Julie Hayes: What’s Below Us? April 29th 2023

NOAA Teacher at Sea

Julie Hayes

Aboard NOAA Ship Pisces

April 22-May 5, 2023

Mission: SEAMAP Reef Fish

Geographic Area of Cruise: Gulf of Mexico

Date: April 29, 2023

Weather Data

Clouds: Broken

Temperature: 66 degrees F

Wind: 25 kt.

Waves: 4-6 ft.

Science and Technology Log

Sphere Cameras:

As we travel along the coastal shelf of Texas to Louisiana, scientists have already mapped out drop sites for the Sphere Cameras. There are five cameras that have a 360 degree view, one camera is stereo paired for measurements, and one is facing straight up. The cameras are attached to a rosette (cage), as well as bait to attract fish. Once the cameras are dropped in their designated location they will record for approximately 30 minutes. It is a process dropping the cameras in and picking them up that both the scientists and deck crew all have to help out with. It is hard to believe that by the end of their mission (Legs 1-4) they will have done this over and over around 500 times. Once all footage is collected from the day and downloaded it is then stitched together. This information allows scientist to see a number of things including biodiversity, distributions, and habitat classifications. This is helpful because it is also a much less invasive way for scientists to collect data.

Deploying Cameras

Camera Recordings

A black and white view, through the bars of the camera array, of a shark swimming underwater above a mostly sandy ocean bottom.
Shark
A black and white view, through the bars of the camera array, of about seven red snapper who appear to be jostling over the bait attached to the array.
Red snappers

Tony VanCampen, Electronics Technician

Tony, wearing khaki pants, a khaki shirt, glasses, and a large white beard, stands at a control panel lined with computer monitors, keyboards, and radios. He holds a telephone up to his right ear and grasps papers in his left hand.
Tony demonstrating the Global
Maritime Distress System

Tony is responsible for anything electronic. This could include things like wind, temperature and pressure sensors, electronic connections for the scientific computer systems, and GPS position for mapping. He states, “Anything that can be recorded for future data collection accuracy is very important.” Tony is also in charge of letting others know if the ship needs help. Tony has been on several ships in his lifetime including spending twenty years in the Navy. When Tony retires he hopes to work at a train museum in New York, due to his fascination with trains. He has been a great person to talk to while on this journey and is always willing to give me any information I ask. He even took time out to give me a tour of the bridge and flying bridge, as well as giving me several lesson ideas of coding for my students.

Chris Rowley, Lead Fisherman

Chris, wearing a hard hat, life vest, and sunglasses, stands on deck near a large camera array. He works to hook a cable to the top of the apparatus.
Chris helping deploy cameras

Chris is the lead fisherman on Pisces. His job is to assist the scientists in deploying cameras and CDT, and anything else needed. NOAA provides great benefits to support his family. Chris also is a coxswain who drives the Fast Rescue Boat (FRB) if needed. He is also part of the fire drill and you can see him in the pictures below during the drill. Chris lives in Louisiana and enjoys spending any off time he has with his twin daughters and wife.

Student Questions of the Day for Tony and Chris

Alivia and Tucker ask: How many different ships have you been on?

Tony was a great one to answer this question. Tony was on two naval ships, and eight different NOAA ships. I would say he has had a lot of experience in maritime.

Aryan and Alivia ask: When did you start working for NOAA?

In 2004 Tony started working for NOAA.

Maverick asks: What do you do in your free time?

Tony enjoys woodworking, religious teaching, and is involved with a food bank rescue ministry when he isn’t out to sea.

Konnor asked: What did you do before this job?

Chris started in High School working in the summers on shrimp boats as a deckhand in Louisiana. Before working for NOAA, he worked several years on offshore supply vessels (OSV).

Holden, Karson, Gary, Macie, Zane, Haylee, and Liam ask: What is the coolest and largest thing you have seen in the ocean?

Chris states that at night, while working on the supply vessels, lights would shine in the dark water and he saw an albino barracuda. The largest marine life he has seen has been a whale shark and he has seen several orcas.

Meela and Parker ask: Do you get lonely and do you get personal time?

Chris works out on the ocean over nine plus months out of the year. He looks forward to vacation where he can spend more time with his family back home. The ship now has internet that helps keep them in touch with family.

Personal Log

Last night we had to start working our way inland about 20 miles offshore, due to a large storm out in the Gulf. Tomorrow we plan to head back out towards our mission locations to continue where we left off. We have been tracking the storm for a few days and knew that we would need to go somewhere due to the heavy winds and waves. Since we can’t deploy cameras at our designated locations, everyone is using this day as a catch up day. We also did fire drills and abandon ship drills today. Safety is a huge priority on the ship, and I am confident that if there were to ever be an emergency situation, that everyone on Pisces would handle it excellently. I am taking advantage and downloading photos and working on the blog today, and checking in with my students work back home. Yesterday was amazing! I love getting my hands dirty and take every chance I can get to help cut bait for the baited cameras. I got to see my first whale at sea, and I have had the opportunity to see dolphins a few times now. I find myself often looking for marine life. There are always amazing sunsets at the ocean.

Fire drills

A view off the fantail of NOAA Ship Pisces of the sun setting over the Gulf of Mexico.
Sunset over the Gulf of Mexico
Three mackerel, used for baiting the camera arrays, lay on a teal plastic cutting board.
Bait fish

Bait fish

Julie, right, and an unnamed science team member, left, pose for a photo on deck. Both wear baseball caps and yellow latex gloves. Julie holds a fistful of squid up for the camera. The other person holds an orange mesh baitbag triumphantly above her head.
Bait (squid)
Julie and another science team member stand at a table out on the deck. They are wearing yellow latex gloves. Julie uses a knife to cut the bait into sections on a cutting board. The other person pulls an orange mesh baitbag (filled with cut bait) closed via drawstring. Five other filled baitbags sit on the table.
Cutting and filling bait bags for the baited cameras

Kathy Schroeder: My Journey Ends, but will Never Be Forgotten, November 2, 2019

NOAA Teacher at Sea

Kathy Schroeder

Aboard NOAA Ship Oregon II

September 15 – October 2, 2019


Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: 11/2/19

Weather Data from Naples, FL

Latitude: 26.17
Longitude: 81.34
Temperature: 89° F
Wind Speeds: ESE 11 mph

Personal Log

Our last day on Oregon II together was filled with lots of hugs and new Facebook friends.  I left Pascagoula, MS and arrived back in Naples, FL around midnight.  It was nice to be back in my big bed but I really missed the rocking of the ship to put me to sleep. 

The next morning I was greeted at my classroom door at 7 am by my students who had a lot of questions.  They all had been following along on my blog and have seen a few pictures that were posted.  I made a PowerPoint of pictures from the ship so they could see what my living and working arrangements were like.  The funniest part was when I showed them my sleeping arrangements.  They thought it was great that I was on the top bunk, but surprised at how small the room was and how I didn’t have a TV.  (I think some thought it was more like a hotel room – boy were they wrong.)  The part they were shocked the most was the size of the shower and the toilet area.  I was able to organize my pictures into folders of the same species.  I was then able to show them all of the wonderful pictures that the crew, scientists, volunteers and I had taken during our excursion. 

The following week a reporter from the Naples Daily News and her photographer came to my classroom to interview me about my trip as well as what the students were learning in AICE Marine.  

