Hayden Roberts: What’s in a Name? July 18, 2019

NOAA Teacher at Sea

Hayden Roberts

Aboard NOAA Ship Oregon II

July 8-19, 2019


Mission: Leg III of SEAMAP Summer Groundfish Survey
Geographic Area of Cruise: Gulf of Mexico
Date: July 18, 2019

Weather Data from the Bridge
Latitude: 29.43° N
Longitude: 86.24° W
Wave Height: 1 foot
Wind Speed: 7 knots
Wind Direction: 220
Visibility: 10 nm
Air Temperature: 31°C
Barometric Pressure: 1017.5 mb
Sky: Few clouds


Science Log

Over the course of this research experience, I have realized that I was not entirely prepared to assist on this voyage. While I think I have pulled my weight in terms of manpower and eagerness, I quickly realized that not having a background in the biological sciences limits my capacity to identify species of fish. Not growing up in the Gulf region, I am already limited in my understanding and recognition of fish variety through their common names like shrimp, grouper, and snapper. Countless other varieties exist most of which have no commercial fishing value such as boxfish, sea robin, spadefish, and scorpionfish. Fortunately, the microbiology grad student paired with me during wet lab processing has been patient and the fishery biologists assigned to this research party have been informative showing me the basics to fish identification (or taxonomy).

Sorting fish species
Sorting fish species in the wet lab.
Measuring a stingray
Measuring and weighing a specimen in the wet lab.

The wet lab aboard Oregon II is the nexus of the research team’s work. While the aft deck and the computer lab adjacent to the wet lab are important for conducting research and collecting data, the wet lab is where species are sorted, identified, and entered into the computer. The lab has a faint smell of dead fish and briny water. While the lab is kept clean, it is hard to wash the salt off the surfaces of the lab entirely after every research station.

Alongside the buckets and processing equipment are textbooks, quick reference guides, and huge laminated charts of fish species. Most of the reference material has distinctive color photographs of each fish species with its scientific name listed as the caption. The books in this lab are focused on Gulf and Atlantic varieties as these are what are likely to be found during the surveys. Fishery biologists have a wealth of knowledge, and they pride themselves on knowing all the species that come through the lab. However, occasionally a variety comes through the lab they cannot identify. Some species are less common than others. Even the experts get stumped from time to time and have to rely on the books and charts for identification. To get experience in this process, the biologists have given me crustaceans to look up. I struggle to make matches against pictures, but I have gotten better at the process over the weeks.

Calappa flammea
Calappa flammea.

As I have learned more about the scientific names of each species we have caught, I have also learned that scientists use a two-name system called a Binomial Nomenclature. Scientists name animals and plants using the system that describes the genus and species of the organism (often based on Latin words and meaning. The first word is the genus and the second is the species. Some species have names that align close to the common name such as scorpionfish (Scorpaena brasiliensis). Others seem almost unrelated to their common name such as scrawled cowfish (Acanthostracion quadricornis).

scrawled cowfish
Acanthostracion quadricornis

Fortunately for those of us who do not identify fish for a living, technology has provided resources to aid in learning about and identifying species of fish we encounter. The FishVerify app, for example, can identify a species, bring up information on its habitat and edibility, and tell you its size and bag limits in area based on your phone’s Global Positioning System (GPS). The app is trained on over a thousand different species with the beta version of the app focused on 150 species caught in the waters of Florida. On our research cruise, we have encountered over 150 species so far.

Hayden and red grouper
Me and a large specimen of Epinephelus moiro.


Did You Know?

The naming system for plant and animal species was invented by the Swedish botanist Carl Linnaeus in the 1700s. It is based on the science of taxonomy, and uses a hierarchical system called binomial nomenclature. It started out as a naming system for plants but was adapted to animals over time. The Linnaean system has progressed to a system of modern biological classification based on the evolutionary relationships between organisms, both living and extinct.


Personal Log

Nearly two weeks into this experience and the end of my time with NOAA aboard Oregon II, I find that I have settled into a routine. Being assigned to the “dayshift,” I have seen several sunsets over my shoulder as I have helped deploy research equipment or managed the bounty of a recent trawls. I have missed nearly all the sunrises as the sun comes up five hours after I have gone to bed.

However, these two features along the horizon cannot match the view I have in the morning or late at night. After breakfast and a shower midmorning, I like to spend about 30 minutes gazing at the water from one of the upper decks. The clean light low along the water accentuates its blueish-green hue. In my mind, I roll through an old pack of crayons trying to figure out what color the water most closely represents. Then I realize it’s the Green-Blue one. It is not Blue-Green, which is a lighter, brighter color. The first part of the crayon color name is an adjective describing the second color name on the crayon. Green-blue is really blue with a touch of green, while blue-green is really green with some blue pigment in the crayon. Green-Blue in the crayon world is remarkably blue with a hint of green. The water I have admired on this cruise is that color.

Hayden on fore deck
View from fore deck of NOAA Ship Oregon II.

The Gulf in the east feels like an exotic place when cruising so far away from shore. While I have been to every Gulf state in the U.S. and visited their beaches, the blue waters off Florida seem like something more foreign than I am accustomed. When I think of beaches and seawater in the U.S., I think of algae and silt mixed with the sand creating water with a brown or greenish hue: sometimes opaque if the tide is rough such as the coast of Texas and sometimes clear like the tidal pools in Southern California. Neither place has blue water, which is okay. Each place in this world is distinct, but to experience an endless sea of blue is exotic to me.

