Helen Haskell: Life on a Ship, June 7, 2017

NOAA Teacher at Sea

Helen Haskell

Aboard NOAA Ship Fairweather

June 5 – 22, 2017

Mission: Hydrographic Survey

Geographic Area of Cruise: Southeast Alaska – West of Prince of Wales Island 

Date: June 7, 2017

Weather Data from the Bridge:

Latitude: 55 04.473 N

Longitude: 133 03.291 W

Wind: 9 knots from the east

Air temperature: 17C

Visibility: 10 miles

Barometer: 1004.2 hPa

Science and Technology Log

The mission of the Fairweather is to conduct hydrographic surveys for nautical charting. The Fairweather does this work in the waters off the United States Pacific coast, but principally in Alaskan coastal waters. The data is collected using sonar both by the Fairweather but also using a series of smaller boats that are launched as often as possible, each with a small crew of 3-4 people. These smaller boats are able to conduct the surveys much closer to the shoreline, and spend about 8-9 hours each day surveying a specific region. Many of the waters up here have had no recent data collected, and mariners are relying on charts that may have measurements taken in the 1800’s or 1900’s when technology was very different.

IMG_0282
NOAA Ship Fairweather

During the field season, Fairweather spends about 210 days at sea. During the rest of the year, the Fairweather stays at her homeport, allowing the crew to work on maintenance issues, take leave, work on the data and outfit the boat for the following season. During the field season, the boat conducts different legs of the research, spending 12-20 days out at sea at a time before returning to a port to re-supply. There are six departments on the ship: Command, Deck, Electronics, Engineering, Steward and Survey. Each person on the ship is hired with specific duties and responsibilities.

As a government vessel, the Fairweather is also available for use during the time of war or in case of an emergency. In the event of something along these lines, the ship and the officers would be transferred to the Armed Forces of the United States.

The Fairweather is named after the tallest peak in the Fairweather range in Alaska. The ship served in Alaskan waters for over 20 years but was decommissioned in 1988. In 2004, due to increasing demand for modern surveys in Alaska, it was retrofitted and put back in to the research fleet. Previously staterooms housed up to 4 people, but after the retrofit a maximum of two people share a room. The boat can house 58 people in 24 single staterooms and 17 double staterooms. The boat itself is 231 feet in length and 42 feet wide. Its cruising speed is 13 knots, with a survey speed of 6-10 knots.   The Fairweather has 7 levels, A-G, each containing many rooms and areas essential to the mission of this ship. Wires and pipes run throughout the ship with sensors monitoring equipments, sensors ready to trigger if needed. Lower levels of the ship contain tanks, ballast and engines. Diesel, drinking water and grey water are stored in the tanks. The next three levels contain staterooms, lots of machinery and storage, the Mess, the Galley, laundry, labs, the sick bay and one deck with small boat storage. The last two levels contain the ships Navigation Bridge, the data processing center, electronics office, and lots more equipment.

Personal Log

A few days in to my journey with the ship, things are starting to make more sense. While there are still doors I haven’t opened and rooms I am sure I have not been to, I feel that I am getting a better sense of the Fairweather and how it works, the roles that people play, and a slightly better understanding of what it means for home to be a ship.

There is a lot going on. Unlike many of the fisheries boats, where science staff works on a shift system, here on the Fairweather, much of the hydro data acquisition needs to be done on the small vessels during daylight. After the 8am meeting, boats are launched and the survey crew leave for the day. Meanwhile the rest of the scientists and survey crew works with the previously acquired data. Shift systems are in operation for most of the rest of the staff. There are always engineering projects and issues to sort out on a boat of this size, and engineers are always available and always problem solving. There are always NOAA Corps officers and deck crew on the bridge to monitor the ship and coordinate communication. From early in the morning there is always food to prepare, parts of the ship to be cleaned and decisions to be made, reviewed and modified. Somewhere around 4:30pm the survey boats return. Meal times and group meetings are places where most of the crew comes together to hear about how the day has gone and what is needed for the next day. After dinner, there is still work to be done. The day’s data needs to be processed in order for the plans for the next day to solidify. Small boats are checked after their day in the water, re-fueled and parts fixed if need be. After working hours the ship is patrolled hourly to make sure equipment is working and things are safe.

 

In between all these jobs, the crew does have down time. Those on a shift system hopefully manage to get some decent sleep, even if it is daytime. Laundry gets done. Personal emails are sent to communicate with families. Movies are watched in the lounge/conference room. Showers happen. People visit the exercise room. The ships store opens up for a while each night, allowing crew to splurge on a bag of chips or a candy bar. So, it’s a busy place. Whether it’s visible or not, there are always things going on.

 

In some very simple ways it is no different to your home or mine. There is food, shelter and water. In most other respects, it is very far removed from living on land. Most people don’t have breakfast, lunch and dinner with their work colleagues. Here we do. Most people don’t have bedrooms without windows in them. Here we do. Most people don’t have the floor swaying beneath their feet due to wave action. Here we do. And for what it’s worth, most people don’t get to look over the deck and watch curious sea otters swim by, knowing that a whale may breach any minute. Here we do.

 

 

Fact of the day:

NOAA has nine key focus areas: Weather, Climate, Fisheries, Research, Satellites, Oceans and Coasts, Marine and Aviation, Charting and Sanctuaries. NOAA employs 12,000 people worldwide, of which 6,773 are scientists and engineers studying our planet. NOAA’s roots began over 200 years ago with the establishment of the U.S. Coast and Geodetic Survey by President Thomas Jefferson. In 1870 the Weather Bureau was formed closely followed by the U.S. Commission of Fish and Fisheries. In 1970 these three organizations became the beginning of NOAA. For more information: http://www.noaa.gov/about-our-agency

Word of the day: Knot

Knot, in nautical terms is a unit of speed.  One knot is the equivalent of going one nautical mile per hour.

What is this?

What do you think this is a picture of? (The answer will be in the next blog installment).

IMG_0269

(Previous answer: The picture is of a light and whistle that are attached to my PFD (personal flotation device).

 Acronym of the Day

MPIC: Medical Person In Charge

 

Richard Jones & Art Bangert, January 20, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Mission: Oceanographic Survey
Geographical Area: Hawaiian Islands
Date: January 20, 2010

Science Log

Steaming and dreaming, that was the order of the day. We had the opportunity to spend a little more time on the bridge today. Here you can see three of the Ensign’s standing watch. While on the bridge we learn about how the radar works.
Learning about radar on the bridge
Learning about radar on the bridge
Most people in Montana are familiar with the concept of radar since that is the basic method used to measure our speed.What do you think is similar about the radar on the ship? What is different?
Radar screen
Radar screen
We also took a look at the ship’s wheel.Like most people we envisioned the wheel to be like one you would see in an old movie or perhaps like those on the tall ships of old. The wheel of the KA is smaller than the average steering wheel, but it gets the job done.
Steering the ship
Steering the ship
 We participated in several meetings to prepare us for our stay in Samoa.One presentation, made by Joe our Electronics Technician was focused on customs and taboos that we need to be aware of as guests and representatives of the US government. Joe has a unique and useful understanding of Samoa since his wife is from Western Samoa and he has lived here so he knows what we can and can’t do.
Laundry at sea
Laundry at sea
We also decided we better do laundry today! The washers and dryers will be secured tonight for our arrival in Samoa tomorrow morning. While the crew visits the island, the engineers will need to purge the sewage system of gray water – water from cooking, showers, toilets etc. The ship will also take on water from the port at Apia, Samoa were we are docking. The ship has great laundry facilities and also very nice exercise equipment. Even though we are seeing the pacific, we still have to take of our chores!
Joe, the electronics technician
Joe, the electronics technician
Land tomorrow! Until then happy sailing and calm seas.

Ruth Meadows, July 9, 2009

NOAA Teacher at Sea
Ruth S. Meadows
Onboard NOAA Ship Henry B. Bigelow 
June 12 – July 18, 2009 

Mission: Census of Marine Life (MAR-Eco)
Geographical Area: Mid- Atlantic Ridge; Charlie- Gibbs Fracture Zone
Date: July 9, 2009

Venda, Shannon and Amy cleaning the baskets.
Venda, Shannon and Amy cleaning the baskets.

Weather Data from the Bridge 
Temperature: 14.2o C
Humidity: 61%
Wind: 6.5 kts

Scientific and Technology Log 

One of the last things to be completed before arriving in Newport, Rhode Island is a final clean up of the lab. Once all the sampling is finished it is important to leave all the equipment used in good shape for the next cruise. Everyone from both watches worked together to get everything clean. The baskets and trays that were used to hold the samples were scrubbed down and rinsed off. Luckily, the day was beautiful for working outside.

Shannon and I help Tom clean his suit.
Shannon and I help Tom clean his suit.

While some of us cleaned the baskets, others rinsed them off and then placed them in the sun to dry.  Once they were dry, then they were returned to the correct location for storage. Once the baskets were cleaned the next step was to clean our foul weather gear.  These overalls and jackets had been used while collecting samples and they had all types of “dirt” on them, from “fish guts” to grease from the cables.  The easiest way to clean them was to scrub them while you had them on.  Someone would help make sure the back was clean and then someone would spray them with clean water.  It was simple, effective and fun all at the same time.

The serving line.
The serving line.

Personal Log 

Mealtime is a very important time aboard the ship.  Not only do we eat a variety of foods, but it is also a time when both the scientific crew and the working crew get a chance to talk and visit with each other.  The galley is a large open room with tables bolted to the floor to keep them from moving.  Some tables are for four people and others are for eight.  Each day the menu is posted before the food line and you may select what you want and how much.  There are usually two entrées (main dishes) and several side dishes to go along with them.  In addition, there is a fruit and salad bar that you can select. At the end of the cruise, you notice that some of the menu that some of the menu items have changed – we are out of lettuce and ketchup. We have been at sea for four weeks and some things just can’t be kept fresh that long. We still have apples, oranges, nectarines and ice cream!

The mess hall
The mess hall 

John Schneider, July 5, 2009

NOAA Teacher at Sea
John Schneider
Onboard NOAA Ship Fairweather 
July 7 – August 8, 2009 

Mission: Hydrographic Survey
Geographical Area: Kodiak, AK to Dutch Harbor, AK
Date: July 5, 2009

Position 
USCG Pier – Kodiak, AK

Personal Log 

Slept in some for a little fly-time recovery.  Once I got up (about 0900) I went up to the mess and had a cup of coffee and worked on yesterday’s log.  While doing so I met several members of the crew, most of who were up to doing something on an off day.  Hikes, chiropractor visits, shopping, etc. were all on the agenda. The engineers, however, were working down below in the engine room in preparation for our departure scheduled for the morning of the 7th.

When in port in Kodiak, the Fairweather has access to a van and a couple of vehicles for ship’s work and transportation to and from the town of Kodiak.  The “liberty van” runs every hour on the hour into Kodiak and back on the half hour.  Being new to the ship (and Alaska) I thought it would be a cool, scenic idea to walk into town.  A couple miles later, I changed my mind and resorted to something I hadn’t done in 30 years – hitchhiking (turns out it’s about 6••• miles!).  I got picked up by a local guy who moved to Kodiak 20+ years ago.  He took me all the way in to the commercial fishing docks and I walked the remaining quarter mile.  On Shelikof Road I went to Kodiak Marine Supply and bought a couple of charts for the areas we will be surveying.  I will use these to plot our positions whenever I get them from the bridge.

My cabin door.
My cabin door.

Once in town I had a great lunch with two of the crew – Ron and Mark – at a place called Henry’s. The crew members seem to migrate there for the food, although they all prefer eating on board the Fairweather. My ship is blessed to have 3 chefs in the steward’s department.  Two are graduates of the Culinary Institute and the third is out of Johnson and Wales!  I can’t wait to get under way!  On my second trip into town (this time by the liberty van,) Tami, a member of the survey team, told me she had rented a car on the island and was real glad to have done so.  I figured that was good advice and rented a small car for a day.  By the time I had gotten back to the Fairweather I had put on over 100 miles just driving around one side of the island.  Tomorrow I’ll put on some more miles and return the car in the late afternoon.  I went by Kodiak High School and Middle School and hope to stop into their board/district offices just to see what’s overtly similar and dissimilar to home. I’m all unpacked and settled in.  It’s 2330 hrs so I’ll have a glass of water and turn in.

Hanging locker and fold-away desktop.
Hanging locker and fold-away desktop.

I’m on C-Deck (the 3rd deck up from the bottom of the ship.) To the right in the picture is my hanging locker, then the top shelf folds into a desktop (on which I am writing now) and below it are 3 drawers for clothes.  The door to the left is the head and shower which I share with 1 other crew member.   In the photo, you can see the TV and dish network box to the left.  Below the bed are 2 more drawers.  Even though the space may appear small, I could easily move in here and have all the comforts of home.  Below that are a couple more shelves and an open space where my PFD (personal flotation device/life jacket) and immersion suit are stored.  At the upper left is a 10-minute air supply kit to be used in event of fire.  These kits are located all over the ship.

Kristin Joivell, June 23, 2009

NOAA Teacher at Sea
Kristin Joivell
Onboard NOAA Ship Fairweather
June 15 – July 1, 2009 

Mission: Hydrographic Survey
Geographical area of cruise: Shumagin Islands, Alaska
Date: June 23, 2009

The mess hall is a place where people tend to gather.
The mess hall is a place where people tend to gather.

Weather Data from the Bridge  
Position: Northwest Harbor
Clouds: overcast
Visibility: 10 miles
Wind: 10 knots
Waves: less than 1 foot
Temperature: 8.5 dry bulb
Temperature: 7.2 wet bulb
Barometer: 1008.0

Science and Technology Log 

Disposing of all the trash made by people from eating, working, and other day to day tasks was something I was wondering about.  So, I asked crew members on the deck department how all this waste was disposed of. They showed me the incinerator.  The incinerator is the main device for dealing with waste management at sea, but if the amount of trash builds up too much, it is dealt with when the ship arrives back in port.

Here, I’m readying cardboard to be placed in the ship’s incinerator.  As you can see in the bottom right corner, trash tends to build up rather quickly. This picture was taken in the morning and the line up of trash to be incinerated was already building.
Here, I’m readying cardboard to be placed in the ship’s incinerator. As you can see in the bottom right corner, trash tends to build up rather quickly. This picture was taken in the morning and the line up of trash to be incinerated was already building.

The incinerator burns waste at very high temperatures of 850 degrees Celsius to 1150 degrees Celsius. If you’re not familiar with the Celsius scale (like me), you won’t realize that that equals 1562 degrees Fahrenheit to 2102 degrees Fahrenheit! The high temperatures are created using diesel as fuel with air vents helping to ventilate the fire as it burns.  The ash that is left when the waste is done burning takes up much less volume than the waste did and it is disposed of when the ship arrives back in port. There is a central location on deck near the incinerator for trash collection. Personal trash from state rooms can be placed there in bags for disposal.  The trash from the kitchen, deck, bridge, and survey departments are also place there. Workers from the deck department burn the trash in the incinerator periodically throughout the day. If the ship didn’t have an incinerator, the trash on board would build up very high and very quickly!  Each day since I came on board, there is a pile of waste to be incinerated. From cardboard boxes, to printer paper and food waste, to used rags from cleaning, most materials are disposed of in the incinerator.

The ship also has a collection area for recycling. There are collection bins for glass, metal, aerosol cans, and batteries in a central location near the mess hall. However, plastics are incinerated.  The temperatures in the incinerator are so high it seems that the plastic is basically vaporized. Naturally, there is also a filter on the exhaust pipe of the incinerator so that toxins do not enter the atmosphere. Additionally, the ship is going to begin recycling plastics in the near future.

Here I am examining the ship’s food stores.  This is the fresh fruit and vegetable section of the cooler, but there are many other sections as well.
Here I am examining the ship’s food stores. This is the fresh fruit and vegetable section of the cooler, but there are many other sections as well.

Personal Log 

People may be wondering how it is possible to feed almost 50 people everyday without stopping at the grocery store. I found that the Fairweather is well equipped to deal with everyone’s food needs and more!  I took a tour of the storage facilities and found them equivalent to a small grocery store.  There are stockpiles of dairy, meats, fresh fruit and vegetables, breads, freezer storage, and dry storage. According to the Chief Cook, the ship could theoretically sail for up to 60 days without going to a port if necessary.

