Karolyn Braun, October 24, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 24, 2006

A pilot whale breeches the surface of the water.
A pilot whale breaches the surface of the water.

Plan of the Day 

Well it was a long early morning. I was awoken at 2 a.m. to prepare for the 300 CTD profile. By the time I was finished and all was said and done, it was time for the next one. We sailed by the TAO buoy and all looked well so we went ahead and conducted the CTD and deployed the AOML. My last CTD for the day was the 1230 profile at 2.5N/170W.  Eric from MBARI will be doing the evening one.  I walked on the treadmill for an hour then made a nice salad for lunch.  I honestly don’t eat this much on my own.  It’s easy to eat when every meal is made for you.  One can easily gain weight out here. I did some knot tying and rested a bit but did not want to nap, as I would not sleep tonight.  We saw another pod of Pilot whales off the port bow playing in the water. Snapped a few good photos.

Lets talk about whales shall we?  Whales are mammals, and there are five distinct groups of marine mammals: Pinnepeds, which include seals, sea lions, fur seals and walruses;  Sea Otters; Cetaceans containing whales, dolphins and porpoises; Sirenians which consist of dugongs and manatees; and Polar Bears.  So what does it mean to be a marine mammal?  Well like all mammals, they are warm-blooded, they have at least a few hairs on their bodies, and they nourish their young with milk.  These mammals are protected under the Marine Mammal Protection Act that was enacted in 1979, which made it illegal to “take” any marine mammal.  The term “take” includes harass, hunt, capture, collect, or kill, or attempt to do the same.  “Harass” denotes the act of pursuit, torment, or annoyance that has potential to disturb marine mammals.  In1994 it was amended to strengthen the definition of harass and included feeding.

Pilot whales have been hunted for many centuries, particularly by Japanese whalers.  In the mid-1980s the annual Japanese kill was about 2,300 animals.  This had decreased to about 400 per year by the 1990s. Killing by harpoon is still relatively common in the Lesser Antilles, Indonesia and Sri Lanka. Hundreds or perhaps thousands are killed each year in longline and gillnets.  However, due to poor record-keeping it is not known how many kills are made each year, and what the effect this has on the local population. Female pilot whales mature at 6 years of age and a length of about 3.5 m.  Males mature much later when 12 years old and 5 m in length.  Mature adult males, which are generally larger than females, can weigh as much as 3 tons.  At birth, calves weigh slightly over 200 lbs. They are born after a pregnancy of 16 months, and are weaned at around 20 months of age.

Pilot whales have strong social cohesiveness; it is rare to see a single individual.  Even when being driven ashore by whalers, they would stay together as a group.  Groups typically contain animals of both sexes and many different ages.  The males may compete for breeding privileges, forming a hierarchy that excludes smaller males.  Large assemblages may also be composed of smaller, close-knit groups, which are stable over time.  Pilot whales are some of the noisiest whales in the ocean. Their group structure requires social communication, and they orient to prey objects by echolocation.  Vocalizations include a wide variety of whistles and clicks.

Karolyn Braun, October 22, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 22, 2006

The crew of the KA’IMIMOANA conduct an abandon-ship drill.
The crew conduct an abandon-ship drill.

Science and Technology Log 

We are still a little behind schedule this morning.  We’re preparing the next TAO buoy for deployment later on in the week, and I’m getting ready for my busy schedule of CTD profiles. After our 930 CTD was up and secure on deck, we had an abandon-ship drill.  Those are always fun. Mike and Joe, the ET guys instructed us on the use of the emergency VHF radio, the EPIRB, Emergency Position Indicating Radio Beacons the PEPIRB, Personal Emergency Position Indicating Radio Beacons and the SARTS, Search and Rescue Transponder System.  Our drill was over in time to enjoy a nice lunch, after which we were back outside getting ready to clean one of the lockers when we had a scenario fire drill.  The scenario was that a fire broke out in the paint locker.  We all had to report to muster to be accounted for.  Once we did that, I assisted by bringing out the hose to the grated deck and made sure certain vents were closed.  The drill was definitely adrenaline pumping, but I am glad we haven’t had a real one onboard.

After the drill was said and done, I had to conduct a CTD profile.  It was supposed to be short and sweet but turned out to be a little longer than expected due to something wrong with the winch speed and another fuse blowing.  I don’t think the computer likes me.   The CTD was finally finished and we steamed off towards the next buoy to conduct a dive operation to repair some fittings on the TAO buoy.  I got in a work out and a nap before my late CTD at 2300.  What a day.

Karolyn Braun, October 20, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 20, 2006

TAS Braun contacts the winch to bring up the CTD carousel.
TAS Braun contacts the winch to bring up the CTD carousel.

Plan of the Day 

Well after a long and fun-filled three-day transit we arrived safely at our new longitude line, 170W, to follow.  The ship was buzzing early with preparations to retrieve the TAO buoy. Mother ocean is VERY calm with a small swell but smooth as velvet.  Why is that you ask? Well, the winds cause waves on the surface of the ocean (and on lakes).  The wind transfers some of its energy to the water, through friction between the air molecules and the water molecules. Stronger winds (like storm surges) cause larger waves.  You can make your own miniature waves by blowing across the surface of a pan of water.

Waves of water do not move horizontally, they only move up and down (a wave does not represent a flow of water).  You can see a demonstration of this by watching a floating buoy or a bird bob up and down with a wave; it does not, however, move horizontally with the wave. So the lack of waves makes things easier on the boat but tough on the fantail spooling, as there is little breeze to keep cool. By 800 the buoy was secured and the spooling fun begun. We finished spooling the line and prepped for the deployment just as lunch was beginning. Perfect timing.  After a full belly and some much needed rest indoors we deployed the “Samoan Legend” buoy and spent the next three and half hours releasing the line before dropping anchor.  We finished conducting a 3000m CTD and released an ARGO when Mr. Moon greeted us.  Another wonderful day in paradise…Good night!

Karolyn Braun, October 19, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 19, 2006

TAS Braun displays her creative buoy artwork.
TAS Braun displays her creative buoy artwork.

Plan of the Day 

Paint designs on TAO buoys; Go for a swim in the “pool”

Today was our last day of transit before we arrived at our destination of 8S/170W. After breakfast I got my paints out and spent literally all day painting the three buoys we will be deploying in the next few weeks. I enjoyed myself.  I created an Aloha Buoy with plumeria flowers; a Samoan Buoy with a Samoan designed fish, turtle, shark, ray and an island scene; and my third one is of a fisherman trying to lure an octopus with a lure made of a large cowry shell that resembles a rat (isumu). The Samoan legend about the octopus (fe’e) and the rat comes into the picture.

TAS Braun relaxes in the KA’IMIMOANA’s “pool.”
TAS Braun relaxes in the KA’IMIMOANA’s “pool.”

Gather round, story time: It all started with a sightseeing canoe trip on the ocean by an owl, a snail and a rat.  Their canoe started to sink, so the owl escaped by flying away, the snail sank with the canoe to the bottom of the ocean (goto uga), and the rat tried to swim to shore but he had a long way to go. He saw an octopus and called for help.  The octopus agreed and swam to shore with the rat on his head. When they got to shore, the rat jumped off and thanked the octopus for saving his life and said that he left a little present on the octopus’s head.  When the octopus realized that there was a rat dropping on his head, he became extremely angry and told the rat, “If I ever see you again, I’ll kill you.”  To this day, the octopus is mad about this and is still looking for the rat.  Whenever a fisherman uses this rat shape lure he is sure to bring an octopus home.

After my lunch break I went to relax in our ‘pool’ on the bow before returning to finish up the painting. It was fun and everyone seemed to get a laugh at my paintings.  I was exhausted by the end of the day but it was worth it.  Tomorrow starts another busy week with buoy ops, CTD’s, late nights and early mornings so I am enjoying the slow pace. OK this is enough for the day.  Till tomorrow.

Karolyn Braun, October 18, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 18, 2006

TAS Braun using the Fluorometer to test CTD water samples.
TAS Braun using the Fluorometer to test CTD water samples.

Plan of the Day 

Transit; TAO buoy painting; Testing CTD samples using the Fluorometer

Woke up at 5am to get a head start on the painting. I’d rather work in the morning before the sun comes up.  I finished painting the white strips before breakfast so the crew could flip the buoys over to paint the red on the bottoms before the end of the day. I spent most of my day in front of the Fluorometer testing the CTD water samples.

Ok Learning time: To calculate chlorophyll you need to use the following equation: Chl (ug 1 ) = F*Ve((Fo-Fa)/S)Vf Where F = fluorometer calibration factor

Fo = total fluorescence

Fa = Fluorescence after acid

Ve = extract volume (acetone extract; 10ml)

Vf = filtration volume (volume of filtered seawater in liters; 0.528L

S = sensitivity To obtain Fo we need to fill the cuvette, a test tube-like glass beaker, and place into the Fluorometer.  Record data. Then add 3 drops of 10% HCL to cuvette while still in the fluorometer.  Re-read the fluorescence at the same sensitivity setting.  Record data. Making sure in between samples the cuvette is cleaned with acetone. In completing the equation, we discovered that out here most of the chlorophyll is deeper than in most places.  Let’s get to the basics. The ocean can be divided into five broad zones according to how far down sunlight penetrates:

  • The epipelagic, or sunlit, zone: the top layer of the ocean where enough sunlight penetrates for plants to carry on photosynthesis.
  • The mesopelagic, or twilight, zone: a dim zone where some light penetrates, but not enough for plants to grow.
  • The bathypelagic, or midnight, zone: the deep ocean layer where no light penetrates.
  • The abyssal zone: the pitch-black bottom layer of the ocean; the water here is almost freezing and its pressure is immense.
  • The hadal zone: the waters found in the ocean’s deepest trenches.

Plants are found where there is enough light for photosynthesis; however, animals are found at all depths of the oceans though their numbers are greater near the surface where food is plentiful.  So why is more chlorophyll found deeper the further you travel away from the equator?  Well my hypothesis is because all the nutrients are found in the deep cold layers of the midnight zone.  Near the equator and near coastlines upwelling occurs so the nutrients are brought up to the sunlit zone. As you go further away from the equator less and less upwelling occurs so the phytoplankton is unable to thrive in this sunlit zone. The phytoplankton will grow deep enough in the twilight zone to obtain the nutrients, yet shallow enough where photosynthesis can occur.  I also think that like land plants, too much sun can reduce the growth of the phytoplankton.

Chlorophyll fluorescence is often reduced in algae experiencing adverse conditions such as stressful temperature, nutrient deficiency, and polluting agents.  Phytoplankton photosynthetic efficiency is one of the biological signals that rapidly reacts to changes in nutrient availability as well as naturally occurring or anthropogenically introduced toxins (contaminants).  The results can be used as an indicator of system wide change or health.  I finally finished the samples around 3 p.m. Got in a work out, watched a movie and was off to bed but not before we retarded our clocks 1 hour.  We are now entering my normal time zone.  So close to American Samoa yet so far away•

Karolyn Braun, October 17, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 17, 2006

TAS Braun paints one of the TAO buoys to ready it for deployment.
TAS Braun paints one of the TAO buoys to ready it for deployment.

Science and Technology Log 

Plan of the Day: Transit TAO buoy painting

Today started our first of a three-day transit to latitude 170W.  In the morning I did some knot tying and research on the theory of active fluorescence.  I will be assisting Eric from the Monterey Bay Aquarium on testing the water samples we have been collecting from the past CTDs using an Active Fluorometer.  Active fluorescence methods utilize the relationship between chlorophyll fluorescence and photosynthesis.  I will go into more detail tomorrow.

I painted the TAO buoys in the afternoon to get them ready for deployment on our next line. I was able to paint all the orange before the rain came but will have to paint the white tomorrow.  The weather couldn’t figure out what it wanted to do.  One minute the sun was blazing hot the next it was overcast the next raining then back to the sun again.  I drank a lot of water but felt really dehydrated, so no work out today.  I am going to drink plenty of water and go to bed early.

Karolyn Braun, October 16, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 16, 2006

Junior Officer Phoebe Woodward and TAS Karolyn Braun show off their ARGO tattoos by the ARGO floats before deployment.
Junior Officer Phoebe Woodward and TAS Karolyn Braun show off their ARGO tattoos by the ARGO floats before deployment.

Science and Technology Log 

Well my morning started with a cloudy sunrise, which quickly turned to a nice rain shower. With very low visibility, the winds and waves picked up again, so the ship was pitching and rolling. More learning: Pitching is where the bow and stern move up and down, and rolling is where the vessel will move from one side to another.

While in transit I practiced my knot tying with Jeff and Chris, two of the deck crew, and Carrie, one of the cooks let me borrow her handbook of knots. I am learning!  We had an on-time arrival to the TAO buoy at 8S/155W. The RHIB was sent out to retrieve it; it was secured on deck and lines were spooled in. We were able to take a half dinner break and then it was back to work. The new buoy was deployed into the water and the lines were fed out. We worked until about 7:15 then conducted a CTD and deployed our ARGO float. I even got a workout in. All in a days work.  

Karolyn Braun, October 15, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 15, 2006

TAS, Karolyn Braun enjoying the fresh air
TAS, Karolyn Braun enjoying the fresh air before deploying a drifter buoy

Plan of the Day 

Well today I woke up at 5 a.m. to watch the sunrise as we sailed past Malden Island. It was only two miles away…Beautiful.  We were so close I could see the waves breaking on its sandy beaches. From doing some research, and thanks to the Chief Scientist, I found that Malden was formerly known as Independence Island. It is a low, arid, uninhabited island in the central Pacific Ocean, about 39 km² in area.  It is one of the Line Islands belonging to Republic of Kiribati. The island is chiefly notable for its “mysterious” prehistoric ruins (of Polynesian origin), its once-extensive deposits of phosphatic guano (exploited by Australian interests from c. 1860-1927), its use as the site of the first British H-bomb tests (Operation Grapple, 1957), and its importance as a protected area for breeding seabirds.

At the time of its discovery, Malden was found to be unoccupied, but the remains of ruined temples and other structures indicated that the island had at one time been inhabited. At various times these remains have been speculatively attributed to “wrecked seamen”, “the buccaneers”, “the South American Incas”, “early Chinese navigators”, etc.  In 1924 the Malden ruins were examined by an archaeologist from the Bishop Museum in Honolulu, K.P. Emory, who concluded that they were the creation of a small Polynesian population, which had resided there for perhaps several generations some centuries earlier.

Screen shot 2013-04-05 at 11.30.41 PMMalden was reserved as a wildlife sanctuary and closed area, officially designated the Malden Island Wildlife Sanctuary, on 29 May 1975, under the 1975 Wildlife Conservation Ordinance. The principal purpose of this reservation was to protect the large breeding populations of seabirds. The Wildlife Conservation Unit of the Ministry of Line and Phoenix Islands Development, headquartered on Kiritimati, administers the sanctuary. There is no resident staff at Malden, and the occasional visits by foreign yachtsmen and fishermen cannot be monitored from Kiritimati.  A fire in 1977, possibly caused by visitors, threatened breeding seabirds, and this remains a potential threat, particularly during periods of drought.  There were 4 small buildings and some telephone poles visible but all looked very desolate.

The ship stopped, we conducted a CTD and were off for our next TAO buoy about five hours away. The winds picked up, so consequently the seas have picked up as well, so we are not traveling as fast—only about 10 knots.  We are leaving the doldrums and entering the trade winds.  Let me explain some. The Earth is a spinning globe where a point at the equator is traveling at around 1100 km/hour, but a point at the poles is not moved by the rotation.  This fact means that projectiles moving across the Earth’s surface are subject to Coriolis forces that cause apparent deflection of the motion.

Since winds are just molecules of air, they are also subject to Coriolis forces.  Winds are basically driven by Solar heating. Solar heating on the Earth has the effect of producing three major convection zones in each hemisphere.  If solar heating were the only thing influencing the weather, we would then expect the prevailing winds along the Earth’s surface to be either from the North or the South, depending on the latitude. However, the Coriolis force deflects these wind flows to the right in the Northern hemisphere and to the left in the Southern hemisphere.  This produces the prevailing surface winds (See figure).

