Staci DeSchryver: A Brief Lesson on All the Things We Deliberately Throw Over the Side of the Ship, July 12, 2017

NOAA Teacher At Sea

Staci DeSchryver

Aboard NOAA Ship Oscar Elton Sette

July 6 – August 2, 2017

 

Mission:  HICEAS Cetacean Study

Geographic Area:  Hilo Coast, Hawaii

Date:  July 12, 2017

Weather Data from the Bridge:

Location:  22 deg 38.0 min N, 159 deg 33.9 min W

Cloudy with rain squalls all around

Visibility: 10 nmi

Wind: E @ 23 kts

Pressure: 1019.1mb

Waves: 2-3 ft

Swell:  60 degrees at 3-5 ft

Temp: 27 degrees

Wet Bulb Temp: 24 degrees

Dewpoint: 26 degrees

Relative Humidity:  96%

 

Science and Technology Log

Today, we will be exploring all of the equipment we deliberately toss over the stern of the ship.  There are a number of different audio recorders that the HICEAS and other teams use to detect various species while underway.  Chief scientist Erin Oleson gives a great perspective when she says that, “We pass through this particular area for this study only one time.  Just because we may not see or hear an animal, it certainly doesn’t mean it’s not there, or that it won’t come by this area at a later time.”  In order to compensate for the temporal restrictiveness of the ship being in one spot at one time, the team will periodically launch buoys over the side to continue the listening process for us.  Some buoys are designed to last a few hours, some report the information real-time back to the ship, some are anchored to the ocean floor, some drift around, and all serve different needs for the scientific team.

Thing we deliberately throw off the ship #1:  Sonobuoys

Since arriving on the ship, I have been recruited to “Team Sonobuoy” by the acoustics team for deployments!  It is my job to program and launch two sonobuoys on a set schedule created by the scientific team.   Sonobuoys are designed to pick up low-frequency sounds from 0 – 2 KHz, most often made by baleen whales.  The sonobuoy will send information back to the ship in real-time.  Once launched over the side, the sonobuoy will drift in the ocean, listening for these low frequency noises.  They are a temporary acoustic tool – lasting anywhere from 30 mins to 8 hours of time.  Most of the buoys are set to record for 8 full hours.  After the pre-set recording time is up, the float on the buoy pops, and the buoy is no longer active.  It is my job to launch two sonobuoys, and then monitor the signal coming back to the ship via VHF until we are too far away to detect the frequency coming back to us.  This usually happens between 2 and 3 miles after launch.   The recordings are sent onshore for processing.  Fun fact: sonobuoys were originally developed by the Navy to listen for enemy submarines!  The scientists thought they would be a handy tool for baleen whales, and picked up the technology.  We have deployed sonobuoys almost every evening of the cruise.

Thing we deliberately throw off the ship #2:  DASBRs

DASBRs, or Digital Acoustic Spar Buoy Recorders, are floating recorders launched at certain waypoints in the ocean.  The word “spar” simply means that the buoy floats vertically in the water.  There are two types of DASBRs, one records from 0 – 128 KHz, and one goes all the way from 0 – 144 KHz.  Now, these particular buoys get launched, but they don’t get anchored.

DeSchryver_connecting buoy to DASBR

Shannon and Jen connect the buoy to the DASBR before deployment

Inside the DASBR is a transmitter that shows the location of the buoy so that the scientific team can recover them at a later time.

DeSchryver_Eric waits DASBR

Erik waits to deploy the DASBR at the proper GPS location.

So, in effect, this is a buoy we deliberately throw off the ship only to bring it back on after a predetermined amount of time.  These recorders do not transmit back to the ship.  They store all of the data on the  DASBR, which is why recovery of the DASBRs is so important.  A DASBR that does not get recovered keeps all of its secrets as it floats along in the ocean.  We can track DASBRs real time, and they follow interesting patterns as they float freely in the ocean – some track in a given direction along with the current, while others corkscrew around in the same area.  So far, we have deployed 4 DASBRs in the first 8 days of the cruise.

Things we deliberately throw off the ship #3:  HARPS

HARPS, or High Frequency Acoustic Recording Packages, are the third type of microphone deployed off the ship.  HARPS record all sounds between 0 and 100 KHz. They last far longer than both sonobuoys and DASBRS in terms of time out on the water. They are limited not by data storage, but by battery power.  HARPS are deployed at one location and are anchored to the ocean floor.  Small yellow floats rise to the surface to alert ships and other traffic to their presence.  They are a little easier to find when it comes to recovery, since they have a GPS known location and are secured to the ocean floor, but they are a little more difficult to wrangle on to the back deck of the ship when recovered and deployed, since there is an anchor associated with them.