Every day, there are three main meals and two between meal snack times offered. Fresh fruits and vegetables are in large supply; most foods are not prepackaged, but are created on the ship.  Vegetarian choices are available at every meal.  Coffee, tea, milk, water, and a variety of fruit drinks are always available any time of day or night.  Condiments in abundance are located on every table, too, and not just ketchup and mustard.  Different kinds of salad dressing are also available in the mess refrigerator at every meal.

The first meal of the day is breakfast.  Breakfast is served from 7 to 8 in the morning.  Each day at breakfast, there are a large variety of foods offered.  Today’s breakfast choices were as follows: fresh fruit, grits, bacon and ham, vegetarian sausage, French toast, hash browns, made to order eggs, breakfast sandwiches, and omelets, and hot and cold cereal.  I always get the fresh fruit because I love the blueberries and pineapple! Then, there is a midmorning snack offered sometime between breakfast and lunch.  These snacks are usually coffee cakes or breads. Today’s snack was apple bread with nuts.  It was made from scratch with fresh ingredients!

I chose a lemon blueberry jelly roll for dessert!  Yum!
I chose a lemon blueberry jelly roll for dessert! Yum!

Next, lunch occurs from 12 to 12:30pm.  Each day at lunch, there are usually salads, soup, a choice of two main courses with a vegetarian alternative, side dishes of pastas, potatoes, or rice, and a side dish of vegetables. Today’s lunch menu included the following:  kielbasa and kale soup, grilled reuben, grilled pastrami and Swiss sandwich, grilled cheese, and tater tots.  I love it that there is a vegetarian choice; even though I am not a vegetarian, I try to limit my meat intake. After that, an afternoon snack is offered sometime between lunch and dinner.  These snacks are usually cookies. Today’s snack was chocolate chip and peanut butter cookies. They were still warm when they were offered.

Finally, dinner is from 5 to 5:30.  Dinner choices include a main dish and a vegetarian alternative, a variety of side dishes, and a dessert prepared on the ship. As with all of the other meals and snacks, there is a focus on freshly prepared food instead of prepackaged items.  Today’s dinner menu included the following: mustard crusted rack of lamb, paella de marisco, herb cheese stuffed eggplant, creamy orzotto, sautéed bok choy, and lemon blueberry jelly roll for dessert. It’s hard to resist dessert because it’s so freshly made and delicious, so I usually have dessert at dinner, but avoid the two snack times during the day.

Additionally, the mess hall has facilities that are available for snacking at any time of the day or night. Salad ingredients, ice cream, frozen burritos and hot pockets, cold cereals, and fresh fruit are always ready to be eaten. If you’re not careful, you can be overwhelmed with all of the food choices on board and gain a lot of weight while at sea! Speaking to the crew about food is interesting.  Many of the crew has not so fond memories about “other” ocean ships that they have been on that did not offer such wonderful food choices.  Some crew members expressed the feelings that the morale of the crew basically depends on the food. I can see how a long trip at sea can be made more comfortable with the knowledge that the food will be great!

Create Your Own NOAA Experiment at Home 

NOAA ships use the Celsius scale to measure temperatures, but many people in the United States use the Fahrenheit scale.  You probably think of a day that is 100 degrees Fahrenheit outside as a hot, summer day, but did you know that this equals 37.8 degrees Celsius?  A cold, winter day is usually about 35 degrees Fahrenheit, but that is equal to 1.8 degrees Celsius. You can use a website from NOAA to easily convert Fahrenheit to Celsius and vice versa.  Just go to http://www.wbuf.noaa.gov/tempfc.htm and type a number into either the Fahrenheit or Celsius box. Then, click off the box and the temperature is automatically converted for you.  Try typing in temperature that you are familiar with like your body temperature (about 99 degrees Fahrenheit), the temperature that water freezes (32 degrees Fahrenheit), and the temperature that water boils (100 degrees Celsius).

You can also use a formula to convert temperatures.  This is helpful if you don’t have the internet.

For Fahrenheit to Celsius, use this formula
For Fahrenheit to Celsius, use this formula
For Celsius to Fahrenheit, use this formula
For Celsius to Fahrenheit, use this formula

Many thermometers also are scaled for both Fahrenheit and Celsius, so that you can read both temperatures on the thermometer itself.

Jeff Lawrence, June 19, 2009

NOAA Teacher at Sea
Jeff Lawrence
Onboard Research Vessel Hugh R. Sharp
June 8-19, 2009 

Mission: Sea scallop survey
Geographical area of cruise: North Atlantic
Date: June 19, 2009

Weather Data from the Bridge In port at Woods Hole, Mass. 
W winds 5-10 KTs, cloudy overcast skies Light rain, 2-3 foot waves Air Temp. 66˚F

Jakub Kircun watches as a beautiful sunset unfolds.
Jakub Kircun watches as a beautiful sunset unfolds.

Science and Technology Log 

The Research Vessel Hugh R. Sharp finally made it into port this morning at the National Marine Fisheries Service in Woods Hole on the Cape Cod coast of Massachusetts.  Although this cruise was not terribly long it is great to be back on land.  Scallop surveying is tedious work that is ongoing on a research vessel 24/7. The people onboard were great to work with and it is always a pleasure to get to know other people, especially those who share a passion for ocean research and science. Few people realize the great effort and sacrifices that people in the oceanography field have to give up to go out to sea to complete research that will help give a better understanding to three-fourths of the planet’s surface.  They must leave home and loved ones for many days to get the science needed for a more complete understanding of the Earth’s oceans.

lawrence_log6The noon to midnight shift includes myself, the Chief Scientist onboard, Stacy Rowe, watch chief Jakub Kircum, Shad Mahlum, Francine Stroman, and Joe Gatuzzi.  We are responsible for sorting each station on our watch, measuring and weighing the samples into the computer.  These people are very good at what they do and quite dedicated to performing the task with professionalism, courtesy, and a great deal of enthusiasm.  It is clear to see that each person has a passion for ocean sciences especially the fisheries division. The NOAA fisheries division carefully surveys and provides data to those that make regulations about which places will be left open for commercial fishing and those which will be closed until the population is adequate to handle the pressures of the commercial fishing industry. I have observed many different species of marine animals, some of which I did not even know ever existed.  Below is a photo of me and the other TAS Duane Sanders putting on our survival at sea suits in case of emergency.  These suits are designed to keep someone afloat and alive in cold water and are required on all boats where colder waters exist.

The Goosefish, also called Monkfish, is a ferocious predator below the surface and above!
The Goosefish, also called Monkfish, is a ferocious predator below the surface and above!

Personal Log 

The fish with a bad attitude award has to go to the goosefish. This ferocious predator lies in wait at the bottom of the ocean floor for prey. On the topside of its mouth is an antenna that dangles an alluring catch for small fish and other ocean critters.  When the prey gets close enough the goosefish emerges from its muddy camouflage and devours its prey. I made the error of mistaking it for a skate that was in a bucket. I was not paying close enough attention as I grabbed what I thought was the skate from a bucket, the goosefish quickly bit down. Blood oozed out of my thumb as the teeth penetrated clean through a pair of rubber gloves. I pay closer attention when sticking my hand in buckets now.  There are many creatures in the sea that are harmless, but one should take heed to all the creatures that can inflict bodily damage to humans. 

Spiny Dogfish caught in the dredge
Spiny Dogfish caught in the dredge

Questions of the Day 
Name four species you my find at the bottom on the Atlantic:
What is another common name for the goosefish?
What is the species name (Scientific name) for the goosefish?
What are the scientific names for starfish and scallops?

Ruth Meadows, June 15, 2009

NOAA Teacher at Sea
Ruth S. Meadows
Onboard NOAA Ship Henry B. Bigelow 
June 12 – July 18, 2009 

Mission: Census of Marine Life (MAR-Eco)
Geographical Area: Mid- Atlantic Ridge; Charlie- Gibbs Fracture Zone
Date: June 15, 2009

NOAA Ship Henry B. Bigelow
NOAA Ship Henry B. Bigelow

Weather Data from the Bridge 
Temperature: 54o F
Humidity: 76%
Wind: 10 kts

Science and Technology Log 

In addition to the scientists on board, we have an entire crew of NOAA personnel to run the ship and all the equipment.  The National Oceanographic and Atmospheric Administration is a part of the United States Department of Commerce.  CDR (Commander) Anne Lynch is in charge of the Henry B. Bigelow. She joined the NOAA Corp after graduating from college and has worked her way up to Commander during her 18 years of service. She has been on many different ships and has traveled as far away as Antarctica. ENS (Ensign) Kyle Sanders is new to the NOAA corps. He graduated from college and became a part of NOAA about 9 months ago.  He has been on the Henry B. Bigelow for at least 6 cruises. He majored in meteorology in college so he has a science background and is learning about piloting the ships of NOAA.

CDR Anne Lynch and ENS Kyle Sanders on the bridge of the Bigelow
CDR Anne Lynch and ENS Kyle Sanders on the bridge

The Henry B. Bigelow is a fairly new ship. It was commissioned in July, 2007 and has many technical features that make it a wonderful ship for doing scientific research.  In the lab there are computers set up to take data from many different types of organisms.  There are microscopes to dissect tissue samples or view very small organisms.  When the nets are towed behind ship, they will be on 6000 m (about 5 miles) ENS Kyle Sanders of wire and will go down almost 3000 m. Then they will be brought back up to the ship’s deck. Of course, someone has to be able to operate and repair all the equipment.  The crew on board has expertise in all type of mechanical engineering to make sure the equipment the scientists are using works properly.  

The state-of-the art lab
The state-of-the art lab

In each cabin, the lounge, on the bridge and in the acoustics room, there are computers that allow everyone to communicate and transfer information.  The bridge has specialized computers that help navigate the ship and conserve fuel for long distance travel. The computer screens can show the depth of the water, temperature of sea and air, wind speed, ship speed and other necessary data that makes the ship run smoothly.  Information technology helps the ship travel safely even when it is too foggy to see very far ahead of you. One of the most important jobs on the ship is the Information Technology specialist. It is his job to make sure all the computers are working so that the trip will run smoothly.

Something to think about when on a ship this size are the doors. The outside openings are equipped with watertight doors that must be closed before entering or after leaving an area. As you can see, the locking mechanism looks like a wheel. This turns the lock for the door to seal.

One of the doors on the ship
One of the doors on the ship

Personal Log 

Last night’s weather was really rough.  The waves were 10 – 12 feet in height and it was a little more difficult to sleep.  You had to make sure you had something blocking the end of the bed so you didn’t fall out. This morning the weather improved a lot and by afternoon, the sun and blue skies were finally visible.  We took advantage of the good weather to go outside for the next part of the Bigelow Olympics – golfing !! I scored better on this event than this first one.  You had to putt the ball into the hole from 4 different places, while the wind blew and the ship rocked back and forth. It was a good way to have fun with others on the ship as we travel to the area of sampling.  It was nice to see the sun and blue skies for a change. 

Left: Tom Letessier, a PhD student from the University of St. Andrews in Scotland. His concentration is in zooplankton. Center: CJ Sweetman tries for a hole in one. He is a PhD student from Virginia Institute of Marine Science. Right: This is Zach Baldwin, another PhD student from New York City. His concentration is in mid-water fishes.
Left: Tom Letessier, a PhD student from the University of St. Andrews. His concentration is in zooplankton. Center: CJ Sweetman tries for a hole in one. He is a PhD student from VA Institute of Marine Science. Right: Zach Baldwin, another PhD student from NYC. His concentration is in mid-water fishes.

Ruth Meadows, June 14, 2009

NOAA Teacher at Sea
Ruth S. Meadows
Onboard NOAA Ship Henry B. Bigelow 
June 12 – July 18, 2009 

Mission: Census of Marine Life (MAR-Eco)
Geographical Area: Mid- Atlantic Ridge; Charlie- Gibbs Fracture Zone
Date: June 14, 2009

A viperfish—see its huge teeth?
A viperfish—see its huge teeth?

Weather Data from the Bridge 
Temperature 7.6o C
Humidity  94%
Wind  17.3 kts

Science and Technology Log 

We are about half way to our location on the Mid-Atlantic ridge.  Before we get there, we will do a comparative sampling over practice catch on the abyssal plain (a vast flat area on the bottom of the ocean). This will give us an idea of what lives in the deep open ocean away from the mid-ocean ridge for comparison with what we catch in our main study area. There has been very little sampling of the deep open ocean with large nets and not much is known about the animals that swim high above the bottom in such areas, even though they make up the largest living space on earth.

Various species that will have data recorded about them
Various species that will have data recorded about them

All the scientists were divided into two groups.  Each group will work a 12 hour shift. I will be working the 12 noon to 12 midnight shift.  We met with our work group today to learn how to use some of the scientific equipment on board.  The lead scientist for my group is Shannon DeVaney from Los Angeles, California.  Her area of expertise is in mid-water fishes.  We will be using a specialized computer program to record the data from the organisms that are caught in the nets. All the organisms will be at the end of the net in a special removable container called a cod-end.  

This mid-water fish, a viperfish (Chauliodus sloani ), was 225 cm in length and had a mass 0.0230 kg. It was caught in an earlier tow test. Until today, I had only seen this fish in books. The teeth are really sharp and large for such a small fish. To learn more about the viperfish. Once the organism is measured and the information is recorded in the computer.  A label can be printed and the animal will be either frozen or preserved for further investigation.  Then it will be on to the next one.   

Here I am chucking my potato!
Here I am chucking my potato!

Personal Log 

Everyone is participating in the “Bigelow Olympics”.  This is a fun competition for both the scientists on board as well as the crew. Today was the first event, a potato chucking competition.  We each had 5 potatoes that we loaded one at a time to in a large slingshot to shoot at a target off the back of the boat. Each “hit” earned you 20 points for a possible total of 100 points – I only hit the target twice so I got 40 points.  The event is open for 24 hours since some people will be working nights and some are working days.  This is one of my attempts.  Some people hit the target 5/5. There will be several more competitions, so maybe I will do better on the next one. If you look carefully, you can see my potato as it sails out to sea. 

 Here’s my potato as it flies toward the target!
Here’s my potato as it flies toward the target!

The temperature has dropped some since yesterday, so it is difficult to stay outside for any length of time.  Of course the wind is always blowing but sometimes you can find a place that is protected from the wind to enjoy some outdoor time.  We all want to see icebergs and we may be in the area by Monday or Tuesday.

Did you know? 

Did you know that icebergs are composed of fresh water?  The density of fresh water is less than the density of seawater which is why the iceberg floats.

Jeff Lawrence, June 14, 2009

NOAA Teacher at Sea
Jeff Lawrence
Onboard Research Vessel Hugh R. Sharp
June 8-19, 2009 

Mission: Sea scallop survey
Geographical area of cruise: North Atlantic
Date: June 14, 2009

Weather Data from the Bridge 
East winds 3 KTs
1015mb pressure
Seas 2-4ft
Partly cloudy early, clearing sunny skies late afternoon

Science and Technology Log 

The bridge of a ship is a very busy place where all activities that are occurring on the ship being managed from this location.  When any equipment is going overboard it is the responsibility of the captain or first mate to ensure that it is done safely and correctly.  The ship must follow a predetermined route for each stations sampling and be kept on tract by precise navigating from the bridge. Whenever anything goes overboard the bridge has to be notified, it is important for the bridge to know everything that is in the water to avoid the boat from being fouled up by miscellaneous line in the water.  This could be dangerous and costly for the ship and crew.

Left: The bridge of the ship; Right: Crewmembers on the bridge discussing the cruise operational procedures
Left: The bridge of the ship; Right: Crewmembers on the bridge discussing the cruise operational procedures

Captain Bill Byam has been very helpful to me and my fellow teacher at sea making sure we have the availability of the crew and ship to write our journal entries and then submit them online to NOAA. The ship’s crew is also responsible for deployments and retrieving of all instruments put overboard the ship. Along with the dredge and occasional CTD is deployed to get a profile of the water column and collect water samples at varying depths.  The water samples can be used for a variety of things, such as water filtering to see what microscopic critters may be present, chemical analysis, as well as conductivity or salinity of the water.  The CTD is standard instruments used on most science research vessels.  The crew on the Sharp are very proficient, professional, and hard working as they also help with assisting the scientist with some of the work on deck.

