Rita Salisbury: Popika, April 27, 2013

NOAA Teacher at Sea
Rita Salisbury
Aboard NOAA Ship Oscar Elton Sette
April 14–29, 2013

Mission: Hawaii Bottomfish Survey
Geographical Area of Cruise: Hawaiian Islands
Date: April 26, 2013

Weather Data from the Bridge:
Wind: NE 3KT
Pressure: 1017.1 mb
Air Temperature: 74 F (23C)
Water Temperature: 78 F (25 C)

Science and Technology Log

Jamie Barlow and Bo Alexander getting ready to deploy the BotCams
Jamie Barlow and Bo Alexander getting ready to deploy the BotCams

I was extremely fortunate to be invited to ride along on a day-long BotCam deployment aboard the Huki Pono along with IT Scott Wong. Dr. Kobayashi got approval for it and before I knew it I was descending down a rope ladder and on my way in a small boat to rendezvous with the Huki Pono to work with scientists Jamie Barton, Chris Demarke, and Bo Alexander.

The BotCams are designed to descend to the sea floor, attract fish with bait, and video record the fish that are in range of the camera. The BotCam is then retrieved, the video uploaded, and then the BotCam is deployed again until the mission is completed. The videos are saved and someone then reviews them and classifies the fish by species and counts how many there are of them. The results are added to a multi-year study of the fisheries in the area.

The BotCams are heavy and deploying and retrieving them takes a lot of skill, so I stayed out of the way while that was going on. However, there were things I was able to do, and the three scientists walked me through them.

Throwing the grappling hook to catch the buoy line
Throwing the grappling hook to catch the buoy line

The first thing I got to do was to throw the grappling hook to retrieve the buoys for a BotCam. Captain Al of the Huki Pono skillfully brought the boat up next to the buoys at a good angle and I was able to snag the buoy line with my first throw every time. Then I got out of the way so the hundreds of meters of line that attached the buoys to the BotCam was pulled on board. Once the BotCam was pulled to the surface, a cable from the winch on the back of the ship was attached to it and the BotCam was pulled to the back work area and pulled on board. The video was retrieved, the bait renewed, and the BotCam was ready for deployment again. On this day, the crew was working with two BotCams, but they had a third one on board that they also use, depending on the requirements of the day. (The Bluejay is my school mascot and came along for the ride.)

Setting the buoys to mark the location of the BotCam. Uli Uli Manu is along for the ride.
Setting the buoys to mark the location of the BotCam. Uli Uli Manu is along for the ride.
Slinging line as the BotCam drops to the sea floor
Slinging line as the BotCam drops to the sea floor

Once re-baited, and with new video plugs, the BotCam was ready to be dropped at a pre-determined spot. The dropsites have already been entered into a GPS unit so the captain navigates from one site to the next using a handheld GPS. The depth of the new location determined how much line would be attached. When the captain said it was time, the scientists triple-checked everything, including each other’s work, and swung the BotCam off the deck and into the water. The line that attaches the BotCam to the buoy is quickly fed out after the weighted BotCam and then the buoys are tossed out last, which are the other two jobs I was able to do. Then it’s time to go the next location and either retrieve or deploy another BotCam. This went on all day long, without any breaks. Lunch was eaten while traveling from one BotCam location to another.

Photo courtesy of Dr. Don Kobayashi
Photo courtesy of Dr. Don Kobayashi

While I was onboard the Huki Pono, the Sette deployed the AUV for a lengthy mission. I was able to see some of the video footage when I returned to the Sette and the clarity was amazing! The AUV’s path was blocked by a large outcropping for a while and it was really interesting to watch the video while the AUV worked its way free of the rock.

An AUV capture of almaco jack, a type of kahala. Photo courtesy of Dr. Don Kobayashi
An AUV capture of almaco jack, a type of kahala. Photo courtesy of Dr. Don Kobayashi

The AUV was deployed again yesterday, and it is just as exciting to watch now as it was for the first mission. I know that it has a few failsafe procedures built into it, such as dropping the weights that help keep it down and aborting the mission, but it is still thrilling to watch the last line removed that tethers it to the ship and see it descend on its own power. The bright yellow skin makes it visible for many meters under the surface, but eventually it goes so deep that it cannot be seen any longer. The scientists monitoring the acoustics can “see” where the AUV is in relation to the position of the ship. They have named the AUV “Popoki” which is Hawaiian for cat.

