Eric Koser: A Walk Through Ship Rainier, July 7, 2018

 

NOAA Teacher at Sea

Eric Koser

Aboard NOAA Ship Rainier

June 22 – July 9, 2018


Mission:
Lisianski Strait Survey

Geographic Area: Southeast Alaska

Date: July 7, 2018: 1400 HRS

Weather Data From the Bridge
Lat: 49°11.7′          Long: 123°38.4′
Skies: Broken
Wind: 16kn at 120°
Visibility: 10+ miles
Seas:  2ft
Water temp: 15.5°C
Air Temp: 17.6°C Dry Bulb, 15.6°C Wet Bulb

Science and Technology Log

NOAA celebrated the 50th anniversary of the 1968 launch of Ship Rainier and Ship Fairweather this past spring.  These two vessels together have provided 100 years of hydrographc service.  Its amazing to consider this vessel has been cutting through the waves for 50 years!

It took a few days for me to get familiar with the layout of Ship Rainier.  Let me take you on a video tour of several sections of the ship and welcome you aboard.

First some orientation.  The decks are identified with letters – where A represents the lowest level and G is the highest level.  “A deck” is actually a collection of tanks and bilge areas…the work of the engineering team mostly takes place on B deck in the engine room.  The ship also uses numbers to address areas of the ship – starting with 01 at the bow and 12 at the stern.  This way, any location on the ship can be identified by an address.

So lets get started on a tour…

Often, work days start with a meeting on the Fantail of this ship. This is on the D deck – the deck with most of the common spaces on board.

Fantail

This is a diagram of the fantail.

Fantail Safety Briefing

A typical morning safety briefing before a busy day of launches.

We’ll start our walk at the base of the stairs on the starboard side of the front of the fantail.  You’ll see the green coated bollards on several decks.  These are used for tying off the ship when in port.  The large yellow tank is gasoline for the outboard motors.  It is setup to be able to jettison over the side in a fire emergency.

Next, we’ll walk in the weather tight door amidships (center) of the front of the fantail. As we walk forward, notice the scullery (dishwashing area) on the left side followed by the galley (kitchen). To the right is the crew mess (eating area). Continuing ahead, we’ll walk through the DC ready room (Damage Control) and into the wardroom (officers eating area) and lounge.

Next, we’ll start in the Ward room and proceed up the stairs to the E deck. Here we’ll walk by several officers quarters on either side of the hall. Then we’ll turn and see a hallway that goes across the E deck and is home to FOO’s (Field Operations) and XO’s (Executive Officer’s) offices.   Then we’ll step out onto the deck and walk towards the deck on the bow (the front of the ship).

Starting once again at the fantail, now we’ll proceed up the steps to the E deck.  This is the level where the davits are mounted (small cranes) that support the launches (small boats).  After passing the base of the davits, we stop into the boat shop.  This is where engineering maintains the engines of all of the launches on board Rainier.   Next we walk up to the F level and turn towards the stern to see the launches from alongside.  Notice, also, the large black crane in the center of the deck that is used for moving additional equipment and launches.  Finally, we’ll walk all the way up the port side to the fly bridge on the G level.  Here you’ll see “Big Eyes”, my favorite tool on the ship for spotting things in the distance.  As I turn around you’ll see the masts and antennas atop this ship for communications and navigation.  The grey post with the glass circle on it is the magnetic compass –  which can actually also be viewed from the bridge below with a tube that looks up from the helm position.  You might also notice this where the kayaks are stored – great for an afternoon excursion while at anchor!

Here is a quick look in the plot room that is also located on the F deck just aft of the bridge.  This is one of two places where the hydrograph scientists work to collect and process the data collected with the MBES systems.

In the front of the ship on the F deck is the bridge.  This is the control center for the ship and the location of the helm.  There is more detail on the bridge in an earlier post.  The sound you hear is a printer running a copy of the latest weather updates.

Finally, visit my C-03 stateroom.  My room has two bunks and plenty of storage for two people’s gear.  There are four staterooms in this cluster that share two heads (bathrooms).  The orange boxes on the wall are EEBDs (Emergency Escape Breathing Devices).  These are located throughout the ship and provide a few minutes of air to allow escape in the event of fire.  Notice at the top of the steps were back to the hallway and steps just outside of the lounge on D level.

The entire engineering department is not included in these videos and exists mostly on the B level.  Please see my second blog post for more detail on engineering systems and several photos!

Personal Log

Sunday, July 8, 1000 hrs.
We’re coming around the northwestern most point of Washington State this morning and then turning south for the Oregon Coast.  The ship is rolling a bit in the ocean swells.  I’ve come to be very used to this motion.  Last night we had a chance to go ashore in Friday Harbor, in the San Juan Islands for a few hours.  I was surprised just how ‘wobbly’ my legs felt being back on solid ground for a while.  My ship mates tell me this is how it is the first few times back ashore after being at sea!