Personal Log 

Shad and Stacy repair the net on one of the dredges
Shad and Stacy repair the net on one of the dredges

The cruise has gone very smoothly with lots of scientific data have been collected for future analysis. I have worked closely on the deck with members of the noon to midnight shift for almost two weeks.  In that time we have collected many samples of scallops, crabs, starfish, sand dollars, sea urchins, many varieties of fish, and even occasional pieces of trash left from man’s misuse of the ocean.  I hope to be able to take the knowledge gleaned from this experience and the scientist onboard the ship and give my students back in Oklahoma a better understanding of our oceans and how their health impacts everyone around world even those in land-locked Oklahoma.  It has been my goal to better inform my 5th-8th grade students, my college students who are training to become teachers, and the general lay member how all of us impact the health of the oceans and how important the oceans are to us all in maintaining a homeostatic balance with the Earth’s biosphere and atmosphere.   We all have much to gain with a healthy ocean system and much more to lose if we are not adequate in our stewardship of our oceans.

I would like to give a special thanks to Chief Scientist Stacy Rowe for allowing me to participate in all aspects of the cruise and collecting samples.  The team I am with are very cordial and extremely helpful in answering all my questions.  They made me feel a part of the team and not an outsider. It was great to work with a group of people who are so dedicated.  When one team member finished a task they simply moved to help another team member until the whole catch was sorted, measured, and weighed.  It is good to work with people who are equally vested in their work. No one person stood and watched as others worked, each did an equal share of the work and made sure the task was completed in a timely and organized fashion.  This made the long hours of the shift seem shorter and the days went by much quicker.  It is always good to be a part of a good team.  Thanks to the crew aboard the Sharp, and the scientist that made this trip a profitable one, not only for me but also for my students back in Oklahoma.  Thank you Bill Byam, captain aboard the Sharp and all of his dedicated crew.  The ship’s crew, were hospitable host and I really enjoyed meeting you all.  Thanks to NOAA for allowing a previous teacher at sea another opportunity to learn more about the oceans and have another lifetime memory to share with others. 

Questions of the Day 
What instrument does a ship use today to navigate in precise lines? (hint cars use it also to find their way around town)

Who is Hugh R. Sharp? (ship is named after him)

Ruth Meadows, June 13, 2009

NOAA Teacher at Sea
Ruth S. Meadows
Onboard NOAA Ship Henry B. Bigelow 
June 12 – July 18, 2009 

Mission: Census of Marine Life (MAR-Eco)
Geographical Area: Mid- Atlantic Ridge; Charlie- Gibbs Fracture Zone
Date: June 13, 2009

Weather Data from the Bridge 
Temperature 11.1o C
Humidity 96%
Wind 12.99 kts

Here we are during a safety drill donning our survival suits.
Here we are during a safety drill donning our survival suits.

Science and Technology 

We have just left the continental shelf off the coast of North America.  The depth of the water changed quite dramatically, from around 89 meters in depth to over 1600 meters in only a few minutes of time.  The current depth of the ocean is now 2600 meters.

Every week, a safety drill is held to make sure everyone knows how to protect themselves and others during an emergency.  Today was a fire drill and an abandon ship drill. Everyone was required to take their survival suits and life preserver to their assigned life boat positions.  Then we had to put on our suits to make sure we knew how in case of an emergency.  The survival suits are necessary because we are in the North Atlantic where the water temperature is currently 13o C. .

Personal Log 

meadows_log2aAs we travel to our location, we have a lot of free time to visit and get to know our fellow participants. Several of the people on board are students that are currently working on their PhD from various universities in the United States and abroad.  Most of the scientists have been on many cruises similar to this one to learn as much as they can about their specialty.   The weather has been really foggy both days so it has been difficult to see anything from a distance. This morning we had some common dolphins that were in the front of the boat.  After a few minutes, more dolphins joined them from both side of the boat. They traveled with us for about 15 minutes and then went on their way. I’m standing on the top deck of the ship. 

Did You Know? 

NOAA has a web page with information especially for students?  Learn more here. There are activities for elementary and middle/high school students.  Try one while you on summer vacation!!

Ruth Meadows, June 12, 2009

NOAA Teacher at Sea
Ruth S. Meadows
Onboard NOAA Ship Henry B. Bigelow 
June 12 – July 18, 2009 

Mission: Census of Marine Life (MAR-Eco)
Geographical Area: Mid- Atlantic Ridge; Charlie- Gibbs Fracture Zone
Date: June 12, 2009

Weather Data from the Bridge 
Temperature 14.7o C
Humidity 96%
Wind 12.4 kts

The Henry B. Bigelow
The Henry B. Bigelow

Science and Technology Log 

We left Newport, Rhode Island today to begin our journey of 1750 miles to the Charlie-Gibbs Fracture Zone (CGFZ) located along the Mid- Atlantic Ridge.  Mar-Eco is an international exploratory study of the animals inhabiting the northern Atlantic Ocean.

The Mid-Atlantic Ridge is a volcanic mountain range in the middle of the ocean marking the spreading zone between the Eurasian and American continental plates. New ocean floor is constantly being formed there. The groups of animals to be studied includes fishes, crustaceans, cephalopods (squids) and a wide range of gelatinous animals (e.g. jellyfish) living either near the seabed or half-way above the ridge.

The animals will be collected using special nets that will be lowered to a specific depth behind the boat and then pulled back up after a certain amount of time.  These animals will be transferred to the lab located in the ship to be studied, counted and cataloged by the research scientists.

Personal Log 

My cabin on the Bigelow
My cabin on the Bigelow

Life on a research ship is different from life on land.  The cabins are small but well planned.  Each cabin has two scientists in them.  Bunk beds and built in cabinets are in each unit as well as a computer with flat screen that can be used as a TV also. Each room has its own bathroom as well.

There is a lounge area with sofas, large TV and conference room.  The galley (think dining room) has tables with chairs and a serving area.  The food has been really good so far – fresh fruit and vegetables.  I wonder what will happen after 4 weeks to the freshness of the fruits. Of course there is a scientific lab with equipment that is used specifically for the job to be done.  The equipment on the boat for collecting samples is almost overwhelming.  I can’t wait to actually see it at work.  I haven’t been able to see much off the ship as it has been very foggy – hopefully it will clear up soon.

Did You Know? 

You can track the Henry B. Bigelow on the Internet here. Just select the ship you want to follow and the current cruise. It will give you our position as well as information about the weather.

Jeff Lawrence, June 11, 2009

NOAA Teacher at Sea
Jeff Lawrence
Onboard Research Vessel Hugh R. Sharp
June 8-19, 2009 

Mission: Sea scallop survey
Geographical area of cruise: North Atlantic
Date: June 11, 2009

Weather Data from the Bridge 
NE winds 15-20KT
Seas 4-8ft, cold front moving off land
Temperature at Sea 68˚F
Foggy with low visibility, light rain periodically

Science and Technology Log 

The crew is busy collecting scallops.  Occasionally between tows, the crew shuck scallops to eat onboard, this is allowable in open areas.  A meal of freshly shucked scallops will be enjoyed by those onboard the ship.  Shucking scallops is a skill that can be learned over several days.  A long curved skinny knife is inserted between the shells and part of the scallop is cut away from the shell.  With a little skill one more quick cut of the knife and all the inside parts of the scallop are whisked away leaving behind a cylinder shaped piece of white meat that is the part of the scallop enjoyed by people around the world.

TAS Duane Sanders (left) is busy sorting scallops while others shuck the scallops (right).
TAS Duane Sanders (left) is busy sorting scallops while others shuck the scallops (right).

Some dredges produced scallops exclusively, while others produce very few scallops and lots of starfishes or sand dollars.  Scientists are trying to understand the dynamics between the starfish and scallop populations as well as other species.  Getting rid or over fishing one species can have a profound effect on other species especially if that species is considered a keystone species in that particular environment.

The R/V Hugh R. Sharp (Lewes, Delaware)
The R/V Hugh R. Sharp (Lewes, Delaware)

Personal Log 

The Research Vessel Hugh R. Sharp is one of the newer ships in the fleet of research vessels along the Atlantic coast. The ship is 146 feet long with state of the art equipment onboard to help it complete missions vital to ocean research.  It cost about $14,000 dollars a day to keep the ship doing research while at sea. The ship is very versatile and has completed a varied amount of differing research cruises along the east coast of the United States.  I am amazed at how quiet the ship is when running. I have been on two other research vessels, and they were much louder when underway.  The Sharp has diesel engines that run electric motors making it run much quieter and smoother than other research ships. The ship will also turn on a dime usually it takes quite of bit of time and space to turn a ship around. This is not true on the Sharp it will turn very quickly due the bow thrusters onboard the ship. The ship may be smaller than many research vessels, however it is versatile and efficient when conducting research along the Atlantic coast.

The crew which are captained by Bill Byam are well trained and prepared for the task required of them to make sure the science is completed in a timely manner and efficiently for the scientist aboard. I have found working with the crew to be an enjoyable experience.  The food onboard is superb, Paul is a great cook and prepares unique dishes for every meal and is also an avid fellow soccer fan.

Question of the Day 
What and how do scallops eat to survive?

Name two predators of scallops. 

Nicole Macias, May 31, 2009

NOAA Teacher at Sea
Nicole Macias
Onboard NOAA Vessel Oscar Elton Sette 
May 31-June 28, 2009 

Mission: Lobster Survey
Geographical area of cruise: Northwestern Hawaiian Islands
Date: Sunday, May 31, 2009

Weather Data from the Bridge 
Location: 21° 14.6 ‘ N; 158° 07.5’ W
Wind Speed: 15 kts.
Wave Height: 1-2 ft.
Sea Water Temp: 26.4° C
Air Temp.: 26° C

NOAA Ship Oscar Elton Sette about to leave port
NOAA Ship Oscar Elton Sette about to leave port

Science and Technology Log 
Well the ship was originally supposed to depart on May 28, but first it experienced generator problems delaying the trip by two days and then there were problems with the salt water holding tank postponing the trip another day. The reason there have been delays with the ship is because the Oscar Elton Sette was originally made for the Vietnam War. It never did see any action, but it is that old. In preparation for the cruise we received a cultural briefing on the importance of the North Western Hawaiian Islands to the native islanders. The natives are very spiritual and believe that the souls of their ancestors travel to these islands.

View from the Maunawili Trail
View from the Maunawili Trail

After the cultural briefing, we went to the ship where we were given a brief tour and then loaded 6,000 lbs of bait. The bait we are using is mackerel. The chief scientist, Bob Moffit, informed me that mackerel is good for bait because it is very bloody and oily. Mackerel is considered a constant variable in the lobster study. This means it is something that stays exactly the same during each trial. If they used different bait during each trip they might not know if that affects their results so they keep it constant.

Jumping off the falls at Maunawili Falls
Jumping off the falls at Maunawili Falls

Personal Log  

Since the trip was delayed I had time to explore the island of Oahu. My hotel was located in Honolulu, the capital of Hawaii. It is a very busy and somewhat crowded place. The population of Oahu is around 1million and the entire population of all the Hawaiian Islands is around 1.3 million. So it makes sense that it is a heavily populated area and it is usually the first stop for visitors from the main land, ex. Ft. Lauderdale!

This is my room that I share with four other women!
This is my room that I share with four other women!

I rented a surfboard for an hour at Waikiki Beach and was able to catch a few waves even though the line up was very crowded. I also got to explore the North Shore and see all the famous surf breaks. While there I stopped at a little ice cream shop that had mochi, which is a Japanese food made from sticky rice. This shop just happened to stuff the sticky rice cake with ice cream and it was delicious. My favorite experience so far was hiking up to a waterfall in the forest. The scenery was very beautiful and when you reached the fall you could climb up and jump of a ledge into a very cold pool of water. I am on the ship now and everyone seems very nice. There are three other women who are considered part of the “science party.” We are all in a room together. The room is meant for six people, but there are only four of us so we have plenty of space and extra drawers for our belongings. I will write again soon!

Marilyn Frydrych, September 25, 2008

NOAA Teacher at Sea
Marilyn Frydrych
Onboard NOAA Ship Delaware II
September 15-25, 2008

Mission: Atlantic Herring Hydroacoustic Survey
Geographical area of cruise: New England Coastal Waters
Date: September 25, 2008

Weather Data from the Bridge 
41.27 degrees N, 70.19 degrees W
Partly Cloudy with wind out of the W at 19 knots
Dry Bulb Temperature: 26.0 degrees Celsius
Wet Bulb Temperature:  20.9 degrees Celsius
Waves: 2 feet Visibility:  10 miles
Sea Surface Temperature:  21.6 degrees Celsius

Science and Technology Log 

We received a call from the Coast Guard yesterday telling us to seek shelter because of the impending interaction of Hurricane Kyle with a strong cold front approaching us. We cut our cruise a day short and headed for Woods Hole. As we headed back in I had time to reflect on my experiences over the last couple weeks. I particularly appreciated all the positive energy of the scientific crew. They were always very helpful and thoughtful as well as efficient. I learned a lot from them.  Each morning I found myself looking forward to what might unfold as we worked together.  I totally enjoyed my four or five hours of free time each day. Often I would spend this time on the bow or the fantail taking in the rhythm of the sea.  It was a very soothing experience much like watching a camp fire. The sunsets, too, brought a sense of awe and peace.

Each of the crew was a master of multiple tasks.  Jon Rockwell was not only an expert cook, but a medic as were three others aboard.  As part of their initial training with the NOAA Corps the four officers had entered a room fully in flames and totally filled with smoke.  If they had to, they could navigate by the stars. Two of the officers were NOAA trained SCUBA divers.  The engineers could fix anything whether it had to do with distilling water, leaking hydraulic pipes, stuck drawers, broken toilets, cracked welds, or the various diesel engines.  They were experts in the “green” rules governing disposal of waste.  The ET specialist could fix both hardware and software.  The scientists knew their software programs backwards and forwards.  All very impressive.

Each day brought a new, wondrous sunset.
Each day brought a new, wondrous sunset.

Mary Anne Pella-Donnelly, September 13, 2008

NOAA Teacher at Sea
Mary Anne Pella-Donnelly
Onboard NOAA Ship David Jordan Starr
September 8-22, 2008

Mission: Leatherback Use of Temperate Habitats (LUTH) Survey
Geographical Area: Pacific Ocean –San Francisco to San Diego
Date: September 13, 2008

Weather Data from the Bridge 
Latitude: 3645.9407 N Longitude: 12501.4783 W
Wind Direction: 344(compass reading) NE
Wind Speed: 13.5 knots
Surface Temperature: 14.197

Computer generated map of sampling area using satellite and in situ data. The satellite image on the right includes land (white) on the right edge, of the area between San Francisco and San Luis Obispo.
Computer generated map of sampling area using satellite and in situ data. The satellite image on the right includes land (white) on the right edge, of the area between San Francisco and San Luis Obispo.

Science and Technology Log 

As the scientific team conducts its research locating areas where jellyfish congregate, they have determined that samples need to be taken along both sides of a warm water/cold water boundary.  The charts below comprise a computer-generated chart of water temperature in the area we are focusing on. The chart on the right was created from remotely sensed data obtained from a satellite, and a small square of that is enlarged on the left. The chart on the left is produced from a computer model that smoothes out the lines and includes data taken continuously from the ship and integrated into the chart. Although hard to read at this resolution, the legend shows where CTD’s have been deployed, along with XBT’s, which record temperature. It also marks where upcoming deployments will take place. Net trawls were also deployed to collect samples of jellyfish that might be in the region. The quest is on for good turtle habitat.

After examining these charts above, please answer the following questions:

  1. What can you tell about the temperature of the water just off the coastline for most of that area of California?
  2. What range temperature of water does it appear that the LUTH survey is currently sampling in?
  3. Would you expect to find the same organisms in each of the samples? Why or why not?
  4. What might cause temperatures to be different in some parts of the ocean?

The Expendable Bathy Thermograph (XBT), consists of a long copper wire shot into the water down to 760 m.  When kept in the water for 2 minutes, the cable registers a signal to a dedicated computer, giving temperature readings along the wire, which are immediately plotted onto a graph.

After looking at this graph, answer the following questions:

  1. What temperature is measured at the surface?
  2. At what depth below the surface does the temperature start to drop dramatically? How many degrees Celsius is the drop?
  3. How many more degrees does the temperature drop, after the initial quick decrease? In how many meters does this gradual drop occur?

The LUTH survey is very interested in finding out whether jellyfish are found in the colder water (yellow and green), and how the distribution changes through the changing temperature of the water. Their questions surround what conditions would allow leatherbacks to travel along certain routes to and from the California coast, and how to identify areas of productivity so that commercial fishing can occur without harming protected species. Every jellyfish caught, either by the net trawls or the bongo net, and oceanographic data collected at the same time, provides more insight into where favorable conditions might exist.

