John Schneider, July 14, 2009

NOAA Teacher at Sea
John Schneider
Onboard NOAA Ship Fairweather 
July 7 – August 8, 2009 

Mission: Hydrographic Survey
Geographical Area: Kodiak, AK to Dutch Harbor, AK
Date: July 14, 2009

Position 
Shumagin Islands

Here I am in the data acquisition chair.
Here I am in the data acquisition chair.

Weather Data from the Bridge 
Weather System: light overcast
Wind: light & variable
Sea State: gentle swells

Science and Technology Log 

Today I spent quite a few hours in the plot room learning about the methods being used on Fairweather for recording bathymetric data. In the picture below and to the right you are looking forward at the starboard side of the Plot Room.  From the left are Chief Survey Tech Lynn Morgan, Survey Tech Dave Franksen, survey crew members Damian Manda and Gabriel Schmidbauer.  Dave is in the chair that I’m occupying in the shot above.

At first, it’s a baffling array of monitors and programs and people.  There are 11 stations for survey personnel in the plot room and it is operating 24/7 when we are under way. In the adjacent compartment are the FOO (Field Operations Officer) and the CST (Chief Survey Technician.)   The FOO on the Fairweather is LT Matt Ringel. The future FOO is LT Briana Welton (who will become the FOO when LT Ringel rotates off the ship); and the CST is Lynn Morgan. While the crew is quite casual in addressing one another, there are three individuals who are addressed by their titles. Commanding Officer Doug Baird is addressed as “CO,” Executive Officer David Zezula is “XO,” and LT Ringel is “FOO.” Everyone else on board is addressed by casual names.  These three officers and the CST are integral to getting our mission accomplished.

More data acquisition!
More data acquisition!

I’ll address the monitors I’m viewing from top to bottom and left to right. Once you’ve sat in the chair it’s not terribly difficult to follow what’s being displayed . . . but a novice like me isn’t able to decode issues that pop up sometimes.  Though I sat a 4hour watch, for the vast majority of that time I had an experienced tech (Will Sauter) very close to help when it was needed. The top right monitor is a closed-circuit TV monitor of the ship’s fantail1 (aft deck.) This is where the remote MVP is deployed from (The MVP is the ship’s equivalent of the CTDs2 we deploy from the launches.)  It’s on the starboard quarter and is deployed with a couple of mouse clicks from the chair. Its mouse is the white one to the right and its keyboard is the white one.

The data acquisition monitors
The data acquisition monitors

To the left of the closed-circuit TV monitor is the control screen for the MVP.  It indicates how deep the “fish” (the sensor) is, the tension on the line, how far behind the ship it is, the GPS accuracy, who is capturing data on the watch and about 20 other parameters.  Whenever something is going that involves the ship or its operations, the bridge must be apprised so the Officer of the Watch is on the same page as the survey and boat teams.  You key the intercom to the bridge and say something like, “Bridge, we’d like a cast, please.”  And they will respond “yes,” “OK,” “affirmative” or something along those lines.  Then we follow with “fish is deployed,” “fish on the bottom” and “fish is back.”  The MVP gets a sound-velocity-in-water throughout the water column.  It can vary by as much as 10 m/s which affects the recorded distance.

The graphic display of the Multi-Beam Echo Sounder called the beam “cone”
The graphic display of the Multi-Beam Echo Sounder called the beam “cone”

The far monitor you see below is a graphic display of the beam-spread from the 8111 Multi-Beam Echo Sounder.  The sounder can cover an angle of 150º (which is 75º to either side of the Nadir3.) Ideally, this line should show blue dots across from one point of the cone to the other.  As you can see, the left side is a bit higher than the right. This could indicate either that the ship is rolling or the bottom is sloped.  The control for adjusting the beam is the left roller ball in the top picture. (The right one is for a different MBES.) The next 3 displays are all controlled with the black keyboard and mouse on the lower shelf in my lap. The left monitor of these three displays technical data about the ship and MBES. One of the devices integrated into the system is an Inertial Motion Sensor which quantifies the amount of roll4, pitch5 and yaw6.

