Name: Carcharhinus plumbeus

Description: We caught a lot of these sharks on our shifts. They were generally pretty large and we often had to use the cradle to get them close enough to take their measurements. One way to tell sandbar sharks is by their large dorsal fin.

A parasite pulled of the anal fin of a sandbar shark
A parasite pulled off the anal fin of a sandbar shark

For all the sharks we catch, we generally take length measurements, mass, sex and a fin clip/tissue sample (to look at genetic population structure). Then the shark is tagged with a tag and tossed back in the water. Occasionally, NOAA uses a satellite tag on sharks if they want to get additional data. On this cruise the night watch tagged a hammerhead shark with a satellite tag. This particular tag will transmit information when the dorsal fin breaks the surface of the water (often hammerheads and tiger sharks are tagged with these tags because they occasionally come up to the surface).

Personal Log:

Well we’re through fishing for this leg of the survey. We arrive back in Pascagoula, Mississippi tomorrow morning. There’s a lot to miss aboard the Oregon II. Below is a list of the top 5 things I’ll miss about life on the ship (in no particular order).

5) The Food: Three delicious meals a day. I’m not going to know what to do when I return to New York City and have to cook my own food again. Mac’ n cheese. Captain’s Platter. Eggs Benedict. Ice cream every night. I’ve been spoiled.

Second Chef Mark Potter hard at work
Second Cook Mark Potter hard at work

4) The Crew: I spent the majority of my time with the “day shift,” of scientists and fishermen. We would spend basically 11am-2am every day together. We’d eat together. Work together. Hang out between sets together. And finally watch movies together after shift.

The day crew pictured at night
The day crew pictured at night

In addition to the day shift there is an entire crew of interesting people I’ve spent time with: the NOAA Corps Officers, the Engineers, the Night Shift, and the Stewards. It takes a large crew to keep this ship running.

3) The Open Ocean: Picture cruising alongside dolphins at sunset, flying fish cutting through the water, a breeze on deck, and nothing but open ocean until the horizon line.

A flying fish jumped aboard
A flying fish jumped aboard

2) The Fishing: Before this trip it’d been a while since I had been fishing. I’ve never fished using longlines until the Oregon II. I learned a lot about fishing. Check out my earlier blog post here for more on that.

1) The Marine Life: You’ve already read a lot about some of the fish we caught. Here are more photos!

Volunteers Samantha Ehnert and Kelly Korvath kissing sharpnoses
Volunteers Samantha Ehnert and Kelly Korvath kissing Atlantic sharpnose sharks

Red Snapper
Red Snapper

Today, on our way back to Pascagoula, we stopped for a while to test the emergency equipment. In case of an emergency, there are a variety of lifesaving resources to utilize. We shot off flare guns, smoke signals and line casters. I shot off a line caster which slightly resembles a rocket launcher that shoots a rope to another ship in the case that we’d need to get to them. It was sort of like the Fourth of July!

Lieutenant Commander Eric Johnson shooting off a flare
Lieutenant Commander Eric Johnson shooting off a flare

Did You Know? Japanese warriors used to use dried shark skin for the handles of their swords, to keep them from slipping out of their hands.

Julie Karre: Heading Back to Land… August 5-6, 2013

NOAA Teacher at Sea
Julie Karre
Aboard NOAA Ship Oregon II
July 26 – August 8, 2013  

Mission: Shark and Red snapper Longline Survey
Geographical Range of Cruise: Atlantic
Date: Monday August 5 – Tuesday August 6, 2013

Weather Data from the Bridge
Monday – NE WINDS 10 TO 15 KNOTS
SEAS 2 TO 3 FEET
DOMINANT PERIOD 6 SECONDS

Tuesday – E WINDS 10 TO 15 KNOTS
SEAS 3 TO 4 FEET

Science and Technology Log

Meet the Scientists

Meet some of my favorite people in the world. Without these people my experience would have lacked the learning and laughter that made it such a joy.

Kristin Hannan

Field Party Chief Kristin Hannan has the pleasure of working with her favorite shark species, the Tiger Shark. And those little babies are cute!
Field Party Chief Kristin Hannan has the pleasure of working with her favorite shark species, the Tiger Shark. And those little babies are cute!

Kristin was the Field Party Chief for the first and second legs of the Longline survey. She was also my watch leader, which meant she was by my side in support every step of the way. And as I progressed as a shark handler, she was there with a high five every time. I hit the jackpot landing on a ship with Kristin. She is now off to visit Harry Potter World (I’m so jealous I can hardly stand it) before rejoining the the survey when it leaves Mayport. This is Kristin’s fifth year doing the Longline Survey. The first time she did it, she was a volunteer just like us. I wish Kristin the best of luck in all she does and hope to call her a friend for years to come.
Amy Schmitt

Research Biologist for NOAA Amy Schmitt gives a big smooch to a baby Tiger Shark.
Research Biologist for NOAA Amy Schmitt gives a big smooch to a baby Tiger Shark.

Amy is a research biologist out of the Pascagoula-based fisheries lab. She has been with NOAA for two years, but has been working in research biology for most of her career. She is a native of Colorado and shares my blond hair and fair complexion. We could usually be found together cooling off in the dry lab as often as possible. It was also Amy who coined one of my nicknames on the cruise – Data Girl. According to the science team, the Teachers at Sea make excellent data recorders. I can’t imagine why 🙂

Amy and I work together to process an adolescent Tiger Shark. Amy and I often worked together and truly enjoyed our time together.
Amy and I work together to process an adolescent Tiger Shark. Amy and I often worked together and truly enjoyed our time together.

Lisa Jones

NOAA scientist and Field Party Chief for the second leg of Longline Lisa Jones handles an Atlantic Sharpnose on the first haul of the night shift.
NOAA scientist and Field Party Chief for the third and fourth legs of Longline, Lisa Jones handles an Atlantic Sharpnose on the first haul of the night shift.

Lisa has been doing the Longline survey for 16 years now. She is a wealth of information about sharks, living aboard a ship, and marine life. She is also a passionate dog lover, which many of the volunteers shared with her. Lisa will be taking over the duties of Field Party Chief for the third and fourth legs of the survey. She will be aboard the Oregon II for all four legs of the survey this year. That’s a lot of boat rocking!
Mike Hendon

NOAA Research Biologist Mike Hendon works to quickly process a Sandbar Shark.
NOAA Research Biologist Mike Hendon works to quickly process a Sandbar Shark.

Mike is a research biologist out of the Pascagoula-based fisheries lab. He’s a seasoned veteran of the Longline survey and was a great mentor for those of us new to the shark-handling community. Mike also has two adorable kids and two cute dogs waiting for him at home. He was part of the science team for the first leg of the survey. He can sometimes be found wearing mismatched socks.

Mike and Volunteer Claudia Friess work on Atlantic Sharpnose.
Mike and Volunteer Claudia Friess work on Atlantic Sharpnose.

