Lisa Battig: Launching the Small Boats, September 1, 2017

Teacher at Sea

Lisa Battig

Aboard NOAA Ship Fairweather 

August 28 – September 8, 2017

 

Mission: Arctic Hydrographic Survey final leg

Geographic Area of Cruise: Brevig Mission, Alaska
Latitude  65 19.2N,  Longitude 166 30.7W

Date: September 1, 2017

Weather from the Bridge:  extremely variable today!!

  • Morning: overcast, 6-8 knot winds, 41 degrees
  • Afternoon: partially cloudy skies, 2 knot winds, 48 degrees
  • Late afternoon: full cloud cover, rain squalls, 10-14 knot winds, 41 degrees

 

Science and Technology Log

Thursday’s science was a bit different. Two boats went out to do some final surveying and follow up in Port Clarence and Grantley Harbor. Because the area of Grantley harbor to be surveyed was in less than 4 meters of water, an Ambar jet boat was used with a single beam sonar mounted aft on the port side. The second boat that went out was one of the small launches for use as a dive boat for NOAA trained divers (https://www.omao.noaa.gov/learn/diving-program). The goal of the dive boat was to dive on a particular location in Port Clarence that was giving a strange image that must have been coming from a man-made structure. The sonar showed a grid pattern roughly 100m x 60m with lines 7-8m apart on the long axis and 5-6m apart on the short axis. The team felt strongly that they needed to understand what was there in order to determine if it was safe for anchoring. I’ll follow up more on this later…

I went out with the team on the Ambar. As is the case with all the small launches, the Ambar is brought down from the boat deck to the breezeway deck for loading before the actual release.

Ambar at breezeway

Ambar jet boat at the breezeway deck, loading supplies. You can see parts of the davit where it was previously cradled on the boat deck above.

All gear, materials, food (long days out there!!) and people embark prior to the final drop to the water and the actual launch. This takes a team of a dozen or so people working in coordination. Prior to the start of launch, a safety officer is required on deck to oversee the process. This might be the CO (Commanding Officer), XO (Executive Officer) or Operations Officer. Most of the other personnel involved are a part of the deck crew, including the coxswain (who drives the small launches).  A davit operator handles the control of the boat via cable(s) all the way down. The bosun (boatswain) on the breezeway deck is directing commands to the operator using hand signals. Several hands are securing the craft with ropes against the side of the ship. All of these moves have to happen in perfect coordination for the safety of everyone and the protection of the Ambar and Fairweather. Personal protective equipment is worn by all parties throughout. This includes a flotation vest or jacket and a hard hat which you can see on those on the boat in the image to the left.

Five of the other six small launches on the Fairweather undergo a similar process. Each is housed in a davit cradle and each has one or more cables to control the craft during its descent toward the waterline. The davits all shift their cradling position while the cables lift to assist in the release of the craft. Once the craft is entirely free of the cradle, it is slowly lowered down the side of the vessel to the breezeway deck for loading as described above. One boat, though, has a really cool option. This is the FRB or Fast Rescue Boat. This craft can actually be launched by the driver, which is a requirement of any FRB.

Boat on fantail

Workboat on the fantail – note the three lines attached, two at the stern and one at the bow. These are handled expertly by the deck crew during launch to keep her true.

The final craft is a workboat which is housed on the fantail. It is not used for surveying, but will often be employed as passenger transport. It is also used for pick up and drop off of material that may be used on land, such as the HorCon station discussed in my previous post. This craft is not seated in a davit cradle and is instead launched through the use of a very large crane (see image below). The crane is attached to the launch at a center point connected with three lines.

Crane on Fairweather

Crane on the Fairweather boat deck centered between four small launch davits.

The craft is moved from the position on the fantail to either the port or starboard side level with the deck and lowered to the water before loading. For this reason, it is much more difficult to keep it completely horizontal and not hitting the deck and doing damage to the Fairweather.

So back to the Ambar and what we were actually doing in Grantley Harbor. Much of the harbor is quite shallow and when a team had been in there previously, they felt that there may be some irregularity to the otherwise uniform seafloor. They had been getting some interference and scattering on the side scan. They wanted to understand why and also to get a complete picture of the harbor seafloor. With the Ambar and the single beam sonar, there is little to no danger of doing damage in extreme shallows since the equipment is not on the underside of the boat and the Ambar itself can be beached as there are no propellers.

Single beam on Ambar

Single beam sonar in its mount on the stern of the Ambar. It is in the down position as it will be when launched tomorrow.

 

 

 

We took the boat into the shallows with the single beam sonar to take measurements along lines to as shallow as 2m. While surveying in the shallows, we found that there were sea grasses growing and according to the Operations Officer who was on board, that may have been the reason for the interference. Regardless, we continued to survey a regular pattern in order to have good data for future charts. During this time, I was given the opportunity to drive the Ambar… which showed me how much more difficult staying a straight line course is than the coxswains make it look.

 

 

Ambar driving lines

Yep. The outlined line is my line. I am reasonably proud that I actually manage to make it from one side to another. But even that was with a WHOLE lot of coaching!!

Upon return to the Fairweather, the Ambar is reattached to the cable and brought back up to the breezeway deck. Ropes are again used in coordination to keep the boat steady as it is lifted, much the reverse of what was described above. At that point all materials are unloaded and all the people disembark. The Ambar is then hoisted back up into the davit cradle.

When I’m back in an area with lots of bandwidth, I’ll create a video post to show just how cool the launches of small boats really is…


Personal Log

Shipboard life on a NOAA vessel is quite different from life on land. First, because the ship is a twenty four hour operation, people are needed at all hours. Many of the positions on NOAA vessels run on a 4 hours on, 8 hours off cycle. Some positions have recently shifted to 4 on, 4 off, 4 on, 12 off to afford greater lengths of time for sleep. When you are on the lower decks, it is also easy to lose track of time – and of course when you’re in Alaska during summer, it’s still light out at 10 o’clock. There are auroras to potentially be seen in the wee hours and multibeam surveying that happens through the night. There are always people up and about doing things – so the ship is a busy place at all times.