I was able to bring back with me the one of the 12 foot monofilament line and hook that is attached to the longline.  I was able to explain to them how the lines are attached and the process for leaving the longline in the water for exactly an hour.  We also started a lesson on random sampling.  I discussed how the location for the longline deployment is chosen and why scientist make sure they are randomly chosen. 

My biggest surprise was a package I received from my Uncle Tom a few days after I returned home.  He is a fantastic artist that paints his own Christmas cards every year.  In the package I received he painted the sunset picture I had taken of Oregon II when we were docked in Galveston.  It is now hanging in my classroom.

NOAA Ship Oregon II
NOAA Ship Oregon II, September 16, 2019. Photo by Kathy Schroeder.
Kathy's uncle's painting
Painting by my Uncle Tom Eckert from the picture I took

In December I will be presenting about my experiences with NOAA.  Students, their families, and people from the Naples community will all be welcome to attend.  I will be working with fellow colleagues from other high schools in Naples that also teach marine to spread the word to their students.  My goal is to get as many students who are interested in a marine career to attend the presentation so that going forward I will be able to work with them in a small group setting to help with college preferences and contacts for marine careers. 

I can’t thank NOAA enough for choosing me to participate as the NOAA Teacher at Sea Alumnus.  The experiences I have received and the information I will be able to pass along to my students is priceless!


Science and Technology Log

My students have been able to see and touch some of the items I was able to bring home from Oregon II that I discussed.  I was able to answer so many questions and show them a lot of the pictures I took. We are anxiously awaiting the arrival of a sharp-nosed shark that is being sent to us from the lab in Pascagoula, MS.  For students that are interested I will be conducting a dissection after school to show the anatomy of the shark as well as let them touch and feel the shark. (An additional blog will be posted once the dissection is competed)

Jill Bartolotta: Sea You Later, June 13, 2019

NOAA Teacher at Sea

Jill Bartolotta

Aboard NOAA Ship Okeanos Explorer

May 30 – June 14, 2019


Mission
:  Mapping/Exploring the U.S. Southeastern Continental Margin and Blake Plateau

Geographic Area of Cruise: U.S. Southeastern Continental Margin, Blake Plateau

Date: June 13, 2019

Weather Data:

Latitude: 29°44.7’ N

Longitude: 080°06.7’ W

Wave Height: 2 feet

Wind Speed: 21 knots

Wind Direction: 251

Visibility: 10 nautical miles

Air Temperature: 26.6° C

Barometric Pressure: 1014.4

Sky: broken

As I sit here on the bow, with the wind blowing in my face, as we travel back to land, I think about the past two weeks. I think about all the wonderful people I have met, the friendships I have made, the lessons I have learned, and how I have grown as a person. The sea is a truly magical place and I will miss her dearly. Although I am excited to trade in some tonnage and saltwater for my paddleboard and Lake Erie, I will really miss Okeanos Explorer and everyone aboard.

My time aboard Okeanos Explorer has been wonderful. I learned so much about operating a ship, the animals we have seen, and about ocean exploration. I have stared into the eyes of dolphins as they surf our bow, watched lightening displays every night, seen Jupiter’s moons through binoculars, watched huge storm clouds roll in, seen how sound can produce visual images of the ocean floor, had epic singing and dancing parties as we loaded the XBT launcher, done a lot of yoga, learned a lot about memes, eaten amazing food, taken 3 minute or less showers, smacked my head countless times on the ceiling above my bed, watched the sunrise every night, done laundry several times because I didn’t bring enough socks, looked at the glittering plankton on the bow at night, and laughed a lot.

Words cannot express it all so below are some of my favorite images to show you how awesome this entire experience has been. I will not say goodbye to the sea and all of you but I will say, “Sea You Later. Until we meet again.”

sunrise
Sunrise one morning.
Jill's Birthday Cake
Blowing out the candles on my birthday cake. Still so touched by the kind gesture. Photo Credit: Lieutenant Commander Kelly Fath, PHS
Jahnelle and ROV
Meeting the ROV, Deep Discoverer. Pictured is Explorer in Training, Jahnelle Howe.
Looking at dolphins
Looking at the dolphins on the bow.
Jill looks at dolphins
Watching the dolphins surfing the bow waves. Photo Credit: Kitrea Takata-Glushkoff
dark storm cloud
The calm before the storm.
final sunset
The final sunset with some of the amazing people I met at sea. Pictured from left to right: Jill Bartolotta (Teacher at Sea), Kitrea Takata-Glushkoff (Explorer in Training), and Jahnelle Howe (Explorer in Training). Photo Credit: Lieutenant Commander Faith Knighton

Kate Schafer: Setting off for Brownsville, TX, September 18, 2017

NOAA Teacher at Sea

Kate Schafer

Aboard NOAA Ship Oregon II

September 17 – 30, 2017

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 18, 2017

 

Weather Data from the Bridge:

Latitude: 27o 02.5’ N
Longitude: 94o 32.6’ W

Scattered clouds

Visibility 14 nautical miles

Wind speed 10 knots

Sea wave height 1 foot

Temperature Seawater 29.9 o Celsius

 

Personal log

Sunday afternoon, September 17

I arrived in Pascagoula, Mississippi in the late afternoon on Saturday after a long day of travel.  Things were so quiet on the ship that evening as most of the crew had gone home during the break between legs of the survey.  It was great to be met and shown around by a friendly face, the Officer on Duty (OOD) David Reymore.  I definitely was feeling a bit like a fish out of water, even though we hadn’t even left the dock yet. As people start to arrive back on the ship, they all know their role and are busy getting ready for our departure later on today. It’s a good experience to feel like you’re out of your element every now and again and I guess a small part of why I decided to apply for a Teacher at Sea position in the first place.

NOAA

As I was preparing to depart on this adventure and was explaining that I was going to be a NOAA Teacher at Sea, I had a number of people ask me what NOAA stood for, so I thought I’d provide a bit of information about what they are and what they do.  First, NOAA stands for the National Oceanic and Atmospheric Administration, and the name definitely suggests the broad mission that the agency has.  Their mission involves striving to understand the oceans, atmosphere, climate, coastlines and weather and making predictions about how the interactions between these different entities might change over time.

That is a tall order, and the agency is divided up into different offices that focus on different aspects of their mission.  The National Weather Service, for example, is focused on forecasting the weather and makes predictions about things like where hurricanes will travel and how intense they will be when they get there.  The National Marine Fisheries Service is tasked with studying the ocean resources and habitats in U.S. waters and to use that understanding to create sustainable fisheries.

So far, I’ve met many people that I’ll be sharing the boat with over the next two weeks.  They have all taken time to introduce themselves and talk for a bit, even though I know that they’ve got tons to do before we sail.

Sunday evening

Well, we’re underway towards our first sampling sites off the coast of Brownsville, Texas.  The seas are really calm, and I’m sitting up on the deck enjoying the light breeze and digesting the delicious dinner of jambalaya, vegetables and blackberry cobbler.  On our way out from Pascagoula, we saw a few dolphins, beautiful white sand barrier islands and mile after mile of moon jellies, but now we’re no longer in sight of land.

P1030600
Barrier island off the coast of Mississippi

We’ve passed an occasional oil rig off in the distance but haven’t seen much else.  The sun just set behind just enough clouds to make the colors spectacular and then as I was climbing down the stairs, I saw a handful of dolphins playing in the boat’s wake.