Second Assistant Engineer (2AE) Megan keeping an eye on the control readout
Second Assistant Engineer (2AE) Megan keeping an eye on the control readout

The Chief Scientist, Dr. Don Kobayashi, arranged a tour of the engineering department of the ship. Chief Engineer Harry Crane met us in the forward mess and explained what we would be seeing. After handing out earplugs to protect our hearing from the 115 decibel environment, we were off. We were able to see the 600 amp 600 volt motor for the bow thruster used to maneuver in tight quarters or to make minor adjustments of the ship’s position. Then we were shown the sewage system next to the laundry room. The waste is collected and then cleaned by running electrical current through it before it is discharged. It holds about 6,000 gallons of waste, which is roughly what a tractor-trailer tanker holds. The giant Caterpillar diesel engines spin generators to provide electric power to run the propulsion motors, making the Sette a hybrid of diesel electric power. The water that is used to cool the engines is the same water that is used, as waste energy, to help run the evaporators that create the ‘fresh’ water needed for the ship. We also saw the halon and CO2 fire suppressant system, the main control room, and the shafts the turn the propellers (or screws), and the hydraulic system used to turn the rudder. One of the things that struck me the most about the whole tour was how very clean all of the areas were. Anyone who works around machinery knows it can be a messy environment with leaks and spills, but the Oscar Elton Sette was clean as a whistle.

Chief Engineer Harry Crane, Chief Scientist Don Kobayashi, Jessica Chen, and me touring the engineering department of the ship
Chief Engineer Harry Crane, Chief Scientist Don Kobayashi, Jessica Chen, and me touring the engineering department of the ship
Uli Uli Manu keeping an eye on things
Uli Uli Manu keeping an eye on things

Personal Log

This ship is like a large, extended family in many ways. The mess and the kitchen are central to the community with 3 wonderful meals served every day. But just like home, the kitchen is always open for anyone to make a snack. The other evening, one of the stewards, Allen Smith, stayed late to help me find the ingredients I needed to make a cake as a thank you to everyone on board. It was served as desert the next evening and the medical officer, “Doc” Tran, who really enjoys cooking, asked for my recipe and said that anytime they serve it from now on, they will call it the Rita Cake. Like I said before, everyone on this ship is very nice and they go out of their way to make me comfortable.

Did You Know?

GPS stands for Global Positioning System. A GPS device is an electronic unit that determines a location within a few feet, displaying coordinates in latitude and longitude. The handheld GPS receives signals from geosynchronous satellites. It only needs signals from 3 satellites to calculate a location, but a signal from a fourth satellite can fix the altitude of the location and the exact time. The more signals that are received from satellites, the more accurate the reading.

One of my duties has been to find out information about everyone on board for blog entry. The Chief Sci and I talked about it and decided to borrow an ice-breaker that we use at my school from time to time called “Two Truths and a Lie.” It has been interesting, to say the least, to start to gather the statements from different people on board. I cannot wait until I have enough data to publish it, but the best thing has been getting to know people even better.

Additional Section

I finally saw a humpback whale breaching while I was on the Huki Pono! It was about a quarter of a mile away, so I didn’t get any good pictures, but it was still exciting.

I also was able to see some kawakawa (False Albacore) off the bow of the ship. They are quite lovely fish, with a brilliant blue hue and a streamlined appearance. There were about a dozen of them and they would race in one direction and then change course, often breaking through the surface of the water to appear as if they were flying. I was disappointed when they finally wandered off.

One thing I have wondered about is the lack of seagulls around here. I just assumed that anywhere there was salt water, there would be seagulls. Jamie Barlow said they simply are not part of the ecosystem here. There might be an occasional one that shows up on its way somewhere else, but they don’t stick around. That surprises me, especially when you consider the Taape, or Bluelined Snapper. They are an introduced species that was introduced in the mid-1950s because Hawaii did not have a shallow water snapper. The species has flourished in these Hawaiian waters so why doesn’t the seagull show up and start competing in a niche?

Jennifer Goldner: Underway/Behind the Scenes, August 12, 2011

NOAA Teacher at Sea
Jennifer Goldner
Aboard NOAA Ship Oregon II
(NOAA Ship Tracker)
August 11 — August 24, 2011

Mission: Shark Longline Survey
Geographical Area: Southern Atlantic/Gulf of Mexico
Date: August 12, 2011

Weather Data from the Bridge
Latitude: 29 03.78 N
Longitude: 080 32.183 W
Wind Speed: 9.76 kts
Surface Water Temperature: 29.20 C
Air Temperature: 29.88 C
Relative Humidity: 84%
Barometric Pressure: 1012.55 mb

Science and Technology Log

NOAA Ship Oregon II is like a city. This 175’ research vessel has the capability of making potable water, processing sewage, and making its own power. Yesterday I followed around the engineers as they prepared for us to go to sea so all these things would run smoothly.