This has been a great experience – one of plenty of learning and a real appreciation for the work accomplished by this team.  I look forward to drawing in all I can in the last day on the ocean.

Who is On Board?

Mike Alfidi

This is our cox’n Mike Alfidi at the helm of Launch RA-3.

This is augmenter Mike Alfidi.  Mike has been a cox’n (boat driver) here on Rainier for about two years now, and has quite a bit of past experience in the Navy.  Mike is a part of the deck department.  His primary duties here are driving small boats and handling equipment on the decks.  As an “augmenter,” he makes himself available to NOAA to be placed as directed on ships needing his skills.

One of the things Mike loves about his work is getting to see beautiful places like Southeast Alaska.  And, he appreciates updating charts in high traffic areas like the harbor at Pelican.  He loves to be a part of history – transitioning survey data from the old lead line to the much more accurate MBES.  One of the toughest parts, he says, is riding our rough seas and plotting in less trafficked areas.  He did a great job of piloting our launch just as the hydro scientists needed to collect the data we were after!

 

 

Tom Jenkins: A Day in the Life of a Teacher at Sea, April 15, 2018

NOAA Teacher at Sea
Tom Jenkins
Aboard NOAA Ship Henry B. Bigelow
April 10 – 27, 2018

Mission: Spring Bottom Trawl Survey
Geographic Area: Northeastern U.S. Coast
Date: April 15, 2018

Personal Log

Stairwell

A ladder well on Henry B. Bigelow

The ladder wells.  On the Henry B. Bigelow these sets of steps will take you everywhere that you need to go throughout the day.  Life on a ship is interesting in the fact you don’t ever leave while on your mission.  This is where you sleep, where you eat, where you work and where you hang out with your friends.

One of the most frequently received questions from my students back home is about life on the ship.  Since the past couple of days have been relatively slow in terms of fishing (due to inclement weather), I have decided to highlight the areas of the ship where I spend the most of my time.

My room (likely about the size of your own room at home) happens to be a quad which means I share my room with 3 other people.  In addition to two bunk beds, we have a work area (w/a small TV) and a compact bathroom.  While it is definitely a bit cramped, the 4 of us are split between the 2 shifts (My shift is 12am-12pm.).   The end result is that there are no more than 2 people in the room at any time, so it ends up working out quite well.  Notice the handle in the shower.  This comes in handy when you are trying to clean up and not wipe out as sometimes the ship can move around quite a bit!  You may also notice the emergency billet  on the door.  This tells each member of the crew where to go and also what to do during emergency situations.

 

The food on the ship has been amazing.  As students in my classroom will attest, I swore I was going to go on a diet during this cruise .  While that would be possible, given there are always tons of healthy options, it’s not everyday when there is a BBQ spare rib option for lunch!  Additionally, when you are working off and on over the course of your 12 hour shift, eating food is sometimes a good way to pass the time.  While I don’t think I have gained weight, I definitely do not think I will lose weight over the final 12 days of the cruise.

 

The labs where the scientists work are obviously where we spend a large part of our day (or my case, night).  The picture to the left is where many of the fish are cataloged and processed.  The photo in the top right are where some of the specimens are preserved for later examination in not only NOAA facilities, but also other other research facilities around the world.  The area in the bottom is a planning/observation space where the science team goes to gather, plan and share information related to their research mission.

 

Finally, there is the lounge and fitness area.  The lounge is really nice with large recliners which are a wonderful way to relax after a long shift.  There is Direct TV which is nice for both sports and news and the ship also has an impressive collection of movies for the crew to enjoy.  The fitness area in the bottom right is my favorite space on the ship.  While neither expansive nor pretty, it is a great place to go to burn off steam.  There is a TV and enough equipment to break a sweat.  Although I must admit, its extremely challenging to use an elliptical during a storm with rough seas.  Especially with low ceilings! 🙂

 

Thank you for taking the time to read my blog.  As always, if you have any questions and/or comments, please feel free to post them below.

Steven Frantz: Language at Sea, August 1, 2012

NOAA Teacher at Sea
Steven Frantz
Onboard NOAA Ship Oregon II
July 27 – August 8, 2012

Mission: Longline Shark Tagging Survey
Geographic area of cruise: Gulf of Mexico and Atlantic off the coast of Florida
Date: August 1, 2012

Weather Data From the Bridge:
Air Temperature (degrees C): 28.9
Wind Speed (knots): 13.94
Wind Direction (degree): 224º
Relative Humidity (percent): 082
Barometric Pressure (millibars): 1012.18
Water Depth (meters): 67.08
Water Temperature (degrees C): 28.5
Salinity (PSU): 35.649

Location:
Latitude: 3135.76N
Longitude: 07931.19W

Language at Sea

The language while at sea is English, however, there are many nautical terms you may not be familiar with. In today’s blog I will look into just some of the language typically used exclusively while on board not only the Oregon II, but also all ships in general. Along with the lesson on vocabulary, I will also be taking you on a visual tour of the Oregon II.

