Callie Harris: Lots to See While at Sea, August 20, 2019

NOAA Teacher at Sea

Callie Harris

Aboard NOAA Ship Oscar Dyson

August 13-26, 2019


Mission: Fisheries-Oceanography Coordinated Investigations

Geographic Area of Cruise: Gulf of Alaska

Date: 8/20/19

Weather Data from the Bridge

Latitude: 58° 27.67 N
Longitude: 152 ° 53.00 W
Wind Speed: 5.96 knots
Wind Direction: 152°
Air Temperature: 12.4°C
Sea Temperature: 15°C
Barometric Pressure: 1008 mbar


Science and Technology Log

I feel the need to start off by stating that the shark did in fact swim away. During our mid-afternoon trawl haul back, Chief Boatswain Ryan Harris called over the radio that we had caught a shark in the trawl net. We quickly put on our boots, hard hats, and life preservers and headed to the back deck. Unfortunately, a 3.2m female Pacific Sleeper Shark had gotten caught in our trawl as bycatch. Thanks to the quick response of our NOAA deck crew, we were able to release the shark back into the water alive.

Unlike most sharks, the Pacific Sleeper Shark is predominantly a scavenger and rarely hunts. They are slow swimmers, but move through the water quite gracefully without much effort of body movement. This lack of movement allows them to catch prey easy since they don’t make much noise/ vibrations in the water. They feed by cutting and suction. The sleeper shark’s large mouth allows it to suck its prey in. Its spear-like teeth help cut prey down into smaller pieces. It then swallows its prey by rolling its head. For more info about this cool shark, visit: https://www.sharksider.com/pacific-sleeper-shark/ .

Bycatch is defined as the unwanted fish and other marine creatures caught (e.g. hooked, entangled or trapped) during commercial fishing for a different species. Bycatch is both an issue ecologically and economically. Bycatch can slow the rebuilding of overfished stocks. Organisms that are discarded sometimes die and cannot reproduce. These mortalities put protected species such as whales and sea turtles even further at risk. Bycatch can change the availability of prey and cause cascading effects at all trophic levels. Bycatch can also occur when fishing gear has been lost, discarded, or is otherwise no longer being used to harvest fish (aka marine debris).

Releasing shark from net
Releasing the shark from our trawl net.

NOAA Fisheries works hand in hand with fishing industries to better understand fishing gear, and to develop, test, and implement alternative fishing gear. For example, NOAA Fisheries and their partners developed turtle excluder devices to reduce sea turtle mortality in the southeastern shrimp trawl fishery. NOAA Fisheries funds the Bycatch Reduction Engineering Program that supports the development of technological solutions and changes in fishing practices designed to minimize bycatch. Laws like the Marine Mammal Protection Act and the Endangered Species Act also uphold the reduction of current and future bycatch of species.


Personal Log

It’s hard to believe that today is already day eight at sea. To be honest, I don’t even notice that I am on a ship anymore. We have been very lucky weather wise and the seas are still very calm. I have been spending more time on the bridge assisting with the ‘marine mammal watch’. As I said in blog two, we must keep an eye out for any marine mammals in the area before conducting any water surveys. The bridge is amazing because not only do you get the best view, but you also get to observe how the ship operates in terms of headings, maneuverability, and navigation.

Shelikof Strait
Shelikof Strait

The Shelikof Strait is breathtaking. Chief Electronics Technician Rodney Terry pointed out the white ‘cloud’ above one of the snow-capped mountains was actually an active volcano with a smoke plume rising above it. It was incredible to be able to look out and see a glacier and an active volcano in the same panorama.

Map of Kodiak Island
Map of Kodiak Island and Shelikof Strait. Credit: Kodiak archipelago images.

During one of my marine mammal watches on the bridge, I noticed an oddly flat area of land in the middle of the mountain range that ran along the shoreline. NOAA Corps Officer LT Carl Noblitt explained to me this was actually where a glacier had once weathered down part of the mountain range over time. The glacier has since melted so now all that remains today is its glacial trough.

glacial trough
The remains of a glacial trough.