DeSchryver_HARP

The HARP in the Wet Lab undergoing repairs before launch.

On this cruise we have both recovered and deployed HARP systems.  The HARPS also store information within  the HARP, so recovery is important to the scientific team because the data does not get transmitted in real time back to any computers.

Things we deliberately throw off the ship #4:  Ocean Noise Sensors

There are data recorders that record the level of noise in the ocean over time.  We are currently on our way to pick one of these recorders up, complete some maintenance on it, and re-deploy it.  This will be a full day commitment for the scientific team and the crew, so I’m going to keep you guessing on this one until we actually complete this part of the operation.  We have many hands working together both on the ship and between organizations to make the ocean noise-monitoring program effective and cohesive, so this section of “Things we deliberately throw off the ship” will get its own blog post in the future as we complete the haul in, maintenance, and re-deployment.  Stay tuned.

 

Personal Log

Team.  You’ll never guess what I did.  I.  Drove. The Ship.  Yes, you read that correctly.  I drove the ship, and – AND – I didn’t hit anything while I did it!  What’s better is that I didn’t tip anyone out of their chairs while I made turns, either!  This is cause for much celebration and rejoicing among scientists and crew alike.  The Commanding Officer, CDR  Stephanie Koes invited me, “Spaz the TAS” up to the bridge for a little steering lesson two days ago, in which I happily obliged.  ENS Fredrick gave me a little mini-lesson on the onboard radar systems, which were picking up rain just off our starboard side.

I also learned of the existence of the many GPS positioning systems and navigation systems onboard.  The NOAA Marine and Aviation Operations, or OMAO, is not lost on system redundancies.  From what I can surmise, there are two of everything on the bridge in order to ensure the NOAA OMAO’s number one priority – safety. Everything on the bridge has a backup, or in many instances, a preferential option for each officer responsible for the bridge at any given time.  Some systems are fancy and new, while others maintain tradition on the bridge.  For example, a bell will still chime every half hour to remind the watch stander to record weather data on the bridge and a navigational fix on a paper chart.  ENS Fredrick says that the bell is an older maritime system, but is very handy when things get busy on the bridge –  the bell ringing is a perfect audio cue for him to stop what he’s doing and get to the logbook to record the weather.

Turning a giant ship sounds difficult, but in reality, it’s really difficult.  The actual act of turning doesn’t take much – a simple flip of a switch to take the ship off what I termed “cruise control” and a turn of the wheel (which by the way looks exactly like a smaller version of the ship wheels you see in all of the fabulous movies – I’m looking at you, Goonies) and an eye on the bearing angle (the compass direction in which the ship is headed).  But here’s the real issue – this moving city technically has no brakes.   So as the ship begins to turn, the driver has to pull the rudder back in the opposite direction before the bearing angle is reached, otherwise the bearing angle gets overshot.  If you turn the wheel too far one way or the other too quickly, the ship responds by  “leaning into” the turn at a steep angle.

DeSchryver_driving ship

This is me not running in to things while steering the ship with ENS Fredrick!

This sounds like it might be fun until the chef downstairs rings the bridge and chews the driver out for making the cheesecake fall off the galley countertop.  Then the driver must take the heat for ruining the cheesecake for everyone else on the ship waiting quite impatiently to eat it.  Thankfully, I tipped no cheesecakes.  That would make for a long month onboard being “that guy who turned the ship too hard and ruined dessert for everyone.”  I’m pretty sure had I not had the direction of ENS Fredrick as to when and how far to turn the rudder, I’d be in the dessert doghouse.

Another fabulous part of turning the ship is that I got to use the radio to tell the flying bridge (and anyone else who was listening) that I had actually turned the ship and it was correctly on course.  Luckily I had been listening to the radio communication for a few days and put on my best radio voice to make said announcements.  I think my performance was middling to above average at least, and fully qualified to speak on the radio without sounding too unfortunate at best.  However, there was one element of driving the ship that made me terrified enough to realize that I probably am not quite ready to hack the job – everything else that is going on up on the bridge while you are keeping the ship on-course.