This screen depicts various graphic displays of data.
This screen depicts various graphic displays

Having this information allows the raw data to be corrected for some environmental factors.  Also in the display are accuracy and precision indicators for the GPS positions, personnel on watch, logging verification to begin and cease, and more. The next display is broken into four subordinate windows. On the top left and center are visuals on the nadir beams directly under the ship.  It seemed a bit odd not to simply include the nadir in the bottom half of the display, but the bottom half is processed a bit differently and needs to be segregated. One of the Officers (ENS Patricia Raymond) actually got a screen capture of what appear to be whales directly below the ship. I swear you can identify flukes and fins, but maybe that’s just wishful thinking on my part. I’d have included it here, but there’s just the one copy in plot.  The top right in this display shows a minimized version of the path we’re “mowing.”  You can see the most recent data in green. Finally, on the bottom, are the side-scan views of the bottom. In this particular shot it’s kind of interesting with what appear to be the remains of glacial moraines and scour on the seafloor. 

This display shows technical data about the ship and Multi-Beam Echo Sounder.
This display shows technical data about the
ship and Multi-Beam Echo Sounder.

The last screen, on the far right, is the screen showing our progress on the polygon. The recently scanned area shows up in a different color than those previously scanned and every time you update the plot, the colors begin anew.  Fairweather frequently uses about a 50% overlap to ensure redundancy of data points. On the lower right side of this screen is a graphic of the beams under the ship.  It usually looks very much like the image of the “cone” displayed above. The “70.55” indicates the depth (in S.I. Units of meters) and the top right indicates the status of whether we are logging/retaining the data or if it is just reading it. We don’t log when the ship is turning because the data points get too spread out on the outside of the turn. 

This screen depicts various graphic displays of data.
This screen shows the ship’s progress on the polygon.

Personal Log 

At first glance, it seems that mastering all of this would be daunting, but the ease and confidence that are displayed by the team show that it can be done. Again, the Professional Learning Community idea comes into play as they collectively debug issues and plan for future advancements in the technology even as they are using what is current. Listening to the technical banter and seeing how that much brainpower is focused on a task is really cool. Having spent most of the day in plot, it was real nice to spend the (endless) evening just watching the ocean around me.  When the sun sets at 2315 (11:15 pm) it’s cool.  When it sets at 2313 behind a mountain island off the coast of Alaska it’s unbelievable!

Questions for You to Investigate 

  • How are your inner ears similar to the Inertial Motion detector?
  • How are your semicircular canals contributors to seasickness?

New Terms/Phrases 

  1. Fantail – The aft deck on the ship.  It’s where the majority of overboard work is done
  2. CTD’s – Conductivity/Temperature and Depth sensors
  3. Nadir – The beam that runs the shortest distance to the bottom
  4. Roll – the left/right rocking of the ship
  5. Pitch – the front/back rocking of the ship
  6. Yaw – the swinging of the ship to either side of its course (picture a wagging tail)
Just another day in Paradise!
Just another day in Paradise!

John Schneider, July 11, 2009

NOAA Teacher at Sea
John Schneider
Onboard NOAA Ship Fairweather 
July 7 – August 8, 2009 

Mission: Hydrographic Survey
Geographical Area: Kodiak, AK to Dutch Harbor, AK
Date: July 11, 2009

Position 
Sheet L – Shumagin Islands

Weather Data from the Bridge 
Weather System: Overcast
Barometer: 1021.4
Wind: mild and veering*
Temperature: 12.1º C

Science and Technology Log 

One of the Fairweather's launches
One of the Fairweather’s launches

Today I got to go out on launch 1010.  The two primary launches on Fairweather are 29-foot diesel-powered (Caterpillar) single-screw aluminum boats.  I was real surprised to find that 1010 is 35 years old!  It’s in great shape.  Survey equipment on board includes the multi-beam echo sounder, computers, DGPS (Digital GPS gives positional accuracy to about 6 inches!) radar, radios and Iridium satellite telephones.  For “creature comforts” there’s a microwave and mini-fridge as well as a very efficient heater/defrost system.  Oh, by the way, there are no heads on the launches. (FYI – a “head” is marine-speak for a bathroom!)