Personal Log

My final days are winding down and I am caught (no pun intended) off guard by how much I am going to miss this. There is such a peacefulness that comes from the rocking of a boat, especially if you don’t get seasick. And working alongside people who share a passionate nature – we may not all be passionate about the same things, but we are all passionate – is such a reinvigorating experience. These two weeks gave me an opportunity to talk about my environmental science integration in my classroom with people who care very much about environmental science. It was so inspiring to have them care about what I was doing in my classroom. It gives me another reason to trust the importance of what I’m doing as well as more people I want to make proud.

Fun list time! Things you get used to living on a ship:

  1. Noise. There is so much happening on a ship, from the engine to the cradle pulling up a shark. It’s all loud. But you get used to it.
  2. Sneaking into your stateroom as silently as possible so you don’t wake up your AWESOME roommate Rachel.

    NOAA Corps Officer ENS Rachel Pryor steering the Oregon II during a morning haul back.
    NOAA Corps Officer ENS Rachel Pryor steering the Oregon II during a morning haul back.
  3. Waiting. There’s a lot of waiting time on a survey like this. You find ways to make that time meaningful.

    The night shift waiting in anticipation as Lead Fisherman Chris Nichols begins to bring in the line.
    The night shift waiting in anticipation as Lead Fisherman Chris Nichols begins to bring in the line.
  4. Rocking. Duh.
  5. Taking high steps through doorways. The doors that separate the interior and exterior of the ship are water tight, so they don’t go all the way to the floor. You can only bash your shins in so many times before it becomes second nature.
  6. Sharks. I said in a previous post that this survey has been eye opening and it’s worth sharing again. I don’t have a marine science background and I had fallen victim to the media portrayals of sharks. I had no idea that there were sharks as small as the Sharpnose that can be handled by such an amateur like myself.

    This is what it feels like when you successfully (and quickly) unhook a shark! VICTORY! Volunteer Kevin Travis is victorious.
    This is what it feels like when you successfully (and quickly) unhook a shark! VICTORY! Volunteer Kevin Travis is victorious.
  7. Sunsets. Words cannot describe the colors that make their way to you when there’s uninterrupted skyline. Oh I will definitely miss those sunsets.

    One of the last sunsets for the first leg of the Oregon II.
    One of the last sunsets for the first leg of the Oregon II.
  8. The stars. I live a life of being asleep by 10pm and up at 6 am and often times forget to look up at the stars even on the nights when I might have been able to see them. These two weeks gave me some of the darkest nights I’ve had and some of the best company in the world.

Dolphins escort the Oregon II back towards land on its final day at sea for the first leg of Longline. Photo Credit: Mike Hendon
Dolphins escort the Oregon II back towards land on its final day at sea for the first leg of Longline.
Photo Credit: Mike Hendon

Julie Karre: A Weekend with the Wind and Wild Sharks, August 2-4, 2013

NOAA Teacher at Sea
Julie Karre
Aboard NOAA Ship Oregon II
July 26 – August 8, 2013

Mission: Shark and Red snapper Longline Survey
Geographical Area of Cruise: Atlantic Ocean off the Coast of Florida
Date: Friday, August 2 – Sunday, August 4, 2013

Weather Data from the Bridge
Friday – SW WINDS 10 TO 15 KNOTS
SEAS 3 TO 5 FEET
SCATTERED SHOWERS AND THUNDERSTORMS

Saturday – SW WINDS AROUND 15 KNOTS
ISOLATED SHOWERS AND THUNDERSTORMS MAINLY AFTER MIDNIGHT
SEAS AROUND 4 FEET

Sunday – W WIND 5 TO 7 KNOTS BECOMING VARIABLE AND LESS THAN 5 KNOTS
A CHANCE OF SHOWERS AND THUNDERSTORMS MAINLY AFTER 10PM
SEAS AROUND 3 FEET

Science and Technology Log
In this log we’ll take a closer look at the sharks we’ve brought on board:

Atlantic Sharpnose Shark:

Volunteer Arjen Krigsman works on a Sharpnose on his birthday!
Volunteer Arjen Krijgsman works on a Sharpnose on his birthday!

The Atlantic Sharpnose has been the most abundant shark on our survey and will continue to be abundant for the rest of the cruise, even in the Gulf of Mexico. It is in fact one of the species that is on the Least Concern list in terms of its vulnerability. It is often a victim of by-catch and makes up 1/3 of the commercial landings of sharks in the United States. But being capable of producing offspring in abundance, the Sharpnose remains a steady species with moderate population growths. As indicated by its name the Atlantic Sharpnose is found all along the U.S. Atlantic coast and even as far as New Brunswick, Canada. When the Oregon II makes its way back into the Gulf of Mexico, it will likely continue to make an appearance on deck.

Blacknose Shark

Blacknose Shark Photo Credit: Claudia Friess from her 2009 Longline cruise on the Oregon II. Unfortunately, when we caught the Blacknose it was too dark to get a good picture.
Blacknose Shark
Photo Credit: Claudia Friess from her 2009 Longline cruise on the Oregon II.  When we caught a Blacknose on this cruise it was too dark to get a good picture.

The Blacknose Shark shares a similar body with the Sharpnose, but is marked by a (drumroll please) black mark on its nose. Unfortunately, the Blacknose doesn’t share its abundance with the Sharpnose. The Blacknose is listed as Near Threatened due to its high mortality rates in shrimp trawl nets. The Blacknose is suffering a decline in its population. The Oregon II has only seen 5-6 Blacknose during this leg of the survey.

Nurse Shark

Nurse Shark Photo Credit: Claudia Friess from her 2009 Oregon II cruise. Unfortunately, it was too dark to get quality photos from our Nurse Shark.
Nurse Shark
Photo Credit: Claudia Friess from her 2009 Oregon II cruise. Again, it was too dark to get quality photos of our Nurse Shark.

The Nurse Shark, the first big shark we cradled, is characterized by sedentary and relatively docile behavior. They are still relatively mysterious in their migratory behavior and the gene flow between populations. Recently, it has been shown in population decline in certain areas perhaps due to its vulnerability to catch, but also perhaps because of habitat alteration.

Scalloped Hammerhead

Measuring a Scalloped Hammerhead.
Measuring a Scalloped Hammerhead.

The Scalloped Hammerhead has been my favorite so far. A friend of mine characterized it as the hipster of the shark world. There is something truly magnificent about those wide-set eyes. Unfortunately, the Scalloped Hammerhead is Endangered. The Scalloped Hammerhead can be found in coastal temperate waters all around the world. In each of these regions, it is threatened by capture, mostly as by-catch in fishing gear, gillnets, and longlines. Hammerhead shark fins are also more valuable than other species because of their high fin count. The species is in decline.

Bull Shark

Bull Shark! 232 pounds!
Bull Shark! 232 pounds!

The Bull Shark is a unique shark species because it can survive in freshwater for extended periods of time. This ability has caused it to be categorized as Near Threatened because it often gets caught in fisheries, but it is not a target species the way others are. Here’s what Kristin Hannan had to say: “Bull sharks’ ability to tolerate greater salinity extremes means that it is likely to be in more productive areas like at the input of rivers.  The rivers which dump high levels of nutrients into the system spur on production, high nutrients means more phytoplankton, more phytoplankton means more small critters eating and so on up.  These areas also mean hot spots for fishing activities as productivity means more fish, more fish means more predators, more interaction with gear, more possibilities for shark mortality.”

