Jennifer Dean: Extra Operations and Daily Duties, May 19, 2018

NOAA Teacher at Sea

Jennifer Dean

Aboard NOAA Ship Pisces

May 12 – May 24, 2018

Mission: Conduct ROV and multibeam sonar surveys inside and outside six marine protected areas (MPAs) and the Oculina Experimental Closed Area (OECA) to assess the efficacy of this management tool to protect species of the snapper grouper complex and Oculina coral

Geographic Area of Cruise: Continental shelf edge of the South Atlantic Bight between Port Canaveral, FL and Cape Hatteras, NC

Date: May 19, 2018

Weather from the Bridge
Latitude: 29°55.8590’ N
Longitude: 80°16.9468’ W
Sea Wave Height: 2-4 feet
Wind Speed:  18.1 knots
Wind Direction: 210.6°
Visibility:  1 nautical mile
Air Temperature: 25.3°C
Sky: Overcast

Science and Technology Log

Extra Operations- Zodiac Hurricane Fast Rescue Boat:
Occasionally these Fast Rescue Boats are used for more than real emergencies and drills, practicing the pick-up of a man-overboard and rescue diver missions, in the case of day 2 of my trip on NOAA Ship Pisces, a camera replacement part became necessary.  When a small crew change is needed or to pick up a repair part for an essential item, instead of bringing the ship to dock, the FRB (Fast Rescue Boat)  is sent in.

coxswain

Lead Fishermen, Farron “Junior” Cornell was the FRB coxswain (driver/operator of a ship’s boat

The LF or Lead Fishermen,  Farron “Junior” Cornell was the FRB coxswain (driver/operator of a ship’s boat).  His navigation skills were developed by working in the hydrographic division that performs regular bathymetry readings using these vessels on NOAA Ship Thomas Jefferson, making him a very capable pilot of this small watercraft in the NOAA fleet.  The FRB has seating for 6, with 2 aft of console, 1 forward of engine cover, 2 sitting on foredeck on engine cover and 1 prone on deck by stretcher.

Some other specs on the boat includes the following:
Length overall=6.81 meters including jet
Beam overall=2.59 meters
Fuel capacity=182 litres (48 US Gal)
Bollard Pull ~600 kg/5884 N
Endurance (hours @ 20 knots)~6.75 hours
Max  Horse Power=235kW, 315 hp
At Light Load Operation Displacement = 2150 kg/4750 lbs
Full Speed ~32 knots
Fuel System =48 US gallon tank

 

Engine Room Tour Pictures and Learnings:

Daily Duties: Freshwater NeedsReverse Osmosis and Evaporators
Freshwater is necessary for a variety of reasons beyond drinking water for the crew.  It is used for laundry, cooking, showers and on NOAA Ship Pisces, to fill the ballast water tanks.  Approximately 31 gallons of freshwater is used on average per person per day, with 29 people on board for 12 days, totaling nearly 11,000 gallons by the end of the trip.   One method to supply this freshwater supply is through reverse osmosis.  Osmosis is the diffusion of water across a membrane.

 

Normally water moves, without an energy input from high to low concentrations.  In reverse osmosis, water is moved in the opposite direction of its natural tendency to find equilibrium.  The force at which water wants to move through the membrane is called its osmotic pressure.  To get water to move against the osmotic pressure another force must be applied to counteract and overcome this tendency.  Sea water is found in abundance and can be forced across a semi-permeable membrane leaving the ions on one-side and the freshwater to be collected into containment chambers on the other side.  Technology has impacted this process by discoveries of better semi-permeable membranes that allow for faster and larger amounts of sea-water to be moved through the system.  Pisces uses reverse osmosis and a back-up freshwater system of 2 evaporators.  When the temperatures are high (as they were in the first few days of the cruise) the evaporators are the go-to system and make for tasty drinking water.

Evaporators take in sea water and distill the liquid water using waste heat collected from the engines that raises the temperature of water in the pipes.  This temperature provides the energy that forces the liquid freshwater to vaporize and enter its gaseous phase, then under pressure this vapor is condensed and can be collected and separated from the brine that is removed and discharged.

 

Wastewater:  There are different types of water that can be used for different tasks aboard a ship.  Typically gray water (which is relatively clean wastewater from showers and sinks but may contain soaps, oils, and human hair/skin)  is placed in the MSD (Marine Sanitation Device), which is similar to a septic system.  Black water is wastewater from toilets, or any water that has come into contact with fecal matter and may carry potential disease carrying pathogens. Black water is also treated in the MSD.  This black water sewage is first subjected to a macerator pump that breaks the fecal matter into smaller pieces, enzymes are added to further decompose and before disposal a bit of chlorine is added to ensure no bacteria remain alive.  This water can be disposed of into the ocean if the ship is over 12 miles offshore.  If the ship is within 12 miles the sewage must be either stored in containment system on board the vessel or taken to dock and disposed of by an in-shore treatment facility. For more information on the regulations for wastewater disposal while at sea see the  Ocean Dumping Act.

Valves for ballast water tanks

Valves for ballast water tanks on NOAA Ship Pisces that are filled with freshwater to prevent the spread of nonnative species

Ballast Water and New Regulations:  Ballast water tanks are compartments used to hold water to provide stability for the ship.  This balance is necessary for better maneuverability and improved propulsion through the water.  It can allow the crew to compensate and adjusts for changes in the ships cargo load or fuel/water weight changes over the course of a trip.  Historically this water has been drawn up from the surrounding sea water to fill the tanks.  Unfortunately, in the not so distant past, the ballast water from one location on the globe has been deposited into another area along with it, all of it foreign plants, animals and microbiota.  This act led to the introduction of a host of exotic and non-native species to this new area, some of which became invasive and wreaked havoc on the existing ecosystems.  Today there are a host of case studies in my students’ textbook like the Zebra Mussels (Dreissena polymorpha) and the European Green Crabs (Carcinus maenas) that were introduced in this way that resulted in devastating impacts both environmentally and economically to the invaded area.