Retrieving the trawling net
Retrieving the trawling net at night.

In contrast to vibrant colors of the morning, the late evening is its own special experience. Each night I have been surprised at how few stars I can see. Unfortunately, the tropic storm earlier in the week has produced sparse, lingering clouds and a slight haze. At night the horizon shows little distinction between the water and the sky. The moon has glided in and out of cover. However, the lights atop the ship’s cranes provide a halo around the ship as it cruises across the open water. What nature fails to illuminate, the ship provides. The water under this harsh, unnatural light is dark. It churns with the movement of the boat like thick goo. Yet that goo teems with life. Every so often a crab floats by along the ships current. Flying fish leap from the water and skip along the surface. Glimpses of larger inhabitants dancing on the edge of the ship’s ring: creatures that are much larger than we work up in the wet lab but illusive enough that it can be hard to determine if they are fish or mammal. (I am hopeful they are pods of dolphins and not a frenzy of sharks).

Jessie Soder: Drag It Along, Dump It Out, Count ‘Em Up, August 14, 2011

NOAA Teacher at Sea
Jessie Soder
Aboard NOAA Ship Delaware II
August 8 – 19, 2011 

Mission: Atlantic Surfclam and Ocean Quahog Survey
Geographical Area of Cruise:  Northern Atlantic
Date: Wednesday, August 14, 2011 

Weather Data
Time:  16:00
Location:  41°47N, 67°47W
Air Temp:  18°C  (64°F)
Water Temp:  16.5°C  (62°F)
Wind Direction:  SE
Wind Speed:  6 knots
Sea Wave height:  0
Sea Swell:  0

Science and Technology Log

A fellow volunteer, Rebecca, and myself measuring clams

When I found out that the Teacher at Sea trip that I would be on was a clam survey, I thought, “Oh, clams.  I see those on the beach all the time.  No problem.”  I learned that the clams are collected using a hydraulic dredge.  I knew  that a dredge was something that you dragged along the bottom of the ocean.  That seemed simple enough.  Drag it along, dump it out, count ‘em up, and you’re done.

Quickly, I learned that this project is not that simple!  A few questions came to mind after we had done a couple of tows:  How many people are needed to conduct one tow for clams and quahogs? (operate the machinery, the ship, sort through a tow, collect the data, etc.)  How many different jobs are there during one tow?

Sorting through contents of a dredge

Those questions are hard to answer, and I don’t have a precise answer.  What I have learned is that it takes a lot of people and everyone that is involved has a job that is important.  I asked the Chief Scientist, Victor Nordahl, how many people he preferred to have on a science team per watch.   He told me that it is ideal to have six people dedicated to working on sorting the contents of the dredge, processing the catch, and collecting data per watch.  Additionally, he likes to have one “floater,” who can be available to help during each watch.  This seems like a lot of people, but, when there is a big catch this number of people makes the work much more manageable.  There are six people, including myself, on my watch.  Four of us are volunteers.

Each time the dredge is lowered, pulled along the ocean floor, and then brought back onto the ship it is called an “event.”  In my last post I included a video of the dredge being hauled up onto the deck of the ship after it had been pulled along the bottom.  An entire tow, or “event,” is no small feat!  During my watch Rick operates the machinery that raises and lowers the dredge.  (Don’t forget the dredge weighs 2500 pounds!)

There are also two people working on deck that assist him.  (You can see them in the video from my last post.  They are wearing hard hats and life vests.)  Additionally, an officer on the bridge needs to be operating and navigating the ship during the entire event.  There are specific times where they must speed up, slow down, and stop the ship during a tow.  They also have to make sure that the ship is in the correct location because there are planned locations for each tow.  Throughout the entire event the science team, deck crew, and the bridge crew communicate by radio.

Rick, in front of the controls he uses to lower and raise the dredge

As I said, this project is not simple!  To make it more complicated, equipment often breaks, or is damaged, which means that the deck crew and the science team have to stop and fix it. On this trip we have stopped to fix equipment several times.  Various parts of the dredge get bent and broken from rocks on the ocean floor.  Before the dredge is lowered, the bottom is scouted with a depth sounder to try to avoid really rough terrain.  On the screen of the depth sounder different substrates are shown in different colors.  For example sand is shown in green and rocks are shown in red.  We try to avoid a lot of rocks.  However, all the rocks cannot be avoided and sometimes we hit them!

Personal Log

Vic getting a hair cut

Before coming on this trip I was told that the work can be strenuous and, sure enough, it is.  Sometimes a tow brings up hundreds of pounds of rocks (with some clams mixed in!) that we need to sort through and, as you know, rocks are heavy!  The work is also a bit, well, gross.  We have to measure all the clams, whole and broken and we also have to collect weights of “clam meat.”  That means that we have to open the shells and scrape the meat out.  I have a pretty high tolerance for gross things, but I am starting to grow weary of clam guts!

In between tows there is a little bit of down time to catch your breath, drink coffee and eat cookies, watch the ocean, and read a book.  During one of these breaks, the Chief Scientist Victor Nordahl, took the moment and had his hair cut!