Sandbar Shark

A Sandbar Shark coming up on the cradle.
A Sandbar Shark coming up on the cradle.

The Sandbar Shark, which we caught in abundance one night, is a widespread species in warm temperate waters. Studies have found that it is a long-lived species, but it does not reproduce quickly so it has become Vulnerable due to overfishing. The species is currently in decline. The Sandbar is considered valuable because of their fins, which are large.

Tiger Shark 

A medium sized Tiger Shark was brought on deck to be measured and tagged. Kristin Hannan stands waiting for it to stop moving.
A medium sized Tiger Shark was brought on deck to be measured and tagged. Kristin Hannan stands waiting for it to stop moving.

The Tiger Shark is commonly found world wide in tropical and warm coastal waters. Aside from the Sandbar, it is the largest shark we have caught the most of. Fortunately, it is considered a fast-growing species with the ability to reproduce abundantly. It is not considered at a high risk for extinction, but the desire for fins makes the risk of further population decline a distinct possibility.

Night Shark

This Night Shark was the only of its kind we brought up so far.
This Night Shark was the only one of its kind we’ve brought up so far.

We have only caught 1 Night Shark during our survey. It is a Vulnerable species. It is prized mostly for its fins and meats and is caught in abundance off the coast of Brazil. Studies have shown that most of the Night Sharks landed were below 50% maturity, which is 8 years for males and 10 years for females. In the United States, the Night Shark is listed as a prohibited species.

When talking to Kristin about these sharks, she shared this about their reproduction, “All sharks are considered K-selected species like humans; we are late to mature, grow slowly and reproduce relatively few young comparatively to say a bony fish that might produce thousands of babies in its lifetime (s-selected).  So when we talk about a tiger [shark] vs. a sandbar [shark] being more or less productive, it is definitely in relation to each other and not all fish. A tiger [shark] does produce more young than some other species but way less than the red grouper he goes after for dinner.  This is why all sharks are so sensitive to fishing pressures; they have a considerably longer bounce back time.”

Personal Log
It’s hard to believe that over a week has passed, but given how much we have seen and done, it makes sense.

As I get more and more comfortable handling sharks and working on the boat, I have noticed a few things. My sister-in-law Elizabeth noticed a few years ago that my family has a love for responding to each other (and often friends and acquaintances) with movie quotes. The most commonly quoted movies in our family include The Big Lebowski, The Princess Bride, Blues Brothers, To Kill A Mockingbird, and many more. I am no exception to this family trend.

So while we’re all eagerly awaiting the call that a shark is on the hook, it occurred to me that this movie-quoting affliction had not escaped this trip. When a fish or shark is caught on one of our hooks, the fishermen call out “Fish on” to notify those of us handling to come over and retrieve the animal. I realized that this was no common call in my head, though. Each time I hear the “Fish on” I hear it more in the call of “Game Ooon” from Wayne’s World. I suppose that’s a hazard of anyone growing up in the 90s. What proves I am truly a Karre though is that when I’m talking to the shark I’m handling, asking and sometimes begging it to be still so I can remove the hook quickly and reduce its harm and pain, in my head the shark is responding “Oh I’m cooperating with you” in the voice of William H. Macy from the movie Fargo.

"Fish ooonnn" - A Sharpnose comes up to join us.
“Fish ooonnn” – A Sharpnose comes up to join us.

"Oh I'm cooperating with you" says the Sharpnose that has just come aboard the Oregon II.
“Oh I’m cooperating with you” says the Sharpnose that has just come aboard the Oregon II.

Did You Know?
There are over 6000 known coral species around the world. We have brought up several pieces of coral on our clips. Kevin found a bright red piece of coral, which prompted a lesson for us about how many red corals release an irritant that will make our skin burn and sting. Fortunately, that’s not what Kevin brought up!

The sun is setting on my trip and all I can say is that it has been extraordinary.
The sun is setting on my trip and all I can say is that it has been extraordinary.

Steven Frantz: Sharks at Sea, August 3, 2012

NOAA Teacher at Sea
Steven Frantz
Onboard NOAA Ship Oregon II
July 27 – August 8, 2012

Mission: Longline Shark Survey
Geographic area of cruise: Gulf of Mexico and Atlantic off the coast of Florida
Date: August 3, 2012

Weather Data From the Bridge:
Air Temperature (degrees C): 28.79
Wind Speed (knots): 14.14
Wind Direction (degree): 199.05
Relative Humidity (percent): 070
Barometric Pressure (millibars): 1017.95
Water Depth (meters): 58.0
Salinity (PSU): 35.635

Location Data:
Latitude: 3409.72N
Longitude: 17611.11W

SHARKS AT SEA

Our 300th mission aboard the Oregon II is a Longline Shark Survey.  Stratified randomly selected sites have been generated using Arc GIS Software. This eliminates potential bias in sampling and each area has an equal opportunity to be sampled. Two depth strata zones (A: 5-30 fathoms, B: 30-100 fathoms) have been factored for the Atlantic. In order to avoid all sampling sites randomly bunched all together, the area has been divided into 60 nautical mile geographic zones from southern Florida to North Carolina. 60% of our effort (ex. time at sea) is put toward “A” stations and 40% of our effort is put toward “B” stations. This method of picking stations is called proportional allocation.

We are here to find sharks. This is important because so very little is known about them, or many of the other animals living in an extreme environment (extreme for people to live in).

One if the first sharks we caught was a blacknose shark, Carcharhinus acronotus. It is relatively small, a uniform gray color, and has a black tip on its nose.

Black-Nose Shark
Here I am holding Black-Nose Shark

The most common shark found so far has been the sharpnose shark, Rhizoprionodon terraenovae. Both sharpnose and blacknose sharks are considered to be small coastal sharks by the National Marine Fisheries Service. While similar in size to the black nose shark, the sharpnose shark is spotted. When brought on board, their size is nothing compared to their strength. I guess you have to act tough when you’re little!

Sharpnose being Weighed
Sharpnose being Weighed

Tough though they may be, we caught several sharp-nose sharks that have become bait themselves! I wonder what (kind of shark?) it was that ate the back half of this sharp-nose?

Shark as "Bait"
Shark as “Bait”

One of the many data we are collecting is the sex of the sharks. Pictured below are a male (top), then female (bottom). The male shark has claspers, which are used for internal fertilization. Claspers are also used to determine a male’s age depending on how calcified they are.  This is the standard way to determine sex on all the sharks we have caught thus far.

Male Sharpnose Shark
Male Sharpnose Shark

Female Sharpnose Shark
Female Sharpnose Shark

Another piece of data collected is a clip of flesh from a fin. This is a non-lethal way for scientists to obtain DNA for genetics studies and possibly for use in population structure for identification purposes.