The doldrums occur at the equator as the winds from the N.E. trade winds and the S.E. trade winds cancel each other out and everything becomes calm. Ok enough of the science for now. After we did a TAO visit, a CTD was conducted and I threw in my second Adopt-a-Drifter Buoy. I ended up taking a nap after all was said and done.  With the swell getting bigger, so was my upset stomach.  I woke up in time for dinner but didn’t eat much.  I did some schoolwork and was off to bed.  I am hoping tomorrow is better.

Karolyn Braun, October 14, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

The sun setting on the southern Pacific Ocean.
The sun setting on the southern Pacific Ocean.

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 14, 2006

Plan of the Day 

Today has been a day of much needed rest. I awoke at midnight to conduct the 1 a.m. CTD profile, which went extremely well.  Once my head hit the pillow I was out, awaking around 8 a.m.  I checked my email and tried to read some but fell asleep and woke-up around 11a.m.  I went outside to see if any help was needed and they told me not to worry about it so I decided to complete some schoolwork that needed to be done. I felt like I was at the office without my students.  I miss them a lot; they definitely make my life interesting.  I have been getting several emails from them, which make my day.  I ended my evening with a CTD profile and I was off to bed.

Karolyn Braun, October 13, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 13, 2006

KA’IMIMOANA crewmembers make repairs to a TAO buoy.
KA’IMIMOANA crewmembers make repairs to a TAO buoy.

Science and Technology Log 

Well, last night I had conducted the 9:30 p.m. CTD profile solo.  Everything was running smoothly, I remembered all the steps, and the CTD was in the water.  The winchman was waiting for directions, and then we saw ERROR, ERROR, and the computers froze…. AAHHH! But I remained calm and called the Chief Scientist out of bed who called the Chief Electronic Technician (CET). By the time the CET arrived the XO (Executive Office) Robert, was in the lab as well. Come to find out, a fuse had blown. But the CET changed the fuse, and I completed the CTD profile.  Before I knew it, it was 11 p.m.

I awoke to the Bridge calling me for my 5 a.m. wake-up call to conduct the 1.5N/155W CTD profile. This cast went like clockwork.  I was even ahead of schedule.  I know it’s silly, but I am really excited to sail over the equator.  It’s something I have always wanted to do. I have done it by plane many times, but it’s a lot different sailing over it.

I was asked if I wanted to go on the TAO buoy repair.  So of course I said YES! A chance to get off the ship and cruise in the RHIB boat to climb on a TAO buoy in the middle of know where—who would pass that up? It was a beautiful day and while waiting for my time to assist with the repair, I saw sharks and tons of fish.  Absolutely beautiful! Also while waiting, Jeff, a GVA, or general vessel assistant, taught me how to tie a bowling knot and a Tug bowling knot. Not as easy as it looks, but Jeff made it easy to learn. After the repair, I had some lunch and got in a work out in time for the .5S/155W CTD cast. Everyday is such a blessing out here.

Karolyn Braun, October 12, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 12, 2006

TAS Braun assists in recovering spools of line for a buoy.
TAS Braun assists in recovering spools of line for a buoy.

Science and Technology Log 

What a fabulous night sky! More stars than expected and the ocean is flat and smooth, a small swell of 2ft. Well I didn’t attend the 1 a.m. CTD, but I did do the 5 a.m. CTD profile. I was half asleep; I completed the preparation, the cast and the recovery with no worries, but forgot some steps, so I am thankful that the Chief Scientist was awake to remind me.  A BIG Fa’afetai Lava (“Thank you” in Samoan) to you Patrick.  After the CTD we ate breakfast; I have never had such an assortment of food for breakfast since college, only here the food is better! Hats off to our two cooks, Carrie and Don.  They are in the kitchen all day to provide the crew with balanced and healthy meals.

We arrived at the TAO buoy around 9 a.m. and sent a team out on the RHIB to connect to the buoy and drag it to the stern (back of the ship).  The sun was out, there was very little cloud cover and the ocean was still very calm.  It was beautiful enough just watching over the side of the ship, but while they were bringing it in we saw whales off in the distance. The buoy was recovered, and all hands were back onboard so the spooling began (see photo). Before anything else could happen, we had a man-overboard drill.  I definitely feel safe on the ship as the crew is prepared for anything in a moment’s notice!

After 8 spools of line were recovered, the new buoy could then be set up and released.  If a line needed repairing, it got spliced together; if not, the 8 spools got reconnected and fed into the ocean. At the end of the last line, a huge anchor was attached, and it sank into the ocean to finish the job (around 5 p.m.).  A CTD was completed and everyone was pretty exhausted and ready for a shower and good meal and sleep—not necessarily in that order.

Karolyn Braun, October 11, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 11, 2006

TAS Braun holds up the catch of the day, a mahi mahi!
TAS Braun holds up the catch of the day, a mahi mahi!

Science and Technology Log 

Today has been a busy and exciting one. Last night’s CTD I did on my own but with Tonya, the Chief Survey Tech looking over my shoulder to see if I made any mistakes.  This morning I was on my own—an excellent cast and recovery (if I do say so myself) with no problems occurring. Once the CTD was secure, we prepared the ARGO buoy, which was deployed by slowly lowering it into the water. After the bottom filled with water, we disconnected it from the line and away it went., By the time the AOML buoy was deployed, the CTD cast was finished and the water samples for the chlorophyll project were complete, it was breakfast time.  After having some oatmeal, I tried to nap but it was such a glorious morning I couldn’t bear to be inside.  I stood staring out into what seems like a never-ending ocean thinking how fortunate I am to have been chosen for this program—not only for the experiences I have had already or for the knowledge I am going to go home with, but also for the amazing people I have been able to get to know who work on this vessel day in and day out to ensure all projects run smoothly.

At 11:00 we were preparing for a visit to the TAO buoy at 5N/155W. This buoy did not need to be recovered as it was still in excellent working order.  The Chief Scientist, Patrick, viewed the buoy and no repairs were needed either.  While the boat was sailing around the buoy at a slow pace, some of us tried our hands at fishing off the back for some dinner.  We caught a nice Mahi Mahi…YUM!  The CTD was just about to begin so all lines had to come in and it was down to business.  The CTD went effortlessly, and after that, I deployed my first AOML buoy.  The Marine Science Program at the American Samoa Community College has adopted three Adopt-a-Drifter buoys with this program.  Very exciting!

After all the excitement I got in a nice workout and a much needed shower.  After dinner tonight we have another CTD and the fun will be over until tomorrow morning.

Karolyn Braun, October 10, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 10, 2006

TAS Braun displays what the pressure of water will do to Styrofoam cups!
TAS Braun displays what the pressure of water will do to Styrofoam cups!

Science and Technology Log 
Plan for the day
1:00 Deep CTD 8N/155W
7:30 Early Ops Retrieve and Deploy TAO buoy
23:00 CTD 7N/155W

It has been a rainy, cloudy morning. The swells have been the largest I have seen since the cruise started, so we have been really lucky. It wasn’t due to these waves that I couldn’t sleep, but for fear I wouldn’t wake up in time for the 1 a.m. CTD cast. When preparing the CTD frame and cylinders, I placed a mesh bag with about 25-styrofoam cups in it.  I wrote my students’ names on them and will present them when I make my presentation to my students and colleagues at the American Samoa Community College about my trip.  We were able to go down only to 3000m, as we needed to make up for lost time with the last CTD cast.  But it still made a BIG difference to the Styrofoam cups.  We finished up with the cast around 5 a.m. and took a small nap as the first buoy retrieval and deployment was at 7:30.

The deck crew and scientists work as a team to recover the TAO buoy and place it on deck. After the buoy is secure, the two-mile of line is spooled in which takes a LONG time.  The rain has finally developed into a light drizzle.  This allowed me to go on deck and take a few photos. My mission was to watch and learn from this recovery and deployment so that for the next one I can help where needed.  The new TAO buoy was deployed into the ocean and the two-mile line and anchor followed.  This whole process took up the morning and most of the afternoon.  I ended up helping out with the spooling lines preparation for the deployment.  I am not one to sit around and watch.  Next up, a CTD cast tonight. YIPEE!

Karolyn Braun, October 9, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 9, 2006

TAS Braun helps to cast the CTD off the deck of the KA’IMIMOANA.
TAS Braun helps to cast the CTD off the deck of the KA’IMIMOANA.

Science and Technology Log 

Plan for the day:
2:00 CTD 11N/155.5W
9:30 CTD 10N/155.5W
17:30 CTD 9N/155.5W

A beautiful morning: partly cloudy, calm waters and a wonderful 83 degrees. The day started out busy: laundry, breakfast, getting ready for the 9:30 a.m. CTD cast.  After watching the CTD yesterday and going over the commands, I felt confident to cast the CTD; however, we conducted several practice runs before we actually cast the CTD. That definitely was reassuring as I was new, and so was the crane operator. The CTD was launched successfully—next stop 1000 meters. I helped set up the computers to fire the 24-containers at various depths, from 1000m to surface, and collect salinity, conductivity and temperature readings from the brain of the CTD. After the CTD reached the surface, we secured the CTD back on deck and proceeded to collect water for chlorophyll sampling.

As we were collecting the water, we had a man overboard drill.  That was very unexpected but exciting to watch the crew of the ship work so well together. My afternoon was spent filling 20 five-gallon containers with seawater for use in a chemistry lab off island. Currently I have some down time before the next CTD in a few hours.  I am going to work out in the gym for a bit and get my Styrofoam cups ready for the 4000m CTD cast.

Karolyn Braun, October 8, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 8, 2006

During an orientation, TAS Braun and part of the crew of the KA’IMIMOANA are lowered into the ocean in a RHIB.
During an orientation, TAS Braun and part of the crew of the KA’IMIMOANA are lowered into the ocean in a RHIB.

Science and Technology Log 

Sunday is no day for rest on a ship. The day started out slow. I attended the science meeting where I learned where everyone was from and what projects I will be working on.  The CTD casts will be conducted at each mooring site between 08-degreesN and 08  degrees S. The Monterey Bay Aquarium Research Institute (MBARI) is conducting Chlorophyll and nutrient sampling.  They are using the water obtained in the canisters from the CTD.  The Global Drifter Center at NOAA requests deployment of the Atlantic Oceanographic and Meteorological Laboratory (AOML) Surface Drifters on an ancillary basis.  I am lucky enough to be participating in the Adopt-A-Drifter Program in which my students will be able to follow several buoys to plot which current they are in and where they are positioned.  I will have an update on this when I deploy my first one.  Very excited!  In addition, The Pacific Marine Environmental Laboratory (PMEL) will be deploying Argo profiling CTD Floats.  These conduct similar experiments to the CTD on board.  However, these floats are individual canisters that send the information they collect to satellites.  The ship has no further obligation to the CTD float.

I worked out for an hour and then we had a RHIB (Rigid Hull Inflatable Boat) orientation for when we go out and fix TAO buoys.  This was followed by a CTD cast orientation to get ready for the first CTD that evening.  It was a 1000m depth cast with various cylinders capturing water at various depths from 1000 to surface.  Once the CTD was safely on deck and everything secure, I was able to collect water samples for chlorophyll testing. The water needed for chlorophyll testing was at depths of 200m, 150m, 100m, 80m, 60m, 40m, 20m, 10m and at the surface.  I used small filters and a vacuum funnel to have the allotted amount of water flow over the filter.  Once this was finished the filter was placed in a separate tube with 10ml of acetone for use at a later date.  Stay tuned to find out more!

 

Karolyn Braun, October 7, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 7, 2006

NOAA Ship KA’IMIMOANA docked in Honolulu.
NOAA Ship KA’IMIMOANA docked in Honolulu.

Monday, October 2, 2006 – Wednesday, October 4, 2006 

After a long red-eye flight from American Samoa, NOAA Officer Rebecca Waddington greeted me at the Honolulu International Airport.  As the sun came up, we drove to pier 45. As I made my way onto the ship, I was introduced to the crew: The NOAA officers, the deck crew, the engineer crew, the scientists, and the doctor. The next few days were filled with walking around Honolulu and getting used to ship life.

Thursday, October 5, 2006 

The sun was just above the horizon and already the KA’IMIMOANA was buzzing with movement as the crew was getting ready for an on-time departure. The horn sounded as we sailed out of the harbor. The plan of the day was to conduct a helicopter emergency drill and then return to the fueling dock for a six-hour fueling session. Half way through with fueling, we were informed that our departure was going to be delayed till Friday morning due to some electrical difficultly with the alarm systems.

A helicopter emergency drill.
A helicopter emergency drill.

Friday, October 6, 2006 

All systems were go as we headed out of the fueling harbor at noon. The ocean was calm but there was an uneasiness in some of the crew as it is believed to bad luck to sail on a Friday.

All new hands onboard attended a safety lecture where we learned what to do in case of: man-overboard, fire and collision, or abandoned ship emergency.  A while later an abandoned ship drill was conducted. All hands had to grab their assigned gear and meet at their designated safety boat. Our “gumby suits” had to be put on and whistles checked, after which we were able to dress down without PFDs (Personal Floatation Device) on to await further instructions. As the sunset an amazing full moon rose to fill the night sky. What a wonderful night!

Saturday, October 7, 2006 

The morning started with my assisting one of the researchers with fixing a CTD.  The Conductivity, Temperature & Depth instrument measures the conductivity and temperature of water, which will assist in obtaining the amount of salinity.  Using the salinity and the temperature, the density of the water can be determined.  In turn, knowing the densities of the ocean, scientists can determine currents.  The main CTD instrument is surrounded by 14 or so Niskin Bottles.  These bottles collect water at a certain depth to be used in a variety of other tests on ship or on land. All new hands onboard watched a “HAZMAT: Your Right to Know” video and then the ship’s familiarization video. That afternoon we had a fire drill. All scientists meet in the galley unless the fire is in the galley, and then we meet on the boat deck and act as runners for the ship’s crew; if any vents need to be closed or boundaries need to be checked, it’s all part of a team.

NOAA Teacher at Sea, Karolyn Braun, tries on her “gumby suit.”
NOAA Teacher at Sea, Karolyn Braun, tries on her “Gumby suit.”
Dr. Braun assists in repairing a CTD instrument.
Dr. Braun assists in repairing a CTD instrument.

Nancy Lewis, September 26, 2003

Nancy Lewis
Onboard NOAA Ship Ka’imimoana
September 15 – 27, 2003

Mission: Tropical Atmosphere Ocean (TAO)/TRITON
Geographical Area: Western Pacific
Date: September 26, 2003

Transit to Honolulu, HI

0700:  Wog Breakfast

Sunday night arrival at Hotel pier, Pearl Harbor

Monday morning:  clear Customs/Immigrations/Agriculture

Refuel, then depart approximately 1500 for Snug Harbor

Weather Observation Log:  0100

Latitude:  14 degrees, 54.7’ N
Longitude:  149 degrees, 22.4’ W
Visibility:  12 nautical miles
Wind direction:  090 degrees
Wind speed:  10 knots
Sea wave height:  3-4 feet
Swell wave height:  5-7 feet
Sea water temperature:  28.0 degrees C
Sea level pressure:  1012.7 mb
Dry bulb pressure:  27.8 degrees C
Wet bulb pressure:  24.9 degrees C
Cloud cover:  6/8 Cumulus, strato-cumulus

Science and Technology Log

Last night I was able to interview the Chief Scientist on board the KA, Patrick Ahearn.  Patrick’s responsibilities include assembling and disassembling the buoy components, working with the Captain to map out the buoy operations each day, and also overseeing all the other science projects that are being done on board the KA.

I have received several e-mail questions from students about whether or not they ever put out new buoys.  Research and developments is always going on with the TAO/Triton program. Patrick talked about several experimental instruments that were used for the first time on this cruise.  A new buoy was deployed (parallel with the one at 5 degrees North) that had on it a new type of wind instrument called an Acoustic Wind Anemometer.  This will be a test buoy to see how it performs compared with the older propeller type model, which is greatly subject to damage.

Another experimental device just deployed for the first time on this cruise is called a pCO2 unit. This unit has been laying out here in the lab, opened up, and we are shooting some video footage of it, so that you can see what it looks like.  It is pretty amazing in that inside the waterproof canister are various transistors, wiring, and an iridium modem phone which they use to call up the buoy.  Another canister contains lots and lots of batteries to power the instrument.