IMG_3919
Sunset over the Gulf of Mexico

Monday, September 18

Today will be a full day of travel to reach our fishing grounds.  Assuming we continue to make steady progress, we should arrive in the late afternoon or early evening on Tuesday to begin fishing.  We will be baiting 100 hooks that, once deployed, will remain in the water for an hour before we pull them back in.  We’ll be fishing in a variety of depths while working our way back towards Pascagoula.  We practiced some drills this afternoon, including a “man overboard” simulation, using a couple of orange buoys.  They deployed a rescue boat and had retrieved the buoys in a matter of minutes.  I have to admit that watching them get out there with such speed and skill put me at ease.

IMG_3927
Rescue boat deployed during the “man overboard” drill

 

 

Jenny Smallwood: Can I borrow a cup of sugar? September 8, 2017

NOAA Teacher at Sea
Jenny Smallwood
Aboard Oscar Dyson
September 4 – 17, 2017

Mission: Juvenile Pollock Survey
Geographic Area of Cruise: Gulf of Alaska
Date: September 8, 2017

Weather Data from the Bridge
Latitude: 55 20.5 N
Longitude: 156 57.7 W
Clear skies
Winds: 12 knots NNW
Temperature: 11.0 degrees Celsius (51.8 degrees Fahrenheit)

Can I borrow a cup of sugar? Just what does a ship do if it starts running low on critical supplies? In our case, the Oscar Dyson met up with the Fairweather on a super foggy morning to swap some medical supplies and other goods that will be needed on the next leg.

Science and Technology Log
You might remember from my first blog post that Alaskan Walleye Pollock is one of the largest fisheries in the world and the largest by volume in the U.S. Because of this, Walleye Pollock is heavily researched and managed. The research cruise I’m on right now is collecting just a small portion of the data that feeds into its management. Being a plankton nerd, I’m interested in the relationship between year 0 Pollock and its zooplankton prey. Year 0 Pollock are the young of the year; fish hatched in Spring 2017.

IMG_20170908_194023 - Edited (1)
Year 0 Walleye Pollock

Year 0 Pollock feed on a variety of zooplankton some of which have greater nutritional value than others. Certain zooplankton, such as Calanus spp and euphausiids, are preferred prey items due to high lipid content, which yield fatter year 0 Pollock.
Other less lipid rich zooplankton prey, such as small copepod species, yield skinny fish. The fat, happy Pollock are more likely to survive the winter, and the scrawny, skinny fish aren’t likely to survive the winter. So why is this important to know? Well, surviving its first winter is one of the biggest hurdles in the Pollock’s life. If it can survive that first winter, it’s likely to grow large enough to be incorporated in the Pollock fishery. So you just want to make sure there are lots of Calanus spp in the water right? Wrong….

Knowing Calanus spp and euphausiids possess higher lipid content is just the tip of the iceberg. It turns out that in colder years they have higher lipid content, and in warmer years they have lower lipid content. So it’s not enough to just know how many Calanus spp and euphausiids are out there. You also need to know what their lipid levels are, which is related to water temperatures. Clearly a lot goes into Pollock management, and this is only a small portion of it.

Personal Log
I have a theory that like minded people tend to seek out similar life experiences. For example, yesterday I was in the bridge getting the scoop on Fairweather meet-up when I met one of the fishermen, Derek. Turns out Derek and I both attended UNC-Wilmington, both graduated in 2003, and both majored in environmental studies. For a while growing up, we lived just a couple of towns over from each other too. What. In. The. World. What are the odds that I run into someone like that? It’s such a small world….or is it?

This is where I get back to the theory that like minded people tend to seek out similar life experiences. There are those people in your life that seem to orbit in the same sphere as you. Maybe it’s shared interests, backgrounds, or experiences, but these are the people that totally “get you.” I feel lucky to have so many of them, from my co-workers at the Virginia Aquarium to the Teacher at Sea folks, in my life right now.

Did You Know?
Did you know Alaska has beautiful sunsets?IMG_20170908_210337

 

Brad Rhew: The Sounds of the Sea, July 31, 2017

NOAA Teacher at Sea

Brad Rhew

Aboard NOAA Ship Bell M. Shimada

July 23 – August 7, 2017

 

Mission: Hake Fish Survey

Geographic Area of Cruise: Northwest Pacific Ocean, off of the coast of Oregon

Date: July 31, 2017

 

Weather Data from the Bridge

Latitude: 44 49.160 N
Longitude 124 26.512

Temperature: 59oF
Sunny
No precipitation
Winds at 25.45 knots
Waves at 4-5ft

 

Science and Technology Log

TAS Rhew 7-31 acoustics lab2
Inside the acoustics lab

The scientists on the Hake survey project are constantly trying to find new methods to collect data on the fish. One method used is acoustics. Scientists Larry Hufnagle and Dezhang Chu are leading this project on the Shimada. They are using acoustics at a frequency of 38 kHz to detect Pacific Hake. Density differences between air in the swimbladder, fish tissue, and the surrounding water allows scientists to detect fish acoustically.

The purpose of the swim bladder in a fish is to help with the fish’s buoyancy. Fish can regulate the amount of gas in the swim bladder to help them stay at a certain depth in the ocean. This in return decreases the amount of energy they use swimming.

TAS Rhew 7-31 echosounder
The screen shows the data collected by the echosounder at different frequency levels.

Larry and Chu are looking at the acoustic returns (echoes) from 3 frequencies and determining which are Hake. When the echosounder receives echoes from fish, the data is collected and visually displayed. The scientists can see the intensity and patterns of the echosounder return and determine if Hake are present.

The scientists survey from sunrise to sunset looking at the intensity of the return and appearances of schools of fish to make the decisions if this is an area to fish.

TAS Rhew 7-31 scientists Larry and Chu
Scientists Larry Hufnagle (left) and Dezhang Chu (right) monitor the nets and echosounder while fishing for hake.

The ultimate goal is to use this data collected from the echosounder to determine the fish biomass. The biomass determined by the survey is used by stock assessment scientist and managers to manage the fish stock.

Personal Log

Everyday aboard the Shimada is a different experience. It has been amazing to be able to go between the different research labs to learn about how each group of scientists’ projects are contributing to our knowing more about Hake and marine ecosystems. My favorite part so far has been helping with the sampling of Hake. Some people might find dissecting fish after fish to determine length, sex, age, and maturity to be too much. However, this gives me an even better understanding and respect for what scientists do on a daily basis so we can have a better understanding of the world around us. We have also caught other fascinating organisms that has helped me explore other marine species and learn even more about their role in the ocean.

Even though the wind is a little strong and the temperatures are a little chilly for my southern body I wouldn’t trade this experience for anything…especially these amazing sunsets…

TAS Rhew 7-31 sunset
View of sunset over the Pacific Ocean from NOAA Ship Bell M. Shimada

Did You Know?

Before every fishing operation on the boat we must first do a marine mammal watch. Scientists and other crew members go up to the bridge of the boat to see if any mammals (whales, seals, dolphins) are present near the boat. This is to help prevent these animals from being harmed as we collect fish as well as making sure we are not running a risk of these mammals getting caught in the fishing nets.

Fascinating Catch of the Day!