Fin Clipping
Fin Clipping

As we saw above, some sharks don’t make it on board alive. While this is uncommon, the opportunity does present itself for more invasive study not done on living animals. Sharpnose sharks give birth to live young (viviparous). Pictured below are young sharks taken from a female. It is interesting to note that whether the shark is male or female can be determined at this early stage. Remember, not all sharks reproduce this way.

Baby Sharpnose
Baby Sharpnose

Sandbar sharks, Carcharhinus plumbeus, have been the next most common sharks caught. These are quite a bit larger than sharp-nose sharks, averaging 150 centimeters long and 35 kilograms in mass.

Sandbar Shark
Sandbar Shark

We must be safe when collecting data. Shark’s skin is like sandpaper, so if the teeth or tail doesn’t get you, you can also be given a pretty red rash by the scrapping of their skin against your skin.

Measuring a Sandbar Shark
Measuring a Sandbar Shark

Tagged Sandbar Shark
Tagged Sandbar Shark

Sandbar sharks were popular with the shark fin soup industry because they have a very large dorsal fin compared to their body size. Sharks were caught, their fin was cut off, and then the still-living shark was released back into the ocean to die. This practice has been outlawed in U.S. waters.

Sandbar Shark & Me
Sandbar Shark & Me

Watch the video below as a sandbar shark is caught and brought to the Oregon II.

The prettiest shark (at least to me) I’ve seen so far is the tiger shark, Galeocerdo cuvier. They can get very large. Three meters long or more! The ones we’ve found have been smaller. The one I’m holding is very young. The umbilical scar was still visible! Tiger shark teeth are different from most sharks in that a tiger shark’s teeth are made to slice their prey, like the shells of sea turtles.

Tiger Teeth
Tiger Teeth

Tiger Shark & Me
Tiger Shark & Me

Sharks don’t have eyelids, like we have eyelids, to protect their eyes. They have what is called a nictitating membrane to protect their eyes. Here is a picture of the nictitating membrane partially covering a sharpnose shark’s eye.

Nictitating Membrane
Nictitating Membrane

The most unusual shark we’ve caught has been the scalloped hammerhead shark, Sphyrna lewini. Once on board the Oregon II they seemed to be docile (for a shark), however, their eyes on the far ends of their head were always looking, watching what was going on.

Why is their head shaped like it is? Even scientists don’t know for sure. Some think it acts as a hydrofoil to help it move through the water. Other scientists think (because of its large size) it helps detect electrical impulses in the water (like a sixth sense). Do you have any ideas why their head is shaped the way it is?

Scalloped Hammerhead Shark
Scalloped Hammerhead Shark

Scalloped Hamerhead Shark
Scalloped Hammerhead Shark

Scalloped Hamerhead Shark
Scalloped Hammerhead Shark

I have been working the day shift: from noon to midnight. The other crew is the night shift. In addition to what we have seen so far, the night shift has also seen a great hammerhead, Sphyrna mokarran and a silky shark, Carcharhinus falciformes.

We still have five days of fishing left. What will we catch next? I’ll let you know!

Jennifer Goldner: Sharks 101, August 18, 2011

NOAA Teacher at Sea
Jennifer Goldner
Aboard NOAA Ship Oregon II
(NOAA Ship Tracker)
August 11 — August 24, 2011

Mission: Shark Longline Survey
Geographical Area: Southern Atlantic/Gulf of Mexico
Date: August 18, 2011

Weather Data from the Bridge
Latitude: 26.05 N
Longitude: 84.05 W
Wind Speed: 5.20 kts
Surface Water Temperature: 30.30 C
Air Temperature: 31.20 C
Relative Humidity: 67.00%

Science and Technology Log

Living in the landlocked state of Oklahoma, I am unfamiliar with sharks.  Thus today, with the help of the scientists, I’m going to give some basics of sharks that I have learned this week.  Class title:  Shark 101.  Welcome to class!

Let me start by telling you the various sharks and amount of each we have caught this week in the Gulf of Mexico. We have caught 7 nurse sharks, 2 bull sharks, 4 sandbar sharks, 73 Atlantic sharpnose sharks, 15 blacknose sharks,  5 blacktip sharks, 5 smooth dogfish, 2 silky sharks, and 4 tiger sharks.  For those of you that took the poll, as you can see the correct answer for the type of shark we have caught the most of is the Atlantic sharpnose shark.   The sharks ranged in size from about 2 kilograms (Atlantic sharpnose shark) to 100 kilograms (tiger shark). Keep in mind a kilogram is 2.24 pounds. 

In addition to the sharks caught we have also caught yellowedge, red, and snowy grouper, blueline tilefish, spinycheek scorpionfish, sea stars, and a barracuda.

From the last post you now know that we soak 100 hooks at a time. Throughout the survey we have had as little as no sharks on the line in one location and up to 25 on the line in other locations.

Me holding a spinycheek scorpion fish
Me holding a spinycheek scorpionfish

Blueline tile fish
Blueline tilefish

Drew, Scientist, holding a barracuda
Drew, Scientist, holding a barracuda

yellowedge grouper
Yellowedge grouper

When a shark is brought on board, it is measured for total length, as well as fork length (where the caudal fin separates into the upper and lower lobes).  The sex of the shark is also recorded.  A male shark has claspers, whereas a female shark does not.  The shark’s weight is recorded.  Then the shark is tagged. Lastly, the shark is injected with OTC (Oxytetracycline) which can then be used to validate the shark’s age.  It should be noted that for larger sharks these measurements are done in the cradle.  For perspective, I had Mike, fisherman, lay in the cradle to show the size of it. Also on this trip, some of the scientists tried out a new laser device.  It shoots a 10 cm beam on the shark.  This is then used as a guide to let them know the total length.  Thus, the shark can actually be measured in the water by using this technique.

Do you see the 2 laser dots on the shark?  This 10 cm increment helps scientists estimate the length of the shark.

Mike, Fisherman, in the shark cradle- It is approximately 8 feet long.
Mike, Fisherman, in the shark cradle — It is approximately 8 feet long.

Shark diagram
Shark diagram

Mark Grace, Chief Scientist, weighs a shark
Mark Grace, Chief Scientist, weighs a shark

Male shark on the left (with claspers), female shark on the right (no claspers)
Male shark on the left (with claspers), female shark on the right (no claspers)

Mark Grace, Chief Scientist, and Adam, Scientist, measure a nurse shark in the cradle
Mark Grace, Chief Scientist, and Adam, Scientist, measure a nurse shark in the cradle

Mark Grace, Chief Scientist, assists me tagging an Atlantic sharpnose shark
Mark Grace, Chief Scientist, assists me tagging an Atlantic sharpnose shark

Tim, Lead Fisherman, holds the bull shark while I tag it!
Tim, Lead Fisherman, holds the bull shark while I tag it!

Giving antibiotics to an Atlantic sharpnose shark
Injecting OTC into an Atlantic sharpnose shark

Here are some things I learned about each of the sharks we caught.

1.  Nurse shark:   The dorsal fins are equal size.  They suck their food in and crush it.  Nurse sharks are very feisty.  See the attached video of Tim, Lead Fisherman and Trey, Scientist, holding a nurse shark while measurements are being taken.