Because there are so many fluids on board (such as lubricating oil, hydraulic oil, waste oil, and diesel), it is very important to know their levels in order to be able to balance the ship. The Captain runs stability tests before going to sea. The engineers measure these fluids. How do they do it? They take tank soundings. If the engineer is measuring how much diesel is in the tanks, it is called innage. If the air space in the tank is measured, it is ullage.

Stainless steel tape and brass plumbob used for sounding the tanks
Stainless steel tape and brass plumbob used for sounding the tanks
William, 3rd Assistant Engineer, sounding a tank
William, 3rd Assistant Engineer, sounding a tank

The lid to the tank is taken off first. Next a stainless steel measuring tape with a plumbob (weight) is lowered down into the tank. (Stainless steel and brass are used to prevent static electricity.)  When the plumbob hits the buckler plate at the bottom, the tape is reeled in to see the level of the diesel. On this ship the readings are done in feet and inches. Some ships use the metric system. Either way, it is crucial that the measurements are read accurately. After the readings are taken, they put the numbers into a sounding table to calculate how many

Gene, 1st Assistant Engineer, making conversions on the sounding table
Gene, 1st Assistant Engineer, making conversions on the sounding table

gallons still remain in the tank. There are 9 diesel tanks for NOAA ship Oregon II. Can you guess how many gallons of diesel the ship holds?

After soundings are taken for diesel, hydraulic fuel, and lubricating oil, a sounding is done for waste/dirty oil. All ships have to keep an oil record book to account for proper disposal of the dirty oil. In the event there is an oil slick on the ocean, the record book will show where all the oil for the ship went. NOAA is very cautious with the oil. One drop of oil can contaminate 100,000 gallons of water!

Dirty strainer
Dirty strainer

Another task to perform before going to sea is cleaning the strainers. Salt water is used to cool the engines; however debris comes in, too. The strainers stop the debris. When they get full the engines will overheat if they aren’t cleaned. According to the engineers, the strainers are much fuller in Pascagoula than in Charleston.

Reverse osmosis machine
Reverse osmosis machine

NOAA Ship Oregon II also makes potable (safe to drink) water. This is done by the reverse osmosis machine. Essentially the water is squeezed through membranes. The government allows up to 700 parts per million (ppm) of salt, but on this ship it is kept to 150 ppm. Water is made 22 miles or more from the coast. This is due to the fact that there are more pollutants closer to shore. The ship can carry 7,000 gallons of potable water.

Brian, Junior Officer, laying down the tracks
Brian, Junior Officer, laying down the track lines

Charting is one of the many other things that must be done before sailing. This is done by the Junior Officer, Brian. He is responsible for laying down the track lines (the course the boat will take). At any given time, he has 3 days tracked. This is done electronically then it is logged on the paper chart. On the map, blue is shallow water and white is deeper water. For Charleston Port, blue is 18 feet and below and white is 18 feet or above. This differs from port to port.

Personal Log

Brian, Electronics Technician
Brian, Electronics Technician

NOAA Ship Oregon II has an entire crew of experts.  Thanks to Brian, Electronics Technician, for fixing my laptop which had a virus.  Had it been plugged into the network, it could’ve shut down the entire NOAA fleet!  All the ships rely on the internet for weather, latitude and longitude, etc.  Thank you, Brian for fixing the problem!

You may have noticed from the Ship Tracker that we left from Charleston rather than Mayport. This was a precaution taken because of Tropical Storm Emily. When I arrived at Papa Pier in Charleston, I was greeted by Commanding Officer, Master Dave Nelson. He told me to just call him “Dave.” He is extremely down-to-earth and eager to share what he knows with me. It is obvious he has earned the respect of the entire crew.

Boarding NOAA Ship Oregon II
Boarding NOAA Ship Oregon II
Cliff, Fisherman
Cliff, Fisherman

Over the course of the evening, I got to meet many of the crew members. They each were very helpful in getting me ready to sail. One of the fishermen, Cliff, greeted me and explained longline fishing.  Right now, however, we are transiting, or steaming, down the coast for 3 days. They won’t start fishing until we round the Florida peninsula on Sunday. Suffice it to say, I’m having the time of my life! This crew is awesome!