First let’s start with a little quiz. You’re on your own. This is NOT for a grade!!

  1. Bridge                                                _____Right
  2. Port                                                    _____Restroom
  3. Starboard                                          _____Stairs
  4. Bow                                                    _____Front of Ship
  5. Stern                                                  _____Floor
  6. Head                                                  _____Left
  7. Deck                                                   _____Bedroom
  8. Berthing                                            _____Mop
  9. Rain Closet                                      _____Rear of Ship
  10. Mess                                                  _____Control Room
  11. Ladder                                               _____Shower
  12. 1829                                                   _____Hallway
  13. Passageway                                     _____Restaurant
  14. Swab                                                  _____Time

How do you think you did? Follow along on a guided tour of the Oregon II to find out!

Here I am steering the Oregon II preparing to deploy the high-flier for another longline survey. The Bridge is where the captain conrols the ship. And yes, today is Luau Day!

Here I am steering the Oregon II preparing to deploy the high-flier for another longline survey. The Bridge is where the captain conrols the ship. And yes, today is Luau Day!

View from the Bridge looking over the bow.

View from the Bridge overlooking the bow.

Port, Starboard, Stern, Bow image courtesy of Google Images

As you can see, Port is left (red light), Starboard is right (green light), Bow is the front of the ship, and Stern is the rear of the ship. Image courtesy of Google Images.

The Head is the Bathroom!

The Head is the Bathroom!

The Deck refers to each Floor of the ship.

The Deck refers to each Floor of the ship.

Your Berthing is where you sleep. Bunk beds, three drawers, cabinet, one personal grooming shelf, shared sink and desk. On the Oregon II this is called your Stateroom.

Your Berthing is where you sleep. Bunk beds, three drawers, cabinet, one personal grooming shelf, shared sink and desk. On the Oregon II this is called your Stateroom.

Water Closet is where we shower.

Rain Closet is where we shower.

Galley=Food Eating Area! Walter and Paul are the best. Furthermore, "Steward" is the term for chef.

Mess Deck=Food Eating Area! Walter and Paul are the best. Furthermore, “Steward” is the term for chef.

The Ladder is the Stairs that take you from deck to deck.

The Ladder is the Stairs that take you from deck to deck.

The current time is 1829 (6:29 p.m.). We use a 24-hour clock. One p.m. is 1300, two p.m. is 1400, etc.

The current time is 1829 (6:29 p.m.). We use a 24-hour clock. One p.m. is 1300, two p.m. is 1400, etc.

Passageways are the Hallways.

Passageways are the Hallways.

Maybe you've heard the expression, "Swab the Deck?" It just means "Mop the Floor."

Maybe you’ve heard the expression, “Swab the Deck?” It just means “Mop the Floor.”

How did you do on the quiz? I thought I would share a few more interesting aspects about life on a ship.

All doors and drawers are latched. You just can't have door and drawers swing back and forth as the ship rocks on the waves.

All doors and drawers are latched. You just can’t have door and drawers swing back and forth as the ship rocks on the waves.

We must do our own laundry. There are four types of water. Of course fresh water and salt water you've heard of before. On the ship we also have brown water, which is water from laundry and sinks. We also have black water, which is the water from the head. You do remember what the head is don't you?

We must do our own laundry. There are four types of water on a ship. Of course fresh water and salt water you’ve heard of before. On the ship we also have brown water, which is water from laundry and sinks. We also have black water, which is the water from the head. You do remember what the head is don’t you?

People are trained to be on the ship's Fire Department. We have fire drills on the Oregon II.

People are trained to be on the ship’s Fire Response Team. We have fire drills on the Oregon II.

There is a gym for working out.

There is a gym for working out.

The Wet Lab wasn't used much for the Longline Shark Survey.

The Wet Lab isn’t used much (mainly for staging equipment) for the Longline Shark Survey.

The bulk of our work was done in the Dry Lab.

The bulk of recording our research was done in the Dry Lab.

There you have it. A vocabulary tour of the Oregon II. Rest assured, we have been catching sharks.  Stay tuned. There WILL BE sharks in my next blog!