The skin of nurse sharks is rough to touch.  Incidentally, all  types of  sharks’ skin is covered in dermal denticles (modified scales) which is what gives them that rough sandpaper type feeling.  If you rub your hand across the shark one way it will feel smooth, but the opposite way will feel coarse.

Dermal denticles, courtesy of Google images
Dermal denticles, courtesy of Google images

Cliff, Fisherman, getting a nurse shark set to measure
Cliff, Fisherman, getting a nurse shark set to measure

2.  Bull shark– These are one of the most aggressive sharks.  They have a high tolerance for low salinity.

Bianca, Scientist, taking a blood sample from a bull shark
Bianca, Scientist, taking a blood sample from a bull shark

bull shark
Bull shark

sandbar shark
Sandbar shark

3. Sandbar shark– These sharks are the most sought after species in the shark industry due to the large dorsal and pectoral fins.  The fins have large ceratotrichia that are among the most favored in the shark fin market.

4.  Atlantic sharpnose shark– The main identifying characteristic of this shark is white spots.

Atlantic sharpnose shark
Atlantic sharpnose shark

5.  Blacknose shark– Like the name portrays, this shark has black on its nose.  These sharks are called “baby lemons” in commercial fish industry because they can have a yellow hue to them.

blacknose shark
Blacknose shark

Me holding a blacknose shark
Me holding a blacknose shark

6.  Blacktip shark- An interesting fact about this shark is that even though it is named “blacktip,” it does not have a black tip on the anal finThe spinner shark, however, does have a black tip on its anal fin.

Jeff and Cliff getting a blacktip shark on board
Jeff and Cliff getting a blacktip shark on board

Tagging a blacktip shark
Tagging a blacktip shark

7. Smooth dogfish– Their teeth are flat because their diet consists of crustaceans, such as crabs and shrimp.

Travis, Scientist, weighing a smooth dogfish
Travis, Scientist, weighing a smooth dogfish

8. Tiger shark– Their teeth work like a can opener.  They are known for their stripes.

A large tiger shark got tangled in our line.  Notice the 2-3 foot sharpnose shark. The tiger shark is about 5 times larger!
A large tiger shark got tangled in our line. Notice the 2-3 foot sharpnose shark at the left. The tiger shark is about 5 times larger!

Me with a tiger shark
Me with a tiger shark

Daniel, Scientist, holding a tiger shark
Daniel, Scientist, holding a tiger shark

9.  Silky shark- Their skin is very smooth like silk.

Daniel, Scientist, holding a silky shark
Daniel, Scientist, holding a silky shark

Another thing I got to see was shark pups because one of the scientists on board, Bianca Prohaska, is studying the reproductive physiology of sharks, skates, and rays.  According to Bianca, there are 3 general modes of reproduction:

1.  oviparous–  Lays egg cases with a yolk (not live birth).  This includes some sharks and all skates.

2.  aplacental viviparous – Develops internally with only the yolk.  This includes rays and some sharks.  Rays also have a milky substance in addition to the yolk.  Some sharks are also oophagous, such as the salmon shark which is when the female provides unfertilized eggs to her growing pups for extra nutrition.  Other sharks, such as the sand tiger, have interuterine cannibalism (the pups eat each other until only 1 is left).

3. placental viviparous– Develop internally initially with a small amount of yolk, then get a placental attachment.  This includes some sharks.

Yet another thing that scientists look at is the content of the shark’s stomach. They do this to study the diet of the sharks.

Skate egg case, Courtesy of Google images
Example of oviparous- Skate egg case, Courtesy of Google images

Placental viviparous
Example of placental viviparous

Dogfish embryo, courtesy of Google images
Example of aplacental viviparous- Dogfish embryo, courtesy of Google images

Contents from the stomach of a smooth dogfish (flounder and squid)
Contents from the stomach of a smooth dogfish (flounder and squid)

Personal Log

Anyone who knows me realizes that I appreciate good food when I eat it.  Okay, on NOAA Ship Oregon II, I have not found just good food, I have found GREAT cuisine!   I am quite sure I have gained a few pounds, courtesy of our wonderful chefs, Walter and Paul.  They have spoiled us all week with shrimp, steak, prime rib, grilled chicken, homemade cinnamon rolls, turkey, dressing, mashed potatoes, and gravy, and the list goes on!   Just talking about it makes me hungry!

Walter is a Chef de Cuisine.  I want to share with you two of the wonderful things, and there are many more, he has prepared for us this week.  The first is called ceviche.  On our shift we caught some grouper.  Walter used these fish to make this wonderful dish.

Grouper used to make ceviche
Grouper used to make ceviche

In addition to the grouper, the ingredients he used were lemon juice, vinegar, onions, jalapeno, kosher salt, and pepper.  He mixed all the ingredients together.  The citric acid cooks the raw fish.  It has to be fresh fish in order to make it.  Instead of lemon juice, apple juice or orange juice can be substituted.  All I know is that since I arrived on NOAA Ship Oregon II, I heard from the entire crew about how great Walter’s ceviche was and it did not disappoint!

Walter, Chef de Cuisine, with his award winning ceviche
Walter, Chef de Cuisine, with his award winning ceviche

Walter's maccaroons
Walter’s macaroons

Another thing Walter is famous for on board NOAA Ship Oregon II are his macaroons.  These are NOT like ANY macaroons you have ever tasted.  These truly melt in your mouth.  Amazingly, he only has 4 ingredients in them: egg whites, powdered sugar, almond paste, and coconut flakes.  They are divine!!

On another note, I would like to give a shout out to my 5th grade students in Jay Upper Elementary School!  (I actually have not had the chance to meet them yet because I am here as a NOAA Teacher at Sea.  I would like to thank my former student, Samantha Morrison, who is substituting for me.  She is doing an outstanding job!!)

Dolphin swimming alongside the ship
Dolphin swimming alongside the ship

Jay 5th Grade:  I cannot wait to meet you!  Thank you for your questions!  We will have lots of discussions when I return about life at sea.  Several of you asked if I have been seasick.  Fortunately, I have not.  Also, you asked if I got to scuba dive.  Only the dive crew can scuba dive.  We are not allowed to have a swim call (go swimming) either.  As you can see, there is plenty to do on board!  Also, you may have noticed that I tried to include some pictures of me tagging some sharks.  Lastly, this dolphin picture was requested by you, too.  Dolphins LOVE to play in the ship’s wake so we see them every day.

Enjoy the view!

I LOVE the scenery out here!  I thought I’d share some of it with you today.

I thought these clouds looked like dragons. What do they look like to you?
I thought these clouds looked like dragons. What do they look like to you?

The vertical development of clouds out here is amazing!
The vertical development of clouds out here is amazing!