And with this in mind, I have to admit I have not been doing a great job getting to sleep. But I do sleep well on the ship, the rocking is the best cure for insomnia I’ve ever experienced. And I have been eating incredibly well – and I mean INCREDIBLY well. Mealtimes are the same each day, so that’s a great help. I will talk more about the food and the kitchen in a future post. Fortunately, with all that good eating, there’s a gym on board, so I’ve been able to work some of it off. There’s also laundry on board and a lounge with lots of movies. I like it. And waking up to the ocean and a lovely sunrise each morning makes the tiredness not really matter much.

Little and Big Diomede 2

Light early in the eastern sky – the sun comes up all around you this far north. It’s truly lovely.

 

As a part of NOAA’s mission, we had the opportunity to go ashore at a small town at Port Clarence called Brevig Mission. It is a town of almost 400, most of whom are native to Alaska. While ashore, we were able to spend time talking with the people, purchasing some of their handcrafts and fish, and even visiting the school. The people live simple lives. They still hunt walrus, seal and whale and those foods are the staple of their diet through the frozen winter months. I found it fascinating that they use all of the parts of the animals – the items that I purchased were from seal and walrus.

ornaments from Brev Mis

On the left is an ornament made of seal fur and on the right is a pendant of walrus tusk.

 

 

The CO (Commanding Officer) also arranged for ship tours for people from the town. The folks were taken in the Ambar out to the Fairweather in small groups and shown around. It was fun speaking afterward with those who went – there was a lot of excitement! I am so grateful that I had the opportunity to go to the town. They have a crazy history (see the “Did you know?” section below.)

Brev Mis Fam on ATV

Mom with her two little girls down near the water on their ATV. This is the most common form of transport around Brevig Mission.

 


Did You Know?

Cross commemorating Brev Mis 1918 flu victims

This cross memorializes all of the residents of Brevig Mission who died in the 1918 flu. It now lays on the ground aside the mass grave. All of the names and ages of the victims are listed.

Brevig Mission was hit hard by the 1918 Spanish Flu, perhaps in percentage mortality, the hardest hit place in the world. Of the 80 residents of Brevig Mission, 72 succumbed to the flu and died in a 5 day period. It was absolutely devastating. One of the current residents shared with me that reaching 400 is encouraging to the town and everyone there believes that the town is continuing to grow.

Mass grave Brev Mis 1918 flu victims

This is the location of the mass grave from the 72 flu victims of the 1918 Spanish Flu. It is a sobering place.

In 1997, the lungs of a well-preserved victim in the mass grave were shipped to a molecular pathology lab in Washington, D.C. and the flu virus was reconstructed. The evidence showed that it was a bird flu (similar to the avian flus which plague our world today) but incredibly virulent as it passed from birds to humans. You can read more about the findings here. (http://www.gi.alaska.edu/alaska-science-forum/villager-s-remains-lead-1918-flu-breakthrough)

Continue reading

Staci DeSchryver: Things We Deliberately Throw Overboard Part Deux: The Ocean Noise Sensor July 20, 2017

NOAA Teacher At Sea

Staci DeSchryver

Aboard Oscar Elton Sette

July 6 – Aug 2

Mission:  HICEAS Cetacean Study

Geographic Area:  Northwest Hawaiian Island Chain, Just past Mokumanamana (Necker Island)

Date:  July 20, 2017

Weather Data from the Bridge:

Science and Technology Log:

As promised in Blog Post #3, I mentioned that “Thing number four we deliberately throw overboard” would have a dedicated blog post because it was so involved.  Well, grab some popcorn, because the time has arrived!

Thing number 4 we deliberately throw over the side of a ship does not get thrown overboard very often, but when it does, it causes much hubbub and hullaballoo on the ship.  I had the unique opportunity to witness one of only ten ocean noise sensors that are deployed in US waters come aboard the ship and get redeployed.  These sensors are found all over US waters – from Alaska to the Atlantic.  One is located in the Catalina Marine Sanctuary, and still others are hanging out in the Gulf of Mexico, and we are going to be sailing right past one!  To see more about the Ocean Noise Sensors, visit the HICEAS website “other projects” tab, or just click here.  To see where the Ocean Noise Recorders are, click here.

The Ocean Noise Sensor system is a group of 10 microphones placed in the “SOFAR” channel all over US waters.  Once deployed, they collect data for two years in order to track the level of ocean noise over time.  It’s no secret that our oceans are getting louder.  Shipping routes, oil and gas exploration, and even natural sources of noise like earthquakes all contribute to the underwater noise that our cetacean friends must chatter through.  Imagine sitting at far ends of the table at a dinner party with a friend you have not caught up with in a while.  While other guests chat away, you and the friend must raise your voices slightly to remain in contact.  As the night progresses on, plates start clanging, glasses are clinking, servers are asking questions, and music is playing in the background.  The frustration of trying to communicate over the din is tolerable, but not insurmountable.  Now imagine the host turning on the Super Bowl at full volume for entertainment.  Now the noise in the room is incorrigible, and you and your friend have lost all hope of even hearing a simple greeting, let alone have a conversation.  In fact, you can hardly get anyone’s attention to get them to pass you the potatoes.  This is similar to the noise levels in our world’s ocean.  As time goes on, more noise is being added to the system.  This could potentially interfere with multiple species and their communications abilities.  Calling out to find a mate, forage for food, or simply find a group to associate with must now be done in the equivalent din of a ticker-tape parade, complete with bands, floats, and fire engines blaring their horns.  This is what the Ocean Noise Sensor is hoping to get a handle on.   By placing sensors in the ocean to passively collect ambient noise, we can answer two important questions:  How have the noise levels changed over time?  To what extent are these changes in noise levels impacting marine life?   

Many smaller isolated studies have been done on ocean noise levels in the past, but a few years ago, scientists from Cornell partnered with NOAA and the Pacific Islands Fisheries Science Center (PIFSC) and the Pacific Marine Environmental Lab to streamline this study in order to get a unified, global data source of ocean noise levels.  The Pacific Marine Environmental Lab built a unified sound recording system for all groups involved in the study, and undertook the deployments of the hydrophones.  They also took on the task of processing the data once it is recovered.  The HICEAS team is in a timely and geographical position to assist in recovery of the data box and redeploying the hydrophone.   This was how we spent the day.

The recovery and re-deployment of the buoy started just before dawn, and ended just before dinner.

