Anne Marie Wotkyns, July 10-11, 2010

NOAA Teacher at Sea
Anne Marie Wotkyns
Onboard NOAA Ship Pisces
July 7 – 13, 2010

NOAA Teacher at Sea: Anne Marie Wotkyns
NOAA Ship Pisces
Mission: Reef Fish Survey
Geographic Area: Gulf of Mexico
Date: Saturday July 10, Sunday, July 11, 2010
Latitude: Saturday 27⁰54.8057 N Sunday 27⁰51.098 N
Longitude: Saturday 093⁰18.2990 W Sunday 093⁰04.100 W

Weather Data from the Bridge

Air Temperature: Saturday 30.3⁰C Sunday 30.4⁰C
Water Temperature: Saturday 30.5⁰C Sunday 30.35⁰C
Wind: Saturday 2.55 knots Sunday 1 knot
Other Weather Features:
Saturday 62% humidity, cloud cover 20% Sunday 67% humidity, cloud cover 35%
Saturday Swell Height .2 meter Sunday .4 meter
Saturday Wave Height .05 meter Sunday .25meter

Science and Technology Log

Temperature Depth Recorder
Temperature Depth Recorder

Temperature Depth Recorder
Temperature Depth Recorder

There are several types of sensing equipment we have been using on this cruise. Each time we drop the camera array at a site attached to the array is a little device called a Temperature Depth Recorder or a TDR. As the camera array sinks to the bottom, the TDR records the temperature and depth. When the camera array is brought back on board the ship one of the scientists, or one of us teachers, unclips it and brings it into the lab. To get the information off you hit it once with a magnet that communicates with the chip inside telling it you want to download the information. Then you place a stylus on the device and it downloads the information to the computer. The data is saved under the name of the site and then the information is entered into a spreadsheet that converts the information from the psi(pounds per square inch) to meters of depth. To clear the TDR you hit it four times with the magnet and when it flashes red it is clear! Liz and I learned to do this the first day we did stations and we usually took turns entering the information. This was done 8 times on Saturday and 7 times on Sunday.

At every station, a CTD is also dropped into the water. A CTD (Conductivity Temperature Recorder) gives a hydrographic profile of the water column. The CTD is attached to the bottom of a rosette or carousel that also contains water sampling bottles. Attached to the rosette is a conductive wire that sends information to the lab. Mike, the survey technician, comes into the lab after every camera array is dropped and runs the CTD process. The CTD is placed in the water and allowed to acclimate for 3 minutes before they begin taking readings. The CTD is dropped to the bottom of the seafloor and then raised again. Mike monitors this from the dry lab. Once a week he uses the water bottles to take water samples. To take a sample he uses a remote from inside the dry lab to trigger the bottles at a given depth to close them. The CTD can also be programmed to close different bottles at different depths. It was very interesting to watch the EK60 echo sounder screen as the CTD lowered and raised.

Data from CTD
Data from CTD

CTD
CTD

Each morning, Chief Scientist Kevin goes through the video footage from the previous day. For each site he identifies what the bottom substrate was (“sandy flat bottom”, “coralline algal bottom”, “malacanthus mounds,” etc) and then he identifies briefly any fish that he sees. When he is doing this, he will call us over and explain how he can tell what the species is or what behavior a fish is exhibiting.

Video footage
Video footage

Video footage
Video footage

Saturday, we dropped the camera array at 8 different stations on Bright Bank sites. The two chevron fish traps brought up NO FISH! On the bandit reel we caught one fish. It was a sand tile fish, Malacanthus pulmieri, a “banana shaped” bottom dweller that lives in large rock-covered mounds. Wearing rubber gloves, I weighed and measured him quickly and then we threw him back alive. He was 494 mm (49.4 cm) long and weighed .550 kg. I’m not very comfortable touching the fish or the bait we’ve been using, so I was quite proud of myself!

Sand-tile fish
Sand-tile fish

Measuring
Measuring

Weighing
Weighing

Frustrated Kevin
Frustrated Kevin

That was the only fish we caught all day! Today was a little frustrating. It even got Kevin a little down!