The pCO2 unit is being used to measure the amount of carbon dissolved in the water.  It will enable data to be gathered on the amount of carbon dioxide that is either being  dissolved into the ocean, or being diffused out of the ocean water and into the atmosphere.  These studies are very important to the study of the greenhouse effect and relate to studies that are considering whether or not global warming is indeed occurring.  It was truly fascinating to see the inside of this sophisticated instrument, another example of the type of cutting edge science being conducted on board this vessel.

Patrick is the one who always goes out to the buoys, climbs on them to remove the instruments before the buoy is retrieved, or brought on board the ship.  On the night that I rode out to the buoy where a repair would be conducted,  I was amazed to see Patrick bring onto the buoy a laptop computer.  You can imagine how it must have looked, in the pitch dark, with him gazing at the lighted computer screen on the buoy.

Personal Log

All of the Wogs had to serve breakfast to the Shellbacks this morning.  I have been sworn to secrecy about the exact nature of the rest of the morning’s proceedings.  The initiation of Wogs is a tradition that goes way back to the days of sailing ships, but nothing that happened to us was injurious to life or limb. Suffice it to say, that I survived the treatment and was rewarded with a card that proves I have been across the Equator, and am now an honorable Shellback.

The scientists are beginning to pack up all their instruments and gear.  Tom Nolan is still running calibrations with his SINBAD instrument whenever the satellite is overhead.  The crew has been busy cleaning the decks, painting and generally sprucing up the ship for our grand entrance into Pearl Harbor on Sunday.  The Customs officials have to clear us, since the ship has been to a foreign country.  Then, the ship will refuel and make its way over to Snug Harbor.  Many of us will be leaving the vessel, but for much of the crew, a new cruise will begin for them after not too many days.

In the meantime,  I am keeping track of our projected time to approach Ka Lae, or South Point, the southernmost tip of land in the U.S.  My school, Naalehu Elementary and Intermediate School, is located  very close to South Point, and indeed, the school overlooks the ocean near there.  It may be in the middle of the night, but I am planning on being, no matter what time it is.

Question of the Day:  Where is the ozone layer located in the atmosphere?

Aloha from the KA,

Nancy Lewis

Nancy Lewis, September 24, 2003

Nancy Lewis
Onboard NOAA Ship Ka’imimoana
September 15 – 27, 2003

Mission: Tropical Atmosphere Ocean (TAO)/TRITON
Geographical Area: Western Pacific
Date: September 24, 2003

Sunrise:  0613
Sunset:  1828

0600:  All wogs on bow

Transit to Honolulu

Time Change:  Set your clocks back one hour to Hawaii time

Weather Observation Log:  0100

Latitude:  9 degrees, 57.8; N
Longitude:  141 degrees, 41.6’ W
Visibility:  12 nautical miles (nm)
Wind direction:  130 degrees
Wind speed:  7 knots
Sea wave height:  2-3 feet
Swell wave height:  4-6 feet
Sea water temperature:  27.8 degrees C
Sea level pressure:  1012.2 mb
Dry bulb pressure:  27.0 degrees C
Wet bulb pressure:  26.0 degrees C
Cloud cover:  7/8 Altocumulus, cumulus, altostrattus
Air temperature:  27.0 degrees  C

Science and Technology Log

The phenomenon known as El Nino will be the subject of our discussion today.  El Nino is a recurrent weather phenomenon that has been known for years by fisherman along the coasts of South America.  During an El Nino, the normally strong easterly tradewinds weaken, bringing warmer than normal currents eastward to the the coasts of Peru and Ecuador.  Fishing drops off, and there can be catastrophic effects in weather all the way from Australia and Indonesia to both American continents.

During the unpredicted El Nino of 1982-83,  the effects began to be felt in May.  West of the dateline, strong westerly winds set in.  Sea levels in the mid-Pacific rose several inches, and by October,  sea level rises of up to one foot had spread 6000 miles east to Ecuador. As the sea levels rose in the east, it simultaneously dropped in the western Pacific, destroying many fragile coral reefs.  Sea temperatures in the Galapagos Islands rose from the low 70 degrees Fahrenheit to well into the 80s.  Torrential rains on the coast of Peru changed a dry coastal desert into a grassland.  Areas from Ecuador, Chile and Peru suffered from flooding as well as fishing losses, and that winter there were heavy storms pounding the California coast, the rains that normally fall in Indonesia. The effects of this El Nino to the world economy were estimated to be over $8 billion.

During the 1920s, a British scientist, Sir Gilbert Walker, pioneered work in what he called the Southern Oscillation Index. Using data from barometric readings taken on the eastern and the western sides of the Pacific Ocean, Gilbert discovered that when the pressure rises in the east, it falls to the west, and vice-versa.  When the pressure is in its high-index, pressure is high on the eastern side.  The pressure contrast along the equator is what drives surface winds from east to west.  When the pressure is in the low index,  the opposite condition occurs.  Easterly winds usually disappear completely west of the dateline, and weaken east of that point.

The TAO/Triton array is part of an international effort to be understand, in order to be able to predict and prepare for such events as El Nino and its counterpart, La Nina.  Formerly, data was collected from historical records, instruments at tide gauging stations, and also the observations made by ships transiting the ocean.  The data that is being collected will be able to help scientists hone their understanding of the complex relationship between the atmosphere and the oceans.  We have only recently become aware of the profound effects that climate changes in far flung points on the globe have for many parts of the inhabited world.  It is a sobering fact to realize that oceans cover 71% of our planet, and that, next to the sun, the oceans are the biggest determinant of climate and weather.

Personal Log

The buoy operations are over and we are now steaming our way back to the KA’s home port of Honolulu.  The ship is basically moving at approximately 10 miles an hour, so in 10 hours, we only travel 100 miles.  Our estimated time back is sometime Sunday evening.

Fishing lines have been set out off the fantail, and the crew is beginning to clean up the gear, power washing the deck and acid cleaning the sides for our grand entry back in Hawaii.  Tonight in the mess lounge, we had the “wog Olympics”  where we competed in such races as rolling olives on the floor with our noses.

My usual routine has calmed down a bit, but we are still making videos.  Some of them have to be tossed and redone if  I flub my lines too much.  It was raining today, the sky a mass of almost evil-looking clouds.

We also had periods of rain and drizzle.  I paid a visit to the bridge asking for any old navigation charts, and came away with a bundle.

I am also busy rehearsing my “act” for tomorrow night’s performance on the fantail after a barbecue dinner.  We wogs are expected to provide the evening entertainment for the honorable shellbacks.

Tonight for the first time,  I watched some television.  We have programming provided by the Armed Forces Network.  I’d like to take this opportunity to send my best wishes for a safe return to all those men and women serving in the current conflict in the Middle East, and most especially to PFC Noel Lewis and all those in his unit.
Question of the Day:   What is the difference between weather and climate?

Aloha from the KA!

Nancy Lewis

Nancy Lewis, September 23, 2003

Nancy Lewis
Onboard NOAA Ship Ka’imimoana
September 15 – 27, 2003

Mission: Tropical Atmosphere Ocean (TAO)/TRITON
Geographical Area: Western Pacific
Date: September 23, 2003

Sunrise:  0608
Sunset:   1815

9/22/03~2330:  6 N CTD

0615:  7N CTD

1300:  8N CTD

2000:  Repair 9 N Buoy W/ CTD

Weather Observation Log

Latitude:  7 Degrees, 25.3’ N
Longitude:  140 degrees, 8.0 W
Visibility:  12 nautical miles (nm)
Wind direction:  170 degrees
Wind speed:  10 knots
Sea wave height:  3-4 feet
Swell wave height:  4-6 feet
Sea water temperature:  28.5 degrees C
Dry bulb pressure:  30.4 degrees C
Wet bulb pressure:  26.3 degrees C
Cloud cover:  5/8, Altocumulus, cirrus
Air Tempterature:  30.4 degrees C

Science and Technology Log

Previously, I explained that there is other scientific work being done on this cruise.  One such project is CO2 and pH analysis.  Previous to this, NOAA has been using water samples taken from the CTD, and these samples only come from particular depths, generally every 200 meters.  The scientists from the University of South Florida have brought along devices which they are testing in order to work out the “bugs”, from these prototypes.  They are called SEAS systems, and are lowered in the water column to a depth of 300 meters at a rate of 6 meters per minute to collect pH profile continuously.  The advantage of the SEAS system over taking samples from the CTD is that they get a continuous data, not just data from the specific depths tested by the CTD.  The data they produce is therefore much more complete and accurate.

In my interview with Dr. Renate Bernstein I asked the question:  “Is your work related to studies of global warming?”  Her answer was: “absolutely. “  The SEAS system is analyzing dissolved CO2 in the ocean water. Normally, the ocean is considered to be a “sink” for CO2 in the atmosphere.  Cold water has the capacity to dissolve more CO2 from the atmosphere than hot water.  The analogy would be to think of the carbon dioxide in a carbonated soda.  If you shake up a cold drink,  it doesn’t fizz as much.  If you do the same thing with a warm soda,  it will fizz up much more.

How does dissolved CO2 relate to the pH of the ocean?  The  carbon dioxide combines with water (H20) molecules in the ocean to produce carbonic acid, which has a higher acidity.  Thus water with more dissolved CO2 would have a higher pH value.

Dr. Bernstein explained that there are areas, however, where the ocean is liberating CO2. She said that was what they were seeing from the data they’ve collected.  The water near the equator where cold water upwelling occurs were the places where CO2 was being diffused into the atmosphere.  According to Dr. Bernstein, what they were doing on board this vessel was truly “cutting edge science” being done nowhere else in the world.  It has been exciting to me and a great honor to share with you some of  the science being done on board the KA’IMIMOANA.

Personal Log

For the first time on this cruise,  the weather has become hot and humid.  It was not a pleasant day to be out on the deck of the ship, plus they were power washing the deck and acid cleaning the sides of the vessel.  Last night I was out with my Planosphere, trying to identify some constellations, but the clouds had started, so visibility was not that good.  I did see Sagittarius, which looks like a teapot.  Randy, the Survey Tech in charge of the CTD, showed me a computer program that I want to get called “Starry Night”.  You put in your location and the time and date, and it shows the night sky and superimposes images over the constellations:  very cool!

I almost missed the biggest event of the day, and for me, of this, cruise.  John Kermond had told me that the buoy repair was cancelled, so there wouldn’t be a last RHIB ride out to the buoy.  I had already prepared for bed, when there came a knock at the door. “ Hurry up,  they’re going on the RHIB!” I quickly scrambled on some clothes and ran up to the deck, while Doc hunted up a hard hat and life jacket for me.  They strapped a Cyalume light onto my vest, John gave me a flashlight, and we were off.  I felt a little like what it must have been like on the Titanic, getting into lifeboats in the inky blackness.  We roared off, using a powerful light to see the buoy.  The water around the buoy was teeming with large fish, mostly mahi.

This buoy had been damaged and Patrick Ahearn, the Chief Scientist would be making the necessary repairs.  Sometimes, they say, other ships hit the buoy, or fishing boats tie up to the buoy.  This was the first time the sea had been relatively calm, and it seemed a good thing, since higher seas would make a repair job much more difficult, like working on a bobbing cork.  Patrick swung out onto the buoy, follwed by Nicole Colasacco, the Field Operations Officer who would assist him.

In the meantime,  we sped back to the KA to pick up replacement instruments, a new rain gauge, a new anemometer, and a new temperature sensor.  The ship seemed a long way off, but all of its running lights were on.  I thought about how it must have felt for Patrick and Nicole to be all alone in the dark on that buoy while we went back to the ship.

As soon as we returned with the instruments,  Jimbo set out fishing lines and we bagan to troll.  We spent a good 45 minutes circling the buoy, but got nary a bite.  Maybe it just wasn’t feeding time.  As our eyes got our night vision, we could see the sparkling of bioluminescent creatures in the water all around the boat.  The skies were cloudy, so stargazing was out, and eventually it began to rain.

Finally, they were finished with the repair job, and it was my turn to get out onto the buoy.  I already knew that the donut would be slimy and slippery, and it was.  There are several platforms, though, that afford good footing inside the bars of the instrument scaffold.  By the time I was up on the buoy, the swells had picked up a little, and actually, there was a terrific current pulling on the buoy.  It was a little like riding a bucking bronco!

We were out on the buoy operation until well past 11 last night, but I was so glad I hadn’t missed my last chance to get on one of the buoys.  The fish weren’t biting, so we came away empty  handed, but they’ll be other fishing opportunities as we start the long transit back to Honolulu.  Since we have to go right past South Point on the island of Hawaii, there is a chance that students from my school may get to see us, and I’ll keep you posted on exactly when that will be.

Question of the Day:  What is the chemical formula for carbonic acid?

Aloha from the KA!

Nancy Lewis

Nancy Lewis, September 22, 2003

Nancy Lewis
Onboard NOAA Ship Ka’imimoana
September 15 – 27, 2003

Mission: Tropical Atmosphere Ocean (TAO)/TRITON
Geographical Area: Western Pacific
Date: September 22, 2003

Sunrise:  0610
Sunset:  1817

0515:  4 N CTD

0900:  Shellbacks on bow

1215:  Deploy Test Wind Buoy

Repair 5 N 140 W Buoy

SOLO

Weather Observation Log

Latitude:  4 degrees.,  22.7’ N
Longitude:  139 degrees, 58.8’ W
Visibility:  12 nautical miles (nm)
Wind direction:  160 degrees
Wind speed:  10 knots
Sea wave height:  2-3 feet
Swell wave height:  4-6 feet
Sea water temperature:  28.0 degrees C
Sea level presuure:  1013.0 mb
Dry bulb pressure:  27.8 degrees C
Wet bulb pressure:  24.6 degrees C
Cloud cover:  4/8 Cumulus, altocumulus, cirrus
Air temperature:  27.8 degrees C

Science and Technology Log

I promised that I would return to a discussion of the ADCP, or Acoustic Doppler Current Profiler.   You can see from the Daily Log’s Plan of the Day when these were deployed, but they are deployed at the following locations:  (0-147 E, 0-165 E, 0-170 W, 0-140 W).  On which of these locations did we deploy the ADCP on this leg of the cruise?

These moorings are subsurface, and the data is only available after their recovery. Typically, the depth is 300 meters, and these buoys use the Doppler effect to gather data on ocean currents at that depth.  I have posted several pictures on the website of the ADCP, and to me, it looks like a satellite when it was on board the ship.  In the water, it looked like a big orange fishing bobber.

Our buoy ops (operations) are beginning to wind down, and we recovered no TAO buoy today, as you can see from the plan of the day.  There was a repair done to the 5 N 140 W buoy.  A whole group went out to do that, and used the time while out at the buoy to do a little fishing.  Two large fish came back on the RHIB, a yellow-fin tuna and a mahi-mahi. Kamaka was preparing the fish by cutting filets and making poke for tomorrow’s lunch.

I’d like to make available for teachers a lesson plan submitted by Suzanne Forehand from Virginia Beach City Public Schools.  Because the schools have been closed due to the hurricane,  it is not available as yet on the web.  Teachers may request a copy from me, and I will send it as an attached file to an e-mail.  I would like to thank Ms. Forehand for her collaboration on this project, andI  hope that their electricity is restored soon.  I look forward to hearing from the students at Plaza Middle School in Virginia Beach.

Personal Log

Oh, the life of a lowly Wog!  Traditionally,  those who have crossed the equator at sea for the first time are treated to a variety of secret initiation ceremonies where one is designated a “wog”.  Shellbacks are those people who have already made the passage, and it is their delight to devise various tortures to inflict on the wogs.  The 6 of us on board here were ordered up on the forward deck early this morning, and the fun began.  I cannot give away any of these secrets, but suffice it to say that we all got a saltwater shower.  From here on until we complete the initiation, we have to wear our clothes in ridiculous ways, and bow and scrape to the honorable shellbacks.  At the end of several days of this entertainment for all the shellbacks,  we then become a shellback ourselves and will be issued certificates and a card that we will hold on to forever to avoid having to endure the same in the future. In the 19th century this tradition was carried to extremes with such measures as keel-hauling the wogs, and some very serious, life-threatening acts of hazing.  It is toned way down from those days, and all is done with a spirit of fun and good humor.

I have been busy looking at the photos I have taken on the digital camera, and of course selecting ones to be sent to Maryland to be posted on the website.  There were various glitches today with the computer I am working on, so my work had to be done in fits and starts throughout the day.