Starboard side at sunset
Starboard side at sunset

Sunset from the stern
Sunset from the stern

Sunset in the Gulf of Mexico aboard NOAA Ship Oregon II
Sunset in the Gulf of Mexico aboard NOAA Ship Oregon II

Sunset, port side
Sunset, port side

Jennifer Goldner: Shark Week- All day, every day!, August 16, 2011

NOAA Teacher at Sea
Jennifer Goldner
Aboard NOAA Ship Oregon II
(NOAA Ship Tracker)
August 11 — August 24, 2011

Mission: Shark Longline Survey
Geographical Area: Southern Atlantic/Gulf of Mexico
Date: August 16, 2011

Weather Data from the Bridge
Latitude: 25.15 N
Longitude: 82.48 W
Wind Speed: 2.09 kts
Surface Water Temperature: 29.20 C
Air Temperature: 30.10 C
Relative Humidity: 69.00%

Science and Technology Log

If there’s one thing I’ve learned since I’ve been on this trip it is that both science and technology are crucial for doing a shark survey. Keep in mind NOAA Ship Oregon II’s mission is not to fish for sharks, rather it is to survey them. In other words, it is to find out how the sharks are doing and where they like to hang out in the ocean. Thus, the ship doesn’t ONLY go to the “shark hot spots” so to speak. Instead, there are various locations the ship stops at to perform a survey. These are called stations. The stations vary greatly in depth, temperature, dissolved oxygen, etc. It would be similar to marketers taking a survey to see what restaurants people prefer.

With that being said, there is a certain science to performing a survey of the sharks. Here is how it is done. There is much preparation before leaving port to do a survey. NOAA Ship Oregon II cannot leave port without Atlantic mackerel, and lots of it. This is the bait that is used to catch the sharks. The hook of choice is a circle hook. The fishing line is monofilament and extremely strong. These are the basic items needed, but there are numerous other tools needed such as the cradle for larger sharks, tagging tools, vials for samples, and the list goes on. Suffice it to say, once the ship leaves from port, everything has to be on board in order to have a productive survey.

Anyone who fishes knows there are numerous ways to catch a fish. So how do you catch a shark? If you’ve ever seen the movie, “The Perfect Storm,” then you have a good idea. The method used is called longlining. As the name claims, this method makes use of a long line. The line must first be prepared. In order to do this the circle hooks are baited with Atlantic mackerel. There are 100 hooks in total to put on the line. The hooks are part of a unit called a gangion. A gangion consists of a leader, a monofilament line, and a circle hook. These are placed in a barrel. There are 50 gangions with bait per barrel, for a total of 2 barrels per fishing set.

Mark, Chief Scientist, and Adam, Scientist, preparing Atlantic Mackeral for the next station
Mark, Chief Scientist, and Adam, Scientist, preparing Atlantic mackerel for the next station

Preparing the bait
Preparing the bait

Hooks are baited and ready to go!
Hooks are baited and ready to go!

Gangion bucket- Notice when the line is set the bait is given out in a clockwise direction.  When it is hauled back in, it is put in a counterclockwise direction.
Gangion bucket- Notice when the line is set the bait is given out in a clockwise direction. When it is hauled back in, it is put in a counterclockwise direction.

Incidentally, there are 2 shifts: day shift (noon until midnight) and night shift (midnight until noon). I am on the day shift. Thus there are stations being worked 24 hours a day. The bridge will announce when we are coming on another station. Also, it is posted on the dry lab door so we can all be prepared for the next station. Knowing this, the shift gets the mackerel ready by thawing it out, then cutting it up to bait the
hooks.

Once the ship is to the station, everyone gets in their places, and the OOD (Officer of the Deck) disconnects the engine. At this point the drift test begins. This takes into account both the wind and the current to determine what direction to set the line. If there is too much current, determined by the Field Party Chief and the OOD, the station is either canceled or moved closer to shore. Next the ship slowly moves forward (4 knots) and the line is fed from the ship. The line, which is 1 nautical mile, is let out at the stern (back) of the ship. The fishermen are responsible for feeding it through blocks (pulley) system. The 1st thing on the line is a high flyer. This is an orange flotation device put at the end of the line.

High flyer
High flyer

The next thing put on the line is a weight. This sinks the line to the bottom. At this point, the first of 50 baited gangions are handed to the fishermen to clip to the line, each being evenly distributed. It should be noted that each gangion has a hook number so that an accurate record can be kept. The hook numbers are taken off a line and clipped on the gangion as the bait is being fed over the deck to the fisherman. After the 50th gangion, another weight is put on the line, followed by 50 more gangions, another weight, and lastly, a high flyer. While all of this is going on, one person on the team records data on the computer which is instantly uploaded with such things as the latitude and longitude and real time of when each hook is deployed.

Longline Diagram, courtesy of Dr. Trey Driggers
Longline Diagram, courtesy of Dr. Trey Driggers

100 hook number tags
100 hook number tags

Scientists getting the gangion ready to give to Jeff, Chief Boatswain
Scientists getting the gangion ready to give to Jeff, Chief Boatswain

The night shift crew preparing the bait
The night shift crew preparing the bait

Greg, Fisherman, clipping a gangion on the line
Greg, Fisherman, clipping a gangion on the line

Chief Scientist, Mark Grace, records data
Chief Scientist, Mark Grace, records data

The longline is allowed to soak for 1 hour before it is brought back on board on the starboard (right) side of the well-deck, just aft of the bow (front). During this time the deck and buckets are cleaned up and the CTD is deployed (Conductivity Temperature Depth).

The CTD takes many measurements including temperature, salinity, turbidity, chlorophyll, depth, and dissolved oxygen. These measurements give the scientists valuable information for the habitats of the sharks. For example, any level of dissolved oxygen 2.0 mg/liter or lower is considered apoxic and causes physiological stress on an animal. Most animals live in an area between 2-7 mg/liter of dissolved oxygen. A reading of 7 would only be found in very cold water such as the Arctic.

CTD
CTD

CTD Screen
CTD Screen

Water color test
Water color test

In addition to the CTD readings, the scientists report the water color along with the current weather conditions.

After the line has soaked, the team meets at the bow to haul in the line. The fishermen unclip the gangions from the line and hand it off to a scientist who records the hook number and the condition of the bait. If a fish is caught, it is brought aboard and morphometric (total length, fork length, sex, and weight) data is collected.

Travis, Scientist, taking measurements
Travis, Scientist, taking measurements

In the event a larger fish is caught, it is placed in the cradle.What are the benefits of doing a longline survey? It gives the scientists presence/absence data from looking at what was caught and was not caught. It gets samples from the Gulf to compare with other areas.

Personal Log

Mark, Chief Scientist, taking measurements
Mark, Chief Scientist, taking measurements

One word: WOW! Let me say it backwards: WOW!!! This week is DEFINITELY making my “Top Ten Life Experiences” list!! Shark Week has absolutely nothing on this NOAA crew! It is evident they eat, sleep, and live sharks and other fish all year long. NOAA Ship Oregon II needs to have a camera follow them for a reality show called “Shark Year.” If they aren’t catching it, they are studying about it. I am amazed at the depth of knowledge of the entire crew, including each and every member on board, of the ocean. What impresses me even more is their enthusiasm and patience in teaching this teacher how it all works.