Personal Log 

Computer generated graph of XBT data from 8/28/08 at 18:15:30 (6:15 pm)
Computer generated graph of XBT data from 8/28/08 at 18:15:30 (6:15 pm)

It is a very different lifestyle to have a profession that involves living for periods of time aboard a ship. Most of us land-based folks get up, wander through the house, eventually rounding up food and heading off to school or work.  For me, after a day full of movement all over Chico Junior High’s large school grounds, I may go to the store, run errands and then return home to read the paper, clean house, and prepare dinner.  My family will eventually arrive home and we will go over the day’s events.  Here, the crew spends up to 23 days in this home, office and recreational area, away from their families.  Two cooks prepare, serve buffet-style and clean up after all meals; serving at 7am, 11am and 5pm.  During off hours, I have observed T.V. or movie watching, card games in action and some gym use.

Many people have iPods and in some areas music is broadcast. Personal computers with satellite internet capabilities are used, I assume, to communicate with friends and family on land.  It is interesting that the ‘living room’, which is also the mess hall, may have 10 colleagues in it sometimes watching a show. I am used to cooking when I choose, or just making cookies if I want or heading outside to jog with my dog after school. No such activities like that happen here.  Every one in the crew seems to get along, is extremely polite to each other, and is also very pleasant.  It takes a very flexible person to enjoy living on a ship and a certainly love for the ocean.  I am enjoying this very different way of living, and will also enjoy when I can run a few miles through the park again.

Animals Seen Today 
Sea nettle jellies Chrysaora fuscescens
Comb jellies Kiyohimea spp.
Sea gooseberry Pleurobrachia bachei
Common dolphins Delphinus delphis
Jack mackerel Trachurus symmetricus
Wilson’s warbler Wilsonia citrine
Yellow-rumped warbler Dendroica coronata 

Questions for the Day 
1. What part of your regular pattern would be easiest to give up, if you were to live aboard a ship?  Which parts would be hardest?

Jillian Worssam, July 28, 2008

NOAA Teacher at Sea
Jillian Worssam
Onboard U.S. Coast Guard Vessel Healy
July 1 – 30, 2008

Mission: Bering Sea Ecosystem Survey
Geographic Region: Bering Sea, Alaska
Date: July 28, 2008

Today will be the last installment of my meet the crew Monday.  There are so many people that I would love to interview and share in this forum, but there is just not enough time in the day.

To start today we have MK1 Allan Whiting, and an amazing list of responsibilities he and his department have on board.  MK stands for machinery technician, and is within the engineering division. Allan’s “A gang” is responsible for EVERYTHING that doesn’t move the ship, thus auxiliary equipment, refrigeration, cranes, hydraulics, water (can make up to 8000 gallons of drinking water a day), winches, therefor a lot of responsibility.

Working on refrigeration is only one part of his job!
Working on refrigeration is only one part of his job!

I think I have previously talked about the scientists as being a web of different fields that drive a bigger picture of how this entire Bering Sea Shelf Ecosystem is changing and adapting with global climate differences.  Well the vessel is not too dissimilar.  Each person, each division is a vital link to the effective and smooth running of the ship, and if the vessel didn’t work, neither would the scientists.

Another responsibility for the “A gang” is the transfer of the starting 1.3 million gallons of fuel from storage tanks while we are underway.  These “A Gang” members are the “FOWK’s” of the vessel; Fuel, Oil, Water, Kings,” and out technical gurus should any fuel casualty occur.  So as you can tell a lot of responsibility with this department.

Where Allan is a lead with the “A Gang,” EM1 Hans Shaffer works with all things wires.  Yes, he is one of our electrical specialists and if it generates, or uses power Hans is part of the team that is responsible for making sure it works.  From all monitoring systems, to the propulsion and even lighting systems, without the electricians the ship wouldn’t move.

While working on the cyclo-converter I stood way back!
While working on the cyclo-converter I stood way back!

Hans also works with the cyclo-converters, and I must be honest, I know that they take 1444 volts at 60 hrtz and convert it to usable power, but that is about all.  This technology is one that I have never studied.  It is a shocking shame I am not more wired in on the intricacies of electricity.  All I know is this electricity is directly proportional to the speed of the propellers and for a vessel, propeller speed is very important.

I usually do only two people on my meet the Crew Mondays, but today I would like to add two more individuals into the mix.  There is camaraderie on this vessel that is amazing, it really is a family.  And a family that exponentially doubles every thirty days or so with the advent of the scientists, yet still all are welcome.  Smiles abound and I have not once felt unwelcome.

FN Angela Ford learning how to operate the winches with excellent guidance from MST1 Chuck Bartlett.
FN Angela Ford learning how to operate the winches with excellent guidance from MST1 Chuck Bartlett.

FN Angela Ford is one of those people who always has a smile, and who appears to always be learning new skills.  Angela started out in the deck department, and then transferred to engineering (which I have heard is a bit difficult to do).  Angela is also studying to get rated as an YN3, Yeoman third class.  If you see Angela she is either studying, doing rounds with engineering or learning new components of the vessel.  Yesterday while in Aft-Con Angela was supported by the MST crew and took a hand at running the winch to deploy and retrieve the CTD, it was great to watch.  Under the guidance of MST1 Chuck Bartlett, Angela jumped right in, ready to learn something new.  As an educator I was not only impressed with her desire to learn, but Chuck’s patience in teaching.  The whole experience was an educational gift!

XO Commander Bateman teaching me how to make a delicious pie.
XO Commander Bateman teaching me how to make a delicious pie.

Unfortunately I could not stay too long, because I had my own educational experience waiting for me.  The XO, Commander Dale Bateman was preparing to give me a lesson in making a Chocolate French Silk Pie.  Ok, get that smile off your face, because, well, let me tell you, it was one of the tastiest lessons I have had in a while.

For those interested here is the recipe:

(multiply all ingredients times 3 for a standard pie crust)

½ cup butter

½ cup sugar

1 oz chocolate

1 egg

A smidgen of brown sugar

A splash of vanilla

To make this recipe, you first construct a pie crust, then in a mixer blend the butter and sugar.  According to the XO, you can never blend too much.  Add the chocolate and blend, add the eggs and blend some more.  To be precise once all the ingredients are in the bowl blend for at least 15 more minutes, you want this no bake wonder to be frothy and smooth.  Place in a refrigerator over night, and in two hours I will be able to get a piece of our masterpiece, and let you know how the finished product tastes.

Meet 1C Jennifer Peterson a senior at the Coast Guard Academy and MK3 Betty Brown, always smiling these two are.
Meet 1C Jennifer Peterson a senior at the Coast Guard Academy and MK3 Betty Brown, always smiling these two are.

I would like to add a special thanks to all those who participated in the webinar today.  It was wonderful to hear your voices, and even better to share with you this amazing adventure of discovery I have been fortunate enough to experience, thank you!

Quote of the Day:  Since water still flows, though we cut it with swords.  And sorrow returns, though we drown it with wine, since the world in no way answers to our craving, I will loosen my hair tomorrow and take to a fishing boat. – Li Po

FOR MY STUDENTS:  Are you prepared for school in two weeks?

Jillian Worssam, July 27, 2008

NOAA Teacher at Sea
Jillian Worssam
Onboard U.S. Coast Guard Vessel Healy
July 1 – 30, 2008

Mission: Bering Sea Ecosystem Survey
Geographic Region: Bering Sea, Alaska
Date: July 27, 2008

Today is Sunday, and there is change in the air. For one, we have left the sun and re-entered fog. We have also started the 70 meter line back to Dutch Harbor. A large portion of the scientists have completed their work, and each station is now predominantly the CTD, calvet, and optics. With three days left, the tenor of the vessel is mellow, the frenzy of departure just a warm memory. Three full days and then on the morning of the 31st we arrive in Dutch Harbor. I am not ready to leave; there is still much to learn, and this goodbye will be bittersweet. Needless to say I need to get busy; there are words to be written.

U.S. Coast Guard Healy
U.S. Coast Guard Healy

I recently received a blog asking questions about the vessel and yes, I have been lax about sharing information about the HEALY and what it is like to live on a four hundred and twenty foot cruising scientific ice breaking mobile command center that floats!

Here are the facts: –Four decks are dedicated to berthing –The Main deck is predominantly the Galley forward, the Engine space a mid ship and the science labs aft. –There are three more decks below the main deck and the bridge above the 04 deck. It is approximately 70 feet from the bridge to the water line. –There is a helicopter hanger and flight deck.

The flight deck without a helicopter is perfect for social functions.
The flight deck without a helicopter is perfect for social functions.

Each deck has shared open space all with TV, computers and other lounge type equipment

With the permission of the room mates here is a corner of a crew room, quite large.
With the permission of the room mates here is a corner of a crew room, quite large.

There is a weight room far forward and a cardio room off the flight deck aft.

With a tv and all this equipment, anyone would be happy here!
With a tv and all this equipment, anyone would be happy here!

And the best of all, there are mapped out distances on the weather deck for those who wish to jog (stairs are part of the experience) –Don’t forget the ships store, they even have latte!

Hi Andy, any new merchandise today? hehehe
Hi Andy, any new merchandise today? hehehe

There it is the bare bones of the HEALY, plenty of places to go, lots of things to do. Bingo on the mess deck every Saturday, ping pong in the hanger. Not a moment passes when I am not trying something new.

Everything on a sea going vessel is always strapped down.
Everything on a sea going vessel is always strapped down.

Even as the science of our cruise slows down my days are full. There is much still to learn and experience. This afternoon I was able to assist the XO in making a chocolate silk pie…tomorrow we eat!

I am in heaven licking the beaters, and chocolate, perfect!
I am in heaven licking the beaters, and chocolate, perfect!

 

Nautical Expression: “Square Meal” originally when ships were close enough of shore to get fresh vegetables and fruits, healthy fare. The meals were served hot on square plates., thus a healthy most nutritious meal was a square meal.

FOR MY STUDENTS: Think up an entire square meal based only on items you can eat from the sea?

Jillian Worssam, July 26, 2008

NOAA Teacher at Sea
Jillian Worssam
Onboard U.S. Coast Guard Vessel Healy
July 1 – 30, 2008

Mission: Bering Sea Ecosystem Survey
Geographic Region: Bering Sea, Alaska
Date: July 26, 2008

Saturday’s on board the U.S. Coast Guard Cutter HEALY are morale dinner nights. This is when different divisions within the crew prepare, cook and then clean up the evening meal. Well today was the scientists turn, and under the direction of Scott Hiller game on!Right after lunch was served and cleaned, it was our turn to invade the galley. Let’s see, hamburgers, dogs, salmon patties…to start. Potato salad, pasta salad, green salad, and baked beans, were just a few of the accessories. For dessert apple crisp (my contribution) with vanilla ice cream.

It was a lot of fun working with happy people in making other people happy!
It was a lot of fun working with happy people in making other people happy!

When I say we invaded the galley, we really did. Kristen Blattner and I took charge of the crisp, we recruited Chris Moser and the pealing began. There are two types of crisp, the home version when the cook is too lazy to peel apples, and then the social version, naked apples. Once we had our large supply of pealed, cut apples I started the crisp, and having never made such a large quantity before was blown away by the volume of ingredients used.

Grilling the burgers
Grilling the burgers

Once all the fixings were completed it was up to the flight deck. Now was the time for Pat and John to work on grilling the burgers. I managed to get a quick “calvet” in and then helped with the set up.

The clock struck five, crew and scientists arrived, dinner was served. It was a beautiful sunny day, calm seas, perfect picnic weather. No fog in sight.

With all sorts of tasty morsels, no one should have left hungry.
With all sorts of tasty morsels, no one should have left hungry.
As far as morale evenings went, I think this one was pretty good. After dinner bingo was on, and then at eight o’clock a movie in the hanger. We might be on a four hundred twenty foot ice breaker, but that does not limit anyone in the pursuit of “good morale!”
With plates laden, the crew and scientists alike sit down for a glorious evening on board the HEALY.
With plates laden, the crew and scientists alike sit down for a glorious evening on board the HEALY.

Quote of the Day: It’s so bright out my face hurts. Rachel Pleuthner

FOR MY STUDENTS: Imagine it is the start of the day and you have worked all night, what would be your quote for the day?

Lots of hands made the clean up quick and easy.
Lots of hands made the clean up quick and easy.

Jillian Worssam, July 25, 2008

NOAA Teacher at Sea
Jillian Worssam
Onboard U.S. Coast Guard Vessel Healy
July 1 – 30, 2008

Mission: Bering Sea Ecosystem Survey
Geographic Region: Bering Sea, Alaska
Date: July 25, 2008

As you might be able to tell, I am about a day behind in my journaling so I thought this would be a perfect time to really explain my “typical” day. One of the hardest parts of explaining a classic day is knowing when to start, because I go to bed when most people are getting up, soooo I will start at six o’clock in the morning and give you a glimpse into a typical twenty four hours.

I have always hated making the bed, now I can just close the curtains.
I have always hated making the bed, now I can just close the curtains.

06:00 Between six and seven in the morning we will have completed our scientific sampling station so I go to bed. There is no fanfare, I collapse!

11:00 The alarm usually rings by eleven, I head down for my breakfast/lunch (today I had chicken nuggets and fries, I know I have a lot of running to catch up on)

Washing down the nets with salt water for any additional copepods.
Washing down the nets with salt water for any additional copepods.

12:00 Alexei finally trusts me so I take the day shift of deploying, retrieving and collecting the samples from the calvet. Yesterday I did approximately five stations, each 1.5 hours apart. Today I had the calvet stations and managed to squeeze in observing a casualty drill in the “bow thruster void.” This was a training drill, flooding in the compartment with an injury. After watching the drill I returned to the back deck for another calvet.

Notice the size of the hatch, not an easy rescue for an injured person.
Notice the size of the hatch, not an easy rescue for an injured person.

17:00 Dinner, even if I am not hungry no way will I miss this social experience. After dinner Alexei returns and I get work on my journals, talking with scientists interviewing the crew, learning more about how this amazing vessel works. (might squeeze a trip to aloft con to visit with Gary)

20:00 A trip to the mess deck reveals a heated game of trivial pursuit, though my journal is incomplete I sit in for an hour.

22:00 My head is falling over, I need a nap, off to my room for a two hour refresher.

23:00 If interested, Mid-Rats are being offered, our fourth meal of the day.

00:00 Is that my alarm, yes, time to check when the MOCNESS will deploy, night time fishing. As most of Alexei’s team left a week ago I am actually needed, it feels great. While waiting to deploy I again try to work on my journal, and squeeze in a game of cribbage.

After the sampling tow and the work of processing samples begins.
After the sampling tow and the work of processing samples begins.

03:30 We get the deploy signal, and start to fish with the MOCNESS. Remember we are fishing for micro-zooplankton, so no big fish at all. Some evenings the tow is late and we do not begin the station until after four.

06:00 If I am lucky back to bed. There is something to be said for not missing anything and it has been very important to me that I see everything. This is a once in a life time experience, to miss even a single moment would be a moment lost. Oh and I pretty much always skip breakfast at seven, I am unconscious by then. And showering, I will hold off on that story.

Just another wonderful sight from the HEALY.
Just another wonderful sight from the HEALY.

Quote of the Day: Ocean: A body of water occupying two-thirds of a world made for man ~ who has no gills. Ambrose Bierce

FOR MY STUDENTS: It is summer, what has been your busiest day, why?

Jillian Worssam, July 21, 2008

NOAA Teacher at Sea
Jillian Worssam
Onboard U.S. Coast Guard Vessel Healy
July 1 – 30, 2008

Mission: Bering Sea Ecosystem Survey
Geographic Region: Bering Sea, Alaska
Date: July 21, 2008

Today is “Meet the crew Monday,” and the two sections you will meet today are both fundamental to the smooth running of the HEALY. One, you never want to visit, the other you visit three to four times a day, so with that introduction meet the “Galley, with Tysin Alley” Due to the great quality of the food I usually make it to the galley at least two and in some instances for three meals a day. I am also up most nights and I do not think a day has gone by when I have NOT seen Tysin cooking. He is always there, baking pies, cleaning, boiling crab legs the man never stops.

Surf and Turf Friday, steak and crab legs. Mouth wateringly good.
Surf and Turf Friday, steak and crab legs. Mouth wateringly good.

When living aboard a floating ice breaker, kilometers from land out for 30 days you need to think of priorities, yes maps and scientific operations are important, but full bellies vital. No one wants to work when they are hungry. And to be honest I think many individuals are gaining weight, especially with four meals a day.