Watch standers are notoriously good at keeping data.  They record every move the ship makes.  If the mammal and bird team go off effort due to weather or too high of a Beaufort state, the bridge records it.  They also record when they go back on effort. They log every turn and adjustment the ship makes.  They log every time we deploy a CTD or any kind of buoy.  I watched the watch stander on the bridge take a phone call, make a turn, log the turn, put the mammal team off-effort, put the mammal team back on-effort, take a request on the radio and record weather data all in a span of about two minutes.  It seemed like everything was happening all at once, and he managed it all like it was just another day in the office.  For him, it was.

To be a member of the NOAA OMAO means that you must be willing to learn, willing to make mistakes, willing to follow orders, willing to be flexible, and willing to be one heck of a multi-tasker.  I, for one, went quickly cross-eyed at all of the information processing that must happen up on the bridge during an officer’s shift. Thankfully, I didn’t go cross-eyed while I was trying to turn the ship.  That would have been bad, especially for cheesecakes.  I’m thinking that if I play my cards right, I can enlist as a “backup ship driver” for future shifts on Oscar Elton Sette.  I figure you never know when you might need someone fully unqualified to steer a giant moving city in a general direction for any given amount of time.  But I think I can do it if I do it like the NOAA Corps – taking everything one turn at a time.

Cetacean and Fish Species Seen:

Risso’s Dolphins

Striped Dolphins

Melon-Headed Whales

Blainsville Beaked Whales

Sperm Whale

False Killer Whales

Kogia – unidentified (These are either pygmy Sperm Whales or Dwarf Sperm Whales)

Flying Fish

Wahoo or Ono (Ono in Hawaiian means “tasty” – the name was confirmed as I enjoyed a few pieces of Ono sashimi last night at dinner)

 

Seabirds spotted as of July 14:

White Necked Petrel

Juan Fernandez Petrel

Hawaiian Petrel

Black-Winged Petrel

Cook’s Petrel

Pycroft’s Petrel

Bulwer’s Petrel

Wedge-Tailed Shearwater

Christmas Shearwater

Newell’s Shearwater

Band-rumped Storm Petrel

Red-Tailed Tropic Bird

White-Tailed Tropic Bird

Masked Booby

Brown Booby

DeSchryver_brown footed booby

A juvenile Red-Footed Booby takes a two day rest on Sette‘s Mast.

A juvenile Red-Footed Booby who has taken up residence on the mast of the ship for two full days and pretends to fly from the mast – highly entertaining.

 

Red-Footed Booby

Great Frigatebird

Brown Noddy

Sooty Tern

Grey-Backed Tern

White Tern

Ruddy Turnstone

Sanderling

Japanese Quail

 

 

Karen Matsumoto, April 25, 2010

NOAA Teacher at Sea: Karen Matsumoto
Onboard NOAA Ship Oscar Elton Sette
April 19 – May 4, 2010

NOAA Ship: Oscar Elton Sette
Mission: Transit/Acoustic Cetacean Survey
Geographical Area: North Pacific Ocean; transit from Guam to Oahu, Hawaii, including Wake Is.
Date: Friday, April 25, 2010

Science and Technology Log

The Oscar Elton Sette is making its way to Wake Island, and we hope to be there by tonight. One of the research operations is to recover a HARP (High-frequency Acoustic Recording Package) that is in place on Wake Island and replace it with a new HARP unit.

This morning, I was on “CTD duty” at 4:30 a.m. A CTD (conductivity-temperature-depth) station is deployed prior to the start of the visual survey effort, right at sunrise. The CTD data is collected using the ship’s SeaBird CTD shown below. The CTD is deployed to a depth of 1000 meters (depending on depth where we are) with a descent rate of about 30 meters per minute for the first 100 meters of the cast, then at 60 meters per minute after that. It takes three people, plus a winch driver to deploy the CTD, as well as the expert operation from the bridge to keep the ship steady and in one place during the entire operation!

Checking the CTD unit prior to launch.

Launching the CTD unit.

Background on CTDs

The CTD is a device that can reach 1,000 meters or more in depth, taking up to five water samples at different depths, and making other measurements on a continuous basis during its descent and ascent. Temperature and pressure are measured directly. Salinity is measured indirectly by measuring the conductivity of water to electricity.

Chlorophyll, a green photosynthetic pigment, is measured indirectly by a fluorometer that emits purple light and measures fluorescence in response to that light. These measurements are made continuously, providing a profile of temperature, salinity, and chlorophyll as a function of depth. The CTD unit is torpedo-shaped and is part of a larger metal water sampling array known as a rosette. Multiple water sampling bottles are often attached to the rosette to collect water at different depths. Information is sent back to the ship along a wire while the instrument is lowered to the depth specified by the scientist and then brought back to the surface.