Sunday brought our last day of work on the reef survey. The Pisces was on the north half of Geyer Bank, still off the coast of Louisiana. I was determined to fully participate in all aspects of the science, so I bravely donned my gloves and baited the bandit reel’s 10 hooks with chunks of mackerel. We were positive we would catch more fish today!

Baiting the bandit reel
Baiting the bandit reel


The camera cage came up with some interesting “hitchhikers” aboard. One was a round sponge, about the size of a softball. At first we thought it was a rock, but when I grabbed it, it was soft and squishy. Sponges are filter feeders which draw in water through many small , incurrent pores. Food and oxygen are filtered out and then exit through one or more larger excurrent openings.

In the fish lab, Kevin found a large cymothoid isopod, a crustacean that attaches to fish using its hook-like legs and scavenges food as the fish feeds. It reminded me of a cockroach more than a “rolly-polly”, the land isopod found in our gardens.

Cymothoid isopod
Round sponge

Cymothoid isopod
Cymothoid isopod

The day continued with seven camera drops, the bandit reel deployment, and two chevron fish traps. Despite positive thinking and Liz doing her “fish dance,” both fish traps came up empty. So the 2nd bandit reel was our last chance for fish. We were excited to see the “fishing pole” part of the reel bouncing up and down. It was reeled in and here’s what we caught!

Barracuda
Barracuda

Barracuda
Barracuda

It was a great barracuda, Sphyraena barracuda, 939 mm (93.9 cm) long and weighing 3.49 kg. Joey measured and weighed it, carefully avoiding its sharp teeth. He released the large predator and our last catch quickly swam away.

An interesting souvenir I will be taking home are some fish otoliths. Otoliths are fish earbones. Bony fish lay down layers of bone on their otoliths as they age, similar to the rings on a tree. Scientists use the otoliths to determine the age of a fish. Kevin collected the otoliths from a yellowedge grouper one of the crew caught and gave one each to Liz and I. Then he helped me remove the otoliths from a red porgy – quite a messy procedure, but very rewarding to cut open the skull and see the earbones!

Otoliths
Otoliths

In tomorrow’s log, I’ll share what we learned on our tour of the engine room, and about the different job opportunities on the ship.

Personal Log

Two nights ago, the ship’s captain (Commanding Officer Jerry Adams) had invited Liz and I up to the bridge to help “steer” the ship. He explained that we were driving a 52 million dollar vessel with 30 lives on board, so we were feeling pretty nervous! The Pisces was moving to the next day’s work area so the bridge crew would be driving all night. I got to steer first, my hands tightly gripping the wheel Captain Jerry and Ensign Kelly Schill explained how to drive and the proper language to use. When steering, you are following a set course using a gyroscopic compass as well as a digital heading read out. You are steering the rudder by degrees. The heading is stated in single digits so 173 would be one seven three.

We were sailing at night, so all the bridge lights were kept turned off to better see the lights of other boats and oil rigs. The bridge crew even had red flashlights so they wouldn’t ruin their night vision. Liz and I both got a chance to steer the ship in circles. I even did a Williamson turn, which is done when there is a man overboard. You turn 60⁰ in one direction and then turn the other direction so you are back on your reciprocal course to pick up the person who is overboard. While I was doing this, the ETA (estimated time of arrival to our next destination) display changed from “ 6:10 am” to “NEVER.” We both laughed pretty hard about that!

The Dynamic Positioning system (similar to an automatic pilot system) is called Betty. She can talk to the crew on the bridge and is reportedly extremely polite. I find is amazing how the ship can maintain such a steady course, with the computers adjusting for the constant changes in current, wind, and other factors which affect the ship’s steering. The DP also keeps the Pisces in one place when we are at a science station. The Captain promised to show us more about the DP on our next bridge visit. Everything on the bridge is electronic. You can click a button and see how much fresh water is on board, how much fuel, which engines are working and even wake someone up! The technology is truly amazing. I keep thinking about my grandfather who sailed in the Swedish Merchant Marines in the 1930’s. What would he have thought all this?

Where has Pascy the penguin been in the last 2 days? Check out his pictures!


Pascy helps me write my log entry out on the back deck at sunset!

Safety is very important! Pascy wears his hardhat whenever he works out on the deck with equipment.