There is no shortage of protein on this vessel. And even after 21 days we still have fresh greens for salads.
There is no shortage of protein on this vessel. And even after 21 days we still have fresh greens for salads.

There is not a time, 24 seven when food is not accessible. Bread and the fixings for sandwiches between meals, always cereal, and in the rare instance when zoning out after midnight a possible taste of something new Tysin has created. And yes, I am one of the few who have gained weight.

The food is hot, fast and readily available, no one goes away hungry.
The food is hot, fast and readily available, no one goes away hungry.

Since we are now satisfied gastronomically, let’s talk about the Medical division, a place where no one really wants to end up, yet, the proficiency I saw today makes me feel very safe should an injury occur.

From fillings to feet and everything in between the training and skills these men have is beyond excellent.
From fillings to feet and everything in between the training and skills these men have is beyond excellent.

Jason and Corey are always on, 24 – seven and constantly available should a medical emergency occur. They work with training teams practicing scenarios involving injuries and offer classes to the crew in topics such as CPR. These responsibilities are not only their duty, but a chosen profession to care for the welfare of everyone on board the HEALY.

Spotlessly clean with numerous testing equipment these men appear to be ready to handle any emergency.
Spotlessly clean with numerous testing equipment these men appear to be ready to handle any emergency.

Both men entered the U.S. Coast Guard when they were young, and in Corey’s case 17. Both men also entered as enlisted personnel and choose to go through “A School” as Health Services Technicians. Corey and Jason are also within the five year mark for retiring, with over 15 years of amazing service to the United States Coast Guard…

While talking with Jason I was amazed to follow his Coast Guard career. Here is a sample: Oregon→Alaska→Hawaii→Texas→Nebraska→New Jersey→Virginia→Bering Sea…

…and all this with the total support, financially, and physically, from the U.S. Coast Guard. Jason was also able to not only become a Physicians assistant, but also received a fellowship to do post graduate work at the Navy hospital in Portsmith, Virginia in orthopedics.

I find the career paths of both men fascinating and an excellent recruiting example for the Coast Guard. Two men with high school degrees and now look at them, pretty darn impressive! I am hoping my students take the hint!

Well they can't work all the time!
Well they can’t work all the time!

Quote of the Day: “The art of medicine is in amusing a patient while nature affects the cure.” -Voltaire

FOR MY STUDENTS: Have you figured out yet how many career paths are available within the U.S. Coast Guard? How about in Science, have you figured out yet how many different types of scientists are aboard?

Amy Pearson, August 22, 2007

NOAA Teacher at Sea
Amy Pearson
Onboard NOAA Ship Delaware II
August 13 – 30, 2007

Mission: Ecosystem Monitoring Survey
Geographical Area: North Atlantic Ocean
Date: August 22, 2007

Morning light in Woods Hole Harbor
Morning light in Woods Hole Harbor

Weather Data from the Bridge 
Air temp: 18.7
Water temp: 17
Wind direction: 75
Wind speed: 15kts.
Sea wave height. 2 ft.
Visibility: 7 nm

Science and Technology Log 

Woke to the sound of engines warming up.  We were docked in Woods Hole having arrived at 6 p.m. on Tuesday to exchange scientists.  Scientist Joe Kane who supervised my shift was departing and a new scientist, Betsy Broughton, was joining us.  Yesterday, the crew and scientists were very excited for the chance to get on land.  Many joined their families who live nearby.  I met my husband for dinner at a location about half-way between here and my home.  It was great seeing him. The DELAWARE II would be departing Woods Hole at 6a.m. The water was very calm and the morning light just beautiful. Everyone seemed recharged for the final leg of our cruise. After an early morning walk, I got on the exercise bike for a while.

Martha’s Vineyard Lighthouse being restored
Martha’s Vineyard Lighthouse being restored

Today I had a tour of the engine room, a place I had observed engineers entering with earphones but hadn’t seen. I followed Engineer Chris O’Keefe down a ladder into a very warm and noisy engine room.  It is huge and very clean. We first went into the office/control room where it was quiet and he showed me the many dials, switches, and screens that monitor the different systems of the ship.  There is one engine, two generators for producing electricity, and another generator in the bow to run the bow thrusters and hydraulic winches. There is also a system for making fresh water from sea water, utilizing a heat exchanger. Cool salt water condenses the steam to form fresh water, which is then chlorinated. The ship has about 10 fuel tanks and can carry 70,000 gallons of fuel. There is also a machine shop below with tools and some space to work.  I am very impressed with the organization of materials, cleanliness of the space and the size of the engine. There is a lot to keep track of down here, and it is well organized and clean.

Jerry Prezioso and Betsy Broughton changing CTD batteries
Jerry Prezioso and Betsy Broughton changing CTD batteries

As we left Woods Hole, we passed north of Martha’s Vineyard and I noticed a light house with an orange ladder next to it. I recalled that a friend of mine, Marty Nally, was going to be restoring this lighthouse at this time.  Right is a photo of the lighthouse with the orange ladder, Marty must be nearby! The CTD (conductivity, temperature, and depth) unit that we use can work for about 90 times before it needs a battery change. It is close to 60 stations and Jerry decided to change the batteries. He and Betsy (our new scientist on board) did this today during a calm moment.

My first plankton sample was done at around 9 p.m., and loaded with amphipods, tiny crustaceans that have little hook-like structures on their legs that make them very hard to remove from the nets.  Our midnight sample was about the same.  We were collecting at an area called Nantucket Shoals, east of Nantucket. It is shallow and has a hard bottom. I was surprised to get on deck to see at least 15 lights from fishing boats, fairly evenly spaced in a long line.  I heard that we had to change our collection site a bit due to the position of all of these boats.  I was quite tired and went to sleep at about 12:30 until 2:20 a.m. when I thought we would be at our next station.  I discovered that it would not be happening on our shift and went to sleep.  One thing about this ship, there is always noise, humming of some piece of equipment.  Headphones are very helpful in blocking it out…whether there is music, a book on tape, or just no noise.  It looks like tomorrow will be a much busier night, so I hope to stock up on some rest tonight! 

Amy Pearson, August 19, 2007

NOAA Teacher at Sea
Amy Pearson
Onboard NOAA Ship Delaware II
August 13 – 30, 2007

Mission: Ecosystem Monitoring Survey
Geographical Area: North Atlantic Ocean
Date: August 19, 2007

Amy Pearson hosing down plankton net
Amy Pearson hosing down plankton net

Weather Data from the Bridge 
Air temp: 24.8
Water temp: 24.3
Wind direction: 200
Wind speed: 11 kts.
Sea wave height: 1-2 ft.
Visibility: 10+

Science and Technology Log 

Woke at 8 a.m., had some breakfast, and then went back to my cabin to read and sleep more.  Lunch was wonderful, including smoked salmon Sunday and some great butternut squash soup. I visited the bridge to collect some data and learned that the ship receives XM satellite radio to gain weather data.  As I was shown the Nobeltec software system along with a map that showed the currents in different locations, LT Monty Spencer remarked that sometimes he felt like he was “driving the ship with a mouse”….so much important computer-based navigation.

Opening the cod end of net to release plankton
Opening the cod end of net to release plankton

It was a busy sampling shift, with collections at about 6 p.m., 8:30 p.m., 11 p.m., 1:10 a.m., and 2:45 a.m., though the other shift workers came early and told us to go to sleep. Our first sample occurred off Delaware Bay and was loaded with lots of heavy jellies and brownish green phytoplankton. As we moved north the plankton changed. The 8:30 p.m. sample was still high in jellies and phytoplankton but had some amphipods.  The 11 p.m. sample had a small puffer fish puffed out, several worms, and amphipods.  The 1:10 a.m. sample had a worm and lots of amphipods.  The photos in this log show me hosing down the plankton within the nets, and then hosing it into a sieve which will be taken into the wet lab where the plankton will be preserved with formalin.  I saw the glow of Atlantic City from the sea—it was a long white light with a red light near the middle.

A phytoplankton sample with small pufferfish
A phytoplankton sample with small pufferfish

Life on a Research Vessel 

Working on a scientific research vessel requires adjusting to some changes from life/work on land. Basics like smaller living space, meals at designated hours, a limited area to live, are changes I have observed. Working 24 hours means shifts for all.  The scientists work from 3 a.m. to 3 p.m. and another group works from 3 p.m. to 3 a.m. The NOAA officers on the bridge work 4 hours on, 8 hours off, then 4 hours on again. At night a crewmember joins the officer on the bridge, to provide a second set of eyes.  I was amazed to find the bridge dark at night with the exception of the instruments.  This allows them to see what’s on the water clearly. The engineers work similar hours: 4 hours on, 8 hours off. The crew works 12 hours on, 12 hours off, from 12 to 12.  The wiper works a day shift beginning about 6 a.m., for about 8 hours. The chief steward (head chef) and second cook work over 12 hours, as breakfast begins at 6 a.m. and dinner ends at 6:20 p.m.

Amy takes a spin on the stationary bike
Amy takes a spin

Then there is clean up. Because someone is always off shift, one must be quiet so as not to wake up those sleeping. If you share a room with someone who is sleeping, you are not supposed to go into the room when they are sleeping. Free time can be spent sending email, on deck (there are some chairs), in the galley, or in your room if no one is sleeping. The galley has satellite TV at one end and a big screen at the other where movies can be watched.  The ship receives about 20 new movies per month that rotate among ships. ENS Claire Surrey has the responsibility of updating a movie list. There are also many other movies that stay on the ship. There is also an exercise bike and some free weights for those interested in this form of exercise. 

Ginger Redlinger, July 23–25, 2007

NOAA Teacher at Sea
Ginger Redlinger
Onboard NOAA Ship Rainier
July 15 – August 1, 2007

Mission: Hydrographic Survey
Geographical Area: Baranof Island, Alaska
Date: July 23–25, 2007

Weather Data from the Bridge
Visibility:  10 Nautical Miles
Wind directions: 150°
Wind Speed: 10 Knots
Sea Wave Height:  none
Seawater Temperature: 14.4° C
Sea level Pressure: 1015.9 millibars (mb)
Temperature: 15.5° C

Mariner Word of the Day: Geodesy 

Geodesy is the science of measuring and monitoring the size and shape of the Earth and the location of points on its surface.

Survey Tech Boles holds a Navigational Chart developed by NOAA that also includes Hydrographic survey data
Survey Tech Boles holds a Navigational Chart developed by NOAA that also includes Hydrographic survey data

Science and Technology Log: Charts vs. Maps 

The RAINIER returned to the Gulf of Esquibel to gather a few more swaths of data to complete their survey of this area.  The ship is anchored in Steamboat Bay and several boats are out gathering data around the shoals in the area to identify navigational hazards. Tomorrow I will be on one of those boats – I can’t wait!

Since I am on the ship today, I can tackle a bigger question in my journal entry.  This question popped into my head (it didn’t hurt : ) when I was talking with the data processing crew. I want to know what the difference is between charts and maps? Based on the attention to detail that the RAINIER pays to the collection and quality of data to put into their charts I knew it had to be very different from maps!  I am figuring there is a clear distinction that is important for everyone to know since we all use maps at some point for driving, cycling, hiking, or boating. I will begin to tackle this question now, but a fuller, more rigorous explanation will evolve as I develop lessons to support this TAS assignment!  Let’s start with some basic information:

What is the difference between a chart and a map? 

Charts

  • Has special unique characteristics including a very detailed and accurate representation of the coastline, which takes into account varying tidal levels and water forms, critical to a navigator.
  • is a working document used to plot courses for navigators to follow in order to transit a certain area It takes into account special conditions required for one’s vessel, such as draft, bottom clearance, wrecks and obstructions which can be hazardous. Way points are identified to indicate relative position and points at which specific maneuver such as changing courses, must be performed.
  • provide detailed information on the area beneath the water surface, normally not visible to the naked eye, which can and is very critical for the safe and efficient navigation.

Maps

  • emphasize landforms, including the representation of relief, with shoreline represented as an approximate delineation usually at mean sea level.
  • is a static document, which serves as a reference guide. A map is not, and cannot be used to plot a course. Rather it provides a predetermined course, usually a road, path, etc., to be followed. Special consideration for the type of vehicle is rarely a consideration. Further, maps provide predetermined points-road intersections-to allow one a choice to change to another predetermined direction.
  • merely indicate a surface path providing no information of the condition of the road. For instance a map will not provide information on whether the road is under repair (except when it is a new road) or how many potholes or other obstructions it may contain. However the driver is able to make a visual assessment of such conditions.

Source of the above information? You guessed it – NOAA! Here is the website.

An example of one type of chart made from Hydrographic survey data
An example of one type of chart made from Hydrographic survey data

Charts and maps are clearly different.  Now lets look at the science behind creating charts. The science is called Hydrography.  (I found the next set of information on this site) Hydrography is “the science which deals with the measurement and description of the physical features of bodies of water and their land areas.” (CDR Gerd Glang – Chief, Hydrographic Surveys Division)  To paraphrase: Special emphasis is placed on elements that affect safe navigation.  Side scan sonars are often deployed to detect submerged dangers to navigation. Hydrographic data are collected and processed with specialized computer systems that store data in digital form and generate graphic displays. Charts must include enough hydrographic detail in order to adequately depict the bottom topography and portray the least (lowest) depths over critical features. (Like rocks that your boat will hit if you don’t know they are there!) This paragraph describes exactly what we are doing here in Alaska! 

Navigational charts contain accurate and reliable information about features that assist ships in their travel. It can take up to two years to create a navigational chart! There are multiple sets of data that are used to ensure the charts are accurate.  Just think about the data I have discussed so far. There are ELAC sonar readings of the deep water. The RAINIER takes ELAC readings in the deeper waters off the coastline, and the smaller boats take ELAC readings of the deeper waters closer to shore where navigational hazards to the RAINIER are present.  This is also data the smaller boats using RESON sonar readings of shallower waters, the gathering of tide gauge readings, and the measurement of GPS benchmark levels.

While it is unusual for both the RAINIER and the smaller boats to be surveying at the same time, it helped complete this project in good time.  Usually, the six smaller research boats complete the survey work while the RAINIER serves as a command, logistics, and data processing center.  Layers upon layers of data from all the boats and ship go into making charts. Like I said before, it can take up to two years to complete a chart with all the new survey information. While charts are being developed, sometimes new information becomes available that is critical to navigators, like a new hazard. This information is communicated immediately and notices are sent out monthly so mariners can update their charts.  NOAA has set a goal to move from survey to chart in 90 days – based on the amount of time it takes to gather data safely, this will be challenging! But if newer technologies can provider quicker turn around time it will speed up the process.

I watched the careful and deliberate review of data gathered by multibeam sonar, and as with any technology, there are limitations.  Human oversight, review, and careful analysis of the data are important links between the gathering and use of the survey.

Survey Tech Krynytzky reviews ELAC data
Survey Tech Krynytzky reviews ELAC data

A note of interest pertaining to navigational charts

Did you know that Thomas Jefferson created the US Coast Guard & Geodetic Survey Office in 1807? (1807 – 2007… NOAA is celebrating its 200th anniversary!). The US Coast Guard & Survey Office was the first scientific agency of the United States government.  The Coast Survey Office and the USGS benchmarked, mapped, and charted the United States as it grew, and now there are multiple agencies providing data that describe a global model. This mathematical model is called Geodesy (Pronounced Ge-oh–des- see.) It has helped us understand the actual shape of the earth – it is not a perfectly round sphere, it is an oblate spheroid squashed down at the poles and bulging a bit at the equator!  The Geodesy group is developing and refining a mathematical model that starts from the center of the earth and works its way out in to solar system.  It takes into account the movement of the earth around the sun, and the sun within the spiral of the galaxy.  As the entire unit of our solar system moves, subtle changes to the tides occur. It seems that this occurs on a nineteen-year cycle.  Being able to track data over time at different locations – satellites, sonar readings, survey readings, etc. help us understand changes from the earth’s core, to the surface (tectonic plates, sea floor and land formations), and the oceans tides. It is quite amazing to think that a mathematical model can take all of that into account. Learn more here.

Think about how important it was to back in Thomas Jefferson’s day to understand navigation to and from the United States.  For example, how to travel in order to trade and discover where to develop ports, and where not to!  Think now about how important it is to understand how changes in earth impact human activity – trade, recreation, where to build homes away from storm zones, flooding, etc. What are safe numbers of fish to harvest so they can replenish?  With the melting of the polar caps, imagine how important knowing how the mean high and low tides will change.  The Tide Gauge survey that we completed in Dorothy Cove was last done in 1924!  The work of NOAA, its’ agencies and that of the RAINIER are very important.