Today’s fun catch in the net was a Brown Catshark! These creatures are normally found in the deeper parts of the Pacific Ocean. They are typically a darker brown color with their eyes on the side of their head. Their skin is very soft and flabby which can easily lead to them being harmed. They have two dorsal fins and their nostrils and mouth on the underside of their body. One of the sharks we caught was just recently pregnant.

 

TAS Rhew 7-31 catshark egg sack string
This catshark was recently pregnant; the yellow stringy substance is from an egg sack.

Notice to yellow curly substance coming out of the shark? That is from the egg sac. Sharks only produce one egg sac at a time. It normally takes up to a full year before a baby shark to form!

Alex Miller: Making Waves, June 5, 2015

NOAA Teacher at Sea
Alexandra (Alex) Miller, Chicago, IL
Onboard NOAA Ship Bell M. Shimada
May 27 – June 10, 2015 

Putting ourselves in the way of beauty. Several members of the science crew joined me to witness this sunset.
Putting ourselves in the way of beauty. Several members of the science crew joined me to witness this sunset.

Mission: Rockfish Recruitment and Ecosystem Assessment
Geographical area of cruise: Pacific Coast
Date: Friday, June 5th, 2015

Weather Data:

  • Air Temperature: 14.0°C
  • Water Temperature: 12.7°C
  • Sky Conditions: Clear
  • Wind Speed (knots/kts) and Direction: 21.9 kts, NNW
  • Latitude and Longitude: 45°00’19”, 124°19’94”

____________________________

Before I go into the events of the research and life onboard the Shimada, let me explain the weather data I share at the beginning of posts at sea. Weather can change quickly out at sea so the ship’s Officer(s) of the Deck (OODs) keep a running record of conditions throughout the cruise. On the Shimada, the OODs all happen to be NOAA Corps Officers, but there are civilian mates and masters on other ships.

Another important reason to collect weather conditions and location information is that it’s need to be linked to the data that is collected. The ship collects a lot of weather data, but I’ve chosen to share that which will give you an idea of what it’s like out here.

IMG_8172
The bridge with a view of the captain’s seat.

First, I’ve shared the temperature of both the air and the water. Scientists use the Celsius temperature scale but Americans are used to thinking about temperatures using the Fahrenheit scale. On the Celsius scale, water freezes at 0°C and boils at 100°C, whereas on the Fahrenheit scale, water freezes at 32°F and boils at 212°F. I won’t go into how you convert from one scale to another, but to better understand the temperatures listed above, temperatures around 10°C are equal to about 50°F.

Second, the sky conditions give you an idea of whether we are seeing blue or gray skies or I guess at night, stars or no stars. Clear skies have graced us intermittently over the past few days, but we’ve seen everything from light showers to dense fog.

Third, is the wind direction and speed. Knots is a measurement used at sea. It stands for nautical miles per hour. 1 knot = 1.2 miles/hour or 10 knots = 12 mph.  The NOAA Marine Weather Forecast allows us to prepare for what might be coming at future stations. Depending on wind speed, some nets cannot be deployed. If wind speeds reach 25-30 kts, the kite-like neuston will literally fly away. If a weather day ends up keeping scientists from collecting data that can be very disappointing and, unfortunately, there’s no way to make up for lost time.

With the wind speeds picking up, so have the swell sizes, making for a rougher ride. As funny as it can be to watch a colleague swerve off their intended path and careen into the nearest wall, chair or person, we have to remember to, “save one hand for the ship,” meaning, be ready to steady yourself.

____________________________

Randy (foreground) and Larry (background) in their culinary kingdom.
Randy (foreground) and Larry (background) in their culinary kingdom.

Considering how well taken care of I’ve been on this cruise, it only seems right to tell you guys all about the heroes of the mess (also galley, basically, it’s the dining area), Larry and Randy. Larry and Randy plan and prepare three meals a day on board the Shimada. There’s always a hot breakfast and our dinners have included steak, mahi-mahi, and I like to think they were catering to the quarter of me that’s Irish when they made corned beef and cabbage last night. This dynamic duo really outdo themselves. Both are trained merchant mariners, meaning they hold their Z-card, and they tell me that working as a chef at sea definitely helps to bring home the bacon.

It feels good knowing that they don’t want us to just have cereal and sandwiches for the two weeks we are at sea.

Larry (background) and Randy (foreground) admiring their hard work.
Larry (background) and Randy (foreground) admiring their hard work.

I especially want to shout out Randy, the denizen of the desserts. So far Randy has made from scratch: bread pudding, chocolate white-chocolate cookies, rum cake and date bars. Good thing for me his mother was a chef because he’s been cooking since around the age of 6.

I just finished a Thanksgiving style turkey meal prepared by these two and all this told, I’m thankful there’s an exercise room on board with a stationary bike. Seriously though, these guys are doing a lot to make the ship feel like a home. With the disruption in my sleep cycle, I’ve been sleeping through some meals. Like 50% of meals. They noticed. When I came walking into dinner yesterday, after sleeping through two meals, they were full of concern and questions. Awww.

So, on behalf of all the crew and scientists, I want to say thank you for all that you do!

____________________________

Wednesday night, or Thursday morning–days tend to run together when you’re working the night shift–the net picked up an unusual jelly that Ric had to key out using a jelly identification manual. Using photos in the Pacific Coast Pelagic Invertebrates by Wrobel and Mills, Ric identifies this jelly as the Liriope (sp. ?). While Ric is an accomplished biologist, he specializes in fish identification, so the question mark after the scientific name of this jelly represents the need for a jelly expert to confirm the identification as Liriope. But what’s in a name, right? What’s really interesting about this jelly is that it usually inhabits warm water areas between 40S and 40N. We were towing north of the 44th parallel!

Liriope (?)
Liriope (sp. ?)

That wasn’t the only unusual sighting we had. Amanda, who does her surveys exclusively in the Northeast Pacific, meaning relatively close to shore (12 – 200 km) saw, for her first time in the wild, the Hawaiian petrel, a bird whose name alone suggests that Oregon is too far north to be seeing them. Additionally, it’s being more of an offshore bird makes it even more unlikely to see as far east as we are.

All images in this slideshow were taken by Amanda Gladics, Faculty Research Assistant, Oregon State University. 

This slideshow requires JavaScript.

Her initial reaction to the sighting was mild surprise that she saw something she didn’t quite recognize, she decided to grab her camera and photograph the bird so she could take a second look at it. Later, she realized just how rare of a sighting she had made. After consulting with Josh Adams at USGS, it was confirmed that the bird was a Hawaiian petrel.

Though most of the community nests on the big island of Hawaii, smaller colonies are found on Oahu and Kauai, and Adams explained that they tend to loop around areas of high pressure when foraging (searching) for food. It just so happens that such an area is within our transect range. If you look at the image to the right you can see this area as a loop marked with 1024 (mb, millibars, a pressure measurement) just off the coast of Oregon.

Map of pressure systems
Map of pressure systems and precipitation in the Pacific. Note the high pressure system of the coast of Oregon (1024 mb). Photo courtesy of Amanda Gladics.

Amanda has also sent her images to Greg Gillson and Peter Pyle, two experts in the field; Gillson confirms the sighting as a Hawaiian petrel and is notifying the Oregon Birding Association Records Committee. She is still waiting to hear back from Pyle.

Super cool!