Here I am on the launch monitoring all the data that’s being collected
Here I am on the launch monitoring all the data

Knowing this in advance, I didn’t have coffee or tea or a big breakfast. Turns out that when “nature calls” the rest of the crew goes in the cabin, closes the door, and you go over the side! Seems gross at first and then you realize that the 30 and 40 ton whales go in the ocean too (besides, it’s biodegradable!) The launches are carried on the boat deck (E-deck) in custom Welin-Lambie davits made for each launch. Welin-Lambie is a company over 100 years old and made the davits for a few ships you may have heard of – the British Royal Yacht Britannia, the Queen Elizabeth 2 cruise ship and oh, yeah, the RMS Titanic!  The cradles are self-leveling so when the Fairweather is in heavy seas they remain upright and stable.  The picture on the left shows 1010 in its cradle. When it’s time to launch the boat, the securing devices are released, the boat is swung out over the side and two >3 ton winches lower the launch to the rail of D-deck.  There it is boarded by the crew and loaded with the needed gear for the day.  It is then lowered into the water and sent on its way.

Once we got to the area of our polygon (I’ll explain polygons later in the week) we began acquiring data by “mowing the lawn” – the process of sailing back and forth across a defined area collecting soundings1 (bottom depths.)  In every polygon we conduct a CTD cast (CTD = Conductivity Temperature Density.)  These three parameters determine the speed of sound in the water and are used to accurately calibrate the soundings. Once we had been working for a while with me observing – and asking what must have seemed like unending questions – PIC2 Adam Argento and AST3 Andrew Clos guided me to monitoring the data being acquired. As you can see on the left there are 4 monitors all running software simultaneously.  The picture on the right shows the keyboard and mice. The mouse in my right hand controls the windows on the three screens to the right which are data displays of received info. The left mouse controls which data are being acquired.

After a long day on the launch, it was great to see the Fairweather on this rainy day.
After a long day on the launch, it was great to see the Fairweather on this rainy day.

After lunch the coxswain4 (“coxin”) – AB Chrissie Mallory – turned the helm over to me to steer.  My first leg was headed North.  The positional displays on the Fairweather and its launches all have North being at the top of the displays.  (This is called – logically enough – “North Up”.)  I rocked! If I had to move off to the right a little, I turned right.  Need to move left, turn left. There’s a little delay between when you turn and the position as displayed on the screen.  Well, we got to the top of the section and turned around to head South.  I needed to adjust a bit to the right, so I turned right . . . BUT . . . the boat is now oriented 180º from the prior run.  So in turning right, I actually made the boat go left on the screen!  Oh NOOO!!! So I overcompensated the other way.  Then had to un-overcompensate . . . and so on.  I’m sure when they downloaded the data back on the Fairweather they were wondering what the h*** was going on. Eventually I got the hang of it and didn’t do too badly after a while, but I have a much greater appreciation of what appeared to be really simple at the outset.

After a successful 8+ hours out (by the way, our lunches contained enough food for 6 people!) we headed back to the Fairweather about 15 miles away.  To see her after a day out kind of felt like seeing home after a long day out. To the unaware, the ship looks like a mish-mash of all kinds of gear all over the place, but it’s remarkably organized.  The reason for the appearance is that the ship is capable of so many tasks that the equipment is stowed in every available space.  Fairweather is capable of deploying 7 small boats and operating independently of all of them in coordinated tasking!  I’d love the opportunity to take a class of students for an all-day field trip aboard and could do so without ever leaving the dock – there’s so much on board!