On the lookout for other ships and oil rigs!


Pascy helps with the Pisces’ navigation. He’s double checking the computer’s course.


Pascy in the captain’s chair on the bridge.


Pascy at the helm of this $52 million dollar ship!

Elizabeth Warren, July 10, 2010

NOAA Teacher At Sea: Elizabeth Warren
Aboard NOAA Ship Pisces

Mission: Reef Fish Surveys
Geographical Area of Cruise: Gulf of Mexico
Date: July, 10 2010

Another day.. more and more

Footage from the Camera Array
Footage from the Camera Array

Weather Data from the Bridge:
Temperature: Water: 30.3 ℃ (which is 86.5℉ ) Air: 29.6 ℃
Wind: 2.55 knots
Swell: .2 meters
Location: 27. 51° N, 93.18° W
Weather: Sunny, Humidity 62%, 25% cloud cover

Science/Technology Log:

Chip from Temperature Depth Recorder
Chip from Temperature Depth Recorder

Each time we drop the camera array at a site attached to the aluminum case is a little device called a Temperature Depth Recorder or a TDR. It measures exactly that. As the camera array sinks to the bottom it records the temperature and depth. When the camera array is brought back on board the ship one of the scientists unclip it and bring it into the lab. To get the information off you hit it once with a magnet that communicates with the chip inside telling it you want to download the information. Then the scientist places a stylus on the device and it downloads the information to the computer. The data is saved under the name of the site and then the information is entered into a spreadsheet that converts the information to the psi to meters. To clear the TDR you hit it four times with the magnet and when it flashes red it is clear! This is a picture of Kevin explaining to Anne Marie and I how to work the TDR.

At every site a CTD is also dropped into the water. A CTD (Conductivity Temperature Recorder) gives a hydrographic (use your Greek roots) profile of the water column. The CTD is attached to the bottom of a rosette or carousel that also contains water sampling bottles. Attached to the rosette is also a conductive wire that sends information to the lab. Mike, the survey technician, comes into the lab after every camera array is dropped and runs the CTD process. The CTD is placed in the water and allowed to acclimate for 3 minutes before they begin taking readings. The CTD is dropped to the bottom of the seafloor and Mike monitors from the dry lab. Also, once a week Mike also uses the water bottles. To take a sample they use a remote from inside the dry lab to trigger the bottles to close them. The thing that kept sticking in my mind is that at one point all of this was done by hand, someone had to do the math and all of these tests!
CTD
CTD
Data from the CTD
Data from the CTD
In the morning Kevin goes through the video footage from the previous day and for each site he identifies what is on the bottom of the seafloor “sandy flat bottom”, “rock shelf” and then he identifies briefly any fish that he sees. When he is doing this process being in the lab is necessary because he will call us over anytime he sees a neat fish and explain how he can tell what the species is. Today, we dropped the camera array in 8 different sites within Bright Bank sites. The two chevron fish traps brought up a whole lot of nothing. On the bandit reel we caught one fish. It was a sand tile fish (Malacanthus pulmieri). Anne-Marie weighed and measured him and then we threw him back. I was really proud of her because she doesn’t really like fish, but she put gloves on and did everything! Today was a little frustrating it even got Kevin a little down.
Frustrated Kevin
Frustrated Kevin
Personal Log:
Chief Steward Jessie Stiggins
Chief Steward Jessie Stiggins
Kevin calls living on board being “lovingly incarcerated” beacuse you are stuck here but you are well taken care of. For instance, Ohhh, the food! The Chief Steward, Jessie Stiggins is keeping us well fed. Every morning the meals are posted in the mess for everyone to see. We learned from Captain Jerry that food on the ship is very important and is actually a part of the contract. In the contract it states that lunch and dinner must include a prepared dessert. “Plain cake shall not constitute a prepared dessert but a cake with icing shall.” We have had dessert with every meal! Some of the desserts are Coconut Crème Pie, French Silk Pie, White cake with fluffy whip-cream frosting and strawberries, cookies, and pecan pie to name a few. Plus there is a freezer full of ice cream which oddly enough I haven’t gotten into yet. Right now, I’m in seafood heaven… we have had halibut, calamari, and catfish. Throughout the trip it has just gotten more impressive! We’ve had stuffed chicken breasts, rack of lamb, filet mignon, lobster, a taco bar, the amberjack that Ryan caught, and pulled pork. Jessie is saving the menu’s for us so we can show them off when we get back.
Me piloting the ship
Me piloting the ship