The International Maritime Organization (IMO) passed new regulations in September of 2017 calling for better management of this ballast water exchange.  Ballast Water Management Convention 2017.

Another high tech approach to this problem has been the development of a sea-water filtration systems, but these carry a heavy price tag that can range anywhere from  $750,000 to $5 million.

The engine room area is staffed by 7 crew members.  Back-up systems and  the amount of en route repair necessary to keep the ship running and safe was apparent in the engine room.  There were redundancies in the engines, HVAC, hydraulics, and fuel systems.  Spare parts are stored for unexpected breaks or other trouble-shooting needs.  The control panels throughout the tour had screens that not only allowed a check of every level of function on every system on the ship, there was another screen that demonstrated the electrical connections on how all these monitoring sensors were wired, in case a reading needed to be checked back to its source.

Engine 4

One of the 4 NOAA Ship Pisces CAT engines

Pictured here is a diesel engine on NOAA Ship Pisces. Pisces has 4 of these on board: 2 bigger engines that are CAT model 3512 vs. 2 smaller engines that are CAT 3508. When the ship is going at full steam they use 3 of 4 to provide power to turn the shaft, and when they need less power, they can modify their engine choices and power, therefore using less fuel.  CAT engines are models 3512 and 3508 diesel driven at provide 1360 KW and 910 KW, respectively.  There is also an emergency engine (CAT model 3306) on board as well providing 170 kw of power.

Control panels in engine room

Control panel of screens for monitoring and controlling all mechanical and tank/fluid functions

 

hydraulics

Steven Clement, first assistant engineer, is showing me some of the hydraulics in the engine room.

The pressurized fluid in these pipes are used to move devices.  Pisces is in the process of converting certain hydraulic systems to an organic and biodegradable “green” oil called Environmentally Acceptable Lubricants (EALs).

The Bridge

panopic bridge

NOAA Ship Pisces’ Bridge

This area is command central.  I decided to focus on only a few features for this blog from a handful of screens found in this room that monitor a variety of sensors and systems about both the ships conditions and the environmental factors surrounding the ship.   Commanding Officer CDR Nicholas Chrobak, NOAA demonstrated how to determine the difference on the radar screen of rain scatter vs. another vessel.  In the image the rain gives a similar color pattern and directionality, yet the ship appeared more angular and to have a different heading then those directed by wind patterns.  When clicking on the object or vessel another set of calculations began and within minutes a pop-up reading would indicate characteristics such as CPA (closest point of approach) and TCPA (Time of Closest Point Approach) as seen in the image.

 

These safety features let vessels avoid collisions and are constantly being calculated as the ship navigates.  GPS transponders on the ships send signals that allow for these readings to be monitored.    ECDIS (Electronic Chart Display and Information System) charts provide a layered vector chart with  information about the surrounding waters and hazards to navigation.  One screen image displayed information about the dynamic positioning system.

ECDIS

ECDIS (Electronic Chart Display and Information System)

Paths and positions can be typed in that the software then can essentially take the wheel, controlling main propulsion, the bow thruster and rudder to keep the ship on a set heading, and either moving on a desired course or hold in a stationary position.  These computer-based navigation systems integrate GPS (Global Positioning System) information along with electronic navigational charts, radar and other sailing sensors to ensure the ship can navigate safely while effectively carrying out the mission at hand.

The Mess Deck and Galley:

This location serves up delicious and nutritious meals.  Not only do the stewards provide the essential food groups, they provide vegetarian options and make individual plates for those that may miss a meal during shift work.

mess deck

The mess

Dana Reid, who I interviewed below, made me some amazing omelets on the trip and had a positive friendly greeting each time I saw him. I decided a few days into the cruise to start taking pictures of my meals as proof for the nature of how well fed the crew is on these adventures.

 

 

dana and ray

Steward CS Ray Mabanta and 2C Dana Reid in the galley of NOAA Ship Pisces

Each day a new screen of menus appeared on the ship’s monitors, along with other rotating information from quotes, to weather to safety information.

Personal Log

Today a possible shipwreck is evident on the sonar maps from the previous night’s multibeam readings.  If weather permits, the science team plans to check out the unknown structure en route to the next MPA. This scientific study reminds me of one of the reasons I fell in love with science.  There is that sense of discovery.  Unlike pirates and a search for sunken gold, the treasure to be found here is hopefully a diversity of fish species and thriving deep coral communities.  I found myself a bit lost during the discussions of fishing regulations for these areas designated as MPAs (Marine Protected Areas).  I had always thought ‘protected’ would mean prohibitive to fishing.   So I did a little research and will share a little of the basics learned.  And I hope someday these regulations will become more restrictive in these fragile habitats.

The MPA , “marine protected area”  definition according to the implementation of an Executive Order 13158 is “…any area of the marine environment that has been reserved by federal, state, territorial, tribal, or local laws or regulations to provide lasting protection for part or all of the natural and cultural resources therein.” But what that actually means in terms of the size of the area and approach to conservation, or the level protection and the fishing regulations seems to vary from location to location.  The regulations are governed by a variety of factors from the stakeholders, agencies and scientists to the population numbers and resilience of the habitat to distances offshore.
For more information on MPAs visit
https://oceanservice.noaa.gov/facts/mpa.html

Did You Know?
Some species of coral, like Ivory Tree Coral, Oculina varicosa, can live without their zooxanthellae.

Oculina varicosa

Oculina varicosa

Very little is known about how they do this or how their zooxanthellae symbiotic partners return to their coral home after expulsion.

Fact or Fiction?
Oculina varicosa can grow to up to 10 feet high and have a growth rate of ½ inch per year. Check out the scientific validity of this statement at one of the following links:

http://www.sms.si.edu/irlspec/oculin_varico.htm

What’s My Story? Dana Reid
The following section of the blog is dedicated to explaining the story of one crew member on Pisces.