Cathrine Fox: Issue Eleven: In the belly of the beast

NOAA TEACHER AT SEA
CATHRINE PRENOT FOX
ONBOARD NOAA SHIP OSCAR DYSON
JULY 24 – AUGUST 14, 2011


Mission: Walleye Pollock Survey
Location: Kodiak, Alaska
Date: August 11, 2011

Weather Data from the Bridge
Latitude: 56 49.50° N, Longitude: 154 30.12° W
Air Temperature: 14.3° C
Water temperature: 9.2° C
Wind Speed/Direction:8.25kn/338.45
Barometric Pressure: 1017.59
Scattered clouds (10%) and sun

Science and Technology Log:
I have read a lot about travel during the “age of sail,” and the Gloucester, Massachusetts fishing boom years. Believe you me, it wasn’t all swashbuckling pirates, romantic whale captures and sea shanties. Now though? Life at sea, on the surface, has all of the amenities and trappings of life at home: shower, a place to sleep, delicious food, work and friends. Easy, especially if you are, I should add, a Teacher at Sea. Beneath the surface though… it gets complicated. How is it possible to turn on a faucet and get fresh water when you are surrounded by brine? Where is the food stored before it arrives on your plate? Where does the electricity come from when you flip a switch? (I assure you, our boat is not Pollock powered, nor do we drag an extra long extension cord…)

Before I go into the picture journey of the ship and her inner workings, let me tell you about routine matters. In fact, I want to share with you my daily routine on the Oscar Dyson, and then, afterward, take you into the Belly of the Beast. Go ahead. Click on Issue 11.

I want to especially thank the Chief Marine Engineer, Jeff Hokkanen, for a stellar hour and a half tour of the inner workings of the ship. He probably didn’t realize that his job was red carpet material, but after about 100 photo opportunities from Staci, Megan Stachura (a graduate student from the University of Washington) and me, I think we have convinced him…

Adventures in a Blue World, Issue 11

Adventures in a Blue World, Issue 11

I promise, I did not touch anything.  Generator control panel.

I promise, I did not touch anything. Generator control panel.

I was most curious about how the Oscar Dyson dealt with issues that I don’t think much about at home: power, water and waste. How is it possible to produce enough electricity for me to turn on lights, be charging my computer and driving along at 11 knots? Where does the water come from, when we are surrounded by the sea? Where does it all go, when, you know, we ‘go?’

There was no touching, we swear.  Staci and Megan.

There was no touching, we swear. Staci and Megan.

Power: We have four diesel engines on board. They are enormous Caterpillars that were built into the ship. The engines power generators that then run electric motors… all controlled by a computerized generator control panel. On average, we use 2,500-3,000 gallons of marine diesel fuel every day we are out to sea. Additionally, every 1,000 miles the 150 gallons of oil in the engines needs to be changed. I know you are adding up the prices in your head. It is pretty amazing how much good science costs, isn’t it? Here is how I see it: manage the single largest Alaskan fishery (some argue in the world) to ensure that it is healthy and here for generations in the future, or let Walleye Pollock go the way of the Atlantic Cod on the Grand Banks? Once I do the math, it all seems worth it.

Thumbs up for vacuum distillation water systems!

Thumbs up for vacuum distillation water systems!

Each human being on this boat uses about 50 gallons of water a day. The water is produced by drawing on seawater, running it through a vacuum and boiling it. Water in the vacuum boils at a lower temperature, saving energy. After distillation, the water is treated with a UV light (similar to how a backpacking steri pen works) and bromine. Seawater used to be in many ships’ toilets; if it contained phosphorescent bacteria, when you flushed, your effluent would fluoresce. (Oddly poetic for what I just described, no?)

Grey and black water treatment (not stinky).

Grey and black water treatment (not stinky).

Finally, what happens to ‘it’ all? The ship has two kinds of waste, grey water (from drains) and black water (sewage). According to international regulations, you cannot dispose of waste within three miles of shore. Most ships, once they have crossed that boundary? Heave ho. The Oscar Dyson treats it’s grey and black water in a septic system, chlorinates it, and then disposes of it, once we have crossed that 3 mile zone. When tested, it would classify as being safe to drink… …any takers? Food scraps are ground up and thrown overboard (outside the 3 miles), paper trash is incinerated, and aluminum recycled.

All in all, I think it is pretty fascinating how this ship supplies thirty people with their basic needs for weeks on end. I’ll leave you with a few bonus photos from our tour, and some fish cameos from our trawls. A heads up if you are about to scroll through my photos: I will describe the trawl operation in more detail in the future, but the general purpose of our trawls is to take the ages, weights, lengths, sexes and stomachs of individual fish we catch. Three of these operations (sexing, aging and taking the stomachs) are fatal to the fish…a hard reality to swallow when I have made the Walleye Pollock a beloved mascot. I choose to deal with this reality by taking inane photos with the fish. To sum up: photos of fish ahead. I make lots of faces.

Walleye Pollock trawl.  I discover that I have drawn them correctly.

Walleye Pollock trawl. I discover that I have drawn them correctly.

Teachers at Sea: Staci and Cat

Teachers at Sea: Staci and Cat

Capelin fish smell like cucumbers.  Really.

Capelin fish smell like cucumbers. Really.

Capelin.  Abigail and Cat.

Capelin. Abigail and Cat.

Salmonberries.  Abigail and Cat.