A few nights ago, Captain Jerry let Anne Marie and I drive the ship. He explained that we were driving a 52 million dollar vessel with 30 lives on board, as if I wasn’t nervous already. We were moving to the next days work area so the bridge would be driving there all night. Anne Marie went first and I listened as Captain Jerry and Ensign Kelly Schill explained how to drive and the proper language. Everywhere you go on the ship there is certain etiquette for the way you talk and the way you dress. (No tank tops in the mess and closed toe shoes everywhere but your stateroom.) When you are steering you are following a set course with a gyroscopic compass as well as a digital heading reading, you are steering the rudder by degrees. You state the heading in single digits so 173 would be one seven three. We were driving in the dark so they had all the lights off and they even had red flashlights so they wouldn’t ruin their night vision. Anne Marie and I both got a chance to turn the ship in circles. Anne Marie even did a Williamson turn, which is done when there is a man overboard. You turn 60° to the left and then an equal amount to the other side so you are back on your course but turned around to pick up the person who is overboard. When she was doing this, the ETA to the next way point changed from 6:10 am to NEVER. We both laughed pretty hard! Dynamic Positioning system that is the automatic pilot is called Betty, she talks to the crew on the bridge and is extremely polite. The Captain promised to show us how to turn the DP on and off. Everything on the bridge is electronic. You can click a button and see how much fresh water is on board, how much fuel, which engines are working and even wake someone up! I’m consistently in awe of how much technology goes into running a ship of this magnitude. Tomorrow Chief Engineer Garett is giving us a tour of the engine room. In fact he told me he is going to make us espresso and then take us down! I’m really, really, having a great time!

The water here is so blue! It’s a different shade of blue than the Pacific or Puget Sound. It’s bluer than green that’s the difference, there is no green. Even the seaweed isn’t green it’s a brownish yellow color, it’s called sargassum. The exchange intern Jose used a line and a hook to catch some so I could bring it back to show off. Looking over the side you often spot giant fish swimming along because the visibility is so high. This made me think of a lot of questions to ask Kevin tomorrow: Are there algae/plankton blooms in the Gulf? If so where do they happen? Does the temperature vary depending on the time of year or is it always warm? What do hurricanes do to the sea creatures? Have you noticed a rise or fall after a hurricane?

Being on board a ship makes me feel like I’m 7 years old again and I don’t want to go to bed because I’m sure my parents are making me miss whatever fun thing they are doing at night. I don’t want to go to my stateroom, I wish I could be everywhere at once, on the bridge talking to the Captain and asking questions, listening to the stories of the crew, watching them fish, talking to the birders up on the flying deck, sitting in the lab and listening to the scientists joke or explain how to identify a fish or a coral or an algae. I wish I were able to be out here longer although, I have to say having a shorter cruise does make me appreciate every minute.

Anne Marie Wotkyns, July 9, 2010

NOAA Teacher at Sea
Anne Marie Wotkyns
Onboard NOAA Ship Pisces
July 7 – 13, 2010

NOAA Teacher at Sea: Anne Marie Wotkyns
NOAA Ship Pisces
Mission: Reef Fish Survey
Geographic Area: Gulf of Mexico
Date: Friday, July 9, 2010
Latitude: 27⁰51.20
Longitude: 91⁰48.60

Weather Data from the Bridge

Air Temperature: 29.6 ⁰ C
Water Temperature: 30.5⁰C
Wind: 2 knots
Other Weather Features:
70% humidity, approx. 30% cloud cover
Swell Height: .3 meter
Wave Height: .2 meter

Science and Technology Log

Friday started bright and early as we met in the dry lab on the Pisces to plan our day. Today would be the first day of work on the SEAMAP reef fish survey, the main purpose of our cruise.