A launch returning to the Fairwweather
A launch returning to the Fairwweather

As you can see in the photo of the Fairweather above, there are two large white inflated “fenders” hanging over the starboard side.  This is where we’ll be tying alongside. (I took the next 3 shots from the Fairweather as 1010 approached on a different day.) As the launch approaches, the person on the bow will throw a line to the forward line handler.  Notice there’s not a whole lot of room up there as well as the extended arm ready to catch the line.  That bow line has a mark on it which lets the line handler on Fairweather know where to temporarily tie off the line.  Then the stern line is then thrown to another line handler. Once the launch is positioned properly (no easy task in rolling seas) the hoists are lowered to the launch where they are clamped onto lifting eyes.  Each of the clamps on the boat falls5 weighs close to 40 pounds – that’s why in deck ops everyone wears hardhats – and is controlled by both the winch operator and two more line handlers using “frapping lines6.” (in the picture to the left, as the launch approaches, you can see the boat falls, clamps and frapping lines.)  Once the clamps are secured, the launch is lifted to the deck rail and the crew gets off, and the launch is lifted back to its cradle.

Piece of cake!  Realize, however, that this simply and cleanly executed maneuver, requires: On the Fairweather: 4 line handlers The Chief Bosun 1 or 2 surveyors The bridge crew to maintain position (at least 2 people) 2 or 3 deck personnel to unload gear from the launch A Chief Scientist to task the launch The chefs to feed the launch crew On the launch: Person in charge Coxswain 1 winch operator From 14 to 16 people, all working together.  On January 1, 2008, the Fairweather was authorized to paint a black letter “S” on both sides of the ship indicating that she had gone 433 consecutive days without any injuries.  Considering the environment in which Fairweather works and the tasking which requires constant deployment and retrieval of heavy equipment, the “Safety S” is a reflection of her crew and officers.

Personal Log 

What a great day!

Vocabulary 

  1. Soundings – depths measured
  2. PIC – Person In Charge
  3. AST – Assistant Survey Technician
  4. Coxswain – (<O.Fr. coque “canoe” + swain “boy”) Individual who steers a small boat or launch
  5. Boat falls – the lines used to raise and lower boats from a davit
  6. Frapping lines – Lines used to control the boat falls

By the Way 

It’s time to do some laundry!!!  The laundry room is on D-Deck just forward of the fantail.

See you all tomorrow! 

It’s laundry day!
It’s laundry day!

John Schneider, July 8, 2009

NOAA Teacher at Sea
John Schneider
Onboard NOAA Ship Fairweather 
July 7 – August 8, 2009 

Mission: Hydrographic Survey
Geographical Area: Kodiak, AK to Dutch Harbor, AK
Date: July 8, 2009

Position 
Small boat/launch operations vicinity; Herendeen Island (Shumagin Islands Group)

Weather Data from the Bridge 
Wind: light & variable
Temperature: 12.7ºC
Sea State: 1 foot

National Ocean Service Benchmark
National Ocean Service Benchmark

Science and Technology Log 

Today I’ll be heading out on the Ambar (an aluminum hulled inflatable) to check on a tide gauge off Herendeen Island.  It might get chilly being off the Fairweather, but the weather has been fantastic since we left. Waves <1 foot, winds below 5 or 6 knots.  Weather actually got better as we went to the tide station.  (I’ll try to get a good shot of each of the launches.) The tide station is a remarkably simple in concept, yet a terribly complex operation to execute. A month ago, Fairweather personnel installed a tide station on Herendeen Island. This involved sending a launch to the island where personnel did the following setup work:

The tide gauge interface being downloaded to a weather/shockproof laptop computer
The tide gauge interface being downloaded to a weather/shockproof laptop computer
  1.  Drill a 1/2 inch hole 3” deep into a solid piece of granite and set a bronze bench mark into it.
  2. Drill 3 more holes into a huge granite boulder at the water’s edge. Construct, on that boulder, a vertical tide gauge with markings every centimeter, ensuring that the bottom of the gauge is both lower and higher than the tide should go.
  3. Precisely and accurately determine the height of the benchmark in relationship to the heights on the tide gauge.
  4. Send a diver down below the lowest tide levels and install a nitrogen-fed orifice connected to a hose and secure it to the sea floor.
  5. Connect the hose to a pressurized tank of nitrogen on shore.
  6. Install a solar power panel near the station with a southern exposure.
  7. Install the data acquisition interface. This piece of equipment forces a single nitrogen bubble out of the orifice every six minutes (one-tenth of an hour) and measures the pressure it takes to release the bubble which is then used to calculate the depth of the water (as a function of pressure.)