Salmonberries. Abigail and Cat.

Anne Marie Wotkyns, July 12, 2010

NOAA Teacher at Sea
Anne Marie Wotkyns
Onboard NOAA Ship Pisces
July 7 – 13, 2010

NOAA Teacher at Sea: Anne Marie Wotkyns
NOAA Ship Pisces
Mission: Reef Fish Survey
Geographic Area: Gulf of Mexico
Date: Monday, July 12, 2010
Latitude: 28⁰33.5532 N
Longitude: 089⁰44.8634 W

Weather Data from the Bridge

Air Temperature: 30.6⁰C
Water Temperature: 30.54⁰C
Wind: 9 knots
Other Weather Features:
Humidity: 69 %
Cloud cover 15%
Swell height: .5 meter
Wave height: .3meter
Science and Technology Log

The Pisces is the newest ship in NOAA’s fleet and she utilizes some of the newest technology available. On Sunday, Liz and I were given a tour of the engine rooms and much of Decks 2 and 3 (below the main deck) where the propulsion, cooling, plumbing, winches, and other mechanical and engineering systems are located. The Pisces has an integrated diesel electric drive system with two propulsion motors that generate 1,500 horsepower each.

Propulsion Motor

Propulsion Motor

There are 4 generators on board, two 16 cylinder and two 14 cylinder, which power the motors and the “hotel load” as Chief Engineer Garret Urban calls the systems that keep us comfortable on the ship -electrical, cooling, etc…A really cool thing about the Pisces is that it was designed to be quieter than many other vessels, especially important for a fisheries research ship because noise can influence how ocean animals behave and can limit what the scientists are able to study. The International Council for Exploration of the Seas (ICES) established standards to improve the noise onboard research vessels and the Pisces was designed to meet those standards.

Generators

Generators

Motors

Motors

Throughout the engineering room there are giant electrical boards and computers that are constantly kept cool by the ship’s strong air conditioning system. An interesting aspect of the air conditioning system is that ship’s interior rooms are kept cool using cold water running through a closed system of pipes. The water is cooled using a Freon system located in the engine room. The labs and common rooms were kept so cool that we wore long sleeves most of the time indoors, but then took them off when going outside. On the days we did the fish survey activities, this meant pulling a sweatshirt on and off over 20 times a day!

Electrical Board

Electrical Board

The technology that keeps the Pieces running smoothly is amazing!

When we entered the lowest deck of the ship we were given earplugs for protection from the engine noise. The earplugs were dispensed from a machine that looked like a candy machine! Garret showed us that if the bridge ever lost power that there is a secondary way to steer. The crew steers using a hydraulic steering system rather than the electrical one on the bridge. The crew uses a hand telephone to communicate with the bridge during any power outages (or drills).

One very important piece of the engineering deck is the freshwater system. The ship pulls in sea water and uses heat from the engines to make freshwater through distillation. The sea water is heated and the steam and water vapor is contained and collected as fresh water. There are two distillers on board and they can make 1,850 gallons a day. When we were down there we witnessed Junior Engineer Steve repairing the blown diaphragm that had interfered with the water system. When we are in the area that NOAA has labeled as a 95% uncertainty zone regarding the presence of oil, the ship does not take in water as it could be contaminated and damage the system. This is why on the first two days and the last two of the cruise we were asked to conserve water.

The saltwater-freshwater conversion system

Chief Engineer Garrett with the rudder angle indicator system – this showed the angle of degrees of the rudder which determines the direction the ship sails.

Today while we were working in the dry lab, a “Steering Drill” was announced. The simulation was that the bridge had lost control of the ship’s steering so she would need to be steered using the secondary system in the engine room. The captain then announced that the “teachers” should head down so we could steer! Thanks to our earlier tour, Liz and I knew just where to go. And because we had already steered the ship from the bridge, now we understood how the secondary system operated. Instead of a steering wheel, there are two joysticks with rubber buttons at the top that you push down to change the angle of the rudder. Each button steers the ship either left or right. However, the left hand button steered to the right and the right hand button steered to the left – got that?

Steering the ship using the secondary system.


The rudder angle indicator and course heading display

Monday was our last day at sea and since the Pisces was heading back towards Mississippi everyone was busy with computer work and clean –up duties. Scientist Kevin generously made us a DVD of camera pictures, resources, and information we will take back to our classrooms. We cleaned up the lab, packed our bags, took pictures, exchanged emails, and hurried to finish our last log entries. The crew spent time checking over the ship, inside and out, looking for any problems that needed to be addresses or equipment that needed maintenance or repair. Because a ship is constantly exposed to corrosive sea air and salt water, cleaning, painting, and repairs are always ongoing.

Tomorrow, the recordings from the camera drops and the red snappers we caught (now in the lab freezer) will be offloaded and taken to the NOAA labs for further analysis.