Monitoring the CTD in the ship’s E-lab.

Data gathered from the CTD during its descent.

By analyzing information about the water’s physical parameters, scientists can make inferences about the occurrence of certain biological processes, such as the growth of algae. Knowledge like this can, in turn, lead scientists to a better understanding of such factors as species distribution and abundance in particular areas of the ocean.

I am continuing my acoustic work with the sonobuoys. Today I heard a Minke whale BOING! Below is what a Minke whale boing looks like on the computer. It sounds very much like someone blowing a low tonal whistle or a cell phone vibrating on the desk!

 

To hear an Atlantic minke whale call (which is different from those found here in the North Pacific, but really cool!) go to this website:

http://www.pmel.noaa.gov/vents/acoustics/whales/sounds/sounds_atlminke.html

Personal Log

I am making so many great friends among the Sette crew and the science team! I am getting spoiled from all the fantastic meals put together by Randy our cook, and no one ever wants to miss a meal! Our wonderful Doc Tran makes incredible Vietnamese dishes and delicious desserts. Today we had cream puffs for dinnertime dessert! Who would have ever guessed!

Marie Hill, our Chief Scientist and fearless leader was awarded the prestigious NOAA Team Member Award! We surprised her with balloons and decorations in her cabin, and Doc Tran and Lisa made a yummy cake in celebration! Congratulations Marie!!!

Marie Hill, Chief Scientist finding her cabin wildly decorated to congratulate her on her award.

We had a visitor today on the flying bridge-an exhausted juvenile red-footed booby! He sat on the mast, finding a place to rest in the middle of the ocean! It felt great to feel the warm wind hit my face and watch the sapphire blue water crash against the bow of the ship! What a great feeling!

Juvenile red-footed booby on the bridge

Deep blue Pacific ocean water!

Question of the Day: How can you figure out how much food to bring on a 2-week cruise? How do you keep the food fresh? What do you do with leftovers?

This is the situation that the Chief steward has to deal with on every cruise! How would you figure this out? Can you do the math?

New Term/Phrase/Word of the Day: Beaufort Sea State is an empirical measure for describing wind speed based mainly on observed sea conditions. It is also called the Beaufort Wind Force Scale. We stop conducting our visual observations when wind/sea conditions reach Beaufort 7, as wind and sea conditions are too rough to accurately make observations (and its windy out there!).

Something to Think About:

This part of the North Pacific is often described as an ocean desert. We have not seen any whales, and have had only a couple sightings of dolphins since we left Guam. We have also seen migrating sea birds, but not in huge numbers. What do you think may account for the lack of sea life in this expanse of tropical waters?

Animals Seen Today:

  • Sooty tern
  • Red-footed booby (juvenile)

Did you know?

That the team of whale visual observers never discuss the numbers of animals they see among themselves. Some people consistently count high, others count low, others are spot on! By not discussing how many animals they observed, they don’t influence each others’ observations. Back at the lab, researchers compare each observer’s counts from their written observations, and can tell which observers tend to under or overestimate numbers of animals they see. They can then make adjustments to total numbers based on everyone’s observations! This is similar to calibrating thermometers or other scientific equipment!

Today’s sunset from the Sette.

Karen Matsumoto, April 22, 2010

NOAA Teacher at Sea: Karen Matsumoto
Onboard NOAA Ship Oscar Elton Sette
April 19 – May 4, 2010

NOAA Ship: Oscar Elton Sette
Mission: Transit/Acoustic Cetacean Survey
Geographical Area: North Pacific Ocean; transit from Guam to Oahu, Hawaii, including Wake Is.
Date: April 22, 2010

Science and Technology Log

Acoustic monitoring for cetaceans is a major part of this research effort. A hydrophone array is towed 24 hours each day, except when it needs to be pulled up on deck to allow for other operations, or required by weather or other maneuvers. The hydrophone array is hooked up to a ship-powered hydraulic winch system that brings up or lowers the hydrophone into the water. A team of two acoustic scientists listen to the hydrophone array during daylight hours and collect and record data by recording the sounds made by cetaceans, and locating their positions.

Sonobuoys, as described in the previous log entry are also used to collect acoustic data. Sonobuoys transmit data to a VHF radio receiver on the ship. Scientists monitor these buoys for an hour each recording session, and often communicate with the other group monitoring the hydrophone array about what they are hearing or seeing on the computer screen. They often don’t hear or see the same things!