 Our standard effort of marine mammal observation was put on hold so that we could recover and re-deploy the hydrophone.  It was an exciting day for a few reasons – one, it was definitely a novel way to spend the day.  There was much to do on the part of the crew, and much to watch on the part of those who didn’t have the know-how to assist.  (This was the category I fell in to.)

At dawn, an underwater acoustic command was sent to the depths to release a buoy held underwater attached to the hydrophone.  While the hydrophone is only 1000m below the surface seated nice and squarely in the SOFAR channel, the entire system is anchored to the ocean floor at a depth of 4000m.  Once the buoy was released, crew members stationed themselves around the ship on the Big Eyes and with binoculars to watch for the buoy to surface.  It took approximately 45 minutes before the buoy was spotted just off our port side.  The sighting award goes to CDR Stephanie Koes, our fearless CO.  A crewmember pointed out the advancement in our technologies in the following way:  “We can use GPS to find a buried hydrophone in the middle of the ocean…and then send a signal…down 4000m…to a buoy anchored to the ocean floor…cut the buoy loose remotely, and then actually have the buoy come up to the surface near enough to the ship where we can find it.”  Pretty impressive if you think about it.

The buoy was tied to the line that is attached to the hydrophone, so once the buoy surfaced, “all” we had to do was send a fast rescue boat out to retrieve it, bring the buoy and line back to the ship, bring the crew safely back aboard the ship, hook the line up through a pulley overhead and back to a deck wench, pull the line through, take off the hydrophone, pull the rest of the line up, unspool the line on the wench to re-set the line, re-spool the winch, and then reverse the whole process.

Watching the crew work on this process was impressive at least, and a fully orchestrated symphony at best.  There were many tyings of knots and transfers of lines, and all crew members worked like the well-seasoned deck crew that they are.  Chief Bos’n Chris Kaanaana is no stranger to hauling in and maintaining buoys, so his deck crew were well prepared to take on this monumental task.

Much of the day went exactly according to plan.  The buoy was safely retrieved, the hydrophone brought on board, the lines pulled in, re-spooled, and all sent back out again.  But I am here to tell you that 4000m of line to haul in and pay back out takes. A Long. Time.  We worked through a rainstorm spooling the line off the winch to reset it, through the glare of the tropical sun and the gentle and steadfast breeze of the trade winds.  By dinner time, all was back in place, the buoy safely submerged deep in the ocean waters, waiting to be released again in another two years to repeat the process all over again.  With any luck, the noise levels in the ocean will have improved.  Many commercial vessels have committed to adopting “quiet ship” technology to assist in the reduction of noise levels.  If this continues to improve, our cetacean friends just might be able to hear one another again at dinner.

 

Personal Log

So, I guess it’s pretty fair to say that once you’re a teacher, you’re always a teacher.  I could not fully escape my August to May duties onboard, despite my best efforts.  This week, I found myself on the bridge, doing a science experiment with the Wardroom (These are what all of the officers onboard as a group are called).   How is this even happening, you ask?  (Trust me, I asked myself the same thing when I was in the middle of it, running around to different “lab groups” just like in class.)  Our CO, CDR Koes, is committed to ensuring that her crew is always learning on the ship.

 If her staff do not know the answer to a question, she will guide them through the process of seeking out the correct answer so that all  officers learn as much as they can when it comes to being underway –  steering the ship, preparing for emergencies, and working with engineers, scientists, and crew.  For example, I found out that while I was off “small-boating” near Pilot Whales, the Wardroom was busy working on maneuvering the ship in practice of man overboard scenarios.  She is committed to ensuring that all of her staff knows all parts of this moving city, or at a minimum know how to find the answers to any questions they may have.  It’s become clear just how much the crew and the entire ship have a deep respect and admiration for CDR Koes.  I knew she was going to be great when we were at training and word got out that she would be the CO of this Leg on Sette and everyone had a range of positive emotions from elated to relieved to ecstatic.

As part of this training, she gives regular “quizzes” to her staff each day – many of them in good fun with questions for scientists, crew, engineers, and I.  Some questions are nautical “things” that the Wardroom should know or are nice to know (for example, knowing the locations of Material Safety Data Sheets or calculating dew point temperatures), some questions are about the scientific work done onboard, while others are questions about personal lives of onboard members.

docandbromineDES_4437.JPG

The Chief Medical Officer, “Doc” gives a lesson on water quality testing.

 It has been a lot of fun watching the Wardroom and Crew seek out others and ask them where they live while showing them their “whale dance” to encourage sightings.  It has exponentially increased the interactions between everyone onboard in a positive and productive way.

The other teaching element that CDR Koes has implemented is a daily lesson each day from Monday to Friday just after lunch.  All NOAA Officers meet on the bridge, while one officer takes the lead to teach a quick, fifteen minute lesson on any topic of their choosing.  It could be to refresh scientific knowledge, general ship operations, nautical concepts, or anything else that would be considered “good to know.”

chiefengineerDES_4589.JPG

The Chief Engineer gives a rundown on the various ship emergency alarms.

 This sharing of knowledge builds trust among the Wardroom because it honors each officer’s strong suits and reminds us that we all have something to contribute while onboard.

I started attending these lunchtime sessions and volunteered to take on a lesson.  So, this past Tuesday, I rounded up some supplies and did what I know best – we all participated in the Cloud in a Bottle Lesson!

sextantDES_4607.JPG

Here I am learning to use a sextant for navigation.

The Wardroom had fun (I think?) making bottle clouds, talking about the three conditions for cloud formation, and refreshing their memories on adiabatic heating and cooling.  It was a little nerve wracking for me as a teacher because two of the officers are meteorologists by trade, but I think I passed the bar.  (I hope I did!)

groupworkbottlesDES_4329.JPG

Teaching about adiabatic cooling with the the Cloud in a Bottle Demo with the Wardroom!

It was fun to slide back into the role of teacher, if only for a brief while, and served as a reminder that I’m on my way back to work in a few weeks!  Thanks to the Wardroom  for calling on me to dust up my teacher skills for the upcoming first weeks of school!

JoshandTimDES_4325.JPG

ENS Holland and ENS Frederick working hard making clouds.

 

 

 

 

 

 

 

 

 

crew with bottlesDES_4340.JPG

Facebook Asks, DeSchryver Answers

I polled all of my Facebook friends, fishing (ha ha, see what I did there?) for questions about the ship, and here are some of the questions and my answers!