Animals Seen Today

Besides our unexpected visitor today in the trawl, I was thrilled to hear Chief Boatswain Ryan Harris call out from the scientific deck for Orcas on the horizon. Orcas (aka Killer Whales) have always been a dream of mine to see in the wild. They were pretty far away from the boat, but I was able to see the trademark black dorsal fin rising and sinking at the surface for a few minutes. Hoping to get a photo of one of these pods before our expedition ends.

orca dorsal
Orca dorsal fin. Photo Credit: gowhales.com

Another fun organism I got to see in person today was a Lanternfish that was caught in one of our deeper bongo net surveys. Lanternfish are a deep-water fish that gets its name from its ability to produce light. The light is given off by tiny organs known as photophores. A chemical reaction inside the photophore gives off light in a chemical process known as bioluminescence.

lanternfish
Note the photophores (silver dots).
lanternfish v pencil
This laternfish is full grown. Adults measure 5cm to 15cm in length typically.

Virginia Warren: Calibrations, Drills, and Interviews March 19, 2016

NOAA Teacher at Sea Virginia Warren
Mission: Acoustic Trawl Survey of Walleye Pollock
Geographical Area of Cruise: Shelikof Strait
on NOAA ship Oscar Dyson
Date: 3/17/16 – 3/18/16

Data from the Bridge:
Sky: Cloudy
Visibility: 10 Nautical Miles
Wind Direction: 0.2 (20°) From the Northeast
Wind Speed: 25 Knots (30 Knots at point during the day)
Sea Wave Height: 5 – 6 ft. on average (10 ft. at highest)
Sea Water Temperature: 5.6° C (42.08° F)
Dry Temperature: 4° C (40° F)
Barometric (Air) Pressure: 1018.4

Science and Technology Log:
When the wind picked up, it was decided that the ship would quit fishing and running transect lines with the echo-sounder and instead go into one of Kodiak’s bays to seek protection from the weather (>40 knot winds and 16 – 20 foot sea waves were forecast). While were were ‘hiding’, the ship’s crew had time to fix a trawl winch problem and change nets, and the scientists conducted a calibration of the echo-sounder (this is done at the beginning and end of surveys). When we left the transect line, we went through Alitak Bay and stopped the ship in front of Hepburn Peninsula, with Deadman Bay to the left of the peninsula and Portage Bay to the right (if you are looking at the map). Where the ship was sitting, the bay was 74.8 m (245.4068 ft) deep and 5.6° C (42.08° F). It was still pretty windy (15-20 knots), but the Hepburn Peninsula blocked us from a lot of the wind.

This slideshow requires JavaScript.

DSC02951

Deadman Bay to the left of Hepburn Peninsula and Portage Bay to the right

The calibration process of the echo sounder took some time. The science crew before me already started the process of calibrating the echo sounder before it was time for my shift to take over. They used three down riggers to send three lines under the center of the boat, where the echo sounder is positioned. A calibration sphere was placed a little further down one of the lines. There is also a lead weight put at the end of the line so that it will help hold the calibration sphere in place as the current moves.

tomichFig1

Echo Sounder Calibration Diagram (Source Credit: Sea Technology Website)

Then one of the science crew uses a system to align the calibration sphere with the echo sounder. There are two types of calibration spheres that we used today. The first, and smaller one, was made out of a tungsten-carbide alloy.

patrick-with-sphere1_small

Patrick holding the Tungsten-Carbide Calibration Sphere (photo by Julia Harvey, TAS summer 2013 DY1307)

The second calibration sphere was larger than the first and it was made out of solid copper. This made for a very easy, get a blog done, day for me because the job was completed by the lead scientist Patrick and Robert, one of the other science crew members.

DSC02956

Robert Putting the Copper Calibration Sphere on the Line

 

Echosounder calibration screen

Echo-sounder display during calibration. On the echogram (depth on vertical axis, time on horizontal axis) you can see the calibration spheres hanging below the ship above the seafloor. (credit: Patrick Ressler)

 

x6602ebs

Diagram to Describe Echo Sounder Technology (Source Credit: FAO Website)

x6602ebt

Diagram to Describe Echo Sounder Technology (Source Credit: FAO Link)

 

 

Interview with a Scientist: Kim
For this leg of the research cruise Kim is on the same shift that I work on and she’s also my roommate. She has been great in helping me get accustomed to sea life and training me on what to do while we are sorting trawls in the science lab. She also agreed to let me interview her to share her story with my students. I am extremely grateful for all of the help, training, and friendship she has provided while I have been on the Dyson. Her interview is below:

IMG_0399

Kim Holding a Smooth Lumpsucker from a Bottom Trawl Survey (photo credit: Kim)

What is your educational background?
I have a bachelor’s of science degree aquatic and fishery sciences and a minor in marine biology.

