Martin McClure: Reflections, August 29, 2023

NOAA Teacher at Sea

Martin McClure

NOAA Ship Oregon II

July 25– August 9, 2023

Mission: Shark/Red Snapper Bottom Longline Survey

Geographic Area of Cruise: Gulf of Mexico/Atlantic Ocean

Date: August 29, 2023

Latitude: 39° 9′ 0.6084” N

Longitude: 123° 12′ 28.0332” W

Air Temperature: 29.4° Celsius

Science and Technology Log

Sharks use many senses to hunt their prey. For long range hunting, they use smell and detecting pressure changes, similar to hearing. They are famous for having a keen sense of smell. Some studies conclude that they can, in theory, detect blood at 1 per 20 million parts in water. So, they clearly use smell to hunt. They also have a keen sense of “hearing.” They can detect some low frequency sounds, the kind made by injured fish, from a kilometer away.

a very close-up photo of the eye of a sandbar shark. around the eye, we can see tiny pores in the shark's skin - these are the ampullae of Lorenzini
The eye and amupullae of Lorenzini of a sandbar shark

As sharks get closer to their prey, they use their eyesight. While they see in black and white, they can see well unless it is nighttime or if the water is cloudy.

They also have a sense that humans do not. They have a lateral line along the side. This is a series of canals that helps them detect vibrations in the water.

As the shark closes in on the prey, sharks engage their ability to detect slight electrical impulses, electrosense. For this they use their ampullae of Lorenzini. These are pores on the skin that lead to canals filled with a conductive gel containing keratan sulphate. They can detect the electrical impulses that are given off by other fish. Some sharks use this sense to find fish that are hidden under sand on the ocean floor.

close-up view of a cross section of shark skin with pores (ampullae of Lorenzini) visible, revealing the keratan sulphate that fills them
Shark skin cross-section showing keratan sulphate and ampullae of Lorenzini

Sharks may use their sense of touch by bumping into a potential prey target. Finally, they might use their sense of taste to decide if their target is indeed food.

Personal Log

As I return to my own teaching position in a classroom, I continue to reflect back on how everyone on board NOAA Ship Oregon II took all of the volunteers under their wing to “show them the ropes,” and teach them more than they could have learned in any classroom. It was clear that the whole crew was proud and eager to share their own specialty with us. For me, I was poking my nose into every nook and cranny, looking for stories to include in my blog. I was always welcomed with a smile and regaled with great stories. Far too many to include in my blog. I was impressed with the detailed and patient answers to my basic questions. This included not only the professional NOAA scientists and crew but also the other volunteers on board as I was the only one on the science crew who was a novice in marine biology. So, thank you Josh, Cait, Hannah, Macie and John.

But I was not the only one to be tutored in the details of life on the ship. Trey Driggers spent many hours discussing shark science with the other volunteers. The NOAA Corps members joined in the hauls and shared their experiences with the other volunteers. Their friendliness, openness and supportive presence added a lot to the team. They shared their own career journeys and at least one of the volunteers is seriously considering joining the NOAA Corps. John Brule, a volunteer, was working on his dissertation on parasites. (I am a convert. Parasites are fascinating and well deserving of detailed scientific study.) He engaged with the other volunteers on wide ranging subjects and guided them on dissections.

John, at right, looks on as a volunteer leans over a dead shark on a table mid-dissection; the volunteer is grasping tools in each hand to lift up and extract the shark's gills for additional study
Doctoral candidate John Brule guides undergraduate volunteer in removal of shark gills

The fishing/deck crew readily discussed not only their jobs and experiences but also shared their knowledge of fish behavior and how weather conditions affect the likely catch.

dark storm clouds gather above the ocean at sunset
Storm clouds gathering over the ocean

In the end, of all the amazing things I experienced, my most enduring memories are of people sharing their love of their chosen field, reaching out to guide and teach the novices. It is really people, connecting to others, that makes an education impactful.

.