____________________________

Considering these two events alongside some warmer water temperatures the CTD and ship sensors have picked up in our transect area, the conclusion several of the scientists are reaching is that these unusual sightings are coincident with an El Niño event this year. El Niño events occur in a cycle. They are a disruption of the normal ocean temperatures, leading to anomalously warm temperatures in the Pacific Ocean. This can affect weather and climate and perhaps it can also affect animal behavior. There’s also that warm blob to consider. You yourself can see that the water temperature is warmer here than it was at our earlier transects.

For more information on how NOAA monitors El Niño events, please follow this link.

____________________________

Personal Log

In an effort to gain a deep understanding of all the research taking place on board the ship, I’ve started transitioning back to the day shift. After investing five days in training myself to stay up all night, I’m now trying to sleep through the night. My body is utterly confused about when it’s supposed to be asleep, so right now it’s settled on never being asleep. I’ve been able to catch naps here and there but I’m resorting to caffeine to keep me going.

However, there’s always a silver lining. This morning I climbed to the flying bridge for a bit of solitude with the rising sun. Few things can compare to a sunrise on a ship while it’s traveling northeast and to top it all off the swells crashing against the bow were so high that, at times, I could feel the sea spray. So I thought I would make this .gif so you can share this moment too.

output_z5EhoP
#shiplife

Until next time, scientists!

____________________________

Question of the Day:

Amanda can only survey when the ship is traveling faster than 7 kts. If the ship travels at 7 knots for 1 hour, how many nautical miles does it cover? Standard miles?

Louise Todd, Setting the Line, September 19, 2013

NOAA Teacher at Sea
Louise Todd
Aboard NOAA Ship Oregon II
September 13 – 29, 2013

Mission: Shark and Red Snapper Bottom Longline Survey
Geographical Area of Cruise: Gulf of Mexico
Date: September 19, 2013

Weather Data from the Bridge:
Barometric Pressure: 1017.17mb
Sea Temperature: 28.8˚C
Air Temperature: 27˚C
Wind speed: 18.05 knots

Science and Technology Log:

Those of you following our progress on the NOAA Ship Tracker might have noticed some interesting movements of the ship.  We had some rough weather that forced us to skip a station, and the current by the mouth of the Mississippi River also forced us to skip a station.  The safety of everyone on board comes first so if the seas are too rough or the weather is bad we will skip a scheduled station and move to the next one.  Now we are off the coast of Florida and hope we can get some good fishing done!

This survey is being done using longlines.  Longlines are exactly as their name describes, long stretches of line with lots of hooks on them.  The line we are using is 6,000 feet long, the length of one nautical mile.  From that long line, there are 100 shorter lines called gangions hanging down with hooks on the end.  Each gangion is 12 feet long.

Gangions
Gangions in the barrel

When we arrive at a sampling station, everyone on our shift helps to set the line.  In order to set the line, we have to bait each one of the hooks with mackerel.

Baited gangions
Baited gangions ready to go

Once the hooks are baited, we wait for the Officer of the Deck (OOD), driving the ship from the bridge, to let us know that we are in position at the station and ready to start setting the line.  The first item deployed is a high flyer to announce the position of our line to other boats and to help us keep track of our line.

High Flyers
High flyers ready to be deployed

This is a bottom longline survey so after the high flyer is deployed, the first weight is deployed to help pull the line to the bottom of the ocean just above the seabed.  After the first weight is deployed, it is time to put out the first 50 hooks.  This is typically a three person job.  One person slings the bait by pulling the gangion from the barrel and getting ready to pass it to the crew member.  Another person adds a number tag to the gangion so each hook has its own number.

Numbers for hooks
Number clips are attached to each gangion

A member of the deck crew attaches each gangion to the main line and sends it over the side into the water.  The gangions are placed 60 feet apart.  The crew members are able to space them out just by sight!  The bridge announces every tenth of a mile over the radio so they are able to double check themselves as they set the line.  Another weight is deployed after the first 50 hooks.  A final weight is placed after the last hook.  The end of the line is marked with another high flyer.  Once the line has been set, we scrub the gangion barrels and the deck.  The line stays in the water for one hour.

Once the line has soaked for one hour, the fun begins!  Haul back is definitely my favorite part!  Sometimes it can be disappointing, like last night when there was absolutely nothing on the line.  Other times we are kept busy trying to work up everything on the line.  When the line is set and brought back in, everything is kept track of on a computer.  The computer allows us to record the time and exact location that every part of the line was deployed or retrieved.  The touchscreen makes it easy to record the data on the computer.

Computer
Computer ready to document what is on each hook

Personal Log:

It is nice to be doing some fishing!  There have been some long distances in between our stations so my shift has not gotten the opportunity to set the line as much as we would like.  I’m hopeful that the weather holds out for us so we can get a few stations in on our shift today.  Being able to see these sharks up close has been amazing.  I am enjoying working with the people on my shift and learning from each one of them.  Before we haul back the line, I ask everyone what their guess is for number of fish on the line.  My number has been 45 the past few haul backs and I’ve been wrong every time!  Christine was exactly right on one of our last haul backs when she guessed two.  I know I’ll be right one of these stations.  It is hard to get pictures of what comes up on the line because we get so busy processing everything.  I’m going to try to get more pictures of our next stations.

The views out in the Gulf are gorgeous.  I never get tired of them!

Moon Rising
Can you see the moon?

Sunset over the Gulf
Sunset over the Gulf

Did You Know?

When we arrive at a sampling station, the officer on watch must be aware of other ships and rigs in the area.  At times the bridge watchstander will make the decision to adjust the location of our sampling station based on large ships or rigs in the area.

Rig and Ship
Rigs and other ships in the area of a sampling station can force us to move the station

Virginia Warren: Adios, Ciao, Shalom, Arrivederci, Adieu, Auf Weidersehen, in other words Goodbye for Now, July 17, 2013

NOAA Teacher at Sea
Virginia Warren
Aboard the R/V Hugh R. Sharp
July 9th – 17th, 2013

Mission: Leg 3 of the Sea Scallop Survey
Geographical Area of Cruise: Sailing Back to Woods Hole, Massachusetts
Date: July 17th, 2013

Weather Data from the Bridge: Mostly sunny with occasional fog and 1 to 2 foot seas (The weather was perfect for the last two days of the trip!)

Personal Log: 

I’ve had the most wonderful time on this trip and made some really great new friends! I enjoyed it so much that I almost hated to see it come to an end! I worked with an awesome group of people on my watch who were always full of information! Erin has a marine biology degree, as well as a technology graduate degree. She was great to talk to, learn from, and she always helped me make the right decisions. Adam was our watch chief on the day watch crew, which means that he was responsible for collecting data and directing the rest of the science crew as we sorted the contents of the dredge. He was always very helpful and knowledgeable about the different types of species that came up with the dredge. Jon was the chief scientist for the leg 3 sea scallop survey. Jon had a very busy job because he was in charge of both science crews, communicating with the home lab, collaborating with the ship crew, deciding on dredge spots and HabCam routes, and for showing me the ropes. I really do appreciate all the time he took out of his busy days to help me and teach me! Jared was the HabCam specialist on board for this leg of the sea scallop survey. He has an ocean engineering degree and works for WHOI, which is the Woods Hole Oceanographic Institute. Jared helped design and test the HabCam vehicle so that it would protect the camera and other equipment while underwater. He also kept our crew entertained with ‘tunes’ and laughs. This group of people was great to work with and I would do it again with them in a heartbeat. I really hope that I will get another opportunity to do something like this again in the future!