Launching the hydrophone array

Monitoring the array.

A standard set of information is recorded each time a sonobuoy is launched. This includes the date, time (measured in Greenwich Mean Time!), Latitude and Longitude, approximate depth of the ocean where the buoy was launched, as well as specific information on the buoys. This is just like the information you would record in your field journals when conducting your own field investigations.

Setting the buoy instructions.

Launching the buoy into the water.

Success! When the buoy is deployed, the orange flag pops up.

One of my duties as Teacher at Sea is to conduct acoustic monitoring. This means checking the buoy and setting it to the correct settings so information can be received by VHF radio, and data collected by computer on any cetacean vocalizations we may observe. Many of the cetacean calls

can’t be heard, only seen on the computer screen! The computer must be visually monitored, and it takes a keen eye to be able to pick out the vocalizations from other “noise” such as the ship’s engine, sounds of the water hitting the buoy, and even the ship’s radar!

The person monitoring the buoy also wears headphones to hear some of the vocalizations. Clicks and “boings” made by some cetaceans can be heard by humans. Other sounds made by cetaceans, especially the large baleen whales are very low frequency, and can’t be heard by the human ear.

Karen listening in and visually monitoring the Sonobuoy. I can actually hear minke whales “BOINGING”!

Data is collected and recorded on the computer on a program called “Ishmael”.

All observations are also hand written in a “Sonobuoy Log Book” to help analyze the computer data and as back up information.

Personal Log

There is so much to learn, and I am anxious to get up to speed with the research team (which could take many years!). I have always been fascinated by cetaceans, and have had a keen interest in gray whales since whale-watching on the coast of California since I was a child. Grey whales have also been an integral part of the culture of First Peoples living on the Washington Coast, and so I have been interested in learning more about them.

I am an avid birder, and it is always an exciting challenge to go to a new place, learn about other ecosystems and see birds I am not familiar with. I have always loved pouring through and collecting field guides, which are like wish lists of animals I want to see someday. Out here in the western Pacific ocean, I have a whole new array of whales for me to learn about, and learn how to identify by sight and sound! I have been reading my new field guide to whales and dolphins, reviewing PowerPoint presentations about them, and trying to learn all I can, as fast as I can! I have been drawing whales in my journal and taking notes, which helps me to remember their shape, form, and field identification features. At the top of my wish list is to see a sperm whale! I’ll be happy just to hear one, knowing they are here!

Karen sketching whales in her journal to learn their profiles and field marks.

Question of the Day: Did you know that many baleen whale vocalizations are at such a low frequency, that they can’t easily be heard by the human ear? We need computers to help us “visually hear” calls of fin, sei, blue, and right whales.

New Term/Phrase/Word of the Day: mysticetes = baleen whales. Mysticeti comes from the Greek word for “moustache”.

Something to Think About:

“Call me Ishmael,” is one of the most recognizable opening lines in American literature and comes from the novel, Moby Dick by Herman Melville, published in 1851. The story was based on Herman Melville’s experiences as a whaler. Melville was inspired by stories of a white sperm whale called “Mocha Dick” who allegedly battled whalers by attacking ships off the coast of Chile in the early 1800s! Melville’s story was also an inspiration to the founders of Starbucks and also influenced the maker of the acoustic software we are using to track cetaceans on our research trip! (Can you tell me how?)

Animals Seen Today:

  • Sooty shearwater
  • Wedge-tailed shearwater

Did you know?
The earth has one big ocean with many features. The part of the ocean we are studying is called the
North Pacific Ocean and divided into three very general regions east to west: The western Pacific,
eastern Pacific, and the central Pacific. We are traveling along a transit from Guam, northeast to
Wake Island, then almost due east to O‘ahu, Hawai‘i. Can you trace our route on a map of the
Pacific?