The Southeast Area Monitoring and Assessment Program (SEAMAP) is a long term survey of offshore reef fish designed to provide an index of the relative abundance of fish species associated with topographic features such as banks and ledges located on the continental shelf of the Gulf of Mexico in the area from Brownsville, Texas to the Dry Tortugas, Florida. For this cruise, the sampling occurred off the coast of Louisiana.

The SEAMAP offshore reef fish survey began in 1992. Bathymetric mapping (as was conducted yesterday on the Pisces) provided scientists with contour maps of the ocean floor, then sampling sites measuring 10 nautical miles by 10 nautical miles (“blocks”) were selected in areas with known topographic features. Within each “block”, specific sampling sites are chosen randomly.

The main equipment used in the survey are 4 camera units housed in a special metal “cage”. Each camera unit holds two black and white still cameras and a digital video camera, for a total of 8 still cameras and 4 video cameras which download images to a 1ZTB GB hard drive. The camera pod is lowered to the bottom and left for 45 minutes. The cameras record for 25 minutes of bottom time. Each night the images and videos are downloaded onto another external hard drive, then later recorded onto blue ray discs. Scientists view the video to identify and count all fish observed.

Camera Array
Camera Array

Close up of they camera array
Close up of they camera array

Capturing video from camera Array
Capturing video from camera Array

During a sampling day, some sites are randomly chosen to collect fish for measurement and sampling. One method used is a chevron fish trap, a large wire cage which is baited with squid, lowered to the bottom, and left for 60 minutes. Another collection method is the bandit reel, which deploys a vertical line strung with 10 hooks baited with mackerel pieces. This line is lowered over the side until the bottom weight touches the substrate and left for 10 minutes, then reeled back in.

Chevron Trap
Bandit Reel

Bait
Bait

When fish are caught in the chevron trap or on the bandit reel, they are identified, measured, weighed, and gender is determined. Then if the fish is a species commercially or recreationally fished, it is frozen and returned to the NOAA National Seafood Inspection Lab to be available for further analysis.

Holding a Red Snapper
Holding a Red Snapper

Measuring a red snapper
Measuring a red snapper

So now that I’ve explained the science behind the reef fish survey, here’s a description of our first day assisting Chief Scientist Kevin Rademacher and Joey Salisbury, Field Party Watch Leader. Liz and I arrived in the dry lab (headquarters for the surveying and sampling activities) at 7:00 am, excited to begin working. The Pisces arrived at the first site and the camera array was lowered at 7:17 am (one hour after sunrise.) The camera “cage” was lowered using a hydraulic A-frame which extended over the starboard side of the ship. For the first “drop” we watched through windows from inside the lab, as well as on a video monitor. Then as the camera “soaked” for 45 minutes, the crew deployed a CTD (conductivity, temperature, and depth recorder.)More about the CTD in the next journal entry!

By the second site, or “station” we were outfitted with a hard hat and PFD (personal flotation device), required attire when working on deck. As the day went on, we learned to reset the cameras after each station, assist with fish collection and measurement, and enter data collected from the TDR (temperature-depth recorder) into the computer. Throughout the day, we followed a routine of

1) deploy cameras

2) deploy and retrieve CTD

3) on selected stations, move to second site and drop chevron fish trap

4) return to first site, retrieve cameras

5) on selected stations, use the bandit reel to deploy a vertical fishing line

We repeated this process for 7 stations.

No fish were caught in the chevron traps, however, fish were caught both times the bandit reel was used. Each reel station brought in a red snapper Lutjanus campechanus and a red porgy Pagrus pagrus. Liz measured and weighed the fish and Joey determined the sex of the fish. The snapper were frozen to be taken back to NOAA’s National Seafood Inspection Lab.

When there was no work to do on deck, we spent time reading fish identification books, learning about other aspects of the reef fish survey, visiting the bridge, checking in with the bird observers, and watching for dolphin or whales. On one break we took turns using a handline to fish off the side – I caught 2 blue runners, Caranx crysos and Liz caught one. We worked until approximately 7:15 pm. The cameras do not use any artificial light, so the work stopped as dusk fell. We’ll see what tomorrow’s stations bring!