Tom and I played 2 games of sequence this evening against the CO and Doc and we won the championship!  The competition is fierce around here because the winners get a T-shirt or cap from the ship’s store.  I guess I’ll find out if it was wise to beat the Captain hands down like that.  I am scheduled to play him next in Scrabble.

Question of the Day:  What is the origin of the word “hurricane”?

Aloha until tomorrow!

Nancy Lewis

Nancy Lewis, September 21, 2003

Nancy Lewis
Onboard NOAA Ship Ka’imimoana
September 15 – 27, 2003

Mission: Tropical Atmosphere Ocean (TAO)/TRITON
Geographical Area: Western Pacific
Date: September 21, 2003

Sunrise:  0609
Sunset:  1819

Plan of the Day:

0045:  1.5 N CTD

0445:  pH profiler Cast

0700:   Recover/Deploy 2 N 140 W Buoy

CTD after anchor drop

AOML after buoy fly by

2230:  3 N CTD and AOML

Weather Observation Log

Latitude:  2 degrees, 2.2’ N
Longitude:  140 degrees, 2.5’ W
Visibility:  12 nautical miles
Wind direction: 140 degrees
Wind speed:  15 knots
Sea wave height:  3-4 feet
Swell wave height:  4-6 feet
Sea water temperature:  27.7 degrees C
Sea level pressure:  1012.2 mb
Air Temperature:  26.7 degrees C
Dry bulb pressure:  26.3 degrees C
Wet bulb pressure:  24.0 degrees C
Cloud cover:  2/8 Cumulus

Science and Technology Log

Several other scientists are utilizing the CTD casts in their projects.  The first thing that is done when the CTD is brought to the surface is to collect what we have been calling the “Dickson” sample  A .5 liter sea water sample is collected from the surface and then capped using a small bench-top press.  These samples are sent to the Scripps Institution of Oceanography in San Diego and are analyzed for dissolved inorganic carbon.  This procedure is done by the Survey Technician, and yours truly has learned to do it.  Also, scientist Charles Gutter-Johnson, from Bloomsburg University, uses the CTD water samples for the Monterey Bay Aquarium Research Institute research.  This involves taking chlorophyll and nutrient samples using a bench-top flourometer.  Charles also works to collect barnacles off the retrieved buoys for the Bloomsburg University Barnacle Census.

Tom Nolan from NASA’s Jet Propulsion Laboratory has been calibrating his instrument, called the MISR, which stands for Multi-angle Imaging  SpectroRadiometer. What Tom is doing is checking this instrument against NASA’s  satellite in order to check its calibration. The instrument basically looks like a small oblong box, which he points to the sun to get a reading, and then down at the ocean to get another reading.

Lewis 9-21-03 Tom Nolan
Tom Nolan, from NASA’s Jet Propulsion Lab, calibrates the Multi-angle Imaging SpectroRadiometer (MISR).

These checks have to be done at precise times in order to catch the satellite in its orbit overhead.  The satellite images are used in weather forecasting and tracking of storms, such as hurricane Isabel. Here is the website address for viewing the satellite image of Isabel taken by MISR: http://www-misr.jpl.nasa.gov.  I would love to look at the image myself, but we do not have the internet on the KA.

I would also like to give you a website address where you can view a labeled diagram of a buoy.  It is: http://www.pmel.noaa.gov/tao/images/nexgen.gif.  Here is a question for you: why do the buoys measure conductivity?  To give you somewhat of a hint, conductivity is actually measuring the salinity of the ocean water.  How does salinity relate to ocean currents?

Personal Log

Today we dedicated the TAO buoy to Naalehu Elementary and Intermediate School!  On a large NOAA sticker, I wrote the name of our school, and we had a dedication ceremony where the Captain, John Kermond, our videographer, Tom Nolan and myself signed the sticker. Captain Ablondi and myself then fixed the sticker to the central shaft of the buoy, which is above the water.

CO Ablondi, scientist Tom Nolan, and TAS Nancy Lewis dedicate a buoy to Na’alehu School.
signing the sticker to dedicate the TAO buoy

I am very proud to be a part of the Teacher at Sea program, and be able to share the work on the KA’IMIMOANA of climate observation.  I hope to inspire many of the students at my school, and at schools around the country to a greater interest and study of science, and in particular earth science and oceanography.  If we fail to care for the oceans (and it is all one big ocean despite our giving them separate names) we risk upsetting the entire ecosystem of this planet.  We need the next generation, those of you in school now, to learn as much as they can about this planet, the waters that cover 70% of it, and the atmosphere above us.

We finished filming this afternoon just before sunset, and would like to see who can answer this “brain teaser” of a question:  Why does the ocean foam? Even I do not know the answer to this question, and I pose it for all you budding young scientists out there.

The game tournaments have begun, and I just learned how to place the card game “Sequence”.  Tom is my partner and we won 2 out of 3 games that we played against Nicole Colasacco, the Field Operations Officer (the FOO) and Curt Redman, Engine Utilityman.  The championship game will be against Doc and the CO (Commanding Officer), Mark Ablondi.  According to Doc, whoever wins the first round will be going down when they play her and the CO.  We’ll see!

Questions of the Day:  Quiz for prizes!  First prize will be a KA’IMIMOANA T-shirt, Second prize a ship’s baseball cap, and Third prize a special KA’IMIMOANA patch.  

Here are the questions:

  1. Name the world’s 5 oceans.
  2. Which one is the largest?
  3. How many island groups make up French Polynesia and what are their names?
  4. What is La Nina?
  5. What does NOAA stand for?

Kia Orana!  (May you live long and be at peace, in Cook Islands Maori language)

Diane Stanitski: Days 20-25, September 4, 2002

NOAA Teacher at Sea

Diane Stanitski

Aboard NOAA Ship Ka’imimoana

August 16-30, 2002

Day 20: Friday, August 30

We arrived in Nuku Hiva with a bright sun beginning to set behind a band of gorgeous clouds. There was an air of excitement flowing through the group as land came into view. Because it’s customary to raise the flag of the country that you’re visiting, Steve, the ablebodied seaman and the XO, Doug, raised the French flag before arriving in port. We had a morning all hands (all on board) meeting to collect passports and explain procedures for docking. I spent most of the afternoon answering emails and working on lesson plans, two things I hadn’t had time to do this week because of the daily broadcasts that we completed. I also packed my books and clothes and began taking more pictures of all the spaces and people I hoped to remember on the ship. Aaaahhhh, I had such mixed feelings about leaving. We slowly made our way into the middle of Taihoae Bay, anchored, and raised a round black flag on the front mast designating that the ship is anchored. As we were waiting to hear from the gendarmerie, Nemo spotted three manta rays off the port side of the bow. They sailed through the water with kite-like bodies. Rain began to fall and we were finally told that we could take the RHIB to shore and that our passports would be stamped the next morning. A group of us decided to visit one of few local restaurants, a place that serves pizza, and we all enjoyed an evening together on land. Many people said that they still felt the rocking of the ship, even though we were on land, but I felt firmly planted. Don Shea and I felt so good that we decided to run back to the pier after dinner. Oh, what a feeling to run on solid ground!

Day 21: Saturday, August 31

I awoke early on the ship to depart on the 7:00 AM boat taxi to town. We wanted to make sure that we received the appropriate departure paperwork so we wouldn’t have a challenging time leaving French Polynesia in four days. With all paperwork complete a group of us walked along the one main road in the small fishing village to the bungalows at Pearl Lodge where John Kermond and I would stay. Wow, what a wonderful place! It overlooked the bay and had a beautiful (very small) pool with a pretty patio. I filled out the necessary paperwork for my room, but it wasn’t quite ready so I decided to return to the ship to gather my luggage. After a final goodbye to the KA (or so I thought), John and I returned to the Pearl Lodge, found our rooms, and were able to unpack and settle in for two nights. The Captain led a group hike over the mountain behind the lodge to beautiful Colette Bay where we swam in the waves and imagined that we were part of the Survivor series. We then scaled the volcanic cliffs to the end of the peninsula where a group of people were fishing for barracuda. Upon return to the hotel, I showered and decided to return to the KA one last time to check and reply to emails from my students. The ship was quiet because almost everyone was cherishing the last moments on shore before ship departure the next morning. I walked around the ship and a real feeling of sadness came over me. I was very surprised at my response to bidding farewell to this ship and the people I’d learned so much from during the last two weeks. I could really get used to life at sea. With a wave to the XO and Fred Bruns on the ship deck, I hopped back onto the boat taxi around 9:00 PM, was whisked away into the night air, and then returned to the bungalows for a much needed rest.

Day 22: Sunday, September 1

Nuku Hiva is predominantly Catholic and so the 8:00 AM Catholic service in town was the place to be on Sunday morning. The entire town was there. The church was absolutely beautiful and the music lifted the roof (as John said) off the building. The service was in both French and Tahitian, but very traditional and so easy to follow. Everyone, I mean EVERYONE sang the songs and that made it very powerful. After the Mass, we walked back to the bungalows to film the ship’s departure, however, it didn’t leave until nearly noon and so we waited for 2 hours on the hotel’s patio while the weather changed from hot and sunny to a torrential downpour with strong winds. After its departure we were then invited to take an afternoon jeep tour to the Typeevai, the valley where Herman Melville wrote his book Typee. We hiked to a ceremonial site with 11 Tikis carved in 1200 AD from the volcanic rock of the island – beautiful! It poured on us and our guide broke off a huge banana leaf that we used as an umbrella. I managed to receive about forty mosquito bites on my legs and arms and our guide picked a lime, cut it open, and applied it to the bites to relieve the itch – marvelous. What a gorgeous island.

Day 23: Monday, September 2

After a few hours making final arrangements for our flights and filming the last shots of Taihoae, we departed by four-wheel drive Land Rover later in the morning for a two-hour exciting trip to the airport northwest across the mountains and valleys of the remote, rugged island of Nuku Hiva. In the pouring rain the trip was treacherous. At times, the mud was up to the top of the tires and, although we had a difficult time seeing through the fog, we could tell there were steep cliffs on one side. Our driver had clearly made this trip before. We arrived safely and waited for our 3-hour flight to Papeete, Tahiti. We flew over atolls and through beautiful trade wind clouds.

Day 24: Tuesday, September 3

This was our only day in Tahiti. We awoke early and called Meteo France to see if we could have a tour of the weather station at the airport. We were trying to discover where the meteorological readings had been taken for the 100+ years of data recorded and now used to determine the Southern Oscillation Index. After a challenging conversation half in French, half in English, we were finally able to ask the necessary questions and receive a historical summary of the station. We were given a tour of the airport’s weather station and pamphlets to provide to my classes. John filmed the entire meeting. I was especially excited about this side trip because I’d always wanted to visit this specific weather station. Next on my list is Darwin, Australia, the sister site to the Tahiti station – maybe in a few years.

This experience has been like no other for me. I am so grateful to Dr. John Kermond, Jennifer Hammond, Rear Admiral Evelyn Fields, NOAA, NSF, Shippensburg University and all those responsible for my incredible journey. I will use the information that I learned on this trip in my classes, but more importantly, I hope to share the excitement and wonder of science with my students and my teaching colleagues so that they can understand the importance of conducting scientific research to discover more about our world and ourselves. Thank you to all!

Signing off for now, but I hope to hear from you again at dmstan@ship.edu.
Best wishes,
Diane

Diane Stanitski: Day 19, August 19, 2002

NOAA Teacher at Sea

Diane Stanitski

Aboard NOAA Ship Ka’imimoana

August 16-30, 2002

Day 19: Thursday, August 29, 2002

The FOO (Field Operations Officer)’s quote of the day: 

“The art of art, the glory of expression…is simplicity.”
– Walt Whitman

Weather Log:
Here are our observations at 1600 today:
Latitude: 4°59.00’S (into the Southern Hemisphere!)
Longitude: 139°49.2’W
Visibility: 12 nautical miles (nm)
Wind direction: 95°
Wind speed: 12 kts
Sea wave height: 3-4′
Swell wave height: 5-6′
Sea water temperature: 27.3°C
Sea level pressure: 1009.3 mb
Cloud cover: 2/8, Cumulus

Science and Technology Log:

I awoke early to be sure that I could hop on board the RHIB when it was ready to depart for our next buoy retrieval. John K. wanted to try something new…a live broadcast from the RHIB while he filmed from the ship. I suited up with a life jacket, hard hat, radio, microphone, and cameras. This would be a challenge. As it turned out, Larry, our electronics technician who assists with the technology end of the broadcast, and John could only hear me for a short distance away from the ship. John, however, caught the entire scene on camera. Upon arrival at the buoy I jumped on to it after Dave Zimmerman and asked him questions while he was dismantling the instruments so they didn’t break while the buoy was being retrieved. It was so much fun. There appeared to be quite a few barnacles and algae (very slimy) built up below the waterline on the buoy.

We then hopped off and drove back to the ship where we finished the broadcast. Ensign Sarah Dunsford then joined me and described the entire retrieval procedure from the boat deck of the ship looking back at the fantail. She did an excellent job.

We decided to hold off on the shooting of our general broadcast so that we could all pitch in to assist with the spooling of the cable as it was brought up from over 4000 meters of depth. This takes a few hours and I helped by turning one of the spools while the nylon cable wrapped around loop after loop. In between spools I helped Nadia with the barnacle removal. We scraped the entire buoy clean.

Someone then shouted that whales were spotted off the stern of the ship and I ran back to see if I could find them. There they were!!! I was told that there were ten of them, but I only saw about five. They were pilot whales, not too large – perhaps 12′ long – but still very beautiful as they swam through the water. What a treat!!! We completed the retrieval and went into the mess to eat lunch.

The afternoon consisted of conducting interviews during our final general broadcast from on board the ship. We are hoping to complete additional broadcasts from Nuku Hiva, if possible, and to shoot video footage in Tahiti at the Meteorological station. This was a fun broadcast. We interviewed Takeshi from France who played his flute and said a few words in French, Nemo who described his duties on the ship and showed up how to tie a few important knots, and Mike Strick who can often be found assisting in the kitchen as well as on the fantail – he does it all! The broadcast ended with the deployment of the buoy that would replace the one removed earlier today. A great day in my book!

Personal Log:

I began taking photos of all the people on the ship today. I don’t want to forget any of them as I leave this ship and sail back to my life in Shippensburg. It’s the little things that people do along the way that make all the difference, isn’t it!? During one of the CTD casts to 1000 meters, Jason Poe helped me miniaturize and mold a group of styrofoam cups that I could bring back to my family, friends, and students. Doug McKay (Nemo) assisted many times when I needed a hard hat or life jacket at the last moment in order to be able to experience something on the ship. Fred Bruns provided insight, feedback and tidbits of history about the ship. Larry Wooten was always ready to help with any technical problem that arose, no matter the time of day or night. Paul Freitag answered an unending array of questions that I had about the science on the ship. John Kermond, of course, was always there with new ideas and ways to make my experience the most exciting and informative possible. All of the officers on board cooperated during each of our broadcasts and permitted great flexibility so we could produce interesting and educational webcasts for all of you. I could go on and on…and probably will tomorrow during my final day on the ship while it’s at sea.

Takeshi taught one last French lesson tonight just after dinner while watching the sunset so that we would be prepared for arrival in Nuku Hiva. Most people are ready to see land before they complete their journey by ship, taking them back to Honolulu in the next few weeks. Six of us will depart in Nuku Hiva. I look forward to an opportunity to explore the island and to shoot more footage to be used in our videos on the web. After another productive day, it’s time for bed.

Question of the day: Name two of the instruments that are placed on the buoys at sea, and state what they measure. Email me one last time with your response. If you’re the first person to respond and I receive your answer early enough tomorrow, I might be able to include your name in my final logs.