Dana in scullery

Dana Reid pictured here in the scullery, the ship’s kitchen area for cleaning dishes

What is your specific title and job description on this mission?  Second Cook. His job description includes assisting the Chief Steward in preparing meals and maintaining cleanliness of the galley (kitchen), mess deck (tables picture where crew eats), scullery (part of the kitchen where dishes get washed) fridge/freezer and storage areas.

How long have you worked for NOAA?  5th year

What is your favorite and least favorite part of your job? His favorite part of this job is getting a chance to take care of people, putting a smile on people’s faces and making them happy.  His least favorites are tasks that involve standing in the freezer for extended periods of time to stock and rotate foods.  In addition he mentioned that he isn’t too fond of waking up very early in the morning.

When did you first become interested in this career and why?  His initial food as a career-interest started when he was in high school working for Pizza Hut.  He later found himself working for 2 years cooking fried chicken for Popeyes.  His interest in the maritime portion of his career also began right after high school when he joined the Navy.  In the Navy he worked in everything from the galley to a plane captain and jet mechanic.  During his time in the Navy he worked on 5 different carriers and went on 9 different detachments including Desert Storm. After hurricane Katrina in 2006 he found himself interested in finding another job through government service and began working on a variety of NOAA’s vessels.

What is one of the most interesting places you have visited?  He found the culture and terrain of Oahu one of his most interesting.  He enjoys hiking and Hawaii, Alaska and Seattle have been amazing places to visit.

Do you have a typical day? Or tasks and skills that you perform routinely in this job? He spends the majority of his time prepping  (washing and chopping)  vegetables and a majority of his time washing dishes.  In addition he is responsible for keeping beverages and dry goods stocked. 

Questions from students in Environmental Science at Camas High School

  • How is cooking at sea different from cooking on land?
    He said that he needs to spend more effort to keep his balance and if in rough weather the ship rocks. This impacts his meal making if he is trying to cook an omelet and if mixing something in keeping the bowl from sliding across the prep table.  He mentioned that occasionally when baking a cake that it might come out lopsided depending upon the angle of the ship and timing of placement in the oven.
  • What do you have to consider when planning and cooking a meal?
    He plans according to what meal of the day it is, breakfast, lunch or dinner.  The number of people to cook for, number of vegetarians and the part of the world the cruise is happening in are all factored in when planning and making meals. For example, when he has been in Hawaii he’d consider cooking something more tropical – cooking with fish, coconut and pineapple; if in the Southeast they tend to make more southern style cooking, sausage/steak lots of greens; if in the Northeast more food items like lobster and clam chowder make their way onto the menu.
  • What is the best meal you can make on the ship, and what is the worst? He said he makes a pretty good Gumbo. He said one of his weakness is cooking with curry and said that the Chief Steward is more skilled with dishes of that flavor.
  • How many meals do you make in a day? 3; In addition he hosts occasional special events like ice cream socials, banana splits or grilling party with smoker cooking steaks to hamburgers on the back deck.

————————————————————————————————————————————–

 

Helen Haskell: Getting Underway, June 5, 2017

NOAA Teacher at Sea

Helen Haskell

Aboard NOAA Ship Fairweather

6/5/2017-6/26/2017

Mission: Hydro Survey

Geographic Area of Cruise: Southeast Alaska – West Prince of Wales Island Hydro Survey

 

Date: June 5th

Weather Data: Full cloud cover, rain showers.

Location: Ketchikan, 55.3422° N, 131.6461° W 

Personal Log

Today the boat is leaving Ketchikan. Breakfast is between 7-8 and as I sat with my plate of eggs and toast, I watch the hustle and bustle of life on a boat preparing it to get underway. There are many challenges to sailing a ship, and while I had a general idea, I did not understand how much organization, safety protocols, equipment and manpower it takes to make a boat run, complete science research, and be a safe place for people to live and work. This first couple of days on the boat have been not focusing on the science research being done here, but one of getting a sense of how a research vessel works, the myriad of roles and jobs that are done here and the multiple hats that most people wear.

The ship’s communication system put an all-hands-on-deck call to help with unloading food deliveries at port. Here we passed boxes one by one from the truck up on to the ship and in to the kitchen storage areas where the stewards will unload and store the food ready for our meals and snacks. There are three main meals per day: breakfast (7-8), lunch (11-12) and dinner (5-6). In between these times snacks and drinks are readily available. What I am finding too is that many people work a shift system, or are on the smaller boats away from the ship for a day. Food for them is packed or available and no one goes hungry. Snacks and drinks are available 24-7 too. The meals are diverse and food is plentiful. I hope to talk with the stewards to figure out how they plan the menus and order all the food, to feed about 50 people for a three-week period.

Next came a safety briefing and tour. The first thing I had to do was to practice putting on my emergency gear – how to describe it? This ‘dry-suit onesie’ would allow me to be in the Alaskan waters and survive. While my whole body is covered except for my eyes, the suit contains a life vest, and would allow me to easily float upright. As you can tell from the photo, the main issue I had was with my hair getting in my face, a common occurrence apparently for those of us with long hair. Next we learned about all of our stations and our role for different scenarios: fire, man-over-board, and a full ship evacuation. We learned about the different alarms that would be sounded, the types of fire extinguishers, where the medical office is, and where the AED’s are. We were also reminded that in each stateroom is a breathing device kit that is can be used to provide ten minutes of oxygen, should it be needed.

IMG_0164

Me in my emergency suit

Pulling out of port yesterday, the boat first only went a few hundred yards up the narrows. The next stage was to ‘top up’ on fuel – 18,000 gallons of fuel. The boat can hold much more but the cost in Ketchikan is less than further north so it pays to fill up now. As you can imagine there are big safety issues with fueling of boats and during this time, several temporary bans were put in to place on the ship so that no sparks of any kind were made (no cooking, welding etc). The fuel is stored in several large tanks. The tanks are not connected to each other and each can be turned off individually in the event of a fire or leak. Earlier that day too we had also filled up with water.