 

Q:   LC asks, “What has been your most exciting moment on the ship?”

It’s hard to pick just one, so I’ll tell you the times I was held at a little tear:  a) Any sighting of a new species is a solid winner, especially the rare ones  b) The first time I heard Sperm Whales on the acoustic detector c) The first time we took the small boat out for UAS operations….annnndddd d) The first time I was on Independent Observation and we had a sighting!

DES_3739.JPG

A group of Melon-Headed Whales, or PEPs, cruise along with the ship.

Q:  JK asks, “What are your thoughts on the breakoff of Larsen C?  And have there been any effects from the Alaskan quake and tsunami?”

We’re actually pretty isolated on board!  Limited internet makes it hard to hear of all the current events.  I had only briefly heard about Larsen C, and just that it broke, not anything else.  I had no clue there was a quake and tsunami!  But!  I will tell a cool sort of related story.  On Ford Island, right where Sette is docked, the parking lot is holding three pretty banged up boats.  If you look closely, they all have Japanese markings on them.  Turns out they washed up on Oahu after the Japan Tsunami.  They tracked down the owners, and they came out to confirm those boats were theirs, but left them with NOAA as a donation.  So?  There’s tsunami debris on Oahu and I saw it.

 

Q:  NG asks, “Any aha moments when it comes to being on the ocean?  And anything to bring back to Earth Science class?”

So many aha moments, but one in particular that comes to mind is just how difficult it is to spot cetaceans and how talented the marine mammal observers are! They can quite literally spot animals from miles away!  There are a lot of measures put in place to help the marine mammal observers, but at the end of the day, there are some species that are just tougher than nails to spot, or to spot and keep an eye on since their behaviors are all so different.  And as far as anything to bring back to our class?  Tons.  I got a cool trick to make a range finder using a pencil.  I think we should use it!

 

Q:  MJB asks, “Have you had some peaceful moments to process and just take it all in?”

Yes.  At night between the sonobuoy launches, I get two miles of transit time out on the back deck to just absorb the day and be thankful for the opportunities.  The area of Hawai’i we are in right now is considered sacred ground, so it’s very powerful to just be here and be here.

DES_3109_resize.JPG

These sunsets will give Colorado sunsets a run for their money.  No green flash in Colorado = point awarded to Hawai’i.

 

Q:  SC asks, “What souvenir are you bringing me?”

Well, we saw a glass fishing float, and we tried to catch it for you, but it got away.

Q:  LC asks, “What’s the most disgusting ocean creature?”

Boy that’s a loaded question because I guarantee if I name a creature, someone out there studies it for a living.  But! I will tell you the most delicious ocean creature.  That would be Ono.  In sashimi form.  Also, there is a bird called a Great Frigate bird – it feeds via something called Klepto-parasitism, which is exactly how it sounds.  It basically finds other birds, harasses them until they give up whatever they just caught or in some cases until it pukes, and then it steals their food.  So, yeah.  I’d say that’s pretty gross.  But everyone’s gotta eat, right?

Q:  KI asks, “Have you eaten all that ginger?”

I’m about two weeks in and I’m pretty sure I’ve eaten about a pound. I’m still working on it!

Q:  HC asks, ”Have you seen or heard any species outside of their normal ocean territory?”

Sort of.  Yesterday we saw Orca!  They are tropical Orca, so they are found in this area, but they aren’t very common.  The scientific team was thinking we’d maybe see one or two out of the entire seven legs of the trip, and we saw some yesterday!  (I can’t say how many, and you’ll find out why in an upcoming post.)  We have also seen a little bird that wasn’t really technically out of his territory, but the poor fella sure was a little far from home.

Q:  JPK asks, “What kinds of data have you accumulated to use in a cross-curricular experience for math?”

We can do abundance estimates with a reasonably simplified equation.  It’s pretty neat how we can take everything that we see from this study, and use those numbers to extrapolate how many of each species is estimated to be “out there.”

Q: AP asks, “What has surprised you about this trip?”

Many, many things, but I’ll mention a couple fun ones.  The ship has an enormous movie collection – even of movies that aren’t out on DVD yet because they get them ahead of time!  Also? The food on the ship is amazing.  We’re halfway through the trip and the lettuce is still green.  I have to find out the chef’s secret!  And the desserts are to die for.  It’s a wonder I haven’t put on twenty pounds.  The crew does a lot of little things to celebrate and keep morale up, like birthday parties, and music at dinner, and shave ice once a week.  Lots of people take turns barbecuing and cooking traditional foods and desserts special to them from home and they share with everyone.  They are always in really high spirits and don’t let morale drop to begin with, so it’s always fun.

DES_4454.JPG

Celebrating Engineer Jerry’s Birthday.

Q:  TS asks, “What’s the most exciting thing you’ve done?”

I’ve done lots of exciting things, but the one thing that comes to mind is launching on the small boat to go take photos of the pilot whales.  Such a cool experience, and I hope we get good enough weather to do it again while we’re out here!  Everything about ship life is brand new to me, so I like to help out as much as I can.  Any time someone says, “Will you help with this?” I get excited, because I  know I’m about to learn something new and also lend a hand. 

 

Staci DeSchryver: When They Go Low, We Go High (Pilot Whales, that Is!): A view of Cetaceans using Drone Technology July 17, 2017

NOAA Teacher At Sea

Staci DeSchryver

Aboard: Oscar Elton Sette

Cruise Dates: July 6 – Aug 2

Mission:  HICEAS Cetacean Study

Geographic Area:  Northeast of Kauai, headed toward Northwestern Hawaiian Islands (NWHI)

Location:  24 deg 41.9 min N, 170 deg 51.2 min W

Date:  July 17, 2017

Weather Data from the Bridge:

Visibility:  10 Nmi

Scattered Clouds

Wind:  11 kts at 90 deg

Pressure: 1018.2mb

Wave height: 1-3 m

Swell at 50 deg, 2-3 ft

Air Temp: 29 degrees

Wet Bulb Temp: 25 degrees

Dewpoint: 28 degrees

 

Science Log

Technology definitely finds its way into every corner of life, and cetacean studies are certainly no exception.   One of the most recent additions to the Cetacean team’s repertoire of technology is a fleet of UAS, or unmanned aerial systems.  (UAS is a fancy term for a drone, in this case a hexacopter.  Yes, we are definitely using drones on this mission.  This seriously cannot get much cooler.)  HICEAS 2017 is utilizing these UAS systems to capture overhead photos of cetaceans in the water as they surface.  And the best part of all of this?  I was selected to be a part of team UAS!  