Last full day at sea…
Diane

Diane Stanitski: Day 17, August 27, 2002

NOAA Teacher at Sea

Diane Stanitski

Aboard NOAA Ship Ka’imimoana

August 16-30, 2002

Day 17: Tuesday, August 27, 2002

We are still enjoying the equator today!!! (0° latitude, 140° west longitude)

The FOO (Field Operations Officer)’s quote of the day: 

“Just as much as we see in others we have in ourselves.”
– William Hazlitt

Weather Log:
Here are our observations at 1400 today:
Latitude: 0°00.49’S (into the Southern Hemisphere!)
Longitude: 139°52.4’W
Visibility: 12 nautical miles (nm)
Wind direction: 090°
Wind speed: 15 kts
Sea wave height: 3-4′
Swell wave height: 5-7′
Sea water temperature: 26.9°C
Sea level pressure: 1008.5 mb
Cloud cover: 4/8, Cumulus

A new tropical storm, Genevieve, is on her way to hurricane status! She is currently at 14°N, 115°W and is moving toward 280° at 6 kts. She has sustained winds at 60 kts with gusts to 75 kts.

Science and Technology Log:

After the equatorial buoy was retrieved late last night, most of the crew worked very late to pull in the 4500 meters of cable. Then, they needed to prepare the new buoy to be deployed this morning. Everyone is looking rather tired today. The CO and Chief Scientist joined us for a few moments at the start of our morning broadcast to participate in the buoy dedication ceremony. I first introduced the show and then we all signed our names on a large NOAA sticker, added a Shippensburg University Spirit sticker, and then attached them to the central cylinder on the buoy where all of the instrument electronics are stored. These stickers will be there for the next year until the buoy is retrieved again. Pretty neat, I think.

Our broadcasts took all morning to complete and overall went well. We continue to learn what works and what doesn’t with regard to the technology. It’s best to interview just a few people and when writing on the dry erase board, use black marker, not blue. As they say, practice makes perfect.

I realized tonight how much I love interviewing scientists, especially people who do things related to, but very different than, what I do. I am always fascinated with other scientists’ research because their methodologies are often so different from my own. They make me think, which definitely expands my mind.

Personal Log:

Well, I was up late last night preparing for double broadcasts today. I spend so much time in front of the computer in the main lounge that I arrived yesterday to find a sign saying, “Casa Diane”. I figured it was Lobo or Don who always comment that I spend too much time in “my office”. Kirby came by to say that the fish were jumping outside and invited me to join everyone on the deck. WOW! I have never seen so many fish in my life! There were hundreds of HUGE fish jumping out of the water, flying over the surface (flying fish), zipping up, down, over, and lurching at smaller fish that I could hardly believe my eyes. The sea was boiling! The fish were different from the starboard to the port side of the ship, tuna and sharks on port and rainbow runners on starboard. I caught my first real fish last night – a yellowfin tuna that probably weighed just under 10 lbs. Larry helped get me started and then coached me as I reeled it in…what fun!!! Everyone was cheering for all of us because all that you had to do was place your hook in the water and something latched on. Even if you had a bite, a shark often came by and snatched your prize. I’ll bet that I saw at least 50 sharks, hundreds of zipping tuna (which are gorgeous, by the way), a whole school of rainbow runners, and tons of flying fish. All in all, we caught at least 25 fish last night (a few around 40 lbs) and immediately cleaned and prepared them to be eaten every which way. A few people awoke early and caught another 20. I love sushimi the most, but we’ve also been eating fish fried, broiled, in salad form, etc. It reminds me of Forrest Gump – shrimp gumbo, shrimp salad, shrimp…! We did have to freeze some of the fish because there’s no way that we could eat everything in the next few days. The fish that were caught all had full stomachs comprised of many very small fish that looked like sardines. To top off the whole experience there was a bright moon above the horizon illuminating the bubbling water. Even the crew who have been on board for many years were impressed with last night’s scene. I am truly amazed by the sea! It brings something new every day. See my photo log for a few pictures of last night’s fiesta! Oh, and I forgot to say that two flying fish actually flew onto the ship overnight and were found this morning. I highlighted the larger one in my broadcasts today – simply amazing.

It has been another interesting day.

More tomorrow…
Diane

Diane Stanitski: Day 15, August 25, 2002

NOAA Teacher at Sea

Diane Stanitski

Aboard NOAA Ship Ka’imimoana

August 16-30, 2002

Day 15: Sunday, August 25, 2002

The FOO’s quote of the day (I really like this one!):

“Let your dreams run wild and free and always follow where they lead.” – N.E. Foster

Weather Log:
Here are our observations at 2200 today:
Latitude: 1°31.9’N
Longitude: 140°00.5’W
Visibility: 12 nautical miles (nm)
Wind direction: 120°
Wind speed: 12 kts
Sea wave height: 3-4′
Swell wave height: 4-5′
Sea water temperature: 27.3°C
Sea level pressure: 1011.7 mb
Cloud cover: 3/8, Cumulus

Hurricane Fausto is slightly diminishing in strength, but is still maintaining winds at 90 kts, gusting to 110 kts. It is currently located at 18°N, 125°W and is moving northwest. Another tropical depression has formed at 11.5°N, 148°W and has maximum sustained winds at 30 kts with gusts to 40 kts. It is expected to gain strength and move into the tropical storm category. We are definitely not in danger of being impacted by either storm because they require Coriolis to form or to be sustained. Coriolis is negligible at the equator so we’re safe!

Science and Technology Log:

This has been my favorite day of the trip so far! I awoke hurriedly at 5:50 AM and ran outside with my hard hat and life jacket. We were taking the RHIB (once again, the rigid inflatable boat) out to retrieve our first buoy. Earl, Dave, Paul, Doug and I rode toward a gorgeous sunrise, removed sensors from the buoy, and then hooked it to a line to drag it in toward the ship. What an amazing morning! It all started there. As soon as the buoy was lifted onto the dock Nadia and I began removing barnacles from the bottom of the frame. The barnacles were still alive with their legs appearing and disappearing within their hard shell. They stick to the mast, buoy, and inner flotation device in clumps. At this point, I am filthy, smelly and loving every second. The barnacles are full of sea water which occasionally bursts and runs down your arms as you work over your head. I’m sure I’ll smell like fish for the rest of the day. The retrieved buoy was then power washed to remove the salt water, algae, and remaining barnacles parts, and to prepare it to be deployed again later during the trip.

I then helped pull in the 4300 meters of nilspin and nylon cable by taking over one of the spools where I turned it around and around as the cable draped over the top. Fun, and tiring! Just as we finished with the last spool, Doug, the XO, decided to fish off the back of the ship. You should have seen the amazing fish swimming all around the fantail of the boat… mahi mahi, and every beautifully colored huge fish that you can imagine! A blow hole was spotted by the FOO earlier, sure signs of a whale nearby. I also saw a huge fish jump out of the water, but couldn’t identify it. The fish all hang out around the buoy because of the barnacles (food) and the shadow created by the buoy, thus creating a small ecosystem in the middle of the Pacific. Suddenly, Doug caught something! He had to keep reeling in the line until he pulled a wahoo on board (ono in Hawaiian, meaning sweet). It had unbelievable colors of green and blue and was shiny with stripes. It had a cigar-shaped body, pointed head, and triangular teeth, with a long dorsal fin separated into 9 segments. Nemo brought it into the shade, pierced its neck, and then returned to the fantail where he caught two beautiful yellowfin tuna – WOW! They were shaped like a football, were beautifully iridescent with yellow, gold and blue across their bodies and fins tinged with yellow. The fins were very long. We feasted on sushimi tonight at dinner, raw tuna fillets with wasabi and soy sauce – scrumptious! We also had baked ono (wahoo) with spices. YUM! Thanks, Doug and Nemo!

We then all worked to prepare the nilspin (cable closest to the buoy) for the next buoy deployment by placing fairings on the cable. Fairings are plastic sleeves that are rectangular and slide onto the cable to provide more friction with the water. This alleviates great movement of the cable that usually happens due to strong ocean currents at this latitude. We are so close to the equator that the equatorial countercurrent makes a huge difference in the movement of the subsurface line. It was like an assembly line with me lifting each fairing out of a garbage can, handing each one to Dave who opened it and slide it onto the cable. Then, Paul used a mallet to secure it on the line while Jon held the cable in place so it didn’t drift off the boat. We must have placed hundreds of them on the line while it was being pulled out to sea by the new buoy that we just deployed (see photo log for pictures of the buoy retrieval and deployment). In the end, it took about 3 hours for the nearly 5000 meters of nilspin cable and nylon cable to be unrolled and pulled by the buoy out to sea. The buoy was floating about 4 km away from the ship by the time the cable was unraveled. You could just see it on the horizon. The crew then dropped two massive anchors (old railcar wheels) into the sea, which sunk and pulled the cable down while pulling the buoy into place above. The entire procedure is a real sight to see because of the crew’s efficiency…truly impressive.

Before dinner, John and I sat down and completed the script for tomorrow’s broadcast, however, things might change because we will be starting the science on board at the same time our broadcast is supposed to air live (9:00 AM ship time). We may have to change the show’s schedule if something exciting is happening on the ship that might be of interest to all of you. Flexibility is key to it all, I’m told.

Personal Log:

After a workout, shower, and dinner, John shot some footage of me on the bridge deck summarizing my experiences thus far, and describing what’s yet to come during this next week. The sunset was outstanding again. There were many clouds and they created these streaming rays of bright yellow light from the setting sun down to the Pacific. I could easily watch this every night.

I’m going to finish my logs and head straight to bed. This was truly the most outstanding 24 hours of the entire trip. I am so lucky to be here and can’t believe that we’re heading to the equator tomorrow!

Question of the day: 

What does TAO stand for and what is the goal of the project?

My favorite day of the trip so far…
Diane

Diane Stanitski: Day 14, August 24, 2002

NOAA Teacher at Sea

Diane Stanitski

Aboard NOAA Ship Ka’imimoana

August 16-30, 2002

Day 14: Saturday, August 24, 2002

The FOO’s quote of the day: 

“I believe because it is impossible.” – Tertullian

Weather log:
Here are our observations at 0900 today:
Latitude: 4°40.8’N
Longitude: 139°58.7’W
Visibility: 12 nautical miles (nm)
Wind direction: 180° (constantly shifting)
Wind speed: 16 kts
Sea wave height: 3-4′
Swell wave height: 5-7′
Sea water temperature: 27.7°C
Sea level pressure: 1011.3 mb
Cloud cover: 7/8, Cumulus, Stratocumulus

Science Log:

Another buoy was repaired this morning because its anemometer wasn’t functioning. The anemometer is the highest object on the buoy and, therefore, is the most vulnerable. Because it’s not as protected and is a moving part, it can be easily damaged by people fishing the area, or by extreme weather. Dave was out on the buoy sitting in the horseshoe (a square opening on the starboard side of the buoy deck permitting you to work on the bottom of the buoy from the deck below) today testing and preparing it for deployment tomorrow. This will be our first buoy replacement, which means that when we retrieve the next buoy there will be oodles of work to do on the ship, including counting the thousands of barnacles that have attached themselves to the bottom of the brace. I can’t wait to smell the deck after they’re removed from the bottom – mm, mm!

On the agenda today is a full tour of the ship. John taped me both inside and outside explaining every part of the ship as we walked from deck to deck and bow to stern. I learned so much through that process. John first explained what we were looking at and then I provided my version as I tried to incorporate the technical terms. We also prepared some fun clips interviewing people about what they do on board.

Despite volunteering to do a CTD launch at 3°N tonight at 1930, the device wasn’t working. The 0130 reading at 2.5°N tomorrow morning was also cancelled because Larry and Jason need to switch out a major part that is malfunctioning. It will soon be time to rise and shine for a buoy retrieval (my first!) and deployment.

Personal Log:

I awoke this morning to sunshine streaming through our porthole. This is an unusual occurrence since it has been so cloudy. I walked outside and smelled FISH! The guys had pulled in the tow lines and they caught 4 gorgeous silvery mahi mahi fish, one over 20 lbs. When I went downstairs, they were filleting them in the kitchen for lunch and hopefully dinner! Wow! This is what I call fresh. They found tuna in one of the stomachs of the largest mahi mahi. I’ll have to make sure that I’m around when they pull in the next group.

Lobo, the Chief Engineer on board the ship, provided John, Takeshi (scientist from France), and me with a tour of the engine room this afternoon. The most fascinating thing to me is how fresh water is produced on the ship. We use approximately 3,000 gallons of fresh water per day, which means that we are each allotted about 100 gallons. This is plenty per person. The majority of the water is used for the CTD cast because fresh water has to be used to spray down the winch, wire, and cylinders after they are brought out of the water (see photo log for picture), and also for cooking and laundry. It is an extremely comfortable ship. The CO was saying today at lunch that the main halls are much wider than many ships and the staterooms are also more roomy. I was surprised at how decadent my room seems to be. Check out the photo log for a picture of my stateroom.

It is hard to believe how close we are to the equator. We continue moving southward along 140°W. I’m getting a little bit nervous about the fact that there are at least 6 people who have never crossed the equator before in a boat/ship. This means that we are called pollywogs. If time permits, there might be a ceremony at the crossing for all first timers, after which you become shellbacks. It’s not quite that easy, though. There is a certain amount of harassment (all in fun, of course) that must first take place to ensure that the wogs EARN the right to cross. Rumors are spreading that something might happen soon. I’ll keep you updated.

You would not have believed the bioluminescence in the water tonight! Kirby and Don spotted it first and suggested that I go up to the bow to peer over the edge at the bottom of the bow as it plows through the water. The phytoplankton become disturbed, which causes them to glow. There are often patches or clumps of these species that are visible making them look like a glow stick in the water. We may have also seen some jellyfish glowing, but only because they’ve eaten the bioluminescent phytoplankton. It’s so interesting. I love hanging my arms over the railing of the bow watching it carve out the water far below.

The sunset and moon rise were incredible tonight. The sun’s rays continued to light up the sky for about an hour after the sun actually set. The colors of light blue growing into bright pink were beautiful. We also had low cumulus clouds far beneath high cirrus clouds that turned pink. It was a spectacular scene (see photo log). I wish that I could have captured the moon rise over the ocean. It looked HUGE and was bright orange. There were thin clouds in the foreground that created an eerie, yet beautiful glow. The moon is almost full and illuminates the ocean surface like a huge flashlight. The Milky Way is in full view and the constellations are brilliant. We were looking for the Southern Cross tonight and think that we may have spotted it. Aaaahhhh!

I’ll write more tomorrow.
Diane

Diane Stanitski: Day 13, August 23, 2002

NOAA Teacher at Sea

Diane Stanitski

Aboard NOAA Ship Ka’imimoana

August 16-30, 2002

Day 13: August 23, 2002

The FOO’s quote of the day: “Happiness depends upon ourselves.”
– Aristotle

Weather log:
We started this morning with some cloud cover but with bright sunlight illuminating the buoy deck where our live broadcast was about to be filmed. Moments after we finished, the skies opened up – downpour! Here are our observations at 2200 this evening:
Latitude: 5°48.6’N
Longitude: 140°1.7’W
Visibility: 8 nautical miles (nm)
Wind direction: 350° (constantly shifting)
Wind speed: 10 kts
Sea wave height: 2-3′
Swell wave height: 4-5′
Sea water temperature: 28.4°C
Sea level pressure: 1011.9 mb
Cloud cover: 8/8, rain with cumulus clouds

Here’s the update on what is now Hurricane Fausto, currently located at 15.3°N, 120.0°W and heading 280° (just north of west) at 14 kts. Its central pressure has dropped to 959 mb and its maximum sustained winds are 105 kts, gusting to 130 kts. It’s still running strong.

Science and Technology Log:

I believe that our live broadcast went quite well today, but only after being disconnected twice after only seconds of the first two takes. No harm done in the end. The interviewees were great! They are all such interesting and unique people with fascinating lives. After reviewing the show later, we discovered that a loud buzz muffled some of the interviews. The problem was detected and will be fixed before Monday’s broadcast.

Congratulations to Holly Smith, one of my graduate students at Shippensburg University, who answered our KA quiz question, “What is a Kelvin wave?” correctly. Her answer is “A Kelvin wave is a warm pacific wave that forms near Indonesia and travels east toward the Americas. It can carry warm air and a bit of rain with it too!” Yes, although Kelvin waves can form anytime, this wave is often highlighted during El Niño events because the weakening or reversing of wind direction in the tropics permits the warm water in the western Pacific to move eastward shifting the high sea-surface temperatures from the western to the central Pacific, which affects the atmospheric circulation. It also tends to shut off the upwelling in the eastern Pacific, which reduces the number of marine organisms in that region. Holly, you’ll receive a NOAA T-shirt for your efforts and knowledge – great job!