Now for your questions. . .

One of you asked about shark finning. According to the scientists and fishermen on board it is not a big problem off the coast of the United States like it is in Asia. Here it is regulated. In fact, when commercial fishermen bring in their sharks, the fins have to be attached, so that cuts down on this practice.

Another question that came up was in regards to tagging. On this ship the scientists mainly use passive tagging techniques. This requires the fish to be recaptured after it has been tagged. The tag has a phone number to call when the shark is caught as well as an identification number. Another method of tagging is active tagging, for instance satellite tags. Satellite tags are attached to animals to study migration. These are very expensive, ranging from $3,000-$5,000. They are set to pop off the animal at a predetermined time and date and transmit data to a satellite in order to plot the shark’s course. Many shark species are migratory so this type of tag is beneficial to see their migration patterns.

Also, a question was asked about how deep it needs to be to safely navigate. According to Cap, the draft for the ship is 15 feet. The ship can safely sail in 30 feet of water. That’s unbelievable for a ship of this size, huh? It makes Orgeon II a great vessel to do the shallow water surveys. Most other ships can’t go that shallow.

By the way, great job class on last blog’s poll! The correct answer was 70! You all aced the quiz!

My son, Hayden on his 1st day of 6th grade
My son, Hayden on his 1st day of 6th grade

I also have to share a picture of my son, Hayden. His 1st day of school was Monday. I can’t believe he is already in 6th grade! Hayden is a shark enthusiast and is following my blog at home with my parents. Cap has already told me he is welcome on the ship. Someday he can come study sharks, just like his Mom!

Shark Gallery Pictures

The next blog will be a lesson on specific sharks, but for now, enjoy the pictures!!

Me with a dogfish shark
Me with a smooth dogfish

Adam, Scientist, getting ready to measure a tiger shark
Adam, Scientist, getting ready to measure a tiger shark

Drew, Scientist, measuring a blacknose shark
Drew, Scientist, measuring a blacknose shark

Me touching a sandbar shark
Me touching a nurse shark

Melinda Storey, June 15, 2010 part2

NOAA Teacher at Sea
Melinda Storey
Onboard NOAA Ship Pisces
June 14 – July 2, 2010

Mission: SEAMAP Reef Fish Survey
Geographical Area of Cruise: Gulf of Mexico
Date: June 15, 2010

Weather Data from the Bridge

Date: 6/15/2010
Time: 1000 hours
Position: Latitude: 27.38.1 N Longitude: 088.18.9 W
Present Weather: cloudy
Visibility: 10 nautical miles
Wind Direction: SSW
Water Temperature: 30.4 degrees Celsius
Air Temperature: 29.5 degrees Celsius
Ship’s Speed: 12.2 knots

Science and Technology Log

Today at around 1000 hours (10:00 am) our CO sighted a dead Sperm Whale from the bridge. Our scientists say it is extremely rare to see a floating sperm whale. In fact, a whale expert who communicated with one of our scientists said he has only seen one in 25 years of studying them! The Gulf of Mexico is a habitat of Sperm Whales. Females stay here year round and birth their young in these waters while male Sperm Whales travel to many different locations, some as far as the Antarctic Ocean. Sperm Whales are the deepest diving whales. Although they live at the surface, they dive to hunt Giant Squid that are bottom dwellers. They have been known to dive as deeply as 10,500 feet (3,200 meters) but average dives are about 4000 feet (1,200 meters) deep. The Sperm Whale can hold its breath for about an hour!

Sperm Whale
Dead Sperm Whale

Sperm Whale
Dead Sperm Whale

Here you see a close up of the teeth of the whale and some of the small fish swimming around it.

As you can see, the whale was covered in some black substance. Our scientists are not experts on marine mammals; however they spoke with Dr. Keith Mullin, the Southeastern Fisheries Science Center Marine Mammals Program manager, who stated that this is typical for the skins of dead whales to blister, char, and fall off. Upon seeing photos of the whale, the experts stated that it appeared to have died of natural causes; however we were asked to take samples from the whale to eliminate the possibility of oil as the cause of death. The ship positioned itself next to the dead whale and scientists swabbed the carcass in order to test for oil toxins and took tissue samples for DNA. NOAA catalogues mammal DNA to record species information and migration of different animals.

Dead Sperm Whale
Blistered Skin of Dead Sperm Whale

As we watched the whale float next to the ship, a 12 foot Tiger shark approached. It was obvious that sharks had been feasting on the whale because we could see definite bite marks along the side.

Tiger Shark
Tiger Shark

The Tiger Shark (Galeocerdo cuvier) is a fierce predator that has tiger-like markings and can grow to be over 14 feet (4.2 meters) long. It eats just about anything: fish, turtles, crabs, clams, mammals, seabirds, reptiles, other sharks, and just about anything else they can catch. It apparently likes to eat dead whales too! The Tiger Shark is one lean, mean eating machine. Each of its teeth is shaped like those found on a circular saw with a flat and curved hook at the end. A power saw might not even equal this shark’s power since it can cut through turtle shells with a single bite.


The shark circled the whale carcass and suddenly attacked, twisting back and forth in typical shark style. A bit later, the shark came along side the whale, bobbed up and down and took several chomping bites. Everyone was amazed at what we were witnessing!

Tiger Shark circling the whale carcass
Tiger Shark circling the whale carcass

 

Tiger Shark biting the whale carcass
Tiger Shark biting the whale carcass

 

Personal Log

As I watched the stunning display before me, I felt like I was a National Geographic videographer! I’ve had some interesting experiences in my lifetime, but this has got to be up at the top of the list! The thrashing and bloody water was unbelievable and watching the bobbing motion of the shark eating the side of the whale was like nothing I’ve ever seen – even on TV! And the SMELL! UGH! Ensign Schill fitted us with respirators so we could go out on deck and not gag.

I’ve also seen thousands of flying fish that actually do fly! They are tiny silver fish whose bodies are streamlined in a torpedo shape that helps them gather enough underwater speed to break the surface and take to the air. Flying fish are thought to have evolved this ability to escape predators.

Silverfish
Silverfish

Silverfish
Silverfish

“Something to Think About”

If this whale did die because of the oil, will we see more dead fish and mammals? How is the oil affecting birds, fish, and mammals along the coast? What will the long term affect be for the Coast?

“Did You Know?”

The tiger shark is one lean, mean, eating machine. Each of its teeth is shaped like those found on a circular saw, with a flat and curved hook at the end. A power saw might not even equal this shark’s power, since it can cut through turtle shells with a single bite.