At the airport with Mom and Dad
At the airport with Mom and Dad

I had two added bonuses for my trip to sea. My parents dropped me off at the airport. They said it reminded them of me going to my first day of kindergarten with my shorts, T-shirt, and backpack! I also got to see my sister and her kids on a layover in Dallas. My nieces made a card for me which I have in my locker. In it my niece Ellie asked, “What are you going to grow up to be?” I have to say, the very fact that she doesn’t think I’m grown up makes me smile. Robert Ballard said it best, “I am a lifelong learner . . . a kid who has never grown up.” So Ellie, in answer to your question, I want to be a kid when I grow up. I don’t ever want to stop asking questions and asking “why?” It’s what kids do best.

Picnic with my nieces and nephew on a layover at DFW
Picnic with my nieces and nephew on a layover at DFW 
Card from my nieces
Card from my nieces

Photo Gallery from NOAA Ship Oregon II

My living quarters, stateroom 12
My living quarters, stateroom 12
Dolphin playing on starboard side of the ship
Dolphin playing on starboard side of the ship
Walter, Second Cook, and Paul, Chief Steward in the galley- The meals are WONDERFUL!
Walter, Second Cook, and Paul, Chief Steward, in the galley- The meals are WONDERFUL!!
The Bridge
The Bridge
Sunset- Southern Atlantic
Sunset- Southern Atlantic
Watching the sunrise through my window
Watching the sunrise through my window
Mess Hall- Notice the Captain's Saints chair!
Mess Hall- Notice the Captain's Saints chair!
Hanging out in the lounge on our down time
Hanging out in the lounge on our down time
Engine Room
Engine Room

Mary Patterson, June 28, 2009

NOAA Teacher at Sea
Mary Patterson
Onboard NOAA Vessel Rainier 
June 15 – July 2, 2009 

Mission: Hydrographic Survey
Geographical area of cruise: Pavlov Islands, AK
Date: June 28, 2009

Weather Data from the Bridge 
Few clouds
Wind 10 kts
10 mi visibility
Pressure 1024 mb
Dry Bulb Temp 8.3˚ C, 47˚f Wet bulb 6.7˚ C, 44˚f
Seas 0-1 ft.
Water temp 7.8˚C

Science and Technology Log 

One of two main diesel engines
One of two main diesel engines

Today, I got to take a tour of the engine room. The first thing I noticed was how amazingly clean the forty-year old engines are kept. This is definitely a crew that takes pride in keeping their ship shipshape! There are two diesel engines. Each engine is about the size of a small car. There are twenty fuel tanks scattered throughout the ship. The Rainier does not carry any extra ballast, so the fuel tanks are often leveled and balanced for ballast. The Rainier can hold up to 107,000 gallons of fuel. Whew! I definitely would not want to pay that fuel bill! The ship can go through 120 gallons of fuel an hour. Oil is recycled using an oily water separator that can hold 1,700 gallons.  

Electrical control panel
Evaporator distiller

The engineering department also maintains the water evaporative distillers. These two evaporators can produce up to 7,000 gallons of freshwater (from saltwater) a day. The saltwater is heated to its boiling point and the evaporating freshwater is then cooled and collected. Normal consumption of freshwater for the ship is 3,500 gallons a day. Everyone tries to take quick showers. Toilets are flushed using saltwater. Faucets on the sink limit water usage by having to be held in the on position. You can’t just let water run from the faucet.  All of the electrical systems for the ship are monitored in the engineering control room. In an emergency, they can even control the steering of the ship.

An incinerator on the ship also takes care of some of the wastes produced. In the mess hall areas, there are labeled bins for recycling plastics, mixed paper and burnables. Those items that are burnable get incinerated while we are out at sea. Not only does the engineering crew take care of the ship’s main engines, they also maintain and troubleshoot the six launch engines as well.

Personal Log 

Electrical control panel
Electrical control panel

One of the first things I noticed in the engine room was the safety signs and equipment. No one could enter the area without hearing protection and I spotted several eye wash stations like ones we use at school. There were handrails and clear walkways and everything had labels. It’s great to see things we emphasize at school about safety are in the “real world” too.

Thought of the Day 

For this 18 day voyage, how much freshwater was consumed?

Eye wash station
Eye wash station