Personal Log

After the first night’s rough seas, I was thrilled to wake up to calm seas on Friday, with the crew promising even smoother seas to come. I really enjoyed the variety of work we assisted with. We were initially disappointed after the first fish trap came up empty. After waiting for an hour while the trap soaked, then donning our hard hats and PFD’s, when the empty trap emerged from the dark depths, we compared it to being “all dressed up with no place to go!” But Kevin reminded us that “The hardest thing to learn about science is that ‘0’s are numbers too!”

I am somewhat “technologically challenged” so I was happily surprised how quickly I learned to log the TDR (temperature depth recorder) data. I was also happy that I remembered much of the physical oceanography I learned years ago.

Liz and I are becoming familiar with the ship-the lab and galley are on the main deck, our cabin is on the 01 deck, other cabins are on deck 02, the bridge is the 03 deck, and above the bridge is the 04 deck. And there are decks 2, 3, and 4 below the main deck, Each deck can be accessed by indoor or outdoor ladders (not stairs!) that are much steeper than your stairs at home. The interior doors are heavy and it’s hard to remember whether to push or pull, this has been a source of much amusement for us! The hatches (doors to outside decks) are very heavy and secured with a wheel that often takes two hands and a lot of muscle to open or close. And don’t forget to step up over the approximate 13” step. There are many reasons we only wear closed-toe shoes!

Hatch
Hatch

Opening hatch
Opening hatch

Ladder
Ladder

After we finished with our fish survey work, Liz and I went out to the back deck with our laptops to work on our journals. Some of the crew started fishing with fishing rods off the side of the ship. Within a few minutes they had caught a small mahi-mahi and a few other fish when one of the deck hands slowly started reeling in something big. Of course, our computers were put aside so we could watch as he slowly hauled in a 55+pound greater amberjack – it was huge!!!Lots of excitement and picture taking followed! Then he caught another one – just a bit smaller! Another rod brought in a large yellowedge grouper. I have never seen such large fish! It was very exciting to watch! We thought maybe since we didn’t catch much during the day, we saved our fishing “luck” for the evening! The fishing ended around 9:00 for the night as the ship needed to start moving to tomorrow’s location. We headed up to the bridge to take the CO up on his offer to steer the ship. More on this in the next journal entry!

55 lb greater amberjack
55 lb greater amberjack

Holding the amberjack
Holding the amberjack

Even Pascy the Penguin agreed this was one big fish!

amberjack and yellow-edge grouper
Amberjack and yellow-edge grouper

While I’ve been working with the science team, Pascy has been exploring the Pisces. Look at all the places he’s been!


This was the only thing we caught in the fish trap today!


This was the only thing we caught in the fish trap today! Pascy wants to ride on the block when they raise the large A-frame on the back deck.


In case of emergency, report to your life raft station!


Which flags are we flying today, Pascy?


I’m the KING OF THE WORLD!!

Elizabeth Warren, July 9, 2010

NOAA Teacher At Sea: Elizabeth Warren
Aboard NOAA Ship Pisces

Mission: Reef Fish Surveys
Geographical Area of Cruise: Gulf of Mexico
Date: July, 9 2010

Getting into it!

Sunset
Sunset

Weather Data from the Bridge:
Temperature: Water: 30.5℃ Air: 29.6 ℃
Wind: 2 knots
Swell: .3 meters
Location: 27. 51° N, 91.48° W
Weather: Sunny, Humidity 70%, light clouds

Science/Technology Log
Today we began the SEAMAP Reef Fish Survey.
A little background information: The surveying began in 1992 through now with a few years with no data in the middle where there wasn’t enough funding or boat time. The survey is conducted to show what types of species of fish live around the different types of topographical locations on the seafloor, specifically around the continental shelf (think about the sea floor as if it is a continent, there are mountain ranges, plains, banks, ledges, etc). The survey runs from Brownsville, TX to the Dry Tortuga’s, FL. Currently, I am on the second leg of the survey. The first leg was two and half weeks.

The areas that are surveyed are called blocks they are 10 by 10 nautical miles, these sites are selected randomly from previous bathymetric data, this is the mapping that we did yesterday. At each site an aluminum four stereo camera array and a Seabird 911 CTD is dropped, more information about this tomorrow. The camera pod, which NOAA actually makes in their lab, is composed of specially designed housing units that include two black and white still cameras that take pictures like you would blink your eyes, as well as a color mpeg camera that runs continuously.