I volunteered to do the CTD test by myself this afternoon with a little (ok, a lot of) help from Jason, the survey technician. I think I’ve got it down at this point and will gladly assist with these readings that need to be taken approximately every six hours. It’s a time intensive job and tonight’s 3 AM readings will take around 3 hours and sample water from the bottom of the ocean, near 4000 meters depth.

After the CTD sampling, I interviewed Larry Wooten, our technician on the ship, in order to discover how he arrived at the Ka’imimoana. Larry had been in the Air Force in South Dakota as a missile technician. He then went to South Dakota State University to become an electronic engineering technician. He said that he typically spends 6 months on the ship and 6 months off during the year so he can return to Seattle to spend time with his wife and daughter. He is able to do almost anything on the ship, however, the majority of his time is now spent as network administrator (helping with software applications and fixing computers) and less on hands on electronics. Overall, a great guy ready to help in a flash.

Personal Log:

Shortly after Larry’s interview, we had a fire drill followed by an abandon ship drill. The fire was supposedly in the computer lab, the location where we’re all supposed to go in case of a fire. So, I found myself on the upper deck with two other scientists. It was only after much searching that we discovered all of the other scientists in the forward lounge. Whoops! Now I know where to go in both situations. The abandon ship drill went well. We all had to don our gumby suits this time to ensure that we know how to quickly suit up in case we need to go directly into the water. We also have to bring long pants and a long-sleeved shirt in case we end up spending a long time in the rescue boats in the sun. Fortunately, everything is extremely safe on the ship, but the drills help us to know what to do in all situations.

I received an excellent question from Austin at the National Weather Service in Phoenix, Arizona. He is wondering how the MGO, Kelvin wave, and thermocline are all linked. Now that we know about Kelvin waves based on Holly’s correct answer, you can see the relationship with the thermocline. But, what about the Madden-Julian Oscillation? This is a phenomenon named after the two scientists who initially discovered the oscillation. This oscillation triggers an extremely wide band of convective activity that sweeps from west to east across the equator every 30-60 days. It has been hypothesized that the MJO could possibly be a trigger for El Nino.

In just a few moments I play the Captain in Scrabble. It’s my favorite game that I often play with my Mom and best friend, Lisa. I’ll get back to you regarding the outcome.

The question of the day for all of you is: 

What causes a halo to form around the moon (or the sun)?

Keep in touch,
Diane


Diane Stanitski: Day 12, August 22, 2002

NOAA Teacher at Sea

Diane Stanitski

Aboard NOAA Ship Ka’imimoana

August 16-30, 2002

Day 12: August 22, 2002

Weather log:
We currently have nearly overcast skies again with rain falling from cumulus and stratocumulus clouds. Our observations at 0800 this morning are:
Latitude: 10°38’N
Longitude: 141°26’W
Visibility: 12 nautical miles (nm)
Wind direction: 200° (direction from which the wind is blowing)
Wind speed: 13 kts
Sea wave height: 4-6′
Swell wave height: 6-8′
Sea water temperature: 27.6°C
Sea level pressure: 1010.0 mb
Cloud cover: 7/8, rain from cumulus and stratocumulus clouds

I awoke last night to swells approaching 8′ and the ship rockin’ and a rollin’! We were in the tail end of a low pressure system with lots of convection (new word from yesterday’s log) causing turbulence in the air and seas. A bottle had fallen over in the bathroom and it continued to roll back and forth hitting the walls for about 10 minutes before I was awake enough to realize the source of the sound; I then climbed down the ladder from the top bunk to rescue the bottle.

Right now, we are attempting to avoid Tropical Storm Fausto, which is currently located to our east and heading 275° (just north of west) at 11 kts. Its central pressure is 994 mb and its maximum sustained winds are 55-65 kts with 12′ seas. The Hurricane Prediction Center’s 72-hour forecast shows 75 kt winds with the possibility of gusts to 90 kts on the 25th with continued movement NW. We should slide just south of the storm and might feel some effects, but they’ll likely be minimal. Aaah, wonderful tropical weather in August! Check out www.weather.gov and view their tropical weather or hurricane page to determine the actual path of the tropical storm.

Science and technology log:
We conducted another live test broadcast this morning with the main Office of Global Programs office and Caption Colorado, the company that will provide captioning for the broadcast. It was 18 minutes long and the transfer was a success. The decision has been made that we’ll do a 20 minute live broadcast tomorrow (Friday) to be received at 4:00 PM EST in the U.S. If you miss Friday’s live broadcast, be sure to contact Jennifer at jennifer.hammond@noaa.gov before next Monday to tune into our upcoming broadcasts next week. I’m also anxious to hear from more of you about your interests in oceanography and climatology and the questions that you have for me that I’ll share with our global audience next week. I will do my best to find the answers!

The first official CTD data collection took place last night at 7:30 PM (1930) and a 3:30 AM reading this morning also proved to be successful. I awoke at 2 AM to see if Jason and Paul needed help, but it wasn’t yet time to conduct the test so I happily went back to bed. I did assist with today’s CTD at 12:20 this afternoon. I was so amazed at the entire process. First, the ship must stop and hover for approximately 1 to 1-1/2 hours over the same spot while the CTD sampling takes place. There are 12 depths at which water samples are collected in large cylinders between the ocean’s surface and 1000 m down (See yesterday’s photos for a picture of the CTD cylinders.). Just think of the pressure being exerted on the cylinders at over 3000 ft below the surface! Kirby, one of our two NASA scientists, gave me a styrofoam cup that was intentionally sent down with the cylinders and it’s now a small crushed, but perfect cup. I can’t wait to show my students! The person who controls the CTD from the computer end must work in close cooperation with the winch operator who is in charge of carefully lowering the heavy CTD device into the water and releasing it at different rates of speed to various depths. Any air bubbles that are present must be pushed out of the cylinders so the CTD is first lowered to 10 m, raised to just below the surface, and then lowered again to the greater depths. If the ship’s schedule is not rushed (unlike today), the CTD is lowered to approximately 200 meters off the ocean floor, which could be down to almost 5000 meters, our current depth below this ship! We only had time to lower the sensors to 1000 m today, and then the winch operator raised the CTD to 12 different depths where the carousels (cylinders) were “fired” to allow the bottles to flush and for samples to be collected. Lastly, two samples were taken at the surface. Once the CTD was lifted out of the water, Nadia, my roommate, collected water samples (see photo log) from each of the 13 cylinders to study salinity levels, which tells us something about the conductivity of the water. One reason that this is useful is because the degree of salinity in the water is related to flow of warm and cold ocean currents to and from higher latitudes, and may have been responsible for sudden shifts in climate in the past based on the slowing of our global currents! I have found that it’s incredibly important to ask why each study on the ship is significant to place it in context and to understand the big picture.

John and I met in the early afternoon to create the storyboard for tomorrow’s broadcast. We will highlight the Captain or Skipper of the ship; our Chief Scientist; Medical Officer; Lobo, the Chief Engineer; and Doretha, the Cook. We’ll also have an opportunity for you to win a NOAA T-shirt if you respond with the correct answer to our KA quiz question.

The Chief Scientist and I played 2 out of 3 Yahtzee games tonight just after dinner. It looks like I’m heading to the next round, lucky me! That’s about all that Yahtzee is, luck, but an awful lot of fun. I was invited to ride the RHIB tonight to make our way to a buoy that needed repair. The evening ride was beautiful! There was a full moon with a gorgeous halo around it (good question for tomorrow’s log) and approximately 4′ swells that made it just a bit rocky. There were six of us in the boat. Two scientists hopped onto the floating buoys and started making repairs because there was major damage to the anemometer and the precipitation gauge. One of them started feeling seasick because you’re swaying (just a bit) back and forth and you’re about 8′ above the ocean surface. He hopped off and they asked if I’d like to jump on to help with the buoy repair! Wow! (Mom, please skip this part…I couldn’t help myself.) It was safe, yet thrilling. I helped get the new rain gauge in order and placed small spikes on the top to keep birds from sitting on the edge of the sensor making their own contributions to the contents of the inner gauge. I also helped test it by pouring water through as Dave downloaded data from all the sensors to a computer and checked to make sure they were up and running. I couldn’t believe how lucky I was! I was floating on a buoy in the middle of the Pacific Ocean helping to fix meteorological instrumentation! The ship was all lit up in the distance about ½ a mile from the buoy. We found the exact location of the buoy because of the ship’s radar that spotted it right away and led us to the floating donut. I’ll include some (very dark) photos of this adventure tomorrow.

Well, I’m going to review my notes for tomorrow’s broadcast before heading to bed. It has been another grand day on the great Pacific.

The question of the day for all of you is: What are crepuscular rays? Yes, please consult your meteorology text sitting on your shelf, the Web, or my photo log, to find out. Then, email me to let me know how smart you are!

The FOO’s quote of the day: “Adversity is the first path to truth.”
– Lord Byron

Hope to hear from you soon,
Diane

Diane Stanitski: Day 11, August 21, 2002

NOAA Teacher at Sea

Diane Stanitski

Aboard NOAA Ship Ka’imimoana

August 16-30, 2002

Day 11: August 21, 2002

Weather log:
I awoke and went out on the buoy deck this morning to find rain falling from overcast skies! Here are our observations at 0800 this morning:
Latitude: 13°28’N
Longitude: 143°28’W
Visibility: 12 nautical miles (nm)
Wind direction: 100° (direction from which the wind is blowing)
Wind speed: 15 kts
Sea wave height: 4-5′
Swell wave height: 5-7′
Sea water temperature: 27.4°C
Sea level pressure: 1012.2 mb
Dry bulb temperature: 25.0°C
Wet bulb temperature: 24.0°C
Cloud cover: 8/8, rain from altostratus clouds

If you’ve been mapping out our course on a “chart” of the Pacific Ocean (as I’m sure you all are!), you may have noticed that we’ve made a sudden shift to the south! Why? To divert away from a tropical depression forming to our east! The Commanding Officer, CDR Mark Ablondi, made the decision late last night, after French class, to reverse the order of our trip. Instead of visiting the buoys from north to south along 125°W and then cruising west toward the 140°W line, we’ll first head south along the 140°W meridian and then toward 125°W. Flexibility is key to the success of the trip, especially when considering the safety of the crew. A tropical wave is heading our way with a tropical depression behind it. To our north there are a series of subtropical high pressure cells which will cause the tropical depression to slide due west, very close to our original path, thus the reason for the change. We’re hoping to avoid all signs of the storm. However, we currently have overcast skies and rain falling from beautiful altostratus clouds. The only thing constant about the weather is change – gotta love it!

Science log:
Our most exciting part of the morning so far has been a live test broadcast with Jennifer Hammond at NOAA’s Silver Spring office and others who will enable a future broadcast to come live to you. We had to attempt it three times because we kept getting disconnected. Larry, our very important computer technician on board, is looking into the cause of the problem. We’ll try another live broadcast test tomorrow morning before our first general broadcast, hopefully later this week (stay tuned on the web site for further information).

The constructed buoy that was going to replace the one to be removed at 8°N, 125°W, will now be used for the 2°N, 140°W replacement. Because ocean currents are much stronger near the equator, the buoys require more flotation. This means that two extra fiberglass inserts are placed inside the buoy (sort of like adding the donut hole to the donut). This will enable the buoy to float more effectively.

We tested the CTD profiler early this afternoon. CTD stands for conductivity, temperature, and depth. This instrument continuously records data as it is lowered through the water column to nearly the bottom of the ocean. It also collects water samples at preselected depths. Water is then brought to the surface from these depths and analyzed for salt and nutrient content. I have been asked to take some of the CTD measurements since we’ll be doing them a few times every day and I’m told it takes 1-2 hours. I’m very interested to see what it entails. I think that Jason will train four of us tomorrow.

Well, I reread my logs and decided that I need to provide some context as to why we’re all on the Ka’imimoana in the first place. El Niño! You’ve all heard the term, I’m sure, but what does it mean, and should it concern us?

Here is the story…
El Niño, Spanish for “the boy” or “the Christ Child”, is a phenomenon that refers to a warm ocean current that typically occurs around December (Christmas-time) off the west coast of Peru and lasts for many months. This appears to be related to a warming of the entire tropical Pacific Ocean.

Let’s go back even further… Under normal ocean and atmosphere conditions (during non-El Niño years), the trade winds in the Pacific blow from east to west across the tropical Pacific Ocean, dragging the ocean water beneath with them (due to friction). Because the water is being moved toward the western Pacific, it piles up such that the actual surface of the water near Indonesia can be up to approximately ½ meter (~1.5′) higher than off the west coast of South America – amazing! The sea surface temperature near Indonesia is also about 8°C (how many °F?) warmer than near South America because it has been warmed by the sun as it crossed the Pacific near the equator. Near South America, cold subsurface water then emerges at the ocean surface to take the place of the water that moved westward. This process is known as “upwelling” and brings cold, nutrient-rich water to the surface, which is attractive to many fish species, including the anchovy.

Warm ocean water is important for many reasons, primarily because it has a direct relationship with the atmosphere above it. Above warm water, evaporation increases, winds at the surface flow together, and clouds form. Thunderstorms form much more easily under these conditions causing rain. Heat is transferred from the ocean to the atmosphere in this process, known as “convection”. This shows why there is such a direct and important link between the ocean’s temperature and the winds in the atmosphere. Convection usually occurs over the warmest water and winds blow toward the warm rising air from all directions. Energy is transferred and this is one of the important flows across earth. I always tell my students that the earth constantly tries to maintain a balance and this is why there is movement. Earth is dissatisfied with excess heat near the equator and cold air hovering around the poles. In a move toward equilibrium, the wind flows and the ocean currents move…energy is being transferred! Okay, I could go on for days about this because I love it so much. Let’s move on to El Niño. During El Niño events, which typically occurred every 3-7 years in the past, but may be happening more often now, large-scale winds that normally blow from east to west across the Pacific Ocean diminish, and occasionally even reverse direction. Now, the warm water that is typically found in the western Pacific moves toward the eastern Pacific and, voila!, little upwelling occurs along the coast of South America resulting in fewer nutrients for the phytoplankton and other marine life that survive on the nutrients brought from below. With warmer water in the eastern Pacific, the process of convection shifts eastward with the warm water so the rising air and ensuing storms are found closer to the central Pacific.

Why is this important? El Niño results in changes to temperature and rainfall on a GLOBAL basis. For instance, because convection shifts eastward, parts of northeastern Australia often experience a major drought while the coast of Chile can receive severe floods. The 1997 El Niño event, one of the strongest ever experienced and recorded, resulted in heavy rains over the southern U.S., record rains in California, and a mild winter in the mid-western states of the U.S. At times, the monsoon that affects Southeast Asia arrives much later than normal. We are on the Ka’imimoana to help predict upcoming El Niño events . This is done with the help of 70 buoys that are located on the tropical ocean surface between 8°N and 8°S latitude. Sensors on these buoys measure atmospheric conditions like wind speed, wind direction, air temperature, relative humidity, radiation, and ocean temperature data from the surface to 500 meters below, to help determine if an El Niño event is occurring, or not. We do know that an El Niño is currently forming in the Pacific. Now, we need to ensure that all possible data are available by checking to make sure the sensors are functioning properly and that data are being sent via satellite to researchers who are using models to predict the severity of this event.

With early prediction of an El Niño, countries can adjust the types of crops that they grow, and plan in areas such as water resources, fisheries, and reserves of grain and fuel. Countries that have experienced the effects of El Niño in the past can also effectively plan in advance for drought, floods, and extreme weather, a consequence of the phenomenon, El Niño.

If you are a teacher, I’m writing a lesson plan related to the current El Niño conditions in the Pacific that you can use in your classroom. I will provide optional assignments so that you can use it from the middle school to college level. Please check my lesson plans in the next week to find this activity. Paul Freitag, Chief Scientist on board, is assisting with the exercise by providing current ocean temperature data and informed ideas.

Personal log:
I have remarked a few times today how helpful everyone is on the ship regarding questions that the new people have (that includes me!) or things that we need. This is a tremendous group of people. The Doc helped lower my bunk bed on the first day, after I spent 15 minutes trying every possible hole, button, lever, etc., until she discovered it was actually screwed into the wall. Doug McKay is helping me practice my knot tying which I started learning with my husband in Honolulu; I hope to be of some use on the RHIB or on the decks in the future when things need to be tied down.