Karen Matsumoto, April 16, 2010

NOAA Teacher at Sea: Karen Matsumoto
Onboard NOAA Ship Oscar Elton Sette
April 19 – May 4, 2010

NOAA Ship: Oscar Elton Sette
Mission: Transit/Acoustic Cetacean Survey
Geographical Area: North Pacific Ocean; transit from Guam to Oahu, Hawaii, including Wake Is.
Date: Friday, April 16, 2010

Science and Technology Log

The Oscar Elton Sette is now at the dock at the U.S. Naval Facility in Guam, preparing for our sailing on April 19th, as well as awaiting repairs to one of its generators. I am able to settle into my room and meet my “bunkmates” who are research scientists on the cruise. The science team is readying the scientific equipment for the acoustic monitoring and the visual survey. This includes routine maintenance on the “Big Eyes” (25 x 150) binoculars, checking the computer software, and readying equipment/supplies necessary for cetacean biopsy sampling. We are also preparing sonobuoys for later deployment during our transit survey. I am learning a lot about the extensive preparation necessary for these research cruises, and will explain more about the objectives of the science mission in the next log.

The Oscar Elton Sette at dock, Guam Naval Station.

Karen checking sonobuoys for later deployment.

Personal Log

Each day after taking care of research-related duties, the science team spends time together getting to know each other and the island of Guam. Morning meals are served on the boat, with evening meals in town. There are some great snorkeling spots on the Naval base, and we have opportunities to rent snorkel gear and explore the reef. The coral reefs near the base were in amazingly good shape, and the variety of reef fish was amazing. The fish that stand out in memory include several kinds of butterfly fish, many varieties of trigger fish (including my favorite, the Picasso triggerfish), parrotfish, Sergeant majors, unicornfish, Moorish idols, and bird wrasses. The field identification skills that I depend on when birding proved not to be as useful when fish watching! Too much distraction! Just as I would try to remember field marks on one fish, I would get distracted by 20 others that were just as engaging!

Karen in snorkel gear

Picasso trigger fish

Coral reef off Gab Gab Pt.

We also had a chance to go to the museum at the War in the Pacific National Historical Park run by the National Park Service. Displays on the events of “conquest and liberation” of Guam from 1941 to 1944 were presented, as well as a wealth of resources on WWII history at their small bookstore. Available maps pointed out various caves and tunnels made by the Japanese Army using forced labor for defense fortifications which are located close by. There are still hidden live explosives in many of the caves and tunnels, so exploration is dangerous. I got a small glimpse of the cultural history of the Chamorros, the aboriginal peoples of Guam, and I would like to learn more.

War in the Pacific Museum.

Trail to War Caves built during WWII.

Caves.

Question of the Day: What are those wire cages hanging everywhere on the cyclone fences all around the Naval base? (See photos next page)

These wire traps are baited with live mice to catch the brown tree snake that was accidentally introduced to Guam after World War II. With no natural predators and abundant prey, the snake population grew and spread throughout the island. As the snake dispersed, forest bird and fruit bat populations plummeted. By the late 1980s, nine species of native forest birds and the Mariana fruit bat had disappeared from Guam. There are very few birds or mammals left on the island due to predation by the brown tree snake, and it has upset the balance of the ecosystem. An increase in insect pests, as well as a shift in vegetation is occurring on Guam due to the introduction of this invasive species.

Brown tree snake trap

Close-up of mouse bait in trap

New Term/Phrase/Word of the Day: Chamorro – the indigenous peoples of Guam.

Something to Think About:

The amount of advance preparation you need to outfit a scientific expedition when you are out at sea with no place to get supplies is mind boggling! It is also awesome to think about the kind of expertise you need on your crew, which includes the following: engineer, doctor, NOAA officers, cook, technology expert, safety specialists, mechanic, plumber, carpenter, recreation specialist, and science team! Who else do you think you would need on an expedition at sea?

Animals Seen Today:

  • Pacific golden plover (we have these in Washington!)
  • Cattle egret
  • Philippine turtle dove
  • Eurasian tree sparrow
  • Black drongo
  • Coconut crab
  • Marine toad (from Central/South America and also known as the cane toad in Australia!)
  • Many, many tropical fish species and marine invertebrates (including black sea cucumbers and blue sea stars!!!!)

Coconut crab held by local Chamorro vendor at Chamorro Village.

Did you know?

…that in Guam, many introduced species such as pigs, the marine toad, and the brown tree snake have resulted in the decline and extinction of many native plants and animals. Scientists call these plant and animal invaders “invasive species.” Can you think of an example in your community where an “invasive” species has caused an imbalance to your local ecosystem?

Question of the Day:

What could we learn from the traditional knowledge of the Chamorros about Guam’s coral
ecosystems and how to protect them?

My Challenge:
Learning my way around the ship and getting used to the different research vessel terms such as the
head = bathroom, the mess = dining area, and “Texas deck” = large upper deck on the ship for
gathering people.