Nicolle von der Heyde, June 15, 2010

NOAA Teacher at Sea
Nicolle von der Heyde
Onboard NOAA Ship Pisces
June 14 – July 2, 2010

Nicolle von der Heyde
NOAA Ship Pisces
Mission: SEAMAP Reef Fish Survey
Geographical Area of Cruise: Gulf of Mexico
Dates: Tuesday, June 15

Weather Data from the Bridge

Time: 1000 hours (10:00am)
Position: latitude = 27.38.1 N, longitude = 088.18.9 W
Present Weather: 4/8 cloudy
Visibility: 10 nautical miles
Wind Direction: SSW Wind Speed: 5 knots
Wave Height: < 1 foot
Sea Water Temp: 30.4 degrees Celsius
Air Temperature: dry bulb = 29.5 degrees Celsius
wet bulb = 27.2 degrees Celsius

Science and Technology Log

Today at around 1000 hours (10:00 am) our CO sighted a dead Sperm Whale from the bridge. Our scientists say it is extremely rare to see a floating sperm whale. In fact, a whale expert who communicated with one of our scientists said he has only seen one in 25 years of studying them! The Gulf of Mexico is a habitat of Sperm Whales. Females stay here year round and birth their young in these waters while male Sperm Whales travel to many different locations, some as far as the Antarctic Ocean. Sperm Whales are the deepest diving whales. Although they live at the surface, they dive to hunt Giant Squid that are bottom dwellers. They have been known to dive as deeply as 10,500 feet (3,200 meters) but average dives are about 4000 feet (1,200 meters) deep. The Sperm Whale can hold its breath for about an hour!

Sperm Whale
Sperm Whale

Sperm Whale
Sperm Whale

Here you see a close up of the teeth of the whale and some of the small fish swimming around it.

As you can see, the whale was covered in some black substance. Our scientists are not experts on marine mammals; however they spoke with Dr. Keith Mullin, the Southeastern Fisheries Science Center Marine Mammals Program manager, who stated that this is typical for the skins of dead whales to blister, char, and fall off. Upon seeing photos of the whale, the experts stated that it appeared to have died of natural causes; however we were asked to take samples from the whale to eliminate the possibility of oil as the cause of death. The ship positioned itself next to the dead whale and scientists swabbed the carcass in order to test for oil toxins and took tissue samples for DNA. NOAA catalogues mammal DNA to record species information and migration of different animals.

Black substance on sperm whale
Black substance on sperm whale

Getting DNA of the sperm whale
Getting DNA of the sperm whale

As we watched the whale float next to the ship, a 12 foot Tiger shark approached. It was obvious that sharks had been feasting on the whale because we could see definite bite marks along the side.

Tiger shark approaching sperm whale carcass
Tiger shark approaching sperm whale carcass

Bites out of the tiger shark
Bites out of the tiger shark

The Tiger Shark (Galeocerdo cuvier) is a fierce predator that has tiger-like markings and can grow to be over 14 feet (4.2 meters) long. It eats just about anything: fish, turtles, crabs, clams, mammals, seabirds, reptiles, other sharks, and just about anything else they can catch. It apparently likes to eat dead whales too! The Tiger Shark is one lean, mean eating machine. Each of its teeth is shaped like those found on a circular saw with a flat and curved hook at the end. A power saw might not even equal this shark’s power since it can cut through turtle shells with a single bite.

The shark circled the whale carcass and suddenly attacked, twisting back and forth in typical shark style. A bit later, the shark came along side the whale, bobbed up and down and took several chomping bites. Everyone was amazed at what we were witnessing!

Tiger shark eating whale carcass
Tiger shark eating whale carcass

Tiger shark eating whale carcass
Tiger shark eating whale carcass

Tiger shark eating whale carcass
Tiger shark eating whale carcass

Tiger shark eating whale carcass
Tiger shark eating whale carcass

Personal Log

Tuesday, June 15: The day started again with breakfast at 0700 hours. Since most of the day would be spent cruising through Gulf waters to our first research site off the coast of southern Texas, the plan had been to take a tour with the First Engineer of what I was told is a very impressive engine room in the lower deck of the Pisces. Little did I know that in a few hours I would witness one of the most amazing sights I have ever seen. But first, as expected, an announcement came over the ship’s intercom announcing a “man overboard” drill, followed by three blasts of the general alarm. All the scientists “mustered” in the conference room to await the end of the drill. This was shortly followed by a fire drill where our muster station was again in the conference room. After the drills I began talking to Christopher Gledhill, one of the scientists, about the reef fish survey and some of the data he has collected on past surveys. All of a sudden, the Chief Scientist Paul Felts came into the conference room and announced, “They’ve spotted a dead whale!” I couldn’t believe my ears as I quickly gathered my things and headed to the deck of the ship. Sure enough, there was a big floating white mass just ahead of the bow of the ship. I frantically began taking pictures, not realizing that we would be spending the next few hours alongside the dead carcass plus all the fish that had gathered around to feed off of the remains. Someone said that sharks had left the scene as we approached and I was hoping they would return so I could catch a glimpse of one. I would not be disappointed.

Of course, my first observation was the black, charred-looking surface of the whale. It looked like someone had taken a torch and lit it on fire. My first thought was that this must be oil, but as stated in the science log above, the skin of a dead whale will blister, burn, and turn black when exposed to the heat of the sun. My second observation hit me like a ton of bricks as the wind shifted toward the deck of the boat and I caught my first whiff of dead, decomposing, sunburned sperm whale. I’m not really sure what to compare it to but imagine the worst smell you’ve ever smelled and multiply it by 10. I think the stench is permanently etched into my sensory memory. Fortunately, we were all just about to be fitted with respirators (like a gas mask) in case we came across fumes from the oil spill. I went inside to be fitted with the respirator and when I stepped outside, I didn’t smell an ounce of dead whale – what a relief! My third observation was of all the life that was swarming around this dead, decaying carcass. Schools of Mahi Mahi (aka Dolphin Fish), some up to 4 feet long, and other smaller fish dotted the depths of the crystal clear blue water. I noticed activity at the stern (back) of the boat as some of the officers and deckhands began assembling fishing poles to reel in the Mahi Mahi. Before long, the crew had hauled about 15 Mahi Mahi onto the ship!

Lines to reel in the Mahi Mahi
Lines to reel in the Mahi Mahi

Mahi Mahi
Mahi Mahi

During this time, the Chief Scientist was on the phone with other NOAA scientists discussing how they should handle taking samples from the whale. Our ship was not equipped to study marine mammals so we did not have the traditional tools necessary for this type of task.

All of a sudden someone spotted the Tiger Shark circling the waters around the whale. I was able to capture the image below of the shark as it swam under our boat. It circled the carcass a few times and then attacked! What a scene as it first thrashed at the belly, then swam to the backside and took a few chomps. What a thrill to see this powerful predator up close (and from the safety of the ship!). Barely a day into this trip and I’ve had an experience I will remember forever!

Animals Seen Today

Dead Sperm Whale (Physeter macrocephalus)

Tiger Shark (Galeocerdo cuvier)

Mahi Mahi (Coryphaena hippurus)

Brown Pelican (Pelecanus occidentalis)

Flying Fish (Family Exocoetidae – There are 64 species in this family!)
Various smaller fish

Brown Booby (Sula leucogaster): Shown below.

This seabird landed on the mast of our ship one evening and hitched a ride through the night until the next evening. It was hunting the flying fish in the water as we cruised toward Southern Texas waters and I even observed it dive into the water after a fish!

Sea bird
Sea bird