Collected data are automatically sent by satellite to NOAA. A month later, the survey team re-visits the site and performs a series of 10 visual observations coordinated with the automated sequences of the nitrogen bubble data recorder.  These visual observations are then compared to the automated data acquired.  If their statistical differences are within accepted parameters, the data are considered valid and will be used further.  If not, the data are discarded and collection is re-started. 

It's a little weird to see the Ambar leave after dropping us off on an island that has seen very few footprints!
It’s a little weird to see the Ambar leave after dropping us off on an island that has seen very few footprints!

Not only is the process painstaking, but the technology and Research & Development needed to design the equipment must have been extremely difficult. However, given the amount of our nation’s dependence on marine commerce and movement of goods, it is time and effort more than well spent. Once we returned to the ship, I was able to lend a hand on the fantail (that’s the aft area of the deck where a LOT of work gets done) where the survey team was collecting samples of the ocean bottom.  Bottom sapling is done at specific locations proscribed by NOAA guidelines for coastal waters.  It is important for mariners to know the type of bottom in an area in case they need to anchor or engage in commercial fishing. 

Bottom samples are collected using a Shipek Grab.  This 130-pound tool captures a 3-liter sample of the bottom. The scoop is spring loaded on the surface and when it strikes the bottom a very heavy weight triggers the scoop to close, picking up about 1/25 of a square meter of bottom. Bottom characteristics are then recorded with the position and will eventually be placed on nautical charts.  Sometimes even small animals get caught in the grab. Today we saw brittle stars, tube worms and a couple of little crabs.  However, the biggest surprise to me was finding numerous small pieces of CORAL in the samples!  I certainly did not expect to see coral in ALASKAN waters!

Personal Log 

A piece of coral on a pebble.  (It's on a 3x5 file card for scale.)
A piece of coral on a pebble. (It’s on a 3×5 file card for scale.)

Lest you think that it’s all work and no play, we anchored tonight after a 12 hour+ work day.  With sunset at around 2330 hrs (11:30) there was still time for some fishing (nothing was kept but we caught a couple small halibut) and movies in the conference room.  There are movies aboard almost every night as well as closed circuit images from 4 areas of the ship.  I’ve also started taking pictures of the menu board every night but won’t post all of them because of space limits on my file size – besides, you all simply wouldn’t believe how well we are fed on the Fairweather. Just as an example: how does blackened salmon wraps sound for lunch??? Oh yeah!!! (You have permission to be jealous!)

Coming back, the Fairweather, after being out of sight from the Ambar, is a welcome sight!
Coming back, the Fairweather, after being out of sight from the Ambar, is a welcome sight!

Animals (or other cool stuff!) Observed Today 

Saw a whale in the distance, quite far off, just before lunch. Two seals a couple hundred meters aft of the port quarter. While at the tide station we saw two whales’ spouts near the shoreline, one seal poked his big ol’ head up from the kelp bed and checked us out a couple of times, saw a bunch of loons, cormorants and puffins, and while at the tide station, Dave Francksen (a very helpful member of the survey team) caught sight of an octopus. 

This octopus was about 2 feet across from tentacle-tip to tentacle-tip and changed color when it got over the spotted light-colored rocks.
This octopus was about 2 feet across from tentacle-tip to tentacle-tip and changed color when it got over the spotted light-colored rocks.

Questions for Your Investigation 

What phylum and class are octopi?  Are Brittle Stars?

What “day shape” does the Fairweather display when anchored?  When conducting survey operations?

What do you call the kitchen on board a vessel?