Personal Log

I find it very interesting how doing scientific research at sea seems so different than doing research on land. On land, many researchers work steadily in a lab, 8 hours a day. Out here, the last 3 days were 13+ hour “work days,” with the main work only occurring every 45 min or so when the camera array was deployed or retrieved, and the 4 different times during the day when the chevron fish trap or bandit reel fishing line were “dropped” or brought back in. The timing was crucial because the research protocols regarding “soak time” (time in the water) needed to be followed to the minute to ensure collected data was accurate. So we alternated short bursts of slightly hectic work with longer periods of computer work, reading fish identification books, taking walks around the outer decks, checking on the Ron and Scott, the bird observers working up on the topmost deck, and eating. Let me tell you about the food…

Kevin calls living onboard being “lovingly incarcerated” because you are stuck here, but you are well taken care of. The Chief Steward, Jessie Stiggins, prides himself in keeping everyone well fed. Every morning he posted the meal menus in the mess, and we were always curious to see what he had planned for us. We learned from C.O. Adams that food on the ship is very important and is actually a part of the crew’s union contract. For example, in the contract it states that, “lunch and dinner must include a prepared dessert. Plain cake shall not constitute a prepared dessert, but a cake with icing shall,” and “Liver and onions can only be served once a month. Turkey must be served once a week.” We have had dessert every lunch and dinner, and last night’s turkey, mashed potatoes, gravy, and yams were delicious! Some of the desserts have been coconut crème pie, French silk pie, white cake with fluffy whipped cream frosting and strawberries, cookies, and pecan pie to name a few. Plus there is a freezer full of ice cream, great for late night snack. Liz is in seafood heaven-there has been halibut, calamari, catfish, the amberjack Deckhand Ryan caught the other night, and even lobster! Me, the non-seafood eater, has enjoyed stuffed chicken breasts, filet mignon, a taco bar, and pulled pork. And even out here, in the middle of the ocean, we’ve had been raspberries, blueberries, watermelon, cherries and a great salad bar! Jessie is saving the menus for us so we can show them off when we get back. And I’m already planning on visiting the gym daily as soon as I’m back home!

Pascy wants a bite of Liz’s amberjack with orange sauce and almonds – the same fish he saw Ryan catch the other night!

Chief Steward Jessie serves his lobster tails.

Pascy toured the engine room with us and this is what he saw.

Lot and lots of computers help keep the Pisces running smoothly!

The teachers got to wear these soft foam earplug that came out of a cool dispenser that looked like a candy machine.

Pascy liked “chilling” on the cold water pipes of the air conditioning system!

I cannot begin to express my thanks and appreciation to the wonderful officers, the science team and the crew of the Pisces, as well as the Teacher At Sea staff who made this trip possible. Going to sea is a magical experience and I hope I can convey this to my students, as well as use my new science knowledge to revise and invigorate my science curriculum. I can’t wait to share more about this experience with my family, friends, colleagues, and students. I think teachers must be lifelong learners if they want to be effective educators, and Teacher at Sea is a wonderful way to improve science teaching through hands-on research experiences.

Crew of the Pisces

Crew of the Pisces

Scientists on my cruise

Scientists on my cruise

THANK YOU EVERYONE!!!
The science team – special thanks to Chief Scientist Kevin Rademacher and Field Party Watch Leader Joey Salisbury.

Oil Rigs

Oil Rigs

Sunset

Sunset

Everyone should be so lucky to experience sunset out on the open water!

Captain Jerry says the “Teachers can stay till we get tired of them” – We’d LOVE to stay longer!!

Pascy reluctantly packed his bags and said goodbye too! His next adventure? Travel with Anne Marie on the Swedish icebreaker Oden from Chile to Antarctica in December and January – stay tuned for his next adventures! Maybe he’ll get to see his long-lost cousins!

Elizabeth Warren, July 11-12, 2010

NOAA Teacher At Sea: Elizabeth Warren
Aboard NOAA Ship Pisces

Mission: Reef Fish Surveys
Geographical Area of Cruise: Gulf of Mexico
Date: July 11-12,  2010

Winding down

NOAA SHIP: Pisces
Mission: Reef Fish Survey
Geographical area of cruise: Gulf of Mexico
Date: Sunday, July 11th- Monday July 12th, 2010

Weather Data from the Bridge:
Temperature: Water: 30.4 ℃ (which is 86.9℉ ) Air: 30.5 ℃
Wind: 1 knots
Swell: .2 meters
Location: 27. 51° N, 93.04° W
Weather: Sunny, Humidity 67%, 35% cloud cover

Science/Technology Log:
On Sunday, Anne-Marie and I were given a tour of the Engineering spaces. The Pisces has an integrated diesel electric drive system. There are two propulsion motors on the shaft that generate 1,500 horsepower each that are electric. Chief Engineer Garret explained that it is similar to a little remote control toy boat, except of course that the Pisces is much bigger. The Pisces is 208.6 feet long, 50 feet wide (breadth), and the Captain standing in the bridge is 37 feet above the water.