Virginia's Day Watch Crew
The day watch science crew taking the last dredge picture of the Leg 3 Sea Scallop Survey.
Pictured left to right: Erin, Virginia, Adam, Jon, and Jared

I also really enjoyed the crew of the Hugh R. Sharp. They were always welcoming and forthcoming with answers to questions about the ship. They also keep their ship clean and comfortable. My favorite place on the ship was the bridge, which is where they steer the ship. The bridge is the best place to watch for whales and sharks. It has panoramic glass all the way around it, plus you can walk right outside the bridge and feel the breeze in your face, or have some very interesting conversations with the ship’s crew.

R/V Hugh R. Sharp in Woods Hole, MA
R/V Hugh R. Sharp in Woods Hole, MA

Science and Technology Log:

As my trip came near to an end, I started wondering what were some of the differences between the research dredge we were using and the dredge a commercial scallop fisherman would use. Our research dredge was an 8 foot New Bedford style dredge, as opposed to the commercial ships who use two 15 foot dredges on either side of the ship. Scallop dredges are made up of connecting rings that keep the scallops in the dredge. The research dredge we used was made up of 2 inch rings. Commercial dredges are required to have a minimum of 4 inch rings. NOAA uses the smaller rings on their research dredges to be able to get an accurate population count of all the sizes of scallops in a given area. The commercial scallop fishermen are required to use the larger rings to allow smaller scallops to escape. The research dredge we used was equiped with a 1.5 inch streched mesh liner to keep other species, like fish, in the dredge because NOAA likes to measure and count them as well. Commercial scallop fishermen keep their dredges in for hours at a time.  NOAA only keeps their research dredge in the water for 15 minutes at a time. There are several other dredge regulations that commercial fisherman have to follow. Click here if you would like to read more about the regulations.

I also learned a lot about the anatomy of a sea scallop.

The anatomy of a sea scallop. Thanks to http://www.seattlefishnm.com/ for the anatomy  of a sea scallop chart.
The anatomy of a sea scallop. Thanks to http://www.seattlefishnm.com/ for the anatomy of a sea scallop chart.

Sea scallops are either male or female depending on the color of their reproductive gland, called the gonad. If a scallop has a red gonad, then that means it is a female scallop. If the gonad is a cream/yellow color, then that means the scallop is a male.

Inside View of a Male Scallop
Inside View of a Male Scallop

Inside View of a Female Scallop
Inside View of a Female Scallop

The scallop is connected to both sides of its shell with the large white part called the adductor muscle. This is the part that gets eaten. The adductor muscle is also the part that allows the scallop to clasp its shell shut. Scallops are also able to swim by sucking water into its shell and then quickly clasping the shell shut, which makes the scallop ‘swim’.

Sea Scallop's Adductor Muscle
The white chunk of meat is called the adductor muscle, which is the part of the scallop that most people eat.

Scallops have eyes that line the edges of both top and bottom shells. See if you can spot eyes on the scallops below.

Most of the scallops that we pulled up were only measured for individual length and cumulative weight, however some of the scallops were chosen to have their gonad and adductor muscle weighed, as well as their shells analyzed for age.

Virginia Measuring the Scallop's Meat Weight
Virginia Measuring the Scallop’s Meat Weight

Scallops are aged in a way similar to aging a tree. After the first two years of a scallop’s life, they are believed to grow a shell ring every year. In the picture below you can see how the shells age through the years.

Aged Scallops
Aged Scallops
Photo courtesy of Dvora Hart from the NMFS Sea Scallop Survey Powerpoint

Animals and Sights Seen:

 Beautiful Sunsets

Beautiful Sunset Near Nantucket
Beautiful Sunset Near Nantucket

Moonlight on the Water

Tons of Hermit Crabs:

Starfish:

Octopus:

Octopus
We put it in water to keep it alive while we finished sorting the table.

Barndoor Skate:

Dolphins:

Dolphin
This dolphin swam right up beside the ship.

Humpback Whales: The last night of the cruise we got to see the most amazing whale show. The pictures aren’t that great because they were a good ways away from the ship and it was right around sunset. I ended up putting the camera down so that I could just enjoy the show.

Extra Pictures:

Melinda Storey, June 21, 2010

NOAA Teacher at Sea
Melinda Storey
Onboard NOAA Ship Pisces
June 14 – July 2, 2010

NOAA Teacher at Sea: Melinda Storey
NOAA Ship Pisces
Mission: SEAMAP Reef Fish Survey
Geographical Area of Cruise: Gulf of Mexico
Date: June 21, 2010

Weather Data from the Bridge
Time: 0800 hours (8 am)
Position: Latitude: 28º 09.6 minutes N Longitude: 094º 18.2 min. W
Visibility: 10 nautical miles
Wind Direction: variable
Water Temperature: 30.6 degrees Celsius
Air Temperature: 27.5 degrees Celsius
Ship’s Speed: 5 knots

Science Technology Log

Atlantic Spotted dolphins are the graceful ballerinas of the sea. They are just incredible! The Gulf of Mexico is one of the habitats of the dolphin because they live in warm tropical waters. The body of a spotted dolphin is covered with spots and as they get older their spots become greater in number.

Atlantic Spotted Dolphins
Atlantic Spotted Dolphins

Atlantic Spotted Dolphins
Atlantic Spotted Dolphins

Atlantic Spotted Dolphins
Atlantic Spotted Dolphins

Here you can see the spots on an older Atlantic Spotted Dolphin. To read more about dolphins go to
http://www.dolphindreamteam.com/dolphins/dolphins.html

Because Dolphins are mammals they breathe air through a single blowhole much like whales. Dolphins live together in pods and can grow to be 8 feet long and weigh 200-255 pounds. Like whales, dolphins swim by moving their tails (flukes) up and down. The dolphin’s beak is long and slim and its lips and the tip of its beak are white. They eat a variety of fish and squid found at the surface of the water. Since dolphins like to swim with yellow fin tuna, some dolphins die by getting tangled in the nets of tuna fishermen.

Newborn calves are grey with white bellies. They do not have spots. Calves mature around the age of 6-8 years or when the dolphin reaches a length of 6.5 feet. Calving takes place every two years. Gestation (or pregnancy) lasts for 11 1/2 months and babies are nursed for 11 months.

While watching the dolphins ride the bow wave, Nicolle and I wondered, “How do dolphins sleep and not drown?” Actually, we found that there are two basic methods of sleeping: they float and rest vertically or horizontally at the surface of the water. The other method is sleeping while swimming slowly next to another dolphin. Dolphins shut down half of their brains and close the opposite eye. That lets the other half of the brain stay “awake.” This way they can rest and also watch for predators. After two hours they reverse this process. This pattern of sleep is called “cat-napping.”

Dolphins maintain a deeper sleep at night and usually only sleep for two hours at a time. This method is called “logging” because in this state dolphins look like a log floating in the ocean.

The 1972 Marine Mammal Protection Act (MMPA) prohibits the hunting, capturing, killing or collecting of marine mammals without a proper permit. Permits are granted for the Spotted Dolphins to be taken if it is for scientific research, public display, conservation, or in the case of a dolphin stranding. The maximum fine for violating the MMPA is $20,000 and one year in jail.