There are many conservation and environmental practices put in to place that I have already seen on the ship. There are many protocols put in to place to protect both the environment and to conserve resources. During the fueling, a ring (oil boom) was put around the ship so that if there were an accidental fuel spill or leak, it would be contained on the surface of the water. Laundry is ‘closed’ until next weekend and only full loads are allowed in order to conserve fresh water. Water can be made from seawater using equipment on the ship, but it costs $8/gallon to run the equipment, so conservation is the first measure put in place.

IMG_0167

Getting fuel in Ketchikan

We also have practiced emergency drills. In these drills, everyone has a station to go to and a job to do. The fire drill mimicked a fire in the generator room and a person receiving burns. What’s interesting to realize it that people wear multiple hats on the ship and so everyone needs to know what to do and how to help. Formal fire fighting equipment is worn by trained people, radios are used to communicate between groups, diagrams of the ship are pulled out and drawn on and labeled to keep account of who has been tasked to do what and where the situation is located. Out at sea, the fire department and the medics cannot be called. The staff members on the ship are the medics and the fire department. During the drill a person role-played being the burn victim, so not only were firefighters needed but also medics. After the drills, everyone meets to debrief. Ideas and observations are shared. Communication is crucial and common here.

IMG_0255

My emergency assignments

With communication at the forefront, there are many mechanisms put in place to make sure the people on board know the specifics of the mission each day and their role in the mission. There are different departments in the boat, but one cannot function without the other. People are hired as Survey crew, Engineers, Deck crew, Stewards, Electronic Tecnicians and as NOAA Corps officers. There are also visitors on the boat, such as myself, some who are with the boat for the whole season, others like myself for a few weeks. Schedules are placed around the boat indicating who is on what shift. Meetings are held at 8am each day with the science and deck teams to discuss where the small research boats are surveying that day. During these briefings safety reminders and weather conditions are discussed as well as the location of where each boat will be. Boats radio in each hour for safety. Department heads meet daily to share their updates, keeping everyone up to date with different aspects of the ship. Debrief sessions happen at the end of each research day after dinner. Everyone participates as no one person’s job is isolated here. Issues and concerns are dealt with and go in to the decision making for the following day. Communication is key.

IMG_0211 2

The morning meeting

 

Fact of the day:

The Fairweather is divided in to 26 fire zones to help with safety and fire fighting. All the doors operate manually and many internal doors are held open by a magnet. In the event of a fire, the doors can be closed instantly from the Bridge, using a switch to stop the magnets working.

Word of the day: Muster

This is the term used when all the people gathered in the correct place for the fire/emergency drill. Roll was taken and we had a ‘full muster’. 

What is this?

What do you think this is a picture of? (The answer will be in the next blog installment).

IMG_0257

(Previous answer: Rubber boots with spikes in to help with traction. Here on the boat, and in many parts of Alaska waterproof footwear is very useful. While the boots the staff here don’t have spikes in them, these were on display in the Southeastern Alaska Discovery Center.

 Acronym of the Day

EEBD: Emergency Escape Breathing Device

Julia Harvey: The Nearest Land is 3 Miles Down, June 28, 2016

NOAA Teacher at Sea

Julia Harvey

Aboard NOAA Ship Hi’ialakai

June 25 – July 3, 2016

 

Mission: WHOI Hawaii Ocean Timeseries Station (WHOTS)

Geographical Area of Cruise: Pacific Ocean, north of Hawaii

Date: June 28th, 2016

 

Weather Data from the Bridge
(June 28th at 2pm)

Wind Speed: 12 knots

Temperature: 26.2 C

Humidity: 81%

Barometric Pressure: 1016.3 mb

 

Science and Technology Log

The Aloha Station is about 100 miles north of Oahu, Hawaii and was selected because of its closeness to port but distance from land influences (temperature, precipitation etc).  The goal is to select a site that represents the north Pacific, where data can be collected on the interactions between the ocean and the atmosphere. Woods Hole Oceanographic Institution Hawaii Ocean Time Series (WHOTS) has used this site for research since 2004.  You can find real time surface and meteorological data and archived data at the WHOTS website.

We are stationed in the vicinity of mooring 12 and 13 in the Aloha Station to begin intercomparison testing.  CTD (conductivity/temperature/depth) casts are conducted on a regular schedule. This data will help align the data from mooring 12 to mooring 13. If CTDs don’t match up between the two moorings then efforts will be made to determine why.

Mooring 13 is being inspected to make sure sensors are working. Photographs have been taken to determine measurement height of the instruments and where the water line is.

When I was aboard the Oscar Dyson, there were multiple studies going on besides the Walleye Pollock survey. The same is true on the Hi’ialakai. The focus is on the mooring deployment and recovery but there are a professor and graduate student from North Carolina State University who are investigating aerosol fluxes.

Professor Nicholas Meskhidze earned his first Physics degree from Tbilisi State University (Georgia).  He completed his PhD at Georgia Institute of Technology (USA).  He is now an Associate Professor at NC State University Department of Marine Earth and Atmospheric Sciences.

Meskhidze’s study on this cruise is looking at sea spray aerosol abundance in marine boundary layer and quantifying their flux values. Sea spray is formed from breaking waves. Sea spray analysis begins by collecting the aerosol. Using electrical current, particles of a given size (for example 100 nanometer (nm)) are selected for. This size represents the typical size of environmental climatically important particles (70-124 nm). The next step is to remove all other particles typically found in the marine boundary layer, such as ammonium sulfate, black carbon, mineral dust and any organics. The remaining particles are sea salt.