Propulsion Motor

Propulsion Motor

There are 4 generators on board, two 16 cylinder and two 14 cylinder that runs what the Chief Engineer called the “hotel load”, keeping the lights on. Another really cool thing about the Pisces is that it was designed to be a quiet vessel because underwater noise can influence how fish behave and can limit what the scientists are able to on board, not to mention that a noisy ship is harder to sleep on. The International Council for Exploration of the Seas (ICES) established standards to improve the noise onboard research vessels and the Pisces was designed to meet those standards.

Electrical Board

Electrical Board

Throughout the engineering room there are giant electrical boards that are constantly kept cool by the air conditioning that is constantly running on the ship. The interesting thing about the air conditioning is that the engineering deck and the labs are kept cool using regular air conditioning methods but the staterooms and other decks are kept cool using cold water! This is also the method used to keep the two propulsion motors cool as well!

Cold Water Air Conditioning

Cold Water Air Conditioning

When we entered into the belly of the ship we were given earplugs because it gets loud and really hot down in the very bottom. Garret showed us that if the bridge ever lost power that there is a secondary way to steer. The crew steers using a hydraulic steering system rather than the electrical one on the bridge. The crew uses a sound powered telephone to communicate with the bridge during any power outages (or drills).

Garret showing the hydraulic steering system

Garret showing the hydraulic steering system

One very important piece of the engineering deck is the Freshwater system. The ship pulls in sea water and uses heat from the engine to make freshwater through distillation. They heat the sea water and catch the evaporation which is fresh water. There are two distillers on board and they can make 1,850 gallons a day.

When we were down there we witnessed Junior Engineer Steve repairing the blown diaphragm that had interfered with the system. When we are in the area that NOAA has labeled as a 95% uncertainty trajectory regarding the presence of oil, we do not take in water as it could be contaminated and damage the system. This is why the first two days and the last two of the cruise we were asked to conserve water.

Steve, Junior Engineer

Steve, Junior Engineer

Personal Log:

Latte = happy

Latte = happy

The tour was very exciting! We began in the galley where Garret made Anne Marie and I lattes. They were beautiful! When we went into the loud part of the deck we put on ear plugs from the ear plug dispensing unit, which I had to take a picture of. Once again I was impressed with how patient the crew can be with us, although I do think we are a source of amusement for many of them.

Going down to the bowels of the ship

Going down to the bowels of the ship

When the tour ended Captain Jerry took us to the very bowels of the ship and showed us the transducer well, this is the part of the ship that keeps the water out and keeps us from sinking.

Transducer

Transducer

Sunday was the last day of this leg of the survey. I did the banana song today in hopes that we would find something in the fish traps, unfortunately it did not work! As the day went on I was able to help more and more. I helped throw in the chevron fish trap, baited the bandit reel, pulled the rope to let the camera array drop. On the last bandit reel though we finally got some action! We were all pretty excited even Watch-leader Joey!

When the reel came up we discovered that we had caught a barracuda on the line! He was huge! We (okay so it was Joey) rushed through all of the measuring so we could throw him back in quickly! We still had a chance to get some pictures of him though. There is a limited amount of time to get all of the camera arrays into the water during a day and we were getting pretty close to running out of time so Captain Jerry and Kevin decided to do a camera array on the “fly”. We had to be ready! As we approached the site we got the camera over the side and as soon as the signal was given we dropped it.

Flexing on the deck

Flexing on the deck

Barracuda

Barracuda

As I said before we have a lot of down time in between drops. I broke out my I-pod touch and we played a bunch of games. For awhile we played Would you rather? My favorite question was: Would you rather be saved by superman or meet Winnie the Pooh? Can you guess which one I picked? Then I introduced Joey to Madlibs. I couldn’t believe he had never played. Finally, Joey and I started a battle with the Bubble Wrap game. The idea is to pop as many of the bubbles as you can within 45 seconds. It got very heated! Right now the record is 254 and I’m sad to say that Joey is the record holder. I still have some time though… it could happen.

Jerry playing a game on my ipod touch

Jerry playing a game on my ipod touch

Playing games on ipod touch

Playing games on ipod touch

It’s a good thing Anne Marie and I had gotten a tour on Sunday because today, Monday, there was a Steering drill. We knew exactly what was going on. The Captain announced the drill and then at the end said the Teachers At Sea should head down so we could drive. The experience is completely different. You are down in the depths of the ship and there is a crew member using headphones to talk to the bridge. Instead of a steering wheel, there are two things with bubbles at the top that you push down to change the angle of the rudder. Each of the bubbles steers the ship either left or right. I have to say we did a fantastic job, especially with all of the help!