In the week since I have boarded this ship, the RAINIER and it’s crew have surveyed 462 Nautical miles, checked tide gauge data, reviewed data from the surveys to ensure their quality, and planned the next stage of their journey. In 2006, 1,464 Square Nautical Miles (SNM) were surveyed. There are 21,660 SNM that are considered critically important and have yet to be surveyed. See the 2007 Hydrographic Survey Priorities Report for more information.

Personal Log: Food equals Happiness 

I have yet to talk about the food, and since my students love to eat I have to let them know how well fed I am on this ship! Imagine keeping sixty people of various taste-preferences happy. This is job of the cooks and stewards in charge of feeding and providing stores to the crew. I have never had such a variety of food before!  There are always two or three choices or combinations of foods for every meal in hopes of making everyone happy.  Fresh soups every night! There are fresh vegetables cooked just right – never over cooked! The salad bar and the ice cream freezer are always available (and a banana sundae with two or more ice cream types, chocolate sauce and chopped nuts is a great dessert. My favorite end of the day treat is “Foye Hot Coco” – a recipe he shared with me. If you meet him, be sure to ask him to teach you how to make it!)  Over the week I have had the choice of barbeque ribs, prime rib, beef tips, roast veal, chicken, different varieties of rice, different styles of potatoes, and a host of tasty vegetarian dishes (yams masala, gado gado, pesto wraps). (Did I mention the gravies – they are delicious!)  There are six different types of hot sauce and a host of condiments!  Fresh fruit is always available (pineapple, mango, melons, grapes, cherries, you name it!)  There are fresh made desserts every night and fresh-baked cookies during break times. All the water, coffee, juices, Nesquick, hot coco, tea, etc. that you could want.)  I haven’t even started to talk about breakfast and lunch –there are treats galore- at least six kinds of cereal- and I will be lucky to leave this ship at the same weight as when I climbed aboard. There are even special occasions – like when Raul caught a 50-pound halibut the other day and donated it to our dinner one night.  He made his own homemade batter and deep-fried pieces of halibut so we could have fish tacos!  They were awesome! (Guacamole and mango salsa on top!)  Floyd, Sergio, and Raul know how to keep us happy, healthy, and keep our bellies full!

The other really cool thing I have learned about here is satellite radio! I have got to get it installed in my boat, camper, truck, heck even the lawn tractor! The sound quality and choice of programming (without commercials) is incredible!  Speaking of music, there are two really cool bands I have learned about on this trip – Great Big Sea, and Flogging Molly (which my students who love My Chemical Romance will really enjoy!)

Question of the Day

Topic 1: Are there internship opportunities for students who are interested in exploring careers in navigation, charting, mapping, computer sciences, Officer Corp, etc? How many NOAA agencies are there?

Topic 2: What geometric theorem can you use to determine the length of an unknown side? Hint: Hypotenuse.

Topic 3: What other expeditions and scientific endeavors did Thomas Jefferson initiate? 

Maggie Prevenas, April 16, 2007

NOAA Teacher at Sea
Maggie Prevenas
Onboard US Coast Guard Ship Healy
April 20 – May 15, 2007

Mission: Bering Sea Ecosystem Survey
Geographic Region: Alaska
Date: April 16, 2007

Ship Tour

So what’s on board a scientific research vessel and Coast Guard Icebreaker? Come take a tour with Kolehe, my naughty monkey friend.

Walk the gang plank
Walk the gang plank

That’s how you get on the ship. You are looking at the PORT side of the ship. It faces the port. The other side, starboard, doesn’t. The gangplank enters at the 01 level. My stateroom (where I sleep) is located one floor above. You need to take very steep steps to get from one level to the next. Going up is easier than going down.

Water Fountain
Water Fountain

You get REALLY thirsty walking up and down steps, so there are lots of water fountains and the water is nice and cold.

My State Room: I share a nice room with a nice scientist, Ana Ajuilar-Islas. Scientists have to work for 12 hour shifts, sometimes even more. They sleep when they can. That means I need to be respectful of her. Look I’ve made myself right at home. My desk looks just like my teacher desk on Maui!

My Desk
My Desk

Science Conference Room: Just down the hall from me is the science conference room. That’s where many of the scientist go to use the public computers and talk story. Attached to it is the TV video entertainment area. There is a huge TV screen where everyone gathers to watch movies.

Opening up Doors: I have the hardest time opening up the water tight doors that lead to and from different areas of the ship. You have to crank them all the way open and then all the way closed. I am developing my arm muscles for sure!

doorhandle

Good Morale: The crew has a group of people who work on keeping the attitude of the ship very positive. They play bingo on some nights, have fun food entrees and on Saturday nights…

Movie Night
Movie Night

A movie in the helicopter hanger with free popcorn and soda! This past week it was a James Bond Movie, ‘Casino Royale.’

More Movies
More Movies 

The Bridge I love to spend time on the bridge. That’s where you go if you want to see any wildlife. I spend as much time as I can up there because it is so interesting for me. I also get to take ice observations for the scientists, valuable data that they will use to help analyze the data they are getting right now.

The captain hangs out on the bridge.
The captain hangs out on the bridge.
I have to keep Kolohe close to me. He is always getting into trouble!
I have to keep Kolohe close to me. He is always getting into trouble! 
This is Tim Sullivan. He's the ship's navigator which is a really important job. The ship doesn't go anywhere with his knowing about it.
This is Tim Sullivan. He’s the ship’s navigator which is a really important job. The ship doesn’t go anywhere with his knowing about it.
All this touring has made Kolohe hungry. He's stopping by the galley to enjoy some snacks to renew his energy.
All this touring has made Kolohe hungry. He’s stopping by the galley to enjoy some snacks to renew his energy.

The galley is five ladders down from the bridge.

Do you think he will burn off all those candy calories walking back up to the bridge?

Time for Bed… After a long hard day of experiments and data generation, we are ready for sleep. Did you know the sun sets at around 10:30 at night here? That’s right, it stays light very late. But that doesn’t stop us from getting a good night’s sleep! Hope you enjoyed this brief tour of the boat. Make sure you email any questions you might have to me!

Maggie Prevenas, Week 1 in Review, April 15, 2007

NOAA Teacher at Sea
Maggie Prevenas
Onboard US Coast Guard Ship Healy
April 20 – May 15, 2007

Mission: Bering Sea Ecosystem Survey
Geographic Region: Alaska
Date: April 15, 2007

Week in Review

On Monday, April 9: we loaded the ship with many bags and boxes of gear. Everyone moved into their rooms, unpacked and then headed for the science lab. In order to do science experiments, the scientists had to set up their labs.

The food is yummy onboard the Healy. There are always many fresh fruits, vegetables, beverages and snacks in the galley. Some of the food I have eaten includes fresh mixed fruit, creamy vegetable soup, and lo mein with vegetables. The salsa is to die for. There are fresh baked pies, coconut macaroons, brownies and ice cream.

Tuesday, April 10: we shipped out of Dutch Harbor and steered north. The water has been amazingly calm. We have seen many gulls and some smaller waterfowl. One of the research groups is counting and identifying our fine-feathered friends. Since they don’t have very much equipment besides binoculars, they were busy from the first day out, collecting data.

Wednesday, April 11:  was the first big push for samples from the rosette. Because so many teams need seawater in order to do their experiments, there are many sampling stops. The water is below freezing, but it is still liquid because salt is dissolved. Many of the scientists are using the water samples to test for the concentration of various nutrients and plankton.

Why nutrients? They are one very important limiting factor in the growth of the producers. Yes, without sunshine there’s no life, but algae and other phytoplankton need fertilizers to grow like crazy. Measuring the concentration of these nutrients allow the scientists to check on the health of the ecosystem and make predictions about what might happen to the delicate balance in the Bering Sea.

Thursday, April 12: was a very interesting day because the Ice Seal Team, from the National Marine Mammal Laboratory in Seattle, did some practice runs using the zodiacs. The Healy had never launched zodiacs of this size before so it was practice for the Coast Guard as well. The scientists in the lab were in full experiment mode, working on perfecting their technique or tweaking their new setup.

Friday, April 13: started our rotations through the science labs. We arranged our rotations around the theme of ‘Energy and Nutrient Transfer Through the Ecosystem.’ Dr. Cal Mordy was my first scientist mentor. He is looking at concentration of nutrients and oxygen in seawater. Robyn Staup, the other onboard teacher, was connected with the physical oceanographers, Drs. Nancy and David Kachel and Dr. Ned Cokelet. She fired tubes and learned many different techniques they are using to test the water of the Bering Sea.

The helicopter did a launch from the flight deck on Friday afternoon. The NMML (NOAA) is doing population counts for ice seals in the sea. Much work has to go into creating a flight plan. Time is made to communicate concerns. It was all done right, thanks to the careful attention of Ice Seal Team Leader Mike Cameron.

Today we saw our first ice.

Saturday, April 14: was a trial day for both Robyn and I as we are training for being the Ice Observers for the cruise. We had training in ice observation yesterday, but today we were on our own. Every two hours we look at the ice and interpret what kind and how much. We get help from the Coast Guard as they tell us the visibility in nautical miles and track our latitude and longitude too. We take ice observations as long as the sun is shining in daylight. After the scientists have completed their investigations in May, our ice observations will provide information about how much ice was there when they collected our data. The helicopter did another transect and observed ice seals and walrus.

Sunday, April 15: a great day to submit ice observations and look for walrus and ice seals. The animals are becoming more common and the birds are becoming scarce. Why? There is hardly any open water anymore, we are surrounded by ice.

The Ice Seals had another transect using the helicopter.

Robyn and I are working on the pictures we need for our first Live from IPY event. Our theme will be life on board a scientific research vessel that is also a Coast Guard Icebreaker.We believe it will be at 10:30 Hawaii time, 12:30 Alaska time, 1:30 Seattle time, 2:30 Mountain time, 3:30 Central time, 4:30 Eastern time. We expect to have representatives from both the Coast Guard and our scientists present.

Karolyn Braun, November 1, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: November 1, 2006

Plan of the Day: Arrive in Kwajalein, RMI

TAS Braun assists in driving the KA’IMIMOANA
TAS Braun assists in driving the KA’IMIMOANA

In many of my past journal entries I have talked about El Niño or ENSO, so what is it?  Well El Niño is an oscillation of the ocean-atmosphere system in the tropical Pacific having important consequences for weather around the globe. Among these consequences is increased rainfall across the southern tier of the US and in Peru, which has caused destructive flooding, and drought in the West Pacific, sometimes associated with devastating brush fires in Australia. Observations of conditions in the tropical Pacific are considered essential for the prediction of short-term (a few months to 1 year) climate variations.  To provide necessary data, NOAA operates and assists in the TAO buoy project, which measure temperature, currents and winds in the equatorial band. These buoys daily transmit data, which are available to researchers and forecasters around the world in real time.

In normal, non-El Niño conditions the trade winds blow towards the west across the tropical Pacific. These winds pile up warm surface water in the west Pacific, so that the sea surface is about 1/2 meter higher at Indonesia than at Ecuador.  The sea surface temperature is about 8 degrees C higher in the west, with cool temperatures off South America, due to an upwelling of cold water from deeper levels.  This cold water is nutrient-rich, supporting high levels of primary productivity, diverse marine ecosystems, and major fisheries.  Rainfall is found in rising air over the warmest water in the west Pacific, and the east Pacific is relatively dry.

The track of the KA’IMIMOANA for TAS Braun’s science cruise.
The track of the KA’IMIMOANA for TAS Braun’s science cruise (in light blue).

During El Niño, the trade winds relax in the central and western Pacific leading to a depression of the thermocline in the eastern Pacific, and an elevation of the thermocline in the west.  This reduces the efficiency of upwelling to cool the surface and cut off the supply of nutrient rich thermocline water to the euphotic zone.  The result is a rise in sea surface temperature and a drastic decline in primary productivity, the latter of which adversely affects higher trophic levels of the food chain, including commercial fisheries in this region.  The weakening of easterly trade winds during El Niño is also evident.  Rainfall follows the warm water eastward, with associated flooding in Peru and drought in Indonesia and Australia. The eastward displacement of the atmospheric heat source overlaying the warmest water results in large changes in the global atmospheric circulation, which in turn force changes in weather in regions far removed from the tropical Pacific.

Unfortunately, NOAA recently issued an unscheduled EL NIÑO advisory due to El Niño conditions that developed in the tropical Pacific and are likely to continue into early 2007. Ocean temperatures have increased remarkably in the equatorial Pacific during the last two weeks. “Currently, weak El Niño conditions exist, but there is a potential for this event to strengthen into a moderate event by winter,” said Vernon Kousky, NOAA’s lead El Niño forecaster.

During the last 30 days, drier-than-average conditions have been observed across all of Indonesia, Malaysia and most of the Philippines, which are usually the first areas to experience ENSO-related impacts.  This dryness can be expected to continue, on average, for the remainder of 2006. Also, the development of weak El Niño conditions helps explain why this Atlantic hurricane season has been less active than was previously expected.  El Niño typically acts to suppress hurricane activity by increasing the vertical wind shear over the Caribbean Sea region.  However, at this time the El Niño impacts on Atlantic hurricanes are small.

So for the past month I have been on the cutting-edge research that assists physical scientists with data that will create ENSO forecast models to improve our understanding of underlying physical processes at work in the climate system.  On our way into Kwajalein, I got to steer the ship.  Didn’t go very straight but not bad for my first time.  I want to give a HUGE thank you to Commanding Officer Mark Pickett; Executive Officer Robert Kamphaus; Field Operations Officer Rick Hester; the Junior Officers, the science team and the crew of the KA’IMIMOANA for the amazing opportunity I’ve had the honor to experience.

Karolyn Braun, October 31, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: Tropical Atmosphere Ocean Buoy Array Maintenance
Geographical Area: American Samoa
Date: October 31, 2006

Plan of the Day: Transit to Kwajalein, RMI; Science Wrap-up meeting; Celebrate Halloween.

TAS Karolyn Braun, Junior Officer Rebecca Waddington, Junior Officer Phoebe Woodward show off their Halloween costumes.
TAS Karolyn Braun, Junior Officer Rebecca Waddington, Junior Officer Phoebe Woodward show off their Halloween costumes.

Did you know Halloween originated as a Pagan festival among the Celts of Ireland and Great Britain with Irish, Scots, Welsh and other immigrants transporting versions of the tradition to North America in the 19th century? Most other Western countries have embraced Halloween as a part of American pop culture in the late 20th century. The term Halloween, and its older spelling Hallowe’en, is shortened from All-hallowsevening, as it is the evening before “All Hallows’ Day” (also known as “All Saints’ Day”). The holiday was a day of religious festivities in various northern European Pagan traditions, until Popes Gregory III and Gregory IV moved the old Christian feast of All Saints Day to November 1.

Many European cultural traditions hold that Halloween is one of the liminal times of the year when spirits can make contact with the physical world and when magic is most potent (e.g. Catalan mythology about witches, Irish tales of the Sídhe).  The American tradition of “trick-or-treating” dates back to the All Souls’ Day parades in England. During this time, poor citizens would beg for food and families would give them pastries called “soul cakes.”  They gave them these cakes if they promised to pray for their dead family members.

Handing out soul cakes was encouraged by the church as a way to replace the ancient practice of leaving food and wine for roaming spirits.  The practice, which was referred to as “going a-souling” was eventually taken up by children who would visit the houses in their neighborhood and be given ale, food, and money.  Today, they receive candy instead. So there you have it!

So the day began as usual with breakfast, a work out, and helping the officers on board create their costumes.  Then I went down to the galley and made Halloween cookies, cupcakes and caramel apples with Don and Carrie, the Stewards.  During the afternoon, I packed some then Phoebe, Rebecca and I dressed up for dinner and a little fun of handing out candy to everyone onboard. A good time had by all!

Karolyn Braun, October 30, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 30, 2006

Plan of the Day: Transit to Kwajalein, RMI

TAS Braun suits up in fire gear.
TAS Braun suits up in fire gear.