John Schneider, July 7, 2009

NOAA Teacher at Sea
John Schneider
Onboard NOAA Ship Fairweather 
July 7 – August 8, 2009 

Mission: Hydrographic Survey
Geographical Area: Kodiak, AK to Dutch Harbor, AK
Date: July 7, 2009

Position 
58º01.18’ N, 153° 29.56’ W  (en route to the Shumagin Islands)

Weather Data from the Bridge 
Weather System: Fog
Barometer: 1019.5
Temperature: 11.8º C
Sea State: 1-2 feet but to increase through the night

Ships in the distance as seen from the Fairweather
Ships in the distance as seen from the Fairweather

Personal Log 

It’s 0610 and at almost exactly 0600 the generator started. The generators (there are 2) on board the Fairweather each put out about 300 kilowatts of electrical power. It’s the electrical power plant that will provide us with electricity for the next 2••• weeks. We’re going to sea in just 4 or 5 hours! I was fortunate to have breakfast with Captain Baird. Focused, professional, likeable, gregarious. He demonstrates characteristics of a fine leader.

Forty-five minutes prior to sailing, the ship’s alarm, fire alarm, watertight doors and PA were all tested. The professionalism of the crew is repeatedly demonstrated and I am in excellent hands. Every crew member has specific duty stations for specific duties.  For docking and undocking the ship, my station is forward on the bow for assisting with line handling.  The dock lines are really big and they are so long that they require several people to manage.  Once again, teamwork, clear communication and coordination were displayed.

You can see how big the lines are when compared to my hand.
You can see how big the lines are when compared to my hand.

Well, my hands are still trembling from the exertion; in the comfort of my cabin I tried on my cold water immersion abandon ship suit (“Gumby suit”.) I wanted to see what was involved before we have an abandon ship drill later on. I sure hope we never need it.  Being somewhat claustrophobic, the notion of being fully enveloped in a neoprene rubber suit with only half of my face showing is not exciting. To make it worse, I had a heck of a time escaping from the suit.  It literally took about 7 or 8 minutes without assistance.  I’ve got to ask if that’s normal or if there are any bigger suits!

Well, it’s 4 hours later and I just finished my safety briefing with Mr. Rice.  Putting the suit on and taking it off are MUCH MUCH easier with assistance and instructions!  I’m now comfortable and capable of donning it easily – but in no means don’t I want to need to! We’ve been under way for about 5 hours now and just completed a fire drill simulating smoke in a cabin aft on C-deck. Once again, well done. Shortly later, that was followed by the Abandon Ship drill. The entire crew had to don their Gumby suits and I was as ready as anyone. The two previous donnings saved me from looking foolish!

Here I am in my immersion suit, also called a “Gumby” suit.
Here I am in my immersion suit, also called a “Gumby” suit.

Almost 1800 hours.  Dinner was: fried chicken, barbequed pork chops with chipotle/sundried tomato glaze, fresh snow peas, cheesy potatoes, salad, and rice pudding with fresh whipped cream and raspberries!!! OMG I don’t want to go home!  The BBQ is on the port side and the smell of dinner cooking just permeated the air.  What a joy!

Animals (or other cool stuff!) Observed Today 

While I was in the safety briefing the bridge spotted a couple whales /   but there will be others! And as I get ready to turn in for the day, brilliant sunlight at 2200 hours!

Questions for You to Investigate 

Without the immersion suit, in 45ºF water, how long would a normal person survive before hypothermia set in?

The mooring lines are a synthetic material less dense than water.  Why is that an advantage?

What do “RADAR,” “SONAR” and “GPS” stand for?

Which animals are whales more closely related to, people or tuna?

Lots of fog on the sea…
Lots of fog on the sea…

John Schneider, July 6, 2009

NOAA Teacher at Sea
John Schneider
Onboard NOAA Ship Fairweather 
July 7 – August 8, 2009 

Mission: Hydrographic Survey
Geographical Area: Kodiak, AK to Dutch Harbor, AK
Date: July 6, 2009

Position 
57° 43.766’ N, 152° 30.946’ W (Pier at USCG base – Kodiak)

Weather Data from the Bridge 
Barometer: 1022mB (30.15”) This is a nominally high pressure air mass characterized by cool temperatures and clear skies.
Wind: 4-6 kts (gusts to 12) 30º off the port bow (ship is facing ~60º at the pier)
Temperature: low 60’s Sea state: calm

The FAIRWEATHER alongside the USCG Pier, Kodiak
The FAIRWEATHER alongside the USCG Pier, Kodiak

Science and Technology Log 

Our mission on this cruise is to conduct small-boat hydrographic research and documentation of the sea floor in the Shumagin Islands region.  This is an area about 250 miles Southwest of Kodiak. It’ll take about a full day of steaming just to get there.  I took a rough estimate of an area of approximately 900 square miles in the Shumagins and found a total of about 100 depths recorded! I realize that the numbers may be hard to read, but the picture to the left is just South of Nagai Island in the Shumagins and includes about 900 square miles.  As you can see, there are very few markings in the area.  Compare this with the picture to the right of an area of the same size more thoroughly surveyed.