Sea spray analysis

Dr. Nicholas Meskhidze with the sea spray analysis equipment

Meskhidze is looking at the fluxes of the salt aerosols.  Sea salt aerosols are interesting.  If a salt aerosol is placed in 80% humidity, it doubles in size.  But then placed in 90% humidity, it quadruples in size. Due to their unique properties, sea salt aerosols can have considerable effect on atmospheric turbidity and cloud properties.

Aerosols are key components of our climate but little is known about them. Climate models are used to predict future climatic change, but how can one do this without understanding a key component (aerosols)?

little is known

Source: IPCC Fourth Assessment Report, Summary for Policy Makers

 

Personal Log

The galley (ship’s kitchen) is a happening place three times a day.  The stewards are responsible for feeding 30-40 people.

Chief Steward Gary Allen is permanently assigned to the Hi’ialakai. He has worked for NOAA for 42 years and he has stories to tell. He grew up in Tallahassee, Florida and his early work was at his father’s BBQ stand. He attended Southern University on a football scholarship and majored in food nutrition. After an injury, he finished school at Florida A & M. He worked for a few years in the hotel food industry, working his way up to executive chef. Eventually he was offered the sous chef job at Brennan’s in New Orleans. He turned it down to go to sea.

Chief Steward Allen Gary

Chief Steward Allen Gary

In 1971, he sailed for the first time with NOAA. The chief steward was a very good mentor and Gary decided to make cooking at sea his career. He took a little hiatus but was back with NOAA in 1975, where he would spend 18 years aboard the Discoverer and would become chief steward in 1984. He would sail on several other ships before finding his way to the Hi’ialakai in 2004.

In the 42 years at sea, Gary has seen many changes. Early in his career, he would only be able to call home from ports perhaps every 30 days. Now communication allows us to stay in contact more. He is married to his wife of 43 years and they raised 3 daughters in Seattle.

I asked him what he enjoys the most about being at sea. He has loved seeing new places that others don’t get to see. He has been everywhere, the arctic to Antarctica. He enjoys the serenity of being at sea. He loves cooking for all the great people he meets.

I met Ava Speights aboard the Oscar Dyson in 2013 when she was the chief steward and I was participating in the walleye pollock survey as a Teacher at Sea. She has been with NOAA for 10 years.

Ava Speights (on the right) and me

Ava Speights (on the right) and me

She and a friend decided to become seamen. Ava began working in a shipyard painting ships. In 2007, she became a GVA (general vessel assistant) and was asked to sail to the Bahamas for 2 weeks as the cook. This shifted her career pathway and through NOAA cooking classes and on the job training, she has worked her way up to chief steward.

She is not assigned to a specific ship. She augments, meaning she travels between ships as needed. She works 6 months of the year, which allows her to spend time with her 2 daughters, 1 son, 2 stepdaughters and 4 grandchildren. Her husband is an engineer with NOAA. Her niece is an AB (able bodied seaman) on deck. Her son is a chief cook for Seafarer’s.  And her daughter who just graduated high school will be attending Seafarer’s International Union to become a baker.  Sailing must run in her family.

She loves to cook and understands that food comforts people. She likes providing that comfort.  She has also enjoyed traveling the world from Africa to Belgium.

2nd Cook Nick Anderson

2nd Cook Nick Anderson

Nick is 2nd cook and this is his first cruise with NOAA. He attended cooking school in California and cooked for the Coast Guard for 6 years where he had on the job training. In 2014, he studied at the Culinary Institute of America and from there arrived on the Hi’ialakai. He also is an augmenter, so he travels from ship to ship as Ava does.

 

 

 

Did You Know?

The Hi’ialakai positioned mooring 13 in an area with a 6 mile radius known as the Aloha Station. Check out all of the research that takes place here at Station Aloha. There is a cabled observatory 4800 meters below the ocean surface. A hydrophone picks up on sounds and produces a seismograph. Check the results for the night the anchor was dropped.

Seismograph

Seismograph during Mooring Deployment

Click here to hear whales who pass through this area in February.

Pacific Sunset

Pacific Sunset

Yaara Crane: Maritime Careers, July 3, 2013

NOAA Teacher at Sea
Yaara Crane
Aboard NOAA Ship Thomas Jefferson
June 22 – July 3, 2013

NOAA GG

Along with us in port, was the Gordon Gunter.

Mission: Hydrographic Survey
Geographical area of cruise: Mid-Atlantic
Date: Wednesday, July 3, 2013

Latitude: 36.85°N
Longitude: 76.30°W 

Weather Data from Bridge:
Wind Speed:  4.80knots
Surface Water Temperature: 25.35°C
Air Temperature:  26.60°C
Relative Humidity: 81.00%
Barometric Pressure: 1023.19mb

Norfolk is a major naval base. We passed by this aircraft carrier with a plane sitting on its deck.

Norfolk is a major naval base. We passed by this aircraft carrier with a plane sitting on its deck.

Science and Technology Log

When I began interviewing some of the individuals on board, I knew that I could not talk to all of the 30+ people on board. Here is a snapshot of some of the non-scientific personnel on board, and the important work that they do each day.

Chef Dave

Chief Steward Dave is in his chef whites in the galley.

David Fare has been working for NOAA for eight years, and you definitely want to stay on his good side. As Chief Steward, Dave is in charge of the most important aspect of life aboard a ship – food! Dave has spent the majority of his life at sea; he worked for the Navy for over 30 years before retiring, and then joined NOAA to get back to sea. As Chief Steward, his major duties include buying food, keeping track of the ship’s food stores, and maintaining a nutritionally balanced menu. The menu he creates is compiled from various recipes, cookbooks, and training he has attended over the years. There are quite a few regulations that he must follow to make sure everyone has the opportunity to have a healthy meal, but he must also go above and beyond to work within the bounds of any dietary restrictions. Dave’s meals must accommodate vegetarians, noted allergies, and low sodium for people with high blood pressure. His major advice for anyone seeking a position in the culinary field is to get experience, and attend a culinary school.