 

The UAS can only fly under certain atmospheric conditions.  It can’t be too windy and the seas can’t be too rough.  We had the chance to practice flying the hexacopters on one of the few days we were off the Kona coast of the Big Island, where the wind and seas are typically calmer.  Dr. Amanda Bradford is leading the HICEAS 2017 drone operations.  She is involved in securing air clearance that might be required for a hexacopter flight, as well as all of the operations that take place in preparation for deployment – of which there are many. The UAS is launched preferentially from a small boat, although it can be launched from the ship.  So, in order to do boat-based UAS operations, we must first launch a boat off of the side of the ship.  There are four people involved in the small boat UAS operations – the UAS pilot, the UAS ground station operator (Dr. Bradford and scientist Kym Yano alternate these positions), a coxswain to drive the small boat (NOAA crewmember Mills Dunlap) and a visual observer/data keeper (me!)  for each flight the hexacopter makes.

We all load up our gear and equipment onto the small boat, along with the coxswain and one team member, from the side of the ship.  The ship then lowers the boat to the water, the remaining teams members embark, and we are released to move toward the animals we are trying to photograph.  I don’t have any photographs of us loading on to the ship because the operation is technical and requires focus, so taking photos during that time isn’t the best idea.  I will say that the whole process is really exciting, and once I got the hang of getting on and off the ship, pretty seamless.

 

Our first trip out was just to practice the procedure of getting into the small boat, flying the UAS on some test flights, and returning back to the ship.  The goal was to eventually fly the hexacopter over a group of cetaceans and use the camera docked on the hexacopter to take photogrammetric measurements of the size and condition  of the animals.

Launching a hexacopter from a boat is quite different from launching one on land.  Imagine what would happen if the battery died before you brought it back to the boat!  This is why numerous ground tests and calibrations took place before ever bringing this equipment out over water.  The batteries on the hexacopter are good, but as a security measure, the hexacopter must be brought back well before the batteries die out, otherwise we have a hexacopter in the water, and probably a lot emails from higher ups to answer as a result.  Each time the hexacopter flies and returns back to the small boat, the battery is changed out as a precaution.  Each battery is noted and an initial voltage is taken on the battery before liftoff.  The flights we made lasted around10 minutes.  As soon as the battery voltage hits a certain low level, the pilot brings the hexacopter back toward the boat to be caught.  My job as the note taker was to watch the battery voltage as the hexacopter comes back to the small boat and record the lowest voltage to keep track of battery performance.

 

The UAS has two parts, one for each scientist – the pilot (who directs the hexacopter over the animals), and a ground station operator.  This person watches a computer-like screen from the boat that has two parts – a dashboard with information like altitude, time spent in flight, battery voltage, distance, and GPS coverage.  The bottom portion of the ground station shows a monitor that is linked to the camera on the hexacopter in real time.

The pilot has remote control of the hexacopter and the camera, and the ground station operator is responsible for telling the pilot when to snap a photo (only she can see from the monitor when the animals are in view), watching the battery voltage, and the hand launching and landing of the drone.  As the hexacopter is in flight, it is the coxswain’s and my responsibility to watch for obstacles like other boats, animals, or other obstructions that might interfere with the work or our safety.

 

To start a flight, the hexacopter is hooked up to a battery and the camera settings (things like shutter speed, ISO, and F-stop for the photographers out there) are selected. 

The ground station operator stands up while holding the hexacopter over her head.  The pilot then begins the takeoff procedures.  Once the drone is ready to fly, the ground station operator lets go of the drone and begins monitoring the ground station.  One important criterion that must be met is that the animals must never come within 75 overhead feet of the drone.  This is so that the drone doesn’t interfere with the animals or cause them to change their behavior.  Just imagine how difficult it is to find an animal in a camera frame being held by a drone and flown by someone else while looking on a monitor to take a photo from a minimum of 75 feet from sea level!  But Amanda and Kym accomplished this task multiple times during the course of our flights, and got some great snapshots to show for it.

 

On the first day of UAS testing, we took two trips out – one in the morning, and one in the afternoon.  On our morning trip, Kym and Amanda took 5 practice flights, launching and catching the hexacopter and changing between piloting and ground station monitoring.  In the afternoon, we were just getting ready to pack up and head back to the ship when out of the corner of my eye I saw a series of splashes at the ocean surface.  Team.  I had a sighting of spinner dolphins!   I barely stuttered out the words, “Oh my God, guys!  There are dolphin friends right over there!!!!”  (Side note:  this is probably not how you announce a sighting in a professional marine mammal observer scenario, but I was just too excited to spit anything else out.  I mean, they were Right. There.  And right when we needed some mammals to practice on, too!)  They were headed right past the boat, and we were in a prime position to capture some photos of them.  We launched the hexacopter and had our first trial run of aerial cetacean photography.  

OLYMPUS DIGITAL CAMERA

 

On the second day, we had a pilot whale sighting, and the call came over the radio to launch the small boat.  Things move really fast on a sighting when there is a small boat launch.  One minute I was up on the flying bridge trying to get some snapshots, and the next I was grabbing my camera and my hard hat and making a speedy break for the boat launch.  We spent a good portion of the morning working the pilot whale group, taking photos of the whales using the hexacopter system.  We were lucky in that these whales were very cooperative with us.  Many species of whales are not good candidates for hexacopter operations because they tend to be skittish and will move away from the noise of a small boat (or a large one for that matter).  These little fellas seemed to be willing participants, as if they knew what we were trying to accomplish would be good for them as a species.  They put on quite a show of logging (just hanging out at the surface), spyhopping, and swimming in tight subgroups for us to get some pretty incredible overhead photographs.  I also had the chance to take some great snapshots of dorsal fins up close, as well.

These side-long photos of dorsal fins help the scientific team to identify individuals.  There were times when the whales were less than twenty yards from the boat, not because we went to them, but because they were interested in us.  Or they were interested in swimming in our general direction because they were following a delicious fish, and I’d be happy with either, but I’d like to think they wanted to know what exactly we were up to.