John Kermond has answered every imaginable question, many times more than once. He has been very patient. The Chief Scientist endures my many inquiries about the TAO buoys and manages to come up with appropriate manuscripts and manuals whenever I need extra information. The Captain took the time to provide an overview of Pacific Ocean weather this morning before our test broadcast. It’s amazing how many questions I have each day. I even had to learn how to open the doors to go out on the deck. There is a lever that you lift to a certain point which allows you to exit; you then need to lower the lever again once you leave. This keeps the doors from flying open on their own and also keeps them water tight. I ended up sleeping with my stateroom door open the entire first night on the ship because I didn’t realize that it clicks shut only after much force. I woke up and the door was wide open. Taking a shower is always interesting. I’ve learned to stand with my feet wide apart to brace myself and I often use the walls for stability. Fortunately, I don’t even need to think about many of these details anymore. It’s remarkable how we all adjust to our surroundings.

Spiderman is the movie of choice tonight. I’m writing to you from my corner computer and peering out at a group of about 8 people sitting in the main lounge watching the movie. I haven’t watched any movies so far, but I am signed up for the game tournaments to start sometime later this week. In the first round I’m competing against the Commanding Officer (CO) in Scrabble (Yikes!), against the Chief Scientist in Yahtzee (Yikes again!), and am partners with our Cadet on board when we play Sequence. This is an evening program initiated by the Doc to keep morale high on the ship. Sounds good to me!

Well, I’m off to fold laundry before going to bed. Another outstanding day on the ship…I could really get used to this!

Hope all is well with you. Keep in touch!
Diane

Diane Stanitski: Day 10, August 20, 2002

NOAA Teacher at Sea

Diane Stanitski

Aboard NOAA Ship Ka’imimoana

August 16-30, 2002

Day 10: August 20, 2002

Our location and the weather observations at 1500 today were:
Latitude:
 15°37.4’N
Longitude: 145°25.0’W
Visibility: 12 nautical miles (nm)
Wind direction: 030 (direction from which the wind is blowing)
Wind speed: 18 kts
Sea wave height: 4-5′
Swell wave height: 5-7′
Sea water temperature: 26.0°C
Sea level pressure: 1011.9 mb
Dry bulb temperature: 25.8°C
Wet bulb temperature: 24.2°C
Cloud cover: 7/8, Cumulus

Today’s quote: 

“A man is ethical only when life is sacred to him…and when he devotes himself helpfully to all life that is in need of help.”
– Albert Schweitzer


WELCOME to a new time zone! We are now 9 hours off Greenwich Mean Time (GMT), the current time in Greenwich, England along the 0° meridian. We just crossed into this new time zone overnight as we cruised southeast toward 8°N latitude, 125°W longitude. At 8°N, 125°W we’ll find the first buoy that needs to be replaced, which is typical after floating in the water for one year (see the web site http://www.pmel.noaa.gov/tao for a map and description of the Tropical Atmosphere Ocean (TAO) buoy array). During our travels southward along the 125°W longitude line, a few of the moorings (buoys) will simply need to be repaired instead of replaced. The sensors that will be replaced may have been vandalized by fishermen, damaged due to severe weather, or the sensors may need to be recalibrated. In any case, we’ll either replace sensors or fix them at each buoy.

I just walked (well, swayed) out on the buoy deck and discovered that the ship’s first replacement buoy is being constructed. This buoy will replace the one currently floating at our first stop. It’s amazing how the whole project comes together with many scientists working in harmony. See today’s photo log for pictures of the newest buoy at various stages of completion.

Dr. Paul Freitag, our Chief Scientist, provided some more information about the instruments on the buoys. First, the buoys are anchored to the ocean floor, which is still hard for me to believe. All of the buoys have sensors to measure temperature/relative humidity and an anemometer to measure wind speed along with wind direction. Some of the buoys have sensors measuring precipitation and solar radiation, but not all are equipped to with this expensive instrumentation. The buoy itself (the orange and white donut part) is composed of a foam core surrounded by fiberglass. Below this there is a rigid stainless steel bridle connected to a wire rope which is used for the first 500 meters of the mooring. On these 500 meters of wire rope there are nine subsurface temperature sensors (thermistors) followed by two pressure sensors accompanying two more thermistors. The pressure readings correspond well with measurements of ocean depth. Water temperatures are measured below the surface at 1 meter (m), 20 m, 40 m, 60 m, 80 m, 100 m, 120 m, 140 m, 180 m, 300 m, and 500 m. Below 500 m, eight-strand plaited nylon line is used down to the anchor, with some sites requiring nearly 3 miles of line (see the diagram at http://www.pmel.noaa.gov/images/atlas.gif). The amazing thing is that the subsurface temperature sensors transmit and receive data from the buoy with an inductive coupling technique, which means that they’re not wired directly to the main line, yet data are transmitted along the cable. The sensors simply clamp onto the wire rope that serves as one of the inductive elements. This makes it much easier to assemble and deploy the extremely long cable. One aspect of meteorology that I find fascinating is the instrumentation, so I spend much of my time looking at the wiring and instrument manufacturers and asking the scientists many questions about what and why and how…they haven’t seemed to mind so far.

Here is some more information about the people and activities on the ship. There are 31 people on board (seven of us are women) with bunk space available for only two more. There are 5 officers, 1 cadet, 10 scientists, and the remaining crew members who focus on making the ship and science work efficiently. We all greatly appreciate their help. Everyone eats breakfast from 7:00-8:00 AM (0700-0800), lunch from 11:00-12:00 (1100-1200), and dinner from 4:30-5:30 PM (1630-1730). There is a small store selling candy and snacks, soda, shirts and hats on the ship that is open each night from 1930-2000 hours. We can email from any computer on board (I’ve counted at least 14 computers) and all of our email messages are sent and received in a bundle two times a day around 0900 and 1600. There is a laundry room with three washers/dryers on the second deck forward on the starboard side of the ship. There are two lounges with library materials including books, magazines and board games. Movies are shown every night on two channels in the lounges at both 1730 and repeated at 2000. So, you can see that it’s easy to keep busy on the ship. Two extra treats on this cruise include guitar/music playing sessions for all those who brought their musical instruments on board, and French lessons every other night. Je m’appelle Diane. J

After seeing more flying fish today, I decided to do some research to find out exactly what these fish are all about. I learned that they’re often referred to as “bluebirds of the sea” and that they spread their pectoral fins, glide for a few seconds, and then splash back into the sea. When they swim, their long fins are folded against their body. Flight speeds of up to 35 miles per hour have been monitored and flights as long as 13 seconds covering up to 450 feet have been timed. Photography has proven that they are gliders and not true flyers (all information obtained in “Fishes of the Pacific Coast” by Gar Goodson, Stanford University Press, 1988). I’ll keep my eye on these beauties and attempt to take a photo so you can share this delight!

The first person to answer my question of the day posed in my August 17th log was Tom Taddeo (my incredibly smart uncle from Mechanicsburg, PA – thanks for responding!) who gave the correct answer regarding the definition of pitch, roll, and yaw of a ship. Yes, pitch is when the ship tips in a fore-and-aft direction (from front to back), roll means the ship tips from side to side due to the sea or swell, and yaw means that the ship swings involuntarily from side to side when advancing forward. I’d love to hear from more of you so I can acknowledge more people in my logs.

The afternoon was spent testing the computer and camera equipment that will enable us to connect with all of you via upcoming live webcasts. Fortunately, everything seems to be working very well! We even managed to get a wireless microphone to work. We’ll be testing again tomorrow and hope to have a general broadcast ready to go by the end of the week. Please contact Jennifer Hammond at jennifer.hammond@noaa.gov if you’d like to receive the live broadcast. We’ll be interviewing scientists and talking about life at sea!

We enjoyed a wonderful dinner again tonight and I’m nearly ready for bed. It was great to hear from Dana Tomlinson (our last Teacher at Sea!), Nancy from ASU, and as always, my husband, family members, and friends. I invite more of you to email with questions that you might have about the Ka’imimoana or what it’s like to live on a ship.

Until tomorrow when I discuss CTD’s (what are they, you ask?!? – more tomorrow!)…bon soir.

Question of the day: What is the difference between sea wave height and swell wave height?

More tomorrow…
Diane

P.S. I just walked outside and rain was falling on the buoy deck under bright pink clouds – beautiful!

Dana Tomlinson: Day 21, March 21, 2002

NOAA Teacher at Sea

Dana Tomlinson

Aboard NOAA Ship Ka’imimoana

March 1 – 27, 2002

Date: Thursday, March 21, 2002

Lat: 1.5°S
Long: 95°W
Seas: 5-8 ft.
Visibility: unrestricted
Weather: mostly cloudy with isolated rainshowers
Sea Surface Temp: 82-86°F
Winds: SE 10-15 knots
Air Temp: 83-70°F

Today was a day of mostly rainshowers, in actuality, with intermittent spurts of sun. The skies were pretty dramatic. The day was a pretty typical day at sea on the KA. The crew members were all doing their chores around the ship. The scientists spent the morning in preparation. Brian could be found splicing nylon cord together, Nuria was inputting data, etc. There is a buoy already outfitted on board, ready to be deployed after the ship leaves the Galapagos and continues to move northward on the 95°W line.

We had some delightful visitors this afternoon – a group of porpoises slowly made their way from the port side forward of the bow, to the bow, and then slowly drifted off to starboard. This occurred while the scientists were visiting the buoy at 2°S 95°W, so the ship was stopped. Once again, the bearings in the anemometer on this buoy were shot, so the scientists switched the anemometer with a new working one. It was a quick trip out and back and the ship continues to make very good time. We will be getting into the Galapagos much earlier than expected (Saturday morning). The cliche is true, eh? All good things must come to an end, for this Teacher at Sea anyway.

Question of the Day: 

This will be the last real question of the day, since I will only be at my noaa.gov email address until early Saturday morning. So, I’ll make you think. Starting at the 8°N point on the 110°W line and traveling down to the 8°S point on the 110°W line, and then traveling east to the 95°W line and going north to the equator, how many nautical miles is that? Keep in mind that 1° is about equal to 60 nautical miles. Get out the pencil and paper and go for it!!

Answer of the Day: 

I even stumped Cmdr Tisch on this one! We’ve decided a round number on what it costs to run the Ka’imimoana every day is about $20,000. It’s difficult to tell exactly. I did find out about how much fuel they use every day. Give up? About 2200 gallons. Fill ‘er up!

Til tomorrow,
🙂 Dana

Dana Tomlinson: Day 18, March 18, 2002

NOAA Teacher at Sea

Dana Tomlinson

Aboard NOAA Ship Ka’imimoana

March 1 – 27, 2002

Date: Monday, March 18, 2002
Lat: 8°S
Long: 100°W
Seas: SE 4-7 ft
Visibility: unrestricted
Weather: partly cloudy with isolated rainshowers
Sea Surface Temp: 82-86°F
Winds:E 10-15 knots
Air Temp: 86-72°F

Once again, today was a day in transit. The scientists were preparing for the leg between Galapagos and Manzanillo by getting the buoys that they will deploy there ready. The buoys we picked up on the 110°W line are being cleaned, patched, painted and fitted with the hardware so that they can be used on the 95°W line.

Since today was a quiet science day, I thought I’d take the opportunity to tell you a bit about the Ka’imimoana. The ship is 224 ft long and has a beam of 43 ft. It has 6 total decks, but most of us use only 4 of them. It has enough cabins or staterooms (about 20 of them) to house 34 people. There are 4 generators (12 cylinders putting out 600 volts each) driving 2 propulsion motors, each of which has 800 horsepower. Thanks to Ian Price of the Engineering Dept for these figures. The KA has its own website. Check it out for more info about the ship.

Question of the Day: 

What is the beam of a ship?

Answer of the Day: 

Once again, I’ll wait until tomorrow to get past the
weekend backup of emails (I only get them on board twice a day and
they are funneled through the NOAA offices in Silver Spring, MD –
thanks, Jennifer!!).

Til tomorrow,
🙂 Dana

Dana Tomlinson: Day 16, March 16, 2002

NOAA Teacher at Sea

Dana Tomlinson

Aboard NOAA Ship Ka’imimoana

March 1 – 27, 2002

Date: Saturday, March 16, 2002
Lat: 8°S
Long: 110°W
Seas: 2-5 ft
Visibility: unrestricted
Weather: partly to mostly cloudy, possibility of rain showers
Sea Surface Temp: 82-86°F
Winds: 5-10 knots
Air Temp: 85-74°F

Today was kind of bittersweet for me but I doubt the crew feels that way. Today, we recovered the buoy at 8°S 110°W and deployed a new one. This will be the last time I have to see the buoy operations, as it is the last recovery/deployment until after the Galapagos Islands – and that’s where I get off. The crew goes on to Manzanillo, Mexico, and then returns to Honolulu, their home base. The operations went perfectly on both ends today, and now the crew gets a chance to catch up on everything they can’t do when they’re doing buoy ops.

We are now in transit from the 110°W line directly east to the 95°W line. We will be in transit for several days. During that time, like I said, the crew will be getting their regular chores done and the scientists will be preparing for the buoy “fly bys” we’ll be doing on the 95°W line. A fly by is when we locate the buoy, the scientists go out to it in the RHIB to check on it, and then fix anything that needs fixing or calibrating with the instrumentation. This transit is a chance for everyone to catch their breath for this next round of operations.

Question of the Day: 

The ship is traveling at about 12 knots. How long will it take us to get from the 110°W to the 95°W? Hint: you’re going to have to find out how many miles it is between degrees of longitude – Internet anyone?

Answer of the Day: 

Once again, Brian R. of San Diego tells me that the Pacific Ocean, on the average, is 13,740 ft deep, or about 4188 meters deep. But does anyone know how deep it is at its deepest point??? Let me hear from you. 🙂

Til tomorrow,
🙂 Dana

Dana Tomlinson: Day 15, March 15, 2002

NOAA Teacher at Sea

Dana Tomlinson

Aboard NOAA Ship Ka’imimoana

March 1 – 27, 2002

Date: Friday, March 15, 2002
Lat: 6.2°S
Long: 111°W
Seas: 4-6 ft
Visibility: unrestricted
Weather: partly to mostly cloudy
Sea Surface Temp: 82-86°F
Winds: SE 10-15 knots
Air Temp: 85-74°F

Today was the day that we rounded up our wayward buoy. The buoy was deployed in April 2001 at 5°S 110°W. In November 2001, NOAA scientists knew that it was drifting freely. By the time we found it (it has a tracking device on it) it had drifted one degree south and one degree east. That’s 60 nautical miles in two directions!

Once we pulled it on board, one could see fairly clearly what had happened. There were scrapes on the sides of the buoy (the toroid, or “donut” section) where something like a boat/ship had rubbed up to it. There was a steel cable that had been attached to it and the nylon rope had been cut. So, the theory is that a fishing vessel attached itself to the buoy with the steel slingshot device. It yanks the buoy out of place and it’s easy to catch all the fish that use the buoy’s shade as their ecosystem.

Speaking of the buoy’s fish, while we were bringing in the buoy, folks on board that were not working were fishing the bounty of the ocean with a rod and reel. Several mahi mahi graced our table at dinner that evening – served by Clem four different ways (I think the mahi mahi in coconut sauce was the favorite.)! That woman is amazing. You NEED to use the gym on board to work off her good cooking!

Not to be overshadowed by the morning’s events was the day’s live broadcast. This was our third general broadcast and was the very first ever tried by NOAA out of doors. We had our studio on the buoy deck today. On the live broadcast, Cmdr. Tisch, Chief Scientist McPhaden and I dedicated tomorrow’s buoy to be deployed at 8°S 110°W to Education in America. The bulk of the show was scientist Ben Moore giving us a cook’s tour of the buoy deck’s equipment, and Dr. McFaden talked about our wayward buoy. It was a great show. We can still hook you up for the live broadcasts on 3/18, 3/20 and 3/22 if you’re interested.

Question of the Day:

 This is going to be a bit of a toughie, and might need some Internet research on your part, but it’s interesting. When do most oceanographers consider to be the beginning of modern oceanography? Or, another way of putting it is, what started modern oceanography? Hint: it’s before 1900.