Anthony (Tony) Teele has also been working for NOAA for 8 years, the past five of which have been on the Thomas Jefferson. Tony is both the Medical Person in Charge (MPIC) and a Seaman Surveyor. As the MPIC, Tony has a medical background, specifically in clinical psychology and youth counseling. When I was feeling seasick, Tony was the guy checking my blood pressure and making sure that I kept hydrated. He was required to take a course to make sure he was prepared for general medical needs like basic first aid, CPR, and simple sutures. Tony hopes to use his medical skills in his future career endeavors.

As a Seaman Surveyor, Tony has many other duties. First off he explained how deckhands are ranked from entry level to the top: General Vessel Assistant, Ordinary Seaman, Able-bodied Seaman, Seaman Surveyor, Boatswain Group Leader, and Chief Boatswain. The Chief Boatswain on the TJ is the longest serving member of NOAA on the ship and an expert in his field. Tony’s duties include being Coxswain (abbreviated “Coxn”) on survey launches, being a helmsman on the bridge, operating various heavy machinery on board, and keeping the decks in top shape. He loves that NOAA gives him the opportunity to travel, learn, and provide stepping stones for his future.

My final interview was with GVA James Johnson (JJ). I found out early on that JJ attended Mount Vernon High School, just down the road from where I teach. After earning his GED and serving for 10 years in the Navy as an Aviation Support Equipment Technician, JJ made the switch to NOAA. He loves the idea that he is working for something bigger than himself and not stuck at a 9-5 job. Every day is an adventure as he learns his way around his duties. JJ is currently doing a lot of learning while he works. I have observed him spending hours on the bridge learning how to be a helmsman. Tony and the Officers help to keep a close eye on JJ while he is at the helm learning his new skills. His advice to people who want to be a GVA is to be proactive and seek out training. JJ appreciated the freedom that NOAA employees have to augment on different ships, and loves the excitement each new day brings.

Tony and James

Tony (left) and James (right) are on the bridge during their watch.

I spent at least half an hour speaking with each person, and the pride they all have in their jobs was something they all conveyed. Working on a ship is more than a job; it is a lifestyle that they have chosen. These men and women spend months of their lives away from their families each year, working to support NOAA’s mission. Kudos to you all, and thanks for making time to talk to a Teacher at Sea.

Norfolk radar

Norfolk is the third largest port in the country. The radar helps to navigate through this busy waterway.

Personal Log

We have made it back to Norfolk, and everyone is quickly taking the opportunity to celebrate the 4th on their own terms. This is a rare opportunity to be home for the Fourth of July holiday, and we have people going to areas like the Carolinas, Philadelphia, Seattle, and Cancun. Safe travels to everyone! The TJ will be in port for maintenance until mid-August before returning to the waters of the Delaware Bay. Their work for this summer is nowhere close to done, and I wish them all smooth sailing. For my future, I hope to be able to take a group of students on a field trip to Norfolk so that they can see first-hand where I lived for two weeks. I have also extended an invitation to members of the TJ that want to share their experiences with any of my classes. This was an exciting adventure, and I hope it is just the beginning of my interactions with NOAA. Blogging has been a new experience for me, so thank you to everyone who has been following my adventures.

Did You Know?

NOAA Corps Officers have no fewer than eight different uniforms that they must maintain throughout their career. The ship can also be dressed out for the holidays, and the TJ will be flying its flags in honor of the 4th of July.

TJ ship colors

The ship colors have been hoisted up the mast. They identify the ship by spelling the letters Whiskey Tango Echo Alpha

Margaret Stephens, May 19, 2011

NOAA Teacher at Sea: Margaret Stephens
NOAA Ship: Pisces
Mission: Fisheries, bathymetric data collection for habitat mapping
Geographical Area of Cruise: SE United States continental shelf waters from Cape Hatteras, NC to St. Lucie Inlet, FL
Dates of log: Thursday, 19 May through Saturday, 21 May, 2011

Here I am with the CTD equipment

Here I am with the CTD equipment

Weather Data from the Bridge
Position: Latitude 27.87, Longitude -80.16
Wind Speed 11.06 kts
Wind Direction. 131.46 º
Surface Water Temperature 26.88 ºC
Surface Water Temperature
Air Temperature 27.10 ºC
Relative Humidity 78.00 %
Barometric Pressure 1015.50 mb
Water Depth 28.05 m
Sky conditions: clear

Science and Technology Log

General Description of the Scientific Work Aboard Pisces
While at sea, the ship’s operations and scientific crews work in shifts 24/7 – yes, that’s twenty-four hours, every day, with ship operations, maintenance, data collection and gear deployment continuing day and night.
The scientific team, headed by Chief Scientist, Dr. Nate Bacheler, includes researchers who are mostly marine biologists specializing in fisheries. Each team member has complementary specialized skills such as acoustics (use of sonar for sea floor mapping), physical or chemical oceanography, underwater video camera operations, data management and analysis, and many aspects of fish biology.

The main mission of this research cruise is to study red snapper and related grouper species, fish that are of great importance economically and to the marine ecosystem in near shore areas off the southeastern coast of the United States. In particular, the team is studying where the fish are likely to be found (their spatial distribution patterns) and their numbers, or abundance, and population dynamics (how the populations change over time).

This work expands the knowledge needed to guide decisions about how to protect and manage fisheries in a sustainable manner. Healthy, sustainable fish populations are essential to the economy, to the function of healthy ecosystems, and as high-protein (and tasty) food sources. In the past, many fish species have been overfished, resulting in dangerous declines in their populations.
The scientific work on board Pisces for this project is divided into three main areas. This log entry gives an overview of each of the three main areas of work, with a more detailed account of the acoustics, or mapping portion. Upcoming logs will describe the other phases in more detail.