Camera Array
Camera Array
Droping the Camera Array
Droping the Camera Array

Attached to the aluminum casing is a Temperature Depth Recorder (TDR), more about this later. At each site the pod is dropped over the side of the ship using a hydraulic side A-frame. The camera is left in the water for 45 minutes, once the camera is at the seafloor it begins to record. Throughout the day the cameras save their data to the 180 GB hard drive, all of the day’s drops are then downloaded onto an 2 TB external hard drive and burned to a blue ray disc during the night. This disc is briefly observed by the chief scientist and then later taken back to the onshore lab to identify and count all species of fish.

Chevron Trap
Chevron Trap

Also throughout the day, 4 sites are randomly chosen to drop either a bandit reel or a chevron fish trap. This random selection is done very scientifically. One scientist asks another to pull up a randomly created number table on the computer, the person at the computer wiggles the mouse and closes his eyes and then calls out one of the numbers that corresponds with the site numbers. A chevron fish trap which is a large wire cage is baited with squid, (Yes!) then left at the site to soak for an hour.

Dropping the Chevron Trap
Dropping the Chevron Trap
A bandit reel is a vertical line with ten evenly spaced hooks baited with mackerel. The line is lowered to the sea floor and soaked in for ten minutes. When these fish are brought on board they are weighed, measured, cataloged, and some are frozen to preserve for further research. On this survey groupers, trigger fish, and snapper are frozen and taken back for baseline testing by National Seafood Inspection Laboratory.

Today we were sampling at Sweet Bank. All together we dropped the camera at 7 different sites throughout this block. Science out at sea is 10 minutes of a lot of excitement followed by an hour of waiting. For the first site I observed from inside the lab, watching as they dropped the camera and brought it back up. The first site was early in the day so when they pulled the camera’s up they found that they couldn’t see anything because the light had not yet penetrated to the ocean floor. At the second site I had my first job, I was to go out after they pulled the camera, turn it off, then turn the other knob to configure then turn the camera back on. I was so nervous that I turned the second knob to configure then back to record! Oops!