Germaine Thomas: Farewell to the Oscar Dyson and Summer, August 19, 2023

NOAA Teacher at Sea

Germaine Thomas (she/her)

Aboard NOAA Ship Oscar Dyson

August 7 – August 21, 2023

Mission: Acoustic Trawl Survey (Leg 3 of 3)
Geographic Area of Cruise: Pacific Ocean/ Gulf of Alaska
Date: Saturday, August 19, 2023

Weather Data
Lat 58.1 N, Lon 150.1 W
Sky condition: Partly Sunny
Wind Speed: 5.81 knots
Wind Direction: 346.98°
Air Temp: 12.91 °C

Science Log

The last trawl sample that the Oscar Dyson’s crew and scientist’s took was in deep water with a Methot net, named after Dr. Rick Methot, the NOAA scientist who developed it. This type of trawl net slows down the water as marine organisms tumble into it, so their delicate bodies are not crushed. The codend looks a lot like what you would see in a plankton tow, only it will catch a lot more organisms.

Micheal, wearing foul weather gear, yellow gloves, a hard hat, and a flotation jacket, stands on deck holding a net draped into a plastic bin. He turns his head to the side to look at the camera for a photo. Beyond, the sky is cloudy and the water is calm and gray.
Michal Levine as he removes the codend from the Methot trawl net

Sub-samples are taken from what the Methot catches. Some krill is preserved and sent back to NOAA in Seattle for identification and analysis. On board, the krill are weighed and counted. The krill and other organisms are small, so the tools used to sort them are designed for capturing and moving small organisms.

several strainers resting on a white table surface. two are rimmed circles with mesh centers. one is a standard kitchen strainer with a handle. we can also see a knife, a pencil, electrical tape, and a small torpedo-shaped device for measuring flow inside the net.
The tools used to sort krill
some krill (maybe 40, not thousands) displayed on a white surface
Krill

After the last krill was counted and weighed, the science team quickly jumped into action cleaning up the Fish Lab. Yes, I am including this in the science log, because cleanup is an important part of science that many high school students seem to forget.

view of cleaned equipment on the aft deck. Stacks of empty buckets, some suds still visible on the deck surface. a trawl net rests in a pile in the background.
Totes and baskets were scrubbed and then washed with a pressure hose

The crew had unreeled the trawl nets and were getting ready to ship them to Washington state.

trawl nets, orange and blue in color with ropes and buoys attached to them, sit in piles on deck beneath the large spools (now empty) where they had been mounted during the survey operations
Trawl nets neatly stacked on deck

Personal Blog

Being a Teacher at Sea on the Oscar Dyson was a fantastic way to end the summer for me. Shortly I will be heading back to Anchorage where high school has already started and students have already been to my class with a substitute teacher. I look forward to teaching school, but am so thankful for the opportunity to have this adventure.

It has been so wonderful working with the science team on this cruise. After so many unforeseen delays the objectives were met through team work and the organizational skills of the lead scientist Taina Honkalehto.

The people on this ship really enjoy working on the ocean. Whether it is captaining the boat, engineering, the mess, to programming echo sounders, identifying species of fish, weighing and sampling them, they all love what they do. They also really care about the work that they are doing, the health of the ocean, and they want to support the people working and living with it. Also, there is a unique brand of humor that comes with working together for extended periods of time at sea. You just have to laugh at strange fish that come aboard and wonder at the beautiful sunsets or northern lights.

On the bridge I found the ship’s communication flags. These flags are a way to communicate with other ships if the radios are not working or to hang on holidays with a message. When I was a kid back in Ketchikan, Alaska, I admired the flags so much I would draw cartoons with flag messages. So, to NOAA, the science team and the crew of the Oscar Dyson

Germaine, wearing her Teacher at Sea hat, holds up a flag with horizontal bars in red, white, blue, meaning "T"
T
Germaine, wearing her Teacher at Sea hat, holds up a flag with white on top and red on the bottom, meaning "H"
H
Germaine, wearing her Teacher at Sea hat, holds up a flag with white on top and blue on the bottom, and a notch in the blue, meaning "A"
A
Germaine, wearing her Teacher at Sea hat, holds up a flag with blue and white checkers, meaning "N"
N
Germaine, wearing her Teacher at Sea hat, holds up a flag with blue on top and yellow on the bottom, meaning "K"
K
Germaine, wearing her Teacher at Sea hat, holds up a white flag with a blue square in the middle, meaning "S"
S

May the seas lie smooth before you. May a gentle breeze forever fill your sails. May sunshine warm your face, and Kindness warm your soul. – An Irish Sailor’s Blessing