Personal Log

Watching the dolphins playfully swim below us at the bow is like watching water nymphs. I can almost see them smiling. They spring out of the water just ahead of the ship and then peel off at a ninety degree angle. FAST doesn’t even begin to describe their movement. I especially enjoy watching some of them swim upside down, their white bellies gleaming. The CO is really good at spotting them far away. The dolphins swim straight toward the ship lickity-split as if someone just let kids out for recess and they run straight for the playground. We’ve seen some babies with their mothers as well as some older spotted dolphins. It is totally amazing to look straight down into their blowholes! You can even hear them “snort” when they come up for air. Never in my life did I think I would ever have an up-close and personal relationship with a dolphin!

Sunset
Sunset

Sunset
Sunset

The sunsets here are so spectacular. Check out the middle of the cloud on the left. If you look carefully you can see that the cloud has a heart-shaped opening. Last night’s sunset was purple and orange and just looked like a painting by one of the Masters. Our scientists have told us to watch for the “green flash.” If conditions are right and there aren’t many clouds, you can see a flash of neon green just as the sun plops below the horizon. We keep watching but so far no green flash.

The night is also spectacular. I’ve never seen so many stars in my life. One night I went out to the bow about 12:00am and it was pitch black. Then when I looked up, it was if God had thrown diamonds into the night sky. The half moon glistened against the ocean and the lapping of the water against the bow made it just so peaceful. You don’t see that many stars at home because of all the city lights. This is almost indescribable.

One evening the ship’s crew was fishing with fishing poles off the stern (back) of the ship when one guy said his hook had gotten stuck on something. I find that amazing since they were fishing 60 feet deep. He yanked and pulled and yanked again and finally pulled up what you see here.

Crinoids
Crinoids

The orange mass that you see here is a lot of animals called crinoids. They’ve wrapped themselves around a wire coral, which you can see here at the left side and the top right hand corner. The wire coral is green. The cool thing is all of this was alive and moving. Holding it felt surreal. It was somewhat like holding a big batch of worms.

New Term/Vocabulary

Pod – a group of dolphins

Slipstream – the wake created by the dolphins as they swim

Echelon – the dragging of the babies in the slipstream

Logging – a type of dolphin sleep where they are floating and they look like a log

Cat-napping – a light stage of sleeping

Fluke – the tail of the dolphins

“Something to Think About”

Dolphins are “social animals,” which means they travel together. What would be the benefits for traveling in pods?

“Did You Know?”

Did you know that a mama dolphin doesn’t stop swimming for the first several weeks after the birth of its young? This is because a baby needs to sleep and rest and can only do that by sleeping beside its mother. The baby sleeps while its mother swims, towing the baby along in her slipstream, the drag behind the mom. This is called echelon swimming. If the mother stops swimming, the sleeping baby will sink below the surface and drown.

Nicole Macias, June 10, 2009

NOAA Teacher at Sea
Nicole Macias
Onboard NOAA Vessel Oscar Elton Sette 
May 31-June 28, 2009 

Mission: Lobster Survey
Geographical area of cruise: Northwestern Hawaiian Islands
Date: June 10, 2009

Here I am holding up a spiny lobster.
Here I am holding up a spiny lobster.

Weather Data from the Bridge 
Location: 23° 37.7’N, 164° 43.005’W
Wind Speed: 10 kts.
Air Temp: 25.6° C

Science and Technology Log 

So the job rotation finally put me into the wet lab where I had a few first hand experiences with the lobsters we have diligently been trying to catch. The first day I was a wet lab assistant and the second day I was a measurer. As mentioned before there are two types of lobsters that we are collecting data on–the spiny and the slipper. For each lobster that is caught we record the sex, the carapace length, and if it is a female we record its pleopod length, the status of her eggs and sperm plate.

There are a couple different ways to determine the sex of a spiny lobster. The first is if their back legs have little pinchers on them then they are female, no pinchers than they are male. The female has a sperm plate on the underside of its head (carapace) right before the tail begins. The male gives sperm to the female who carries it on her sperm plate, when she is ready to reproduce she will begin to scratch the sperm onto the underside of her tail where the eggs are. When we record the status of the sperm plate we must indicate either smooth or rough. Smooth means she has yet to start fertilizing her eggs and rough means she has begun scratching off the sperm. The males have a snail like structure at the base of their hind legs, this is their sperm duct that they release sperm from. The female also has much larger pleopods. The pleopods are like little flippers on the underside of the tail. The female uses her pleopods to hold her eggs. When a female is carrying eggs she is considered berried.

This is a picture of a spiny female lobster that is berried (carrying eggs, they are orange). You can also see the pleopods, which are the black with an outline of white flipper like structure. Above that, between the two legs, is the sperm plate. You can tell that she has begun to scratch the sperm off because of the rough texture.
This is a picture of a spiny female lobster that is berried (carrying eggs, they are orange). You can also see the pleopods, which are the black with an outline of white flipper like structure. Above that, between the two legs, is the sperm plate. You can tell that she has begun to scratch the sperm off because of the rough texture.

It is a little different when distinguishing from the male and female slipper lobsters. The easiest way is to locate on which base of the leg they have a pore. If they have a small clear pore on the bottom leg then they are male. If the pore is on the base of the third leg then they are female. The slipper lobsters have pleopods but they are much smaller than the spiny lobster.

This is a male because of the snail like structures (sperm duct) at the base of his legs.
This is a male because of the snail like structures (sperm duct) at the base of his legs.

The job of the pleopods is to hold the eggs before and after fertilization. The reason that their length is recorded is so that it can be compared to its body length to determine maturity. Even though this seems like a lot of information once you get the hang of the process it goes by very quickly. For every lobster that we catch we must determine whether it has a tag form the previous years. If it does then we have to make sure we put it back at the same location we found it. We are not tagging any lobsters on this cruise. I do not know why so that is something that I will have to figure out and report back to you on. On the next log I will talk about the life stages of a lobster! 

This is a picture of the top half of a spiny lobster. The carapace is the section between the eyes all the way to where the head ends and the tail starts.
This is a picture of the top half of a spiny lobster. The carapace is the section between the eyes all the way to where the head ends and the tail starts.

Personal Log 

I am definitely ready for a day off. Being a research technician is a lot more work than I was expecting. It is a lot of quick intensive manual labor followed by a lot of waiting until the next burst of work. I am beginning to despise the smell of rotting mackerel blood. It seems to follow me wherever I go on the boat. I am looking forward to the two-day transit to our next stop, Maro Reef, even though it is not for another four days. At least I am eating well and trying to fit in a work out every day.

I cannot wait to come home and tell everyone about my experiences in person.

Nicole Macias, June 4, 2009

NOAA Teacher at Sea
Nicole Macias
Onboard NOAA Vessel Oscar Elton Sette 
May 31-June 28, 2009 

Mission: Lobster Survey
Geographical area of cruise: Northwestern Hawaiian Islands
Date: June 4, 2009

Weather Data from the Bridge 
Location: 23° 15.7’N, 164° 26.7’W
Wind Speed: 8kts.
Wave Height: 1 ft.
Swell Wave Height: 3-4 ft.
Water Temp: 26.3 ° C
Air Temp: 28° C

A fish that has its air bladder protruding from its gills.
A fish that has its air bladder protruding from its gills.