Me on the bridge

Me on the bridge

NOAA Corps Officers on the Bridge

NOAA Corps Officers on the Bridge

Something to think about: For me this has been an adventure, but a lot of the people that I’ve met do this all year round. They live and work on ships 264 days a year. When they get off of work at the end of the day, they can’t really go anywhere. A lot of the time they share a room for three weeks with someone they’ve never met before. There are movies, satellite tv, internet, places to work out, and time to fish. Imagine being “lovingly incarcerated” as a class, all 32 of us on a ship for weeks on end? That would be an interesting change. What I have noticed is that everyone seems to love what they do and most have traveled all over the world with various nautical employments (Navy, Exxon, NOAA).

Otoliths

Otoliths

As an outsider, on board for a short amount of time I’m still counting my time here as a once in a lifetime, educational adventure! Although, I wouldn’t mind staying.

Me on the deck

Me on the deck

Yesterday, I left out some rubber ducks for the crew to sign for me! Here they are with Anne Marie’s friend Pascy!

Rubber Ducks

Rubber Ducks

Jennifer Fry, July 19, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 19, 2009

The XBT (Expendable Bathythermograph)

The XBT (Expendable Bathythermograph)

Weather Data from the Bridge 
Wind speed: 42 knots
Wind direction: 350°from the north
Visibility: clear
Temperature: 11.4°C (dry bulb); 10.4°C (wet bulb)

Science and Technology Log 

The seas are still very rough with 40 knot winds. No fishing trawls due to the high waves and heavy seas. However, despite the rough seas, we were able to conduct an XBT, which stands for Expendable Bathythermograph.  An XBT is a measuring apparatus consisting of a large lead weight connected to a very thin copper wire. The function of the XBT is to measure the temperature throughout the water column.  It is launched off the stern (back) of the ship. As it sinks to the sea floor, temperature data is transmitted to an onboard computer.

Biologist Chris Grandin prepares to launch an XBT

Biologist Chris Grandin prepares to launch an XBT

Personal Log 

The Miller Freeman is an NOAA research vessel.   Here’s a bit of information about the Miller Freeman…For more information go here. The Miller Freeman is a 215foot fisheries and oceanographic research vessel and is one of the largest research trawlers in the United States. Its primary mission is to provide a working platform for the study of the ocean’s living resources. The ship is named for Miller Freeman (1875-1955), a publisher who was actively involved in the international management of fish harvests. The ship was launched in 1967, but not fully rigged until 1975. The vessel was again re-rigged in 1982. Its home port is Seattle, Washington.  It is capable of operating in any waters of the world. The ship has 7 NOAA Corps officers, 27 crew members, and maximum of 11 scientists.

Following is a “tour” of the ship.  It has many nice amenities for extended life at sea.

The Laundry Room - Here’s where we do our laundry. The laundry room is located in the bow/front of the ship which bounces up and down a lot, so you can feel pretty sea sick if you’re up there too long.

The Laundry Room – Here’s where we do our laundry. The laundry room is located in the bow/front of the ship which bounces up and down a lot, so you can feel pretty sea sick at times.

The Kitchen - Our 3 amazing cooks, Bill, Larry, and Adam, work hard preparing 3 meals a day for over 30 people. They have quite a difficult and detailed job.

The Kitchen – Our 3 amazing cooks, Bill, Larry, and Adam, work hard preparing 3 meals a day for over 30 people. They have quite a difficult and detailed job.

The Galley - This is where we enjoy deliciously prepared meals.

The Galley – This is where we enjoy deliciously prepared meals.

The Library - Pictured here is the ship’s library where crew members can read and check e-mail.

The Library – Pictured here is the ship’s library where crew members can read and check e-mail.

The Lounge - Here’s the lounge where movies and video games can be watched.

The Lounge – Here’s the lounge where movies and video games can be watched.

The Gym - The gym is located on the lowest level of the ship.  This is where you can work off the great food that you’ve eaten.

The Gym – The gym is located on the lowest level of the ship. This is where you can work off the great food that you’ve eaten.

The Gift of Patience 
Wending our way through the North Pacific Ocean,
The massive waves crash against our hull with Herculean strength
As high as a one story building, their tops are dolloped with luscious whipped cream
They take their turn crashing against the ships sturdy hull, as gale force winds whip wildly past.
We play a waiting game. We practice the ancient art of patience.
When will we have hake, the silvery, slender fish that evades our sonar?

As the winds blow, cold sea spray stings my face.
I watch as the never ending line of waves wait their turn to hit the ship’s hull.
The waves wait patiently as do we.
The sea teaches us serenity.
We must not show greed or impatience.
The sea will provide.
One should lay empty and open waiting for the gifts from the sea.

~Inspired by Anne Morrow Lindberg’s Gifts from the Sea

NOAA Ship Miller Freeman

NOAA Ship Miller Freeman