Cowboys Hardhat
Cowboys Hardhat
We also dropped the first chevron trap of the day. While the trap was soaking we moved to the third site and dropped the camera. We went back to the fish trap to pick it up. When you go out and there are hydraulic A-frames working you have to wear a hard hat and aPDF (Personal Floatation Device).
Personal Flotation Device
Personal Flotation Device
Bob Carter, the electronics technician lent me his helmet. When Captain Jerry was on deck he took issue with the design on the helmet. Anne-Marie and I got all ready and watched as they pulled up an empty fish trap, something had eaten the bait but they escaped capture. We were all dressed up with no fish to go! When we went back in the labs Kevin explained to us that one of the hardest things to learn as a scientist is that zero is a number. Even though it was disappointing that the trap came up empty it did mean something to the data.
We moved on to pick up the camera at the fourth site. At the fourth site we also did a bandit reel. I have no problem getting a little dirty so I helped bait the bandit reel. You have to put the hook through the bait then turn it and pull the hook through again. I got pretty fishy! We waited with baited breath to see if what we could pull up. The crew pulled up the bandit reel and there were two enormous fish caught on the reel. One was red snapper (Lutjanus campechanus) and the other was a red porgy (Pagruspagrus).
Me with a red snapper and a red porgy
Me with a red snapper and a red porgy
We took the fish into the wet lab and measured them. There are three different ways to measure the fish. First you measure the total length which is to the end of the tail. Then you measure the forked length which is to the fork of the tail. Then you measure the standard length which is to the end of the hyplural plate at the end of the vertebrae. Then, the fish is weighed on a scale. All of this is done using the metric system. ( Ahh hah! There is a reason I teach the metric system of measurement! ) Lastly, Joey Salisbury, the watch leader for the scientist crew, checked to see what the sex of the two fish were. With the porgy he could cut him open and check the sex because he wasn’t being kept for Seafood Inspection, another way to tell the sex on some species that are dimorphic ordichromatic, is to look at the color of their lips . For the red snapper, since it had to be kept for inspection we were not able to tell what the sex was.
Dissecting fish in the wet lab
Dissecting fish in the wet lab
After some cajoling Joey also agreed to pull the otoliths (ear bones) of the porgy for me so I could bring them back to my class. You can tell the age of the fish from their ear bones, you stain them and count the rings just like you would for a tree.
Otolith
Otolith
 While all of this was happening on deck, in the lab the bathymetric mapping was noticing an odd mass, that was eating up everything and leaving behind blank space. Kevin decided to run an oil soaking rag down on the bandit reel to test if the mass was oil. Thankfully, when he pulled the rag back up it was oil free! We decided that the mass on the screen must have been a school of fish.
View of bathymetric mapping data
View of bathymetric mapping data
Dry lab
Dry lab
At each site we were able to do a little bit more of the science. I was able to weigh and measure the second set of fish from the last bandit reel. The fish were so heavy, and they move. I did squeal a little but I’m proud to say I did not scream! The spines on the snapper’s dorsal fin could poke holes in you, so I had to be careful when I picked her up. We could tell she was a female because when we pulled her up the change in pressure blew her air bladder and pushed her ovaries came out. (I know , I know, but remember this is in the realm of science so you all should be saying “how interesting” no ewws out there. )
Holding a Red Snapper
Holding a Red Snapper
Measuring a red snapper
Measuring a red snapper
Personal Log:
Where to start! Yesterday really felt like three days in one. All of the science is so interesting. I keep asking a billion questions and everyone is a hundred percent willing to answer every one. Their patience is greatly appreciated since for every answer they give me I come up with 50 more questions  to clarify their answers. They were also extraordinary patient when I made a mistake. I was so embarrassed and worried that I had somehow messed up the video feed! They assured me that I hadn’t messed it up, but for the rest of the day Joey, the watch leader, gave me a hard time about knobs, hatches, and doors. The hatches and doors are incredibly heavy so I have to stop and really pull whenever I go into any hallway, and closing the hatches requires me to have nothing in my hands. At one point during the day I got confused as to which way to turn the hatch, and the crew kept telling me to pull the wrong way.
Heavy doors
Heavy doors
Everyone jokes constantly and you have to go with the flow and be a quick. Attempting to come up with comebacks is keeping me on my toes. As most of you know I’m willing to get dirty so any job that dealt with touching things I’m all over it. Baiting the bandit reel and the chevron fish trap were gooey and squishy and I was covered in fish guts and squid parts by the end of the day. I couldn’t have been more thrilled to be smelly and gross! It was pretty funny that they put me in the Cowboys helmet, you know cause you know I watch so much football. Captain Jerry threatened to throw it overboard because he is a Saints fan. The first two days we were conserving water while we were in possible oil impacted waters; today we were given the go ahead to take what the captain called “rock star showers”. Boy, was I in need of one today, at the end of the day I even had a streak of grease up my leg!
The crew is hilarious! They are constantly working everywhere you go. I go down one passageway and they are mopping, another they are vacuuming, down the ladder well and I run into someone sweeping. Think about how important it is to keep the ship clean. As we were standing waiting for the bandit reel to come up one of the crew started to fish with a line and a hook right off the side of the boat.
Fishing off the side of the boat
Fishing off the side of the boat
We caught a mackerel
We caught a mackerel
When they threw the fish heads in from the cut up mackerel they caught a bunch of blue runners (Caranx crysos). I even managed to catch one! I was okay trying to kiss the fish..until he tried to kiss back!
Kissing a fish
Kissing a fish
At the end of the day, Anne Marie and I went out to the back deck to try and work on our logs but the crew was out their fishing. One of the crew, Ryan, caught a 55 lb greater amberjack (Seriola dumerili) and then turned around and caught another one that was just a little bit smaller! The big one was almost as long as I am tall! The Junior Officer Kurt caught a yellow-edge grouper, which Kevin pulled the otoliths out of for me and Anne-Marie. Every other minute another of the crew would catch another fish. I didn’t get much of my log done I was so distracted by the different fish they kept catching.
55 lb greater amberjack
55 lb greater amberjack
Yellow-edge grouper
Yellow-edge grouper
I’m leaving so much out, but I’ll include more in my next log.