OLYMPUS DIGITAL CAMERA

 

 

While photographing the whales a couple of interesting “other” things happened.  I had a brief reminder that I was definitely not at the top of the food chain when Mills pointed out the presence of two whitetip sharks skimming beneath the surface of the water.  Apparently these sharks know that pilot whales can find delicious fish and sort of hang out around pilot whale groups hoping to capitalize.  I wondered if this was maybe my spirit animal as I am following a group of scientists and capitalizing on their great adventures in the Pacific Ocean, as well.

Another “other” thing that happened was some impromptu outreach.  While working on the small boat, other boats approached the whales hoping to get some up close snapshots and hang out with them for a bit, as well.  Two were commercial operations that appeared to be taking tour groups either snorkeling or whale watching, and one was just a boat of vacationers out enjoying the day.  The scientific team took the opportunity to approach these boats, introduce us, and explain what we were doing over the whale groups.  They also took the opportunity to answer questions and mention the HICEAS 2017 mission to spread the word about our study.  It was a unique opportunity in that fieldwork, apart from internet connections, is done in relative isolation in this particular setting.  Real-time outreach is difficult to accomplish in a face-to-face environment.  In this case, the team made friendly contacts with approximately 45 people right out on the water.  Congenial smiles and waves were passed between the passengers on the boats and the scientific team, and I even saw a few cell phones taking pictures of us.  Imagine the potential impact of one school-aged child seeing us working with the whales on the small boats and thinking, “I want to do that for a career someday.”  What a cool thing to be a part of.

OLYMPUS DIGITAL CAMERA

 

 

Personal Log

Over the last couple of days, the ship was near the coast of the Big Island, Hawai’i.  One morning, we approached on the Hilo side, which is where Mauna Loa is spewing forth her new basaltic earth.  It treks down the side of the volcano, red-hot and caustic, only to be tempered immediately as soon as it strikes the anesthetic waters of the Pacific.  Having never seen real lava before, I was hoping to capitalize on the big eyes and catch a glimpse of it as it splashed into the ocean’s cool recesses, forming solid rock and real estate on the side of the mountain.  Unfortunately, I failed to account for the laws of thermodynamics – forgetting that hot things make water evaporate and re-condense into steam.  I suppose I was just romanticizing the idea that I could possibly see this phenomenon from an angle that not many get to see it from – miles out on the Pacific Ocean. And the truth is, I did, just not in the way I had imagined.   I did get to see large plumes of steam extending up from the shoreline as the lava met its inevitable demise.  While I didn’t get to see actual real lava, there was definitely hard evidence that it was there, hidden underneath the plumes of white-hot condensation.  I took a few photos that turned out horribly, so you’ll just have to take my word for it that I almost sort of saw lava.  (I know, I know.  Cool story, bro.)  If you can’t believe that fish tale, surely you won’t believe what I’m about to tell you next – I didn’t see the lava – but I heard it.

Starting in the wee hours of the morning, the acoustics team deployed the array only to find an unidentified noise – a loud, sharp, almost cracking or popping noise.  They tried to localize the noise only to find out that it was coming from the shores of the big island.  Sure enough, when they figured it out, the acoustics lab was a popular place to be wearing headphones.  The snapping and cracking they were hearing was the lava cooling and cracking just beneath the ocean surface on the lava bench.  So, I didn’t see the lava, but I heard it solidifying and contracting on the acoustics system.  How cool is that?

 

Ship Quiz:

Why do the head stalls (AKA bathroom stalls) lock on both sides of the door?

  1.       So that you can lock your friends in the bathroom as a mean prank
  2.      Extra protection from pirates
  3.       To give yourself one extra step to complete to get to the toilet when you really gotta go
  4.      To keep the doors from slamming with the natural movement of the ship

If you said “D”, you are correct!  The bathrooms lock on both sides because if left to their own devices, they would swing and bang open and shut with the constant motions of the ship.  So, when you use the bathroom, you have to lock it back when you finish.  Now you know!

 

 

Amy Orchard: Day 1, 2 and 3 – Cool Scientists, Multibeam, Setting Traps, Cetaceans, September 16, 2014

NOAA Teacher At Sea
Amy Orchard
Aboard NOAA Ship Nancy Foster
September 14 – 27, 2014

Mission: Fish Tagging
Geographical area of cruise: Riley’s Hump: Tortugas Ecological Reserve South
Date: September 14, 15, 16, 2014

Weather: September 16, 2014 20:00 hours
Latitude 24° 30’ 30’’N Longitude 83° 09’ 9’’W
Few clouds, clear.  Humidity 10%.
Wind speed 7 knots.
Air Temperature: 28° Celsius (83° Fahrenheit)
Sea Water Temperature: 30.4° Celsius (86.7°Fahrenheit)

SUNDAY:

Getting to Know the Nancy Foster

Scott Donahue, Science Coordinator for Florida Keys National Marine Sanctuary and Chief Scientist for this cruise, brought me aboard and gave me a tour of the Nancy Foster early in the day.  Also there was Tim Olsen, Chief Engineer, who I had met on the plane from Atlanta to Key West.  I was overwhelmed with the capacity of the ship.  It is huge and fully equipped for a wide variety of scientific endeavors, diving, mapping, surveying, launching large equipment etc.  I feel lucky to be a part of what is going on.

Click on these two photos for more information

Short Jaunt into Key West

After taking some time to see Key West, I headed back to the ship where I met Cammy Clark from the Miami Herald who will be with us for one week reporting on our experience. Cammy and I spent the night on the ship awaiting the science team to arrive early tomorrow morning.  The ship is in dock so I can’t yet be sure if I will suffer from sea sickness.  However, I hear that there is 100% survival rate if it does occur!

Click on these two photos for more information

MONDAY:

Meeting the Scientists

During the two weeks aboard, I will be working with 10 scientists from the Florida Fish and Wildlife Conservation Commission (FWC), 7 NOAA Florida Keys National Marine Sanctuary scientists and 2 ROV pilots from the University of North Carolina at Wilmington.  I am excited to be a part this interagency collaboration.  Seems like an efficient way to communicate and share experiences.