Well, we are on our third day of overcast and rain.  Our sailing path has taken us into the Intertropical Convergence Zone (ITCZ).  The ITCZ is an area of low pressure that forms where the Northeast Trade Winds meet the Southeast Trade Winds near the earth’s equator. As these winds converge, moist air is forced upward.  This causes water vapor to condense, or be “squeezed” out, as the air cools and rises, resulting in a band of heavy precipitation around the globe. This band moves seasonally, always being drawn toward the area of most intense solar heating, or warmest surface temperatures.  It moves toward the Southern Hemisphere from September through February and reverses direction as the Northern Hemisphere warms during its summer that occurs in the middle of the calendar year. However, the ITCZ is less mobile over the oceanic longitudes, where it holds a stationary position just north of the equator.  In these areas, the rain simply intensifies with increased solar heating and diminishes as the sun moves away. An exception to this rule occurs when there is an ENSO event, during which the ITCZ is deflected toward unusually warm sea surface temperatures in the tropical Pacific.

Some crewmembers of the KA’IMIMOANA enjoy some of TAS Braun’s cooking.
Some crewmembers of the KA’IMIMOANA enjoy scrabble

So what else did I do today…well I will tell you!  The morning I spent creating a Halloween costume out of duct tape, line, painter’s tape and rags from the Bosun’s locker. It sounds a bit odd I know but it will all come together!  After lunch, the afternoon was full of fire drill and abandoned ship drill excitement.  During the fire drill, the scenario was that a fire broke out in the aft steering access tunnel.  As scientists, we assist the officers in closing vents and act as runners for DC central, Damage Control.  Patrick and I had to carry 5-gallon barrels of fire-fighting foam around the ship to the fire fighters, and we had to fetch air tanks as the fire reflashed. Very crazy stuff.  When the drill was suspended, the fire fighters were wet head to toe from sweat, shaky and drained from the adrenaline that was flowing through them.  At the day’s end, and after a little air drying, I was able to try one of the fire suits on and got a hint of what they go through during a drill or a real fire. The suit was heavy and hot and that was before I had the tanks, mask and helmet on.  I applaud anyone who has had the privilege to call himself or herself a firefighter. That evening I made a Happy Halloween banner I hung in the mess while some of the others continued on with game night!

Karolyn Braun, October 28, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 28, 2006

Crewmembers enjoy some tournament games will the ship is in transit.
Crewmembers enjoy some tournament games will the ship is in transit.

Plan of the Day: Transit to 8N/International Date Line and Work on Cruise Report.

I woke up very sleepy. I think I am winding down myself.  My batteries are slowly running out. I started writing my End of Cruise report for the Field Operations Officer and cleaned up the stateroom.

At the day’s end was tournament games all around.  I played sequence and darts, and lost both. Chris, one of the deck hands taught me a short splice and an eye splice.

I assisted the ET guys with updating my Intranet webpage, and I watched a movie with the Chief Scientist, Patrick.  All in all, a pretty uneventful day.

Karolyn Braun, October 27, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii and American Samoa
Date: October 27, 2006

Plan of the Day 

So we have one more TAO buoy to visit to conduct a repair on, and then we are on our way to Kwajalein. Everyone and everything is quieting down some.  We have a bunch of tournaments going on: Backgammon, Darts, Sequence, Scrabble, Poker and Cribbage. I signed up for darts and sequence. Should be

The XO grills dinner for the crew.
The XO grills dinner for the crew.

fun. At least it is something to do during our three-day transit to Kwajalein.

Well after a hot and humid workday, the officers of the KA’IMIMOANA celebrated a successful cruise by having a BBQ for everyone onboard. The Executive Officer was the star chef of the evening, grilling up shrimp kabobs, ribs, steak, chicken and burgers. The stewards made yummy salads.  Overall it was a nice evening out on the fantail—the first real evening where everyone sat, ate and had conversation. Normally in the galley everyone is either tired, in need of a shower, or wants some quiet time.  After dinner I played a game of darts, which I lost but was still fun. And I watched a movie: Yours, Mine and Ours. 

Saw a nice looking shark so today’s lesson: SHARKS!

Sharks are amazing fish that have been around since long before the dinosaurs existed.  They live in waters all over the world, in every ocean, and even in some rivers and lakes.  Unlike bony fish, sharks have no bones; their skeleton is made of cartilage, which is a tough, fibrous substance, not nearly as hard as bone.

There are many different species of sharks that range in size from the size of a person’s hand to bigger than a bus. Fully-grown sharks range in size from 7 inches (18 cm) long (the Spined Pygmy shark), up to 50 feet (15 m) long (the Whale shark).  Most sharks are intermediate in size, and are about the same size as people, 5-7 feet (1.5-2.1 m) long.  Half of the 368 shark species are less than 39 inches (1 m) long.

Enjoying dinner on the fantail of the ship
Enjoying dinner on the fantail of the ship

Sharks may have up to 3,000 teeth at one time. Most sharks do not chew their food, but gulp it down whole in large pieces. The teeth are arranged in rows; when one tooth is damaged or lost, another replaces it.  Most sharks have about five rows of teeth at any time.  The front set is the largest and does most of the work.

When some sharks (like the Great White or the Gray Reef shark) turn aggressive prior to an attack, they arch their back and throw back their head.  This places their mouth in a better position for taking a big bite. They also move their tail more acutely (probably in preparation for a chase). Sharks do not normally attack people, and only about 25 species of sharks have been known to attack people. Sharks attack fewer than 100 people each year.  Many more people are killed by bees or lightning.

The largest sharks are decreasing in numbers around the world because of being hunted by people. The Great White shark, the Basking shark, and the Whale shark are all waning. The Great White is protected along the coast of California and South Africa.

Are you interested in learning more about sharks?  Browse the Internet, there is tons of information out there.  The more you learn, the more you know and knowledge is power!

Karolyn Braun, October 26, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 26, 2006

TAS Braun shows off her eggs benedict
TAS Braun shows off her eggs Benedict

Plan of the Day 

Woke up and was in the kitchen at 5:30 a.m. The Breakfast menu: Pancakes Omelets Sausage Bacon Eggs Benedict Breakfast potatoes Fritata Breakfast Sandwiches.

It was the first time I made Eggs Benedict and I tell you the sauce is a killer. You have to continually whisk the melted butter while adding the egg yolks. If you don’t, the mixture separates and you lose your sauce.  I thought all was lost, but I was able to bring it back and ended up making one mean Eggs Benedict! Everyone seemed happy with his or her breakfast to order.  As soon as breakfast was over we cleaned up and started preparing for lunch.  I thought working with the deck crew was hot and sweaty work but the kitchen blew that out of the water.

Mexican Fiesta Lunch menu: Pork Green Chili Veggie Fajita Refried beans Super Nachos Beef Fajitas  And all the fixings Lunch went well and things slowed up after everyone left. We cleaned the kitchen and started preparing for dinner but it was at a more leisurely pace. For dinner I made garlic chicken with spinach noodles, Steak with Spanish rice and some leftovers from lunch.  I finished my day around 5:30 when I took a much-needed shower and a 20-minute power nap. Woke up to watch them drop the anchor to the TAO buoy at 8N.170W. Is it bedtime yet?

I have to give the stewards of all the NOAA ships lots of credit. They work long hard days, and from my experience, always with a smile.

Some crewmembers of the KA’IMIMOANA enjoy some of TAS Braun’s cooking.
Some crewmembers of the KA’IMIMOANA enjoy some of TAS Braun’s cooking.

Karolyn Braun, October 25, 2006

NOAA Teacher at Sea
Karolyn Braun
Onboard NOAA Ship Ka’imimoana
October 4 – 28, 2006

Mission: TAO Buoy Array Maintenance
Geographical Area: Hawaii
Date: October 25, 2006

TAS Braun enjoys her birthday dinner with the crew.
TAS Braun enjoys her birthday dinner with the crew.

Plan of the Day 

This morning started off with lots of Happy Birthdays! Yes today I am turning another year older….wow. Can’t believe I am leaving my 20’s behind and welcoming the 30’s!  Well today was pretty relaxing. At breakfast the crew gave me the Birthday hat to wear.

I had to wear it all day, so I did. I spooled a few lines when we started the recovery of the 4N TAO buoy then talked to my parents on the phone….Hi mom and dad!  I spent a half hour in the pool. Very nice afternoon for a swim.  After my swim, I got ready for dinner.  The Stewards made my favorite dinner: Pork chops and mashed potatoes with applesauce.  YUMMY! They also sang and made a birthday cake for me.  It was a very nice birthday here on the KAIMIMOANA.

Chris Harvey, June 21, 2006

NOAA Teacher at Sea
Chris Harvey
Onboard NOAA Ship Oscar Elton Sette
June 5 – July 4, 2006

Mission: Lobster Survey
Geographical Area: Central Pacific Ocean, Hawaii
Date: June 21, 2006

Science and Technology Log 

“Accept something you cannot change, and you will feel wetter.” -Taoist principle, modified

While working in the pit the last three days, I have noticed a peculiar anticipation out of which two Taoist principles emerge:

  1. Do I look behind me in constant fear that the next swell will be the one that crashes over the side and drenches me?
  2. Do I avoid getting wet at all costs, holding onto the comfort of dry boots and clothing for as long as possible?

A quick reminder of what the “pit” is. Along the port side (left) of the ship about halfway between bow and stern (right in the middle) there is a section of the ship designed for hauling in lobster traps and the catch from long line fishing. It is between 5 and 10 feet above the waterline and, at parts, very open to approaching waves. Depending on how much the ship rolls on the swells (rocks back and forth on its sides), and how large the swells are that day, it is possible to take large quantities of water into the pit.

Our first few days were very uneventful in that the ship did not roll very much because there were small, if any, swells in the Pacific. In such conditions, one could expect to remain rather dry and comfortable while working in the pit. However, since the swells have picked up, thus causing the ship to roll quite a bit, working in the pit has meant inevitable inundation from the sea. Herein lie the principles at hand.

1. The question of constantly turning one’s head in attempt to see whether the next approaching swell is large enough to get one soaking wet is really an issue of accepting the inevitable in a prescribed situation. When you consider the conditions that you are 1) working on a ship in the middle of the Pacific Ocean, 2) hauling in lobster traps from the bottom of the seafloor, 3) closer to the swells than anywhere else on the ship, you must accept the fact that at some point in the 8-9 hour day, you will be soaking wet. Yet some of us, myself included, find the temptation to look over our shoulders at times too much. It is not enough to see our partner’s eyes, which are facing the oncoming waves, grow larger and larger as a wave approaches. We must then turn ourselves to see what fate we, in fact, cannot change. I have saved a bit of advice from a fortune cookie that I opened once in June 2001 (Yes, I remember the date because the advice has proven that important over time): “Accept something you cannot change, and you will feel better.” In this case I think the fortune should read, “Accept something you cannot change, and you will feel wetter.”

2. The question of avoiding getting wet at all costs is a simple extension of the first question. It is inevitable that one will be drenched by the end of the day when working in the pit. This is one fate, as reluctant as one might be, that is best admitted at the onset of work. It is true that wet boots are known for causing wrinkly toes. But if you seek the good in wrinkly toes, whatever that may be, then the anxiety of having them will be extinguished. One can then proceed to crack open traps with the peace inside that salt water can be the cure for the common soul, in addition to being the cure for the common scrape or cut. In fact, I find it quite a relief to stomp around in the seawater like a child dancing in the rain. Others might consider this childishness irrelevant to the job, when in fact remaining a child at heart is one of the best, if not the best, remedies for any ailment or anxiety.

As you can probably tell, I am at a loss of things to write about. Still I am known for finding obscure trivialities and then elaborating on them until they seem important! In any case, we have hauled in the last of the lobster traps at our Necker Island location, and are now underway further north and west towards Maro Reef. It is supposed to take us two days to get there, in which we are given a chance to get some solid rest and sleep. The last two weeks have been rather full of activity and I think it will be nice to have some time off.

Jacob Tanenbaum, June 15 2006

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Miller Freeman
June 1 – 30, 2006

Mission: Bering Sea Fisheries Research
Geographic Region: Bering Sea
Date: June 15, 2006

Holding up the catch
Holding up the catch

Weather Data from the Bridge

Visibility: 14 miles
Wind Speed:19.5 miles per hour
Sea Wave Height: 4 foot
Water Temperature: 44.4 degrees
Air Temperature: 44.2 degrees
Pressure: 1018.8 Millibars

Personal Log

main_engine-702351I got to thinking the other day that the engines on this ship have been running since we left port almost two weeks ago now. I started to wonder how they could stay running for so long and so I decided to ask Chief Engineer Steve Bus to tell me more about them. So put on your ear protection, and lets go to the engine room. The engine room on NOAA Ship MILLER FREEMAN is like a small city below the deck. In addition to the 2100 horsepower diesel engine that moves the ship forward, there are generators sufficient to power a small town. A research vessel, after all, needs a lot of electricity to run all the electronics we need. In addition, the engine room has equipment to make it’s own drinking water out of sea water. We cannot drink sea water because it has too much salt for our bodies to handle. The machines in the engine room take the salt out of the water and, clean it, and make it possible for us to drink it.

sewage-793154There are boilers to heat water and make steam to keep the ship warm. There are also machines that process waste water. Finally, there is shaft alley. This is the part of the engine room where a long metal shaft connects the diesel engine to the propeller. Take a look at this video to see shaft alley. The ship burns 2100 to 2200 gallons of fuel on an average day. Who keeps it all running? Chief Engineer Steve Bus and his crew. They are responsible for the ship from bow to stern.
How do you prepare for an emergency at sea? The same way you do in school. By drilling over and over. Today, we had a fire drill where the some of the crew got into firefighting gear and practiced what they would do in an actual emergency. Want to come along? Click here for a video.

water-737525Science Log

We had some interesting returns on the echosounder this morning. Take a look at the screen. You can clearly see the top and bottom of the water column. You can clearly see the different groups of fish. The echosounders can tell us so much information. When we put the nets down near the surface, we knew exactly what to expect. We did a trawl along the bottom of the sea floor last night and brought up some of the most interesting creatures I’ve ever seen. Here are a few.

This is a basket star, a kind of sea star. Its branches are hard and are divided into many different branches. The basket star uses all of these to catch plankton. In the center is the mouth.

This is a basket star, a kind of sea star. Its branches are hard and are divided into many different branches. The basket star uses all of these to catch plankton. In the center is the mouth.

crab-726932 Next, we have a lyre crab. Have you ever seen a hermit crab without a shell? This one lost his on the way up from the bottom.

bottom-777997

This next photo includes a huge sea star, a sea urchin, a hermit crab without its shell, a tanner crab and several fish called poachers. These fish have scales that are hard, almost like bone or a shell.
h-crab-706029 This last one is my personal favorite. The fish at the top of the screen is called a big mouthed sculpin. It has the biggest mouth of any fish I’ve ever seen. This fish stays on the bottom waiting for smaller fish to come by, and then… watch out! When it came up in the net, it had a smaller fish in its mouth.

Finally, we brought up a creature called a brittle star. It is a kind of sea star with soft tentacles. It moves very fast for a sea star. The arms can break easily, but don’t worry, they grow back. That’s why they call it a brittle star. Here is a video of a brittle star moving across the lab table.

Later on the same day, our ship was visited by some dall’s porpoises. Click here for a video

Question of the Day

Look at the answer to yesterday’s question. Let’s try another one. If our ship wants to do a trawl 50 meters below the surface, how much wire would it need.

Answer to Yesterday’s Question

How much wire would the ship need to let out if it wanted to put the nets 200 feet below the surface? Make sure to watch the video on nets before you try to answer the question.

The ship must put out two feet of wire for every one foot of depth. So you have to multiply 200 x 2 which gives 400 feet of wire. Wait, we are not finished yet. Each net has, not one, but three wires holding it to the ship. So you would need 3 wires. All three are 400 feet in length. That gives us 1200 feet of wire to do our trawl.

Answers to Your Questions

Hello to all who wrote today.

The MILLER FREEMAN does seem like home to me now. I have gotten used to the constant rocking of the ship and the routines of the day. I really enjoy being at sea. By the way, they had pizza for lunch, but I asked the cook to make me some fresh pollock that we caught and filleted last night.

Do people eat jellyfish? I asked our chief cook, Mr. Van Dyke. He told me many species of jellyfish are poisonous. Even those that are safe to touch with your hands. So, no, we don’t’ eat them here, but in some countries they do. We have caught many tons of fish, but more importantly, we have seen many fish without catching them using our echosounder. This device allows us to survey fish without capturing so many.

There are 34 people on board with us for this cruise. That will change next week when we get to port.

The squid felt slimy, but not much more slimy than most fish seem. I don’t recall it spraying anything.