  1. Acoustics – Using the science of sound with advanced sonar and computer technology, the acoustics team maps the sea floor and identifies areas likely to be good fish habitat.
  2. Fish survey – The survey team sets baited traps to catch fish, then collects them, identifies the species, and records essential data about the species of most interest.
  3. Underwater videography – The video team attaches cameras to the traps to view the kinds and activities of fish in the water and assess the type of sea bottom, such as sandy or hard, flat or “bumpy”, regular or irregular.
  4. After all this information is collected in the field, much of the painstaking, detailed analysis takes place back in the home labs and offices of the researchers.

Acoustics Work
Since acoustics is the first step used to identify specific sites to set traps for the fish survey, we’ll start here.
Throughout a long night shift, from 6 p.m. until the work is complete, often 7 a.m. or later the following day, the acoustics team uses sonar (SOund NAvigation and Ranging) and computer analysis to map the sea floor and identify promising areas to set traps for the fish survey. See a detailed description of the sonar equipment and procedures below.

Investigator Jennifer Weaver showing GIS model of sea floor contours

Investigator Jennifer Weaver showing GIS model of sea floor contours

At 5 a.m., the acoustics team meets with Chief Scientist Nate to report any sites they identified overnight and select the stations to sample with fish traps and underwater cameras during the day. The team then converts their data into a kind of route map that the helmsman (the ship’s “driver”) uses to steer the ship along the designated survey route.

The acoustics team members possess extensive knowledge about fish habitats, geography and geology of the sea floor, and computer and sonar technology. They also need to be aware of the interactions among wind, weather and currents and understand charts (marine maps) and ship’s navigation. They constantly communicate with the ship’s bridge via the internal radio network.

Fish survey team prepares baited traps at dawn

Fish survey team prepares baited traps at dawn

The acoustics lab houses work space large enough for five to ten people, banks of computer screens, servers, and large-scale display monitors projecting images from the sonar devices, real time navigation, and views from cameras positioned in work areas on deck.

Once the now-very-sleepy acoustics lab team wraps up its nocturnal work, the team members turn in for a day’s (or night’s?) sleep, just as the other teams’ daylight tasks begin in earnest.

Fish Survey Work
By 6 a.m., in the predawn darkness, the rear deck becomes a hub of concentrated activity, with sounds muffled by the early ocean haze and drone of the engines and generators. The four or more members of the fish survey team, still rubbing sleep from their eyes, assemble on the stern deck (rear of ship or fantail) to prepare the traps to catch fish for the day. Before the sun rises, floodlights illuminate the work of cutting and hanging menhaden, whole fish bait, in the traps, securing the underwater cameras in place, tagging each piece of equipment carefully and checking that everything is ready for deployment.

Chief Scientist Nate Bacheler directs trap deployment from the dry lab

Chief Scientist Nate Bacheler directs trap deployment from the dry lab

Chief Scientist Nate directs the deployment of the traps from the dry lab, where he faces a bank of computer screens displaying maps of the identified sampling route, the ship’s course in real time, and camera shots showing the personnel and operations on deck. By radio, Nate directs the deck crew to lower the traps at each of the designated sites.

The ship is steered along the sampling route, dropping traps in each of six locations. Each trap is left in place for approximately ninety (90) minutes. Once the last trap is lowered, the ship returns to the first location and raises the traps, usually following the same order. The deck crew members, together with the fish survey team, empty any catch and ready the traps for redeployment.
Chief Scientist Nate Bacheler directs trap deployment from the dry lab

Then the fish survey team, coordinated by Investigator Dave Berrane, sets to work sorting, weighing and measuring any catch and immediately releasing any fish not needed for further study.

Investigator Christina Schobernd views underwater video with Chief Scientist Nate Bacheler

Investigator Christina Schobernd views underwater video with Chief Scientist Nate Bacheler

Videography Work
As soon as the traps are hauled aboard by the deck crew, the wet lab team detaches and dries the cameras and hands them to the dry lab, where the videography team, headed by Investigator Christina Schobernd, removes the memory cards and transfers and makes duplicates of the video files on computer drives. All the teams take extreme care to label, catalog and back up everything carefully. Data management and redundancy are essential in this business. The scientists view some of the footage immediately to see if the cameras are working properly and to make any adjustments necessary. They also look for anything unusual or unexpected, any fish captured on camera other than those that made it into the trap, and they assess how closely the sea floor type matched what was expected from the acoustic team’s mapping work.

Christina works well into the night to back up and catalog all the day’s video recordings.

Detailed Description of Fisheries Acoustics Surveys

Multibeam sonar mapping the seafloor. Image courtesy of Jill Heinerth, Bermuda: Search for Deep Water Caves 2009.

Multibeam sonar mapping the seafloor. Image courtesy of Jill Heinerth, Bermuda: Search for Deep Water Caves 2009.

Fisheries Acoustic Surveys: Acoustic surveys help determine the relative abundance of target species and provide information to determine catch rates and guidance for fisheries management.

The equipment aboard Pisces includes two types of sonar devices that use sound waves to measure the water depth, shape or contours of the sea floor, and to a limited extent, fish groupings, or aggregations. Sonar operates using established knowledge about how fast sound travels in water under different conditions to develop a three-dimensional image of the shape of the sea floor. The first type is known as split-beam sonar, which uses sound waves at different frequencies to provide a picture of the underwater environment. Pisces has a Simrad EK60 echosounder.

The second, more sophisticated and expensive system involves Multibeam sonar mapping. Aboard Pisces is a Simrad ME70 device. Multibeam devices emit sound beams that forms an inverted cone, covering a larger area and providing a more complete picture of the sea floor than the series of vertical or horizontal sound signals that the split beam sonar provides. As described above, the bathymetric mapping surveys are conducted primarily during the night, from sundown until dawn, when fish sampling and other ship operations are not taking place. Ideally, this allows the science team to map out a route of sampling sites for the next day’s fish trapping work. At the end of the overnight shift, the acoustics team presents its findings to the Chief Scientist, who then coordinates the day’s activities with the fish team, the ship’s bridge, and the deck crew headed by the chief boatswain.