Guess which photo shows the scientists I will be working with…

Answer:  PHOTO ON THE RIGHT.  FWC scientists from left to right: Mike McCallister, Jeff Renchen,Danielle Morley, Ariel Tobin (in front), Ben Binder, Paul Barbera.  Not as reserved or stodgy as you might picture a group of scientists, but they are incredibly knowledgeable and dedicated to their work.  They are unbelievably cool people!  They have amazing stories to tell, are easy-going and love to have a good time.  I want to be like them when I grow up!

Preparing to Do Science

One of the many things we will do this week is tagging fish.  To do this, we will travel away from the ship on small boats to set fish traps.  Once the right fish are contained, the dive team will surgically insert an acoustic tag which will allow them to monitor the fish’s movements throughout different reaches of the sanctuary.  This information is important to see the effectiveness of protected areas vs. non-protected areas.

The divers perform this surgery underwater (usually at depths of 95-110 feet) in order to reduce stress on the fish and to avoid air bladder expansion.

Today the divers went out to practice their diving skills before the intense work begins.  I got to travel with them in the small boat.  Even though I am certified to SCUBA dive, only American Academy of Underwater Sciences divers and other divers with official reciprocity are allowed to dive off NOAA ships.  (reciprocity is the word of the day – look it up!)  The diving these scientists do is much more technical than the recreational diving I do in Mexico, but they enjoy it just as much.

Best note of the day:  No sea sickness!  (yet)

dive boat being lowered

The 4 small boats sit on the back deck of the ship and are lowered over the side with a large crane. Once the boat is on the water, we climb down a rope ladder (which is swinging ferociously in the waves!)

me on the small dive boat

The Nancy Foster has four small boats. Three for dive operations and one reserved as a rescue boat. It was exciting to have a different perspective and to see the Nancy Foster out at sea from the small boat. Photo by Linh Nugyen

TUESDAY:

Multibeam Sonar

Last night was the first night I slept on the ship while it was out to sea.  I had a really hard time sleeping as I would awaken every half hour feeling as if I were going to roll over and fall out of my top bunk!  This movement was due to the fact that science is being done aboard the Nancy Foster 24 hours a day.  During the night time, Nick Mitchell and Samantha Martin, the Survey Technicians, are running the Multibeam Sonar which determines ocean depth and creates a map of the sea floor contours.  Using 512  sonic beams, sound is emitted, bounces off the sea bed, then returns to the ship.

See these videos for more information:  http://www.nauticalcharts.noaa.gov/staff/education_animations.htm

The ship would travel out about 3 miles, then turn 180° to make the next pass.  Cruising at about 1 mile every 10 minutes (walking speed) we were turning about every 30 minutes, explaining my rockn’ night!

More on MSB in upcoming posts.

Click on these two photos for more information

Setting Fish Traps

I joined the divers on the small boat to set out the first two traps.  We used cooked and peeled shrimp as bait.  The traps were still empty late afternoon.  Let’s hope they take the shrimp so the tagging can begin!

modified chevron trap

Here sits the modified chevron trap Ben and I will be deploying from our small boat. Divers on a second small boat will follow us, dive down and be sure the trap sits on the ocean floor upright and will set the bait.

trap over board

I am making sure the rope which attaches the float buoys to the trap doesn’t get caught on the boat as the fish trap is deployed into the water. Photo by Nick Mitchell

Here Ben Binder & Survey Technician, Nick Mitchell, record the exact Latitude and Longitude where the trap was set.  Can you figure out the general GPS coordinates for the Tortuga South Ecological Reserve?

Here Ben Binder & Survey Technician, Nick Mitchell, record the exact Latitude and Longitude where the trap was set. Can you figure out the general GPS coordinates for the Tortuga South Ecological Reserve? Need help? Go to http://shiptracker.noaa.gov/

We are focusing on two species during this trip: the Black Grouper and the Cubera Snapper.  These two were selected because they are commercially and recreationally important species.  The FWC’s aim is to monitor the seasonal movement of these species to better understand how the fishes are utilizing the protected areas, as well as those outside of the reserve, so they can make the best management decisions.

I will attach photos of each species that will be taken from the Remotely Operated Vehicle (ROV) in my next blog since this one is getting long…

Challenge Your Understanding

Identify this animal.

I took this photo and video on day 1.  We have seen them each day since!

cetaceans jumping

Am I a porpoise, dolphin or vaquita?

The species in my photo/video is part of the Order Cetacea and the suborder Odontoceti (or toothed whales) which includes the porpoises , dolphins, vaquitas, narwhals and killer whales (to name only a few – there are 67 species in this suborder.)

Go to this website to help you find the correct answer

http://www.nmfs.noaa.gov/pr/species/mammals/cetaceans/

 

Bonus Points – make a COMMENT and share some information you have found about the VAQUITA.

Cool fact – all members of Odontoceti can echolocate.

Junior Docents – add that to your bat interpretations!

The question from my last post about the relationship between Tucson and the Sea of Cortez could be answered with all of the first four answers.  Glad NO ONE chose the last answer!  The sea is an integral part of our lives no matter how far we live from it.

Rita Salisbury: More on the Mission, April 23, 2013

CDTs record conductivity, depth,  and temperature

CDTs record conductivity, depth, and temperature

NOAA Teacher at Sea
Rita Salisbury
Aboard NOAA Ship Oscar Elton Sette
April 14–29, 2013

Mission: Hawaii Bottomfish Survey
Geographical Area of Cruise: Hawaiian Islands
Date:
Tuesday, April 23, 2013

Science and Technology Log

CDT being lowered over the starboard side

CDT being lowered over the starboard side

A few days ago we dropped the CDT, an apparatus that collects data on the conductivity, the depth, and the temperature of the sea water in which the acoustic survey is taking place. All of these three things impact how quickly sound travels underwater. The scientists collect the information and then use it to figure out an accurate rate of speed for the sound waves. Once they have that information, they can determine how far a target is from the ship.I was able to ride along in a small boat to Maui to pick up parts for the AUV. While in the Maui harbor, I had the opportunity to visit the Huki Pono, a small boat working on this survey that is using BotCams to survey the fish population. The palu, or bait, that I help make every day is frozen and then transferred to the fishing boats. It is frozen in a shape that fits into a cage on the BotCam located near the camera. As the bait breaks up, fish are attracted to it and come close enough to the BotCam to be visually recorded. There is a lot of video to go through so Dr. Kobayashi says they won’t have the data from the BotCams for a while.  But the other three fishing boats assigned to this project turn their survey information in every evening and I get to add it to a spreadsheet to help keep track of what section the boats were in and what they found while they were there.