Jacob Tanenbaum, June 14 2006

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Miller Freeman
June 1 – 30, 2006

Mission: Bering Sea Fisheries Research
Geographic Region: Bering Sea
Date: June 14, 2006

Orca off the port beam.
Orca off the port beam.

Weather Data from the Bridge

Visibility: 14 miles
Wind Speed:14 miles per hour
Sea Wave Height: 3 foot
Water Temperature: 5.3 degrees
Air Temperature: 6.2 degrees
Pressure: 1018 Millibars

Personal Log

The coffee pot. See the ring to keep the coffee from flying when the seas get rough?
The coffee pot. See the ring to keep the coffee from flying when the seas get rough?

A lot of you have been asking about the food on ship. How do we eat? What do we eat? Where do we get our food. All of these are great questions, so yesterday I spent some time with Chief Cook Russell Van Dyke to get some answers for you. He, along with the Chief Steward and the Second Cook, is responsible for preparing all the meals on NOAA Ship MILLER FREEMAN.

How do people eat on a ship? “With a knife and fork,” said our chief cook with a smile. Food is prepared and served on the ship in much the same way that you prepare and serve food athome. The main difference is quantity. Here on the ship, food is prepared for 40 people instead of just a few. “We don’t cook one, chicken, like you do at home,” said Mr. Van Dyke, “we cook 5 chickens. Here are some pictures of where the food is cooked, and where the food is served. On a ship, this is called the galley. Can you see the ring around the coffee pot? Can you guess what that is for? During storms at sea, when the waves are high, that ring keeps hot coffee from flying around the galley. Good idea!

Chief Cook Russell Van Dyke
Chief Cook Russell Van Dyke

Another interesting difference between food on a ship and food at home is that when you are out to see for a month, you cannot run down to the corner to get some milk if you run out. Each time NOAA Ship MILLER FREEMAN is in port, it must take on enough food to last for the entire journey to come. How do they keep all that food? Aside from being a great cook, Mr. Van Dyke and the rest of the crew are also experts in how to store food and keep it from going bad. NOAA Ship MILLER FREEMAN has not one but three refrigerators and two freezers. The refrigerators are kept at slightly different temperatures. The dairy products, like milk and cheese are kept at 37 degrees . The fruits and vegetables are kept in a separate refrigerator at 42 degrees. They keep the humidity in that refrigerator higher as well. Those slightly different conditions help keep the food fresh for a longer period. Meats and ice cream are kept frozen. Dry foods, like cereal are kept in a separate area. Put it all together and the crew on board eat great meals every day. The photo here shows the inside of one of the refrigerators.

Click below to listen to Chief Cook Russell Van Dyke describe cooking on board a ship:

The kitchen in NOAA Ship MILLER FREEMAN
The kitchen in NOAA Ship MILLER FREEMAN

Where does the ship get its food?

How do you cook on board a ship?

Does the crew have a favorite food? 

One more question: Does the crew eat split pea soup? There is a superstition among mariners that cooking split pea soup will bring on a storm. I asked Mr. Van Dyke about it. He told me they eat it all the time. This brave crew last had “storm soup” on May 27th and we may have it again in a few days. I guess the only thing they can’t do on board this ship at sea is have a pizza delivered.

The inside of one of the refrigerators. Look how big it is.
The inside of one of the refrigerators. Look how big it is.

Science Log

We continue surveying pollock and surveying birds as we move along the transact lines in the Bering Sea. Most of the surveying is being done with the echosounder, but from time to time, we put the nets into the water and trawl for fish. This helps the scientists know more detail about the fish they see on the echosounders. The nets on NOAA Ship MILLER FREEMAN work basically the same way that nets on large commercial trawlers work. We just catch far fewer fish. Would you like to learn more? Click here for a video on the nets.

The Galley where the crew eat
The Galley where the crew eat

Question of the Day:

How much wire would the ship need to let out if it wanted to put the nets 200 feet below the surface? Make sure to watch the video on nets before you try to answer the question.

Answer to Yesterday’s Question:

Look at the speed of the ship on this website: About how far would it go in 24 hours? To get your answer, you should multiply the speed you see by 24. Remember to express your answer in nautical m iles. At the moment, the ship is going about 12 nautical miles per hour. At that speed it will travel about 288 miles per day. The real figure will vary because of winds and currents that effect our speed, and because we sometimes stop to fish.

Rusty, the ships cat and Teacher at Sea Jacob Tanenbaum
Rusty, the ships cat and Teacher at Sea Jacob Tanenbaum

Answers to Your Questions:

I also had an email request from Marcelo for photos with Rusty and I. Here is one. I’m also putting a second photo on to show you one of Rusty’s favorite games. There is a mail slot in the door to the office where he spends a good part of his day. He loves to stick his paw through and introduce himself to passersby. Surprise!!

Mrs. McBride, thanks for your kind words.

To my Kindergarten friend, was the squid slimy? YES!!! 🙂

Getting the mail
Getting the mail

Chris Harvey, June 5, 2006

NOAA Teacher at Sea
Chris Harvey
Onboard NOAA Ship Oscar Elton Sette
June 5 – July 4, 2006

Mission: Ecosystem Survey
Geographical Area: Central Pacific Ocean, Hawaii
Date: June 5, 2006

Science and Technology Log: “Sea Legs”

I am having difficulty acquiring my “sea legs,” but it seems that I am not the only one.  I took my non-drowsy Dramamine an hour before departure and I have seen others among us landlubbers with seasickness-medicated patches behind their ears.  Amee, my British confidante in which I have already found similar humor, perspective on life, and taste for tea, has assured me that it is all inside my head.  “Stop thinking you’ll be sick,” she says in a Mary Poppins’ motherly sort of way. “And you won’t be sick…And stop drinking so much tea!”  Had she been a psychologist or a flight surgeon and not a marine biologist, I might have accepted her advice as truth.  As for the tea, I have fallen asleep by 7 PM both nights I have been in Hawaii and I have resorted to drinking caffeine tea to try to extend my waking hours.  Amee says that drinking too many fluids will make me sick.  I say, not drinking enough tea will make me fall asleep on the job.

And here it is 8:15 and I have already conceded defeat unto the Sea.  I have taken my drowsy Dramamine coupled with some Tylenol PM, Melatonin, and Gaba to ensure myself a good night’s sleep. Surviving the first night of rest is imperative to the success of the other 29. I think that sleep shall come swiftly and gently.

“The Head” I learned several things when I was young, most of which I learned from my father’s good example:

  1. Never pee into the wind. (Ladies, this does not really apply to you.  Guys, I hope you know this by now!)
  2. Buy a LOT of Girl Scout cookies when they are on sale.  Do not forget that you can always freeze them, and they are only on sale once per year.
  3. Chew with your mouth closed and come to the dinner table wearing a shirt.  (Again, ladies hopefully this does not apply to you!)
  4. Do not try to take a shower on board a moving ship unless you are prepared for water shortages, drastic changes in water temperature and pressure, a general inability to hold oneself upright without the use of one’s hands long enough to use one’s hands to scrub one’s back or hair without falling over, and the door to suddenly open, exposing you to your roommate to both of your dismay.  (Yeah, you are right. I did not learn this one until today.  Father, the veteran Navy sailor, should have explained these things to me years ago!)

Bathrooms are affectionately referred to as “the head” onboard a ship.  As so, I have not figured out why, nor had the inquisitive mind enough to research the reason.  But one thing that I did know about moving ships at sea, which my younger sister Lauren taught me in the Galapagos, is to sleep with a trashcan by your side.  That poor child slept curled at my feet by the toilet while she “popped” at intermittent intervals because we didn’t have a good trashcan in our room.  I have a great one by my side right now, double lined with Hefty bags, though I am hoping not to use it!

“Chow”: We had buffet-style dinner tonight that included salad (with ranch dressing!), spaghetti with shrimp, teriyaki chicken, and Hawaiian pig and roasted vegetables. I had a little of each, with a second helping of green vegetables.  I told Amee that I was worried about scurvy. She told me that I was dumb for worrying about scurvy.  I told her to re-read the history of the merging of her ancestors and mine through the long ship rides from England to what would become the United States; it is littered with failed attempts to colonize due to scurvy. She told me I was dumb and to shut up and eat.  I did. (Did I mention how well our personalities compliment each other?!)  We have to bus our own dishes after we are through eating.  That is better than having to bus everyone else’s dishes after they are through eating. (So long to the restaurant server life…for now.)

“Teacher at Sea”: I am treated somewhat like royalty here—in the sense that I have my own large room, I have to have my correspondence screened by the Commanding Officer of the ship, and everyone knows me as The Teacher at Sea. Being royalty makes life kind of nice.  It doesn’t make the rocking of the ship upon the sea any calmer (I think Jesus is technically the only person capable of such a feat!).  But it does give me an air of importance.  It’s strange, but I am looking up to these “kids” (being college students, they are “kids” to me, though several of them are actually older than me) for their experience and expertise as scientists, researchers, and specialists while it seems from conversation that they all look up to me for the same.  A mutual environment of respect will be important for the bonds we are to form over the next thirty days.

Also, when purchasing a souvenir T-shirt from the ship’s store today, I told the officer that I was a Teacher at Sea, and asked if he had any special deals for me.  “Yeah,” he said as he handed me a blue Oscar Elton Settee t-shirt.  “Fifteen dollars.”  “How much are they regularly?” I asked not really sure if this was a good deal.  “Fifteen dollars!” He replied with a smile on his face.  I handed him the money, returning the smile.  Most everyone seems to be good-humored here…at least for now.  Thirty days at sea is a lot of time together.  We will see how the rest of the days go.

Today was essentially a “get-acquainted-with-the-ship” day.  We will be charging ahead for the next day and a half towards Necker Island.  I hope to have acquired my “sea legs” by then. Breakfast is at 7 AM.  Maybe I will write more after breakfast.  Until then…

Oh yeah. There is talk of getting Tonatiuh back in a few days if his foot heals.  We are meeting up with a charter fishing boat to drop off some researchers around Necker Island.  He may come out on that boat and jump on with us.  It would be nice to have some company to talk to at night.  I am sleeping in a bunk bed like the good old times of sleepovers in my childhood, yet I have no friend above me with which to talk into the early hours of the morning.  Oh well for now.  Woe is me for being in such a terrible position as I am now, on a ship in the middle of the tropical Pacific with a place to sleep, good company, good food, and wonderful scenery.  There is no pity party for me!  Not yet at least!

Philip Hertzog, July 31, 2005

NOAA Teacher at Sea
Philip Hertzog
Onboard NOAA Ship Rainier
July 25 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, AK
Date: July 31, 2005

The laundry room
The laundry room

Weather Data from Bridge

Latitude: 55˚53.4’ N
Longitude: 158˚ 50.4’ W
Visibility:  10 nm
Wind Direction: 180˚
Wind Speed: 2 kts
Sea Wave Height: 0 feet
Sea Water Temperature:  12.2˚ C
Sea Level Pressure: 1009.5 mb
Cloud Cover: 1, cumulus, altocumulus

Science and Technology Log 

Today I took care of tasks that come with living aboard a ship as a crew member. I’ve been on board the RAINIER for almost 9 days now and my laundry started to attract sea gulls outside my room’s porthole.  Even the Sei Whales turn and swim away when they approach my side of the ship. On shore, many of my students’ moms or dads do the laundry, but on a ship this becomes your responsibility. Washing clothes at sea poses special problems because we have no sewers to dispose of waste water, only the ocean. We have to use special soap that won’t harm sea creatures and limit the amount of water used for washing. The RAINIER has a full laundry with water saving washers and energy saving dryers as you can see in this photo.

Ship quarters
Ship quarters

After laundry, I cleaned my room.  The Captain expects everyone to keep a clean room and make up their beds everyday. He can even enter your room at any time for an inspection. I share a room with the other teacher at sea, Mike Laird.  The room has two bunks, two closets, a head (known on land as a bathroom) and a desk with a computer as you can see here: Mike and I lucked out by getting an officer’s room, because many crewmembers share rooms with up to four people and only have gym lockers to store their gear.

Cleaning our bathroom
Cleaning our bathroom

Once I cleaned my room and vacuumed the floor, I tackled the big job of cleaning the head. Again, you can’t bring a parent along to clean the bathroom for you and this job falls on everyone on the ship. The RAINIER does its best to protect the environment by using special cleaning products that kill mold and germs, but not aquatic life that live in the water where our wastes end up. I used three different types of cleaners: one for the tub, one for the toilet, and one for everything else.  I kneeled down on my hands and knees to scrub everything from top to bottom to ensure the germs die and won’t make us sick miles from the nearest doctor.  My mom and students would be proud of me!  The rest of the day I caught up on my paper work and read, but tomorrow I will have a big day out on the launch.

Personal Log 

I enjoyed a day off the launches to get caught up on all my house work and work on my photography. My cabin had gotten messy after spending eight nights in it and I look forward to sleeping on clean sheets tonight. I met with Larry Wooten, Chief Electronics Technician, and learned how to transfer my photos over the ship’s file server. The ship’s crew is one big family and share many things. Several people have put their photos on the main server so others can enjoy and download pictures. Everyone trusts each other on the ship.  We leave our doors unlocked and you can leave your wallet out on the table without a worry.  I wish our society back on shore could be just as trusting. Well, I’m off to find some salmon off the back end of the ship.

Question of the Day 

Why is it important to keep a ship at sea so clean?  What happens if someone on a ship becomes sick?

Cary Atwood, July 29, 2005

NOAA Teacher at Sea
Cary Atwood
Onboard NOAA Ship Albatross IV
July 25 – August 5, 2005

Mission: Sea scallop survey
Geographical Area: New England
Date: July 29, 2005

Weather from the Bridge
Visibility: Clear
Wind direction: NNW (230)
Wind speed: 15 knots
Sea wave height: unknown
Swell wave height: unknown
Seawater temperature: 11.4° C
Sea level pressure: 1012 millibars
Cloud cover: Dense Fog

Question of the Day:

Define these terms used aboard the ALBATROSS IV:  lines, bosun, steam, swell

Yesterday’s answer: Pelagic means “of the sea.”  Lesser shearwaters are part of a larger group of pelagic birds who spend their entire adult lives out in the open ocean.  They rest, sleep, feed and mate on the water.  The only time they return to land is to lay a brood of eggs in the same geographic location where they were born and fledged before they left for the open waters of adulthood.

Science and Technology Log  

Today’s topic is ALBATROSS IV Geography: a mini guide to the important places on the ship.

Fantail—Another name for the stern of the ship.  Since this is a ship on which scientific missions are completed, this section of the boat has space to accommodate the gantry and boom, which pulls up the dredge, as well as a full wet lab to process scallops and other groundfish species. Wet Lab—The area in the fantail with touch computer screens and magnetically activated measuring boards and scales to document scallop survey data. Bridge—The enclosed area where navigation and sighting is done by the captain and crewmembers.  A full complement of computers is used to assess position, direction and locations of ships and buoys.

Computer Room—Located on the middle deck, it contains computers with e-mail access, FSCS computers and computer servers.  In every main area of the ship, a computer monitor with a closed circuit view of the fantail can be seen.  This is so the scientists, engineers, and captain can know the status of the fantail area at all times. Galley—Another name for the kitchen area.  Food for the crew is prepared here by Jerome Nelson and served buffet style by Keith.  The menu is posted daily and always includes a wide assortment of meats, breads and vegetables, as well as that all-important treat: ice cream! Hurricane Deck—AKA “Steel Beach”- a small deck above the fantail used for sunbathing and relaxation. Engine Room—Noisy room down in the bulkhead where the engineering crew keeps the two diesel engines running smoothly. Boom and Gantry—Found on the aft deck (otherwise known as the fantail), these are the all-essential components needed to tow the eight-foot net.  The gantry is the large metal A-frame and the boom is the moveable arm or crane, which uses large cables and a pulley system to bring up the net each time. Cabin or stateroom—Sleeping quarters for two or three persons.  It has portholes, bunks and a shared bathroom.

Personal Log 

Today the ocean waters have calmed a bit.  Thursday’s wave action gave new meaning to the term “rock the boat,” which is exactly what we did.  The swells, up to three feet in height, were the distant result of Tropical Storm Franklin as it made its way up into the waters of New England. A good safety rule we learned during our brief introductory meeting was to make sure you gave “one hand to the boat” at all times.  This was especially good advice as my footing placement became increasingly unpredictable.  Ships are built to withstand the high seas, and fortunately, there are plenty of places to put a firm grip as one makes their way around the ship.