Answer of the Day: 

The question was: how many branches of the armed services are there and what are they? Dennis M. of Lakeside CA got it exactly correct. There are 5 branches of the armed services: Army, Navy, Air Force, Marines, Coast Guard. PLUS, there are two other uniformed branches: NOAA and the US Public Health Service. Great job, Dennis. 🙂

Til tomorrow,
🙂 Dana

Dana Tomlinson: Day 14, March 14, 2020

NOAA Teacher at Sea

Dana Tomlinson

Aboard NOAA Ship Ka’imimoana

March 1 – 27, 2002

Date: Thursday, March 14, 2002
Lat: 6°S
Long: 110°W
Seas: 4-7 ft
Visibility: unrestricted (3-5 mi. in rainstorms)
Weather: mostly cloudy with possible rainstorms
Sea Surface Temp: 82-86°F
Winds: E 10-15 knots
Air Temp: 87-74°F

Today, we deployed a buoy at 5°S but we have not recovered the 5°S buoy. That’s because the little devil is at about 6.2°S due to currents, wind or being pulled by a boat. After the deployment, we did a deep cast to almost 3500m. Check the photos to see what that can do to styrofoam! We’ll get to the approximate location tonight of the wayward buoy and pick it up in the morning. I will be doing a CTD tonight.

Today, we also did our third safety drill since we boarded in San Diego. I have written and mentioned in my broadcasts how important safety is here. We have always had fire drills and abandon ship drills. Each week something different is added. The first week, we did an evacuation drill where we practiced putting on the evacuation (“gumby”) suit. Last week, we practiced using the water hoses in case of fire, and this week it was learning how to shoot the line throwing rocket.

I was given the honor of shooting off the rocket. All hands were called to the aft deck to hear Ens. Kroening and Ltcdr. Schleiger explain to us how to use the line throwing rocket. We would need to use it if ever we needed to get a line to another ship or land and it was too far to throw the line. For practice, we use a decoy that is shot off the fantail of the ship. Wearing my safety glasses and headgear, I shot the decoy. Successful launch! The line flew about 100 meters. Bad news: had to pull in the decoy and coil it up for next time.

Question of the Day: 

Today, we did a cast to about 3500 meters. How deep does the Pacific Ocean get?

Answer of the Day: 

Both Vanessa P. and Brian R. of San Diego were the only ones to try the fairing question and they were both right. A fairing is a smooth structure put on the outside of something. Its function is to reduce drag. In our case, the fairings are pieces of plastic about 3 inches wide and about a foot long that are snapped on to the top 250m of wire below the buoy in locations around the equator where the currents are very strong. The hope is that these fairings will reduce the drag on the wire and not allow it to be pulled so far off its intended location.

Til tomorrow,
🙂 Dana

Dana Tomlinson: Day 13, March 13, 2002

NOAA Teacher at Sea

Dana Tomlinson

Aboard NOAA Ship Ka’imimoana

March 1 – 27, 2002

Date: Wednesday, March 13, 2002

Lat: 2°S
Long: 110°W
Seas: 3-6 ft
Visibility: unrestricted
Weather: partly to mostly cloudy
Sea Surface Temp: 80-84°F
Winds: E 10-15 knots
Air Temp: 86-76°F

This morning was jam-packed. I got up and outside on deck in the hopes of tagging along on a little half hour RHIB ride to visit the buoy at 1.5oS. A RHIB is a Rigid Hulled Inflatable Boat. I was in luck – there was room. The plan was to replace the anemometer that was missing (vandalism? strong winds? who knows), and to put on a brand new pressure sensor as a brand new experiment.

Once again, things don’t always go as planned. After doing everything they had planned to do, the scientists couldn’t get the correct readings on their computers for the instrumentation. They spent about an hour and a half standing on the buoy in the blazing sun trying to fix the problem several different ways, and finally just replaced the tube entirely with new instrumentation.

During that time, I was circling the buoy in the RHIB, taking pictures and enjoying the scenery. I saw schools of mahi mahi jumping out of the water – possibly escaping the pilot whales that were spotted (not by me, unfortunately). I was also getting worried as I had to be back on the ship to do a live broadcast. Ultimately, when the scientists had to go back to the ship to get some new parts, they delivered me back at the same time. And the live broadcast went very well today, too. Look for all our live broadcasts in streaming video format on the website when we return.

Question of the Day: 

How many branches of the armed services are there and what are they?

Answer of the Day: 

The first person to answer the Pollywog/Shellback question was Brian R. from San Diego, but Mrs. Mackay’s class from San Diego got it correct also. A pollywog is a seagoer who has never crossed the equator on a ship. A Shellback is someone who has crossed the equator on a ship AND has gone through a Shellback ceremony. We have crossed the equator, but the ceremony hasn’t occurred yet. When it does, I’ll tell you about it, if I can. 🙂

Til tomorrow,
🙂 Dana

Dana Tomlinson: Day 12, March 12, 2002

NOAA Teacher at Sea

Dana Tomlinson

Aboard NOAA Ship Ka’imimoana

March 1 – 27, 2002

Date: Tuesday, March 12, 2002
Lat: .5°S
Long: 110°W
Seas: 2-4 ft.
Visibility: unrestricted
Weather: partly to mostly cloudy
Sea Surface Temp: 77-82°F
Winds: N/NE 5 knots
Air Temp: 88-76°F

As it turns out, the ADCP (Acoustic Doppler Current Profiler) was rigged up to deploy when I went outside this morning. The scientists had determined a new method of having it enter the water so there would be even less likelihood of anything going wrong. And they did a great job, because it was a very easy deployment. Mission accomplished – there’s an ADCP successfully collecting data on the equatorial currents at 110°W for the next year.

There was even more excitement to come for me, however. I had the privilege of being the first Teacher at Sea to ever have a buoy dedicated to her school. At 1130 today, Cdr. Tisch, Chief Scientist McPhaden and I each signed a large NOAA sticker on which we had written “Emory Elementary School, San Diego CA.” The gentlemen placed it on the plastic covering of the instrumentation and when it was deployed at the equator 110°W, that sticker actually kept its face to us until we could no longer read it. What’s truly amazing is that very buoy was the very first buoy that NOAA ever deployed in 1979. Our school is very honored.

The deployment of the Emory buoy took quite a while today because of the many fairings that the crew had to put on the wire line that goes down 250m below the buoy. Tomorrow is also a busy day on board. We are doing several CTD casts (Conductivity, Temperature and Depth), and we will be going by the buoy at 2°S to check on it, but we’re not recovering it.

Question of the Day: 

What is a fairing and what does it do?

Answers of the Days: 

Due to the weekend, there are several questions to catch up on. Here we go:

From Friday: No one answered this one correctly, so I’m going to give it to you. GMT is Greenwich Mean Time. It is 7 hours ahead of us here in Mountain Time and it is where all time is based because it is the 0 degree line of longitude. In nautical letters, zero is Zulu, hence, Zulu time. So, if it’s 9pm here in Mountain time, in GMT it is 4am.

From Saturday: Ditto on no answer for this one (come on you guys!!).
TAO stands for Tropical Atmosphere Ocean.

From Sunday: Karen R. in San Diego knows that MBARI stands for Monterey Bay Aquarium Research Institute. And Vanessa P.(again!) in San Diego knows that pelagic means of the open ocean. And Brian R. in San Diego knows that chlorophyll is the green matter found in certain cells of plants, algae and some bacteria and it’s important because it changes light energy into chemical energy.

Til tomorrow,
🙂 Dana

Dana Tomlinson: Day 11, March 11, 2002

NOAA Teacher at Sea

Dana Tomlinson

Aboard NOAA Ship Ka’imimoana

March 1 – 27, 2002

Date: Monday, March 11, 2002
Lat: 
Long: 110°W
Seas: 2-5 ft.
Visibility: unrestricted
Weather: cloudy, rain possible
Sea Surface Temp: 77-82°F
Winds: N/NE 5 knots
Air Temp: 88-77°F

What an interesting day, all the way around. Weather-wise, we awoke to clear skies, with clouds on the horizon and we could tell it was going to be hot. By 9am, I could feel the backs of my legs burning with my back to the sun. I went in for lunch and came out and it was totally clouded over and a few minutes later, it was raining! Not drizzling – raining. Welcome to the equatorial Pacific!!

Yes, we made it to the Equator! My days as a Pollywog are numbered. Shellback is coming soon. Today, there were several important events going on onboard. Most importantly to me was our first live webcast. This was an exclusive to my school only and fortunately, was a technical success! It was actually a pretty perfect broadcast, a great way to start. All of the schools that have contacted either the NOAA offices or myself have received word about future live webfeeds. Once again, if there are any teachers out there who would like a live feed right into your classroom or any computer at the school that has an internet connection and RealPlayer (a free download), just let me know asap and we’ll get you the info you need.

The other important events on board today were another buoy recovery (more barnacles!!), a ADCP recovery/deployment and a deep CTD cast (to 3600 meters). The buoy was recovered, but it was 30 miles from where it should have been due to the strong currents at the equator. We will deploy the new one tomorrow morning. It will be a very special buoy – the first one ever dedicated to a school. It will have a sticker on it signed by the Commander, the Chief Scientist and me, dedicated to Emory Elementary! Neat, huh?!

The ADCP is an Acoustic Doppler Current Profiler that’s been in the water for the last year. This is a big, round orange device (a little bit bigger that a weather balloon) with instrumentation on it that records the currents. There are 4 of them across the equator resting at different depths. It is anchored so that it rests 250 feet below the surface and periodically sends sonar waves up to the surface that bounce off of the surface and the plankton above and somehow that helps to record the currents. The information is stored in the device until it is recovered and then the data is learned. Like the buoys, it has an acoustic release device on it that releases it from the anchor when remotely told to do so and it floats to the surface.

The recovery went perfectly. We had a bit of trouble with the deployment, however. Hey, sometimes, things happen and this was one of them. Just as the crew was carefully loading it into the water, a wire snapped and the ADCP fell into the water untethered. It had to be rounded up just like the old one and brought back up on deck. Presently, it’s still sitting there as the scientists decide whether or not to deploy it tomorrow or to wait. Stay tuned.

Question of the Day: 

Above I mentioned being a Pollywog and being a Shellback. What do I mean?

Answer of the Day: 

Once again, since the logs weren’t posted over the weekend, let me give the GMT/Zulu question one more day. 🙂

Til tomorrow,
🙂 Dana

Dana Tomlinson: Day 10, March 10, 2002

NOAA Teacher at Sea

Dana Tomlinson

Aboard NOAA Ship Ka’imimoana

March 1 – 27, 2002

Date: Sunday, March 10, 2002
Lat: 1°N
Long: 110°W
Seas: 2-4 ft.
Visibility: unrestricted
Weather: partly to mostly cloudy
Sea Surf Temp: 79-82°F
Air Temp: 89-78°F

Today started out not looking so good – and I should know since I saw the sun rise behind the clouds. I have been up since 4am since I did the 4:30am CTD. The weather improved throughout the day, the seas have flattened out – you can tell we’re near the equator. By evening, it was just gorgeous – balmy, calm and a nice sunset behind the clouds. Ahhhhh.

Ok, I’ve strung you along long enough. Let’s talk barnacles. Actually, let’s talk about the hardest working woman on this ship: Raye Foster. She really is working in two capacities. She collects the barnacles off of the buoys. Those get sent to Dr. Cynthia Venn at Bloomsburg University in Pennsylvania. And she collects water samples from different depths for Dr. Victor Kuwahara of MBARI. Why does she do these two things?

Dr. Venn has been doing barnacle research in the Pacific Ocean for almost ten years now. Since the NOAA buoys are moored from 8°N to 8°S all across the Pacific, she has had the unique opportunity to have a systematic set of hard objects from which to collect the barnacles in the open ocean. She has been studying this distribution of pelagic barnacle species across the tropical Pacific and the effects of El Niño and La Niña conditions on them.

Raye scrapes the barnacles off every part of the buoy and puts them in buckets according to which part of the buoy they were on. Then she counts them and puts them in bottles and covers them in Formalin, a preservative. Then, she bags them up with notations on the baggies as to which buoy they came from and the date, and the barnacles will be eventually shipped to Pennsylvania for more research by Dr. Venn.

Raye also takes water samples from every CTD cast for Dr. Kuwahara. She does several different experiments, but the most interesting to me is the chlorophyll extractions. Dr. Kuwahara is doing research on the amount of chlorophyll in the ocean at different depths over a period of time. And once again, the systematic testing done by NOAA for their El Niño research works perfectly for this purpose also.

Raye is therefore needed at every buoy recovery for work that takes hours to scrape the barnacles off of the buoy. Then days to do the prep work to send them to Dr. Venn. She is also needed at the end of every cast to collect the water samples. Those casts are basically every 6 hours around the clock – every 4 hours here close to the equator!! Needless to say, Raye, you need a raise! Seriously, everyone on board is aware of her diligent competence. You go, girl. 🙂

Questions of the Day: 

I decided that there can’t be just one because I wrote about so many possible questions. Please answer any of these you can:

What does MBARI stand for?
What does pelagic mean?
What is chlorophyll and why is it important?

Answer of the Day: 

Since I haven’t received all of my mail from over the weekend (it’s sent to me from NOAA in Maryland), let’s save it for Monday’s log, ok?

Til tomorrow (a very busy day),
🙂 Dana

Dana Tomlinson: Day 9, March 9, 2002

NOAA Teacher at Sea

Dana Tomlinson

Aboard NOAA Ship Ka’imimoana

March 1 – 27, 2002

Date: Saturday, March 9, 2002

Lat: 5°N
Long: 110°W
Seas: E/NE 2-5 ft.
Visibility: unrestricted
Weather: partly, occasionally mostly cloudy
Sea Surface Temperature: 78-82°F
Air Temp: 87-76°F

Today, we did our first recovery/deployment of a buoy. What a fascinating 6 hour process. I was very impressed by the way the entire crew worked together as a team to make this complicated, and potentially dangerous, process happen.

At first light, two scientists (Brian and Nuria) motored out to the buoy (which was about 10 miles from where it should have been) from the Ka’imimoana in a small craft. They tied the buoy to a rope which was winched up back on deck. The buoy was then pulled to the ship and carefully hoisted aboard (in 6-8 ft swells with about 15 knot winds). It was placed over a hole in the deck so that Raye could scrape the barnacles off from below. (more barnacle talk tomorrow) It was missing its anemometer – lost at sea! Then the scientists started to winch in the wire which holds, at regular intervals, the thermometer pods, or Thermisters, which have been on this buoy for the past year collecting temperature data. After those are cut off, all of the 500 m (one spool) of wire is spooled. (We found a mass of fishing line that was snagged on the wire. This probably helps to account for why the buoy was 10 miles off. The fishing boat that was attached to the line probably pulled it.) Then comes 5-6 spools of white nylon rope to pull up. Then, there’s another 50 m of nylon rope, at the end of which is an acoustic coupler – a device that automatically releases the anchor line from the anchor by remote. Done with recovery!

To deploy the new buoy, it’s not exactly a reverse process because the buoy goes in first, followed by the line and then anchor last. The buoy (with anemometer!) gets hoisted over the side by crane and released with the wire on board attached to it. The wire starts getting released and the Thermisters are attached to the line at their intervals, then the rest of the wire is released and then the many spools of nylon rope. Then the acoustic coupler is attached and finally the anchors are carefully placed into the water. The ship then motors back to the buoy, which has floated over a mile away, to make sure it has ended up in the correct location and is floating properly upright. The scientists have purposefully deployed the anchor at a certain location knowing that the anchor will pull the buoy back some, but not all of the way. The barnacle talk will wait for tomorrow since the buoy explanation took so long! Stay tuned!!

Question of the Day: 

At the end of the url for this website and on every buoy we recover and deploy, it says “TAO.” What does TAO stand for?

Answer of the Day: 

Mr. Whitham’s class in San Diego was the first to respond with the correct answer. To change Celsius into Fahrenheit, one must take the Celsius number, multiply it by 9/5 and then add 32. C x 9/5 + 32 = F So, 27.6C is about 81F. (A hint that an Australian friend of mine told me is, if the Celsius number is in the 20’s or higher, just multiply the Celsius number by 3 and you’re close enough. In this case, pretty darn close!!).

Til tomorrow,
🙂 Dana