BotCam on the deck of the Huki Pono

BotCam on the deck of the Huki Pono

Chris Demarke, Jamie Barlow, and Bo Alexander retrieving a BotCam aboard the Huki Pono with Maui in the background
Work continues with the ROV and AUV. The scientists are always working on them, trying to make them run as smoothly as possible. We worked on calibrating the acoustics again this morning for the same reason. The better the information you have when you start a project, the better chance you have of having a successful outcome.

As I mentioned before though, not everything we are doing is high tech. We fish off the side of the ship in the evenings, dropping our lines all the way to the bottom so they are on the sea floor. The scientists running the acoustics tell us if they see fish and then we do our best to catch a representative sample.  Here are two of the fish I caught off the bottom: an opakapaka and a taape. The observers that ride in the small boats every day spend the night on the Sette. That way, they can turn their logs in and I can record the data. As a bonus, a few of them are expert fishermen and are a huge help to us as we fish from the ship.

Opakapaka and ta'ape

Opakapaka and ta’ape

Personal Log
I’m really enjoying my time on the Sette. In addition to learning new things that I can apply in my classroom, I’m making new friends. Everyone is exceptionally friendly and they go out of their way to explain things to me. Most of them call me “Teach” or “Taz” and almost all of them have sailed with a Teacher at Sea before.

Did You Know?
You can tell the age of a fish by their otoliths? The picture has the otoliths from an opakapaka, an ehu, and a hogo. Otoliths are a fish’s “ear bones” and they have growth lines in them much like a tree has growth rings.

Otoliths

Otoliths

Additional Section

Why are these bottom-dwelling fish red?

Red fish?

Red fish?

Sena Norton, July 9, 2004

NOAA Teacher at Sea
Sena Norton
Onboard NOAA Ship Rainier

July 6 – 15, 2004

Mission: Hydrographic Survey
Geographical Area:
Eastern Aleutian Islands, Alaska
Date:
July 9, 2004

Location: In transit to Shumagin Island collection, due to anchor at NW Egg Island Date: Friday, July 09, 2004
Latitude: N 55 degrees 26.60’
Longitude: W 159 degrees 33.97’
Visibility: <1 mile
Direction: 221 degrees
Wind Speed: 13 kts
Sea wave height: 0-1 ft
Swell wave height: 1-2 ft
Seawater temperature: 10.6 deg C
Sea level pressure: 1016.0 mb
Cloud Cover: 8/8
Weather: 11.7 deg C, fog cover most of the day, some clearing into high cloud cover.

Plan of Day:

1200 stop ship hydro and begin transit to Shumagin Is, specifically Egg Island for anchorage. Anchor set for 2100 or earlier.

Science and Technology Log

The local patch that was being surveyed is too large to finish in one pass. The RAINIER had already done a few lines during their previous legs and on this pass we got about 10- 12 lines surveyed. They will steam back by here to finish the patch at a later date. Tomorrow is set for the first of 5 days of small boat launches and survey. Because I will be aboard a launch I was run through some basic boat safety this afternoon. I was also given an engine room tour and simple explanation and spoke with some crewmembers about standing watch. The XO showed me some books that might be of interest for my curriculum planning and also my general knowledge.

Small Boat Safety and Etiquette

The launches are put in the water around 0800 and will stay out doing survey work till 1600 or so. There will be a complement of people aboard: the coxswain who drives the boat and in charge of safety, three officers from the ship who will run the program and collect data and myself. The launches are stored on the gravity davits along the ship. The boats will be lowered to deck level where the crew will get on board and then the boat is lowered to the water and unhooked. Getting on board the launch you must wear the Mustang survival coat and a hard hat. Nothing is to be in your hands while you board, so all other material need to be near the rail and will be handed over once you are onboard. One of the most dangerous times on the ship are launching and taking up the smaller boats. You are required to wear positive flotation at all times and since the Mustang jacket is bulky and warm, I was issued a float vest. We are launching number 5 and number 3 boats tomorrow.

Standing Watch

While underway there is a rotating watch schedule 4 on, 8 off, 4 on is its most simple explanation. An example watch schedule would be 0800 – 1200 on watch 1200 – 2000 off, 2000 – 2400 on again. So you work 8-12 on both sides of am and pm. Even though the routine is easy to remember it is very difficult on your body and your sleep schedule. The added hardship is the constant light this far north and the pitch black of your berth. For a visitor who has kept a normal sleeping routine you have a different perspective on just what is required for this ship to keep going 24 hours a day. There is a lot more upkeep then I expected and the watch standers are those people. While anchored most people go back to a normal 8 hour work shift, although some of those work shifts are at night there isn’t the constant change.

Engine Room Tour

The engine room tour was loud, even through earplugs and head phone like muffs that roar is amazing. You hear it throughout the ship but nothing compares to the pure sound when you are right next to it. The control room looks out over the two main engines. Each engine turns the port or starboard screw. Control over the engines can be given to the bridge but ultimately if the engineers need to control anything that comes from that area they are all powerful. There is fuel to keep moving to balance out the ships list, fresh water to make, generators to watch so as not to over load any of their out-puts. In a sense the engine room is the heart of the ship. Being self contained completely means that everything has to be running well. This ship even in port generates its own power and while out at sea is capable of making fresh water from salt water. I felt very much at home seeing as I have been in many engine rooms in my life with my father, I plan on going down there a few more times during my time on board.

Question of Day:

How long would it take to survey the entire patch? 8 days going 24 hours/day.

Personal Log

I did a lot of research today from the resources made available to me from the XO. Today was also a day I collaborated with my fellow TAS, something educators rarely get enough time to do. We bounced off a few adaptations of what we have already learned from our time on board. I hope to continue this process throughout my time onboard. No more seasick patch, I think that I am doing well and can handle the rolls. There is some crazy weather on the way too! If it chooses to run up into the Bering Strait we are okay but according to the XO, if the low pressure rides on the south side of the Aleutians it might get sketchy. The RAINIER would have to find a place to hole up and wait for the storm to pass because she is such a small, top-heavy ship. So I might just get a wild Alaskan ship ride after all.