A nautical chart of the area the Fairweather will be surveying, called the Shumagin Islands.
A nautical chart of the area the Fairweather will be surveying, called the Shumagin Islands.

The 1953 Coast Pilot says of the Shumagins “…comprising 15 sizable islands and many islets and rocks, extend for a distance of 60 miles from the coast of the Alaska Peninsula from which the group is separated by Unga Strait.”  The newest edition (2008) is worded identically!  It’s obvious that there is a need for research in the area and newer charts available to mariners will benefit from the data we collect in the next leg of the Fairweather’s tasking. Regarding data collection and storage, yesterday I was shown the compartment (room) where the on board computer servers are kept.  It is one of the significant responsibilities of the duty officers to regularly check the temperature of that compartment as the entirety of the data collected is stored on those servers.  If the entire mission runs flawlessly and the data are allowed to be compromised, the mission is ultimately a failure.

Barnacles
Barnacles

Historically, soundings were taken by lowering a weighted line—called a “lead line” because the weight was often made of lead—to the bottom and seeing how deep the water is at that location.  Positions were estimated by manually triangulating “fixes” using visual bearings to known landmarks.  Later (from the 1950’s through the 1970’s) positions were established using LORAN (Long Range Radio Navigation) and Radar and depths were determined using depth sounders which bounce an electronic “ping” off the bottom. All of these earlier methods were very prone to human error and imprecision.

Bald eagle
Bald eagle

Current technologies integrate multi-beam sonar interfaced with computers and satellites to determine position (within just a couple of feet) and not only the depth of the water straight down, but off to the sides. When the data are uploaded to the Fairweather, the computers on board coordinate the exact time, GPS position, tide level, temperature, salinity and clarity of the water at the position of the data acquisition allowing the computers to correct for the different rates of transmission of the sonar signal through differing densities of water to determine the most accurate sea floor information ever possible. So now, as a navigation term, “by the Mark, Twain” (meaning 2 fathoms of depth) is obsolete…but the literary contributions of Samuel Langhorne Clemens remain a tribute to America’s heritage!

Personal Log 

All the dark spots are Bison!
All the dark spots are Bison!

Today at the 1400 pre-cruise briefing I was fortunate to be present when two of the officers on the Fairweather were acknowledged as having been promoted.  The response of the crew demonstrated the respect these officers had earned. If lunch today was any indication of how the meals will be on board, I can’t wait for dinner and don’t want to go home!  Fajitas with about 15 different toppings available, corn on the cob, salad and soup!

Animals (or other cool stuff!) Observed Today 

Fox along the road!
Fox along the road!

While gazing down into the water alongside the ship, I noticed what appear to be 2 different species of jellies – one looking similar to the East Coast’s Aurelia aurelia about 10” in diameter and the other being unknown to me.  The unknown was radially symmetrical (as are all jellies) but all of them had 8 distinct lobes on the bell and measured about half the size of the other species.

I also noticed barnacles, mussels and sea anemones living on the pilings that hold up the pier.  The anemones at left must have been three inches in diameter at the body tube and the tentacles extended in a halo about 10-12 inches in diameter. On a 2.5 hour drive this afternoon I also saw 2 bald eagles, a herd of bison, a red fox and a kingfisher. (The fox picture is a bit blurred, it was a bit skittish and I took it through the windshield.) 

Questions for You to Investigate 

What animal did Benjamin Franklin want to use as a National Symbol? When were the Shumagin Islands named?  For whom are they named? What is scurvy and how is it prevented?

Bison?  Is this Wyoming?!
Bison? Is this Wyoming?!