Science and Technology Log 

Today was our second full day of hauling and setting the traps. The science team is on a rotating schedule so that everyone gets a chance to work each position. Yesterday, I was a “runner”. My job was to stand in the pit next to the “crackers”. The crackers would take out the specimens and place them in a bucket and then take out the old bait and replace it with new bait. Once the pod was ready to go I would run the bucket to the lab and the pod (trap) down the pit tables to the stackers. It was a labor-intensive job, but at least I was able to see everything that came up in the trap. We did not catch many lobsters, but we did trap quite a few white tip reef sharks. Even though they are not very large they are extremely strong. I would know because I got to throw one over the side of the ship!

This is me in the pit when I was a "runner." So far we are catching more white tip reef sharks than we are lobsters. See the white tip on the shark’s tail fin?
This is me in the pit when I was a “runner.” So far we are catching more white tip reef sharks than we are lobsters. See the white tip on the shark’s tail fin?

Today I was a “stacker.” My job was to take the pods from the runner and stack them on the fantail, the back of the boat where the traps are released later in the day. The pods are stacked 4 high and end up covering the entire back of the boat. There are 160 pods all together. We release 10 strings of 8 pods each and 4 strings with 20 pods each. The main focus of the research being conducted is to collect data on the population of lobsters in the North West Hawaiian Islands. Even though we are targeting lobsters we record the data on everything we catch. Anything beside lobsters are considered by-catch. By-catch is considered anything that is caught accidentally. We are setting these traps for lobsters, but many times other animals will work there way into the pods. This is unfortunate for any fish that gets caught in the traps because they are pulled to the surface so fast that their air bladder expands causing a balloon-like structure to protrude from their mouth.

This is the feeding frenzy that follows the ship until the end of the day when we give them all our old bait. They are Galapagos Reef Sharks.
This is the feeding frenzy that follows the ship until the end of the day when we give them all our old bait. They are Galapagos Reef Sharks.

This “balloon” enables them to swim down and they end up being eaten by a predator or drowning. In a normal situation the swim bladder helps a fish regulate their buoyancy. The by-catch problem is seen in many commercial fishing industries. Usually they are dealing with a larger quantity of equipment and in certain instances, such as long lining, many sharks and turtles end up dying unnecessarily. The two main species of lobsters that are found in Hawaiian waters are the spiny lobster, Panulirus marginatus, and slipper lobsters, Scyllarides squammosus. Both species are also found in the waters off South Florida, but they do look a little different. The lobsters in Hawaii have more of a purple color to them. I have not come into much contact with them since my day in the lab isn’t for a while in the rotation. Once I am in the lab I will be able to report back with more information about them. Tomorrow I am a stacker again, so my biceps will be getting really big. I do know that on the first day we only caught 3 spiny lobsters and on the second day 21.

Oh! The most exciting part of the day is after we have finished hauling all the traps and replacing the old bait with new bait, we dump the old bait overboard and there is a feeding frenzy amongst the resident Galapagos sharks that follow our boat.

Personal Log 

Here I am on the fantail of the deck scrubbing the mackrel blood after setting 180 traps.
Here I am on the fantail of the deck scrubbing the mackrel blood after setting 180 traps.

Well my feet are very sore from being wet and in shoes all day. They are definitely not used to being in closed toed shoes everyday. I am ready to start working in the lab and learning more scientific information than just performing physical labor. With all the energy I am exerting I am definitely replacing all the lost energy with the delicious food that is different and amazing everyday. Today we had Hawaiian cornbread with pineapple. It was out of this world! We have also been eating a lot of fresh fish since one of the rotations included bottom fishing. I have yet to be in this rotation.

I am beginning to make friends with everyone on the ship. I am sure by the end of the month I will have forged some great friendships. It does seem like I have been on the ship for quite some time. I hope the days start going by a little faster. I am beginning to miss Florida!

I will be writing soon. Hopefully with some exciting adventures! 

Nicole Macias, June 1, 2009

NOAA Teacher at Sea
Nicole Macias
Onboard NOAA Vessel Oscar Elton Sette 
May 31-June 28, 2009 

Mission: Lobster Survey
Geographical area of cruise: Northwestern Hawaiian Islands
Date: June 1, 2009

Weather Data from the Bridge 
Location: 22° 35.7’ N, 162° 32.4’ W
Wind Speed: 5 kts.
Swell waves: 2-4 ft.
Water Temperature: 26.7°C
Air Temperature: 26°C

This is "the pit" where the lobster traps are pulled into the ship. My job setting up was to bolt the legs together.
This is “the pit” where the lobster traps are pulled into the ship. My job setting up was to bolt the legs together.

Science and Technology Log 

Since the ship is still in transit to our first location the science team did not have much to do today. All we did was set the tables up in the “pit”. This is the section of the boat where the traps, or “pods”, are pulled up out of the water. Once they are pulled out of the water they are cracked open and everything is placed in a corresponding bucket to be taken to the wet lab to be measured and recorded. Everything in pod 1 would be placed in bucket one and so on. The only organism that does not go into the buckets are eels. My job today was to bolt the tables in the pit together. They needed to be bolted together in case we hit rough seas. While half of us were working on the tables the other half was inflating buoys that will be used to mark the beginning and end of a set of traps.

I also was able to release a message in a bottle that another teacher had sent to me before my trip asking if I would release it for him. The man, Jay Little, has had over 225 message bottles released all over the world. His goal is to raise awareness for the global efforts needed to preserve the integrity of oceans and inspire people to take action. The message in the bottle explains his goal and also asks that whoever finds the bottle to send him back artifacts from the location it ended up in. He uses these artifacts to make sculptures that reflect the contributions of people from around the world. Out of the 225 bottles released to date 21 have been found. The 19th bottle found had an incredible journey having circumnavigated the world in 23,000 miles. The latest discovery was in Matrouh City on the Mediterranean coast of Northern Egypt in 2007. Hopefully our bottle number 285 will land somewhere new and deliver an important message.

Here I am throwing the message in the bottle over the stern of the boat.
Here I am throwing the message in the bottle over the stern of the boat.

Personal Log 

One of the perks of being out to see are the incredible sunrises and sunsets that happen every day and the wild life that comes with it. In the morning a huge pod of either Pacific white-sided dolphins or Dusky dolphins, passed by the ship. They are very similar and some scientists believe that they might be the same species. In the evening, while on top of the bridge to watch the sunset, two red-footed booby birds decided to perch on the weather vain to watch too. They are the smallest of all the booby species and nest on land, but feed at sea. They are strong flyers and can travel up to 93 miles at a time and can dive up to 98 ft. to pursue prey.

The food is really good. Last night the cook made chocolate cake with a pecan and coconut frosting. It was very delicious. It is a good thing the boat has an exercise room so I can burn off the calories from three full meals a day. They also have a freezer that is stocked with ice cream and available 24 hours a day.

A beautiful sunset on the Pacific
A beautiful sunset on the Pacific

“Did You Know?” 

Prior to the Revolutionary War, dockworkers in Boston went on strike protesting that they had to eat lobster more than 3 times a week!

“Animals Seen Today” 

The Red Footed Booby (Sula sula) Pacific White-sided Dolphin: (Lagenorhynchus obliquidens)