It’s called “multibeam” because unlike the first single-beam sonars, which sent out one signal or ping, multibeam sonar sends out a whole group of pings at once. Multibeam sonar can cover a larger area than a single beam can. Here’s a Quicktime movie of multibeam sonar: http://oceanservice.noaa.gov/education/seafloor-mapping/movies/multi_240.mov

Personal Log

I cannot say enough about how friendly and helpful everyone on board has been to this neophyte. It takes a while to adjust to any new environment, but being on a ship at sea has its own learning curve. Pisces, at 209 feet long, operates like a small town. Because it is out at sea for weeks at a time, all supplies and systems must be operating 24/7 to keep the ship and crew focused on the appointed mission and keep everyone on board safe, comfortable, and able to do their jobs.

I spent the first two days getting acclimated to the layout of the ship, safety practices, meeting the members of the scientific crew, adjusting to the rigorous schedule, and doing my best not to commit any grave offenses or make big mistakes that would make the work of this very patient group of dedicated professionals any more difficult than it is already.

Sleep Time Because the ship’s work continues round the clock, sleep time varies, depending on the person’s position and duties. It is important for everyone aboard to be mindful that at any hour of the day or night, it’s likely that someone is sleeping. The mapping crew began a 6 p.m. to 6 a.m. shift (or later, until the work is finished) on our second day at sea, and most of them will keep that difficult schedule for the entire cruise. Since I’m the lucky one to experience every aspect of the work, I’ll rotate through the various jobs and schedules. For the first few days, I’ll work with the fish survey team, from 6 a.m. until their work is completed, which may mean a break for supper at 5 p.m. followed by a few more hours of lab work to process all the day’s catch. My first day on the acoustics team, I’m scheduled to start at 4 a.m. assisting their nightly wrap up, as by the last few hours of their shift, they are quite tired.

Dining and Comforts Aboard Ship

Chief Steward/Chef Jesse Stiggens with a Pisces creation, a vegetable quiche.

Chief Steward/Chef Jesse Stiggens with a Pisces creation, a vegetable quiche.

Chief Steward Jesse Stiggens and Assistant Steward Michael Sapien create a terrific, appetizing menu for the three main meals and plenty of extras and snacks available at any hour.

The stewards are very accommodating, so anyone who will miss a main meal because of their work or sleep schedule can sign up in advance for the stewards to set aside a full plate of delicious food for them. The mess (dining room on a ship) is open all day and night, with coffee, cold beverages, an array of sandwich fixings, cereals and assorted leftovers kept chilled for anyone to microwave anytime they get a hankering for a nibble or a bigger bite. And…very important for morale … there’s a freezer stocked with ice cream, even Blue Bunny (a favorite in the South that I had not seen before) and Häagen-Dazs. There’s also a big screen television in the mess. The lounge area has computers, a conference or game table, a small library of books, a large screen television and several hundred movie titles, even new releases, for the crew to enjoy in their off time. Also available are wonderful reclining chairs, so comfortable, I wish I had time to use them. The one and only time I tried one out, the fire alarm went off for our first drill, and I haven’t had a free moment since.

Doomsday Came and Went: Saturday, 21 May, 2001….and Pisces work continues
CNN reports: After months of warnings and fear, the Day of Rapture, as predicted by apocalyptic Christian broadcaster Harold Camping, passed without apparent calamity. Judgment Day was to have started at 6 p.m., but as darkness fell on many parts of the world, it appeared that heaven could wait. At this writing, there have been no reports of people soaring upward to the skies, but plenty of folks are talking about it.

That includes those of us on Pisces. The possibility that Doomsday was approaching generated some good-natured kidding and gallows humor. We had some debate about when the end would begin. Since most of the ship’s instruments use Greenwich Mean Time (GMT) as a reference, we speculated that our end time might occur four hours later than east coast Daylight Savings Time (DST).

Everyone had their eyes on the clock and the horizon as first, the predicted doomsday hour of 6 p.m. DST came and went, and then, four hours later, 6 p.m. GMT passed without incident. Any apprehensions were put to rest, and now we have new fodder for discussion.

Special Challenges for Research at Sea
Many people have the idea that science is neat, pretty and conducted in sterile lab environments by other-worldly thinkers in clean white lab coats. That is decidedly not the case in fisheries work at sea. This section lists the special challenges (or, as, some optimists would say, “opportunities”) of conducting shipboard research. Each log will focus on or give examples of one or more challenges.

  • Limits of “shooting in the dark” – Imagine a vast, dark, deep, ever-changing, difficult-to-penetrate area, with living organisms moving about in and out, with all kinds of surface, bottom, and in-between conditions. That’s what underwater research involves. Examples: The mapping team thinks it has found great habitat for red snapper and grouper, so the survey team expects a bountiful trap. But up comes nothing but a trap still full of untouched bait. Or, the habitat conditions look promising, but the current is too strong to set the traps safely.
  • The Unexpected – It is often said that the only thing predictable in field research of this kind is unpredictability! You just never know….
  • Curiosity-seekers and just plain business – recreational and commercial boats – Not surprisingly, the areas of interest for NOAA fisheries research are often favorite fishing grounds for recreational fishermen, scuba divers, and active routes for commercial ships. Therefore, Pisces crew and helm (the person steering the ship) must always be on alert for other boat traffic. Example: On Saturday, a small recreational boat occupied by partiers pulled up nearly alongside Pisces. Despite polite cautions and requests from our bridge for the small boat to move away to a safer distance, the visitors just kept waving and cheering for a while.

Challenges to come in next logs:

  • Changing sea conditions, weather, waves and current
  • Fatigue
  • Limited daylight hours
  • Emergencies
  • More unpredictables

Links & Resources