How long have you been working as a scientist?
About 10 years.

How long have you been working as a NOAA contractor?
6 years.

What is your job description?
I am a stomach content analyst.

How often do you go on a survey?
Usually twice during the summer for about three weeks at a time.

What is a highlight for you while at sea?
A family of 4 got lost at sea and had been missing for 60 hours. We were out on survey and came across them in their life raft. We were able to pull them out. They wrote a book about it called “Lost in the Shelikof: an Alaskan Family’s Struggle to Survive”.

If you would like to read more about this story, here is the link to the book:  http://www.amazon.com/Lost-Shelikof-Alaskan-Familys-Struggle/dp/145650584X

What made you want to be a scientist?
I spent a lot of time on the water as a kid crabbing and playing in the water. I was always drawn to sea life and I wanted to learn as much about it as I could.

What enjoy most about being a scientist?
The survey work is my favorite part of my job. You get to see a lot of unique species that most people don’t get to see. A lot of deep water species. I also like going out on survey because most of my work is done in the lab looking at samples under a microscope. It’s refreshing to be able to travel up here and work on a boat every summer. Sometimes when I’m out here I stop and think “I can’t believe this is my job.” I learn something new every time I come out here. It’s hard work, but it’s also a lot of fun.

What is the hardest part of your job?
We have a sampling plan that tells us what species and what size range of fish we want to collect stomachs from. It can be difficult to get stomachs from all the fish that you’d like to simply because the net doesn’t catch individuals of a certain size. Fish frequently regurgitate their food when they come up in the net and it can be a challenge sometimes to find ones that haven’t thrown up.

What is your favorite sea creature?
Cuttlefish, they are pretty cute.

Here is a short YouTube video about cuttlefish if you would like to see what they look like and how they act: https://www.youtube.com/watch?v=E-zodF-XrSE

Any advice for people who want to be a scientist?
Volunteer as much as you can. Internships, especially those involving field work, are a great way to gain experience and help you decide what aspects of a particular field of science you’re most interested in. Also, having enthusiasm for the work that you’re doing goes a long way towards helping you get possible internships and job opportunities in the future. Hard work and enthusiasm are what helped me get where I am today in my career.

Personal Log:
For the first couple of days on board the Dyson we had beautiful weather blue skies, pretty clouds, beautiful scenery, and calm seas. However, experiencing calm seas came to a halt on Thursday. The wind picked up which caused the ship to rock back and forth with the waves. Gusts of wind would cause water to splash over the bow of the ship, creating a very entertaining show. I loved to watch the waves move and feel the ship’s reaction to the power of the water. When I went to visit the bridge of the ship one wave hit the boat hard enough to ring a bell that is hanging in the bridge. Sitting down to do work or eating a meal can be kind of fun when the wind is up. It’s almost like a roller coaster, because you never know when your chair is going to slide sideways. Walking while the ship was rocking was also interesting because two normal steps could become 5 so that you can keep your balance and stay on your feet.

This slideshow requires JavaScript.

On Friday we had our mandatory at sea drills. The first was a fire drill which was very easy for me because all I had to do for that drill was meet up with the rest of the science crew in a preplanned muster station. The next drill was a little more eventful. We had to bring a survival suit, a life jacket, a hat, and gloves to the preplanned muster station. Once we were there roll was called to make sure we were in the correct station to get on the correct life raft should it became necessary. This part wasn’t too bad because the scenery outside was very pretty. However, after that part was complete the people new to the ship had to put on the survival suit, which is supposed to take less than a minute to put on. This was my first attempt to get into a survival suit and I needed a lot of guidance from ENS Ben Kaiser, one of the NOAA Corps officers. He was very patient with me and also took my picture when I was finally able to get it on.

DSC02993

My First Time in a Survival Suit

 

The Oscar Dyson takes safety very seriously!!

This slideshow requires JavaScript.

 

Amie Ell: Out to Sea, July 3, 2013

NOAA Teacher at Sea
Amie Ell
Aboard NOAA Ship Oscar Dyson (NOAA Ship Tracker)
June 30 – July 21, 2013

Mission: Alaska Walleye Pollock Survey
Geographical Area: Shelikof Strait
Date: July 3, 2013

Location Data from the Bridge:
Latitude: 154.35.3 W
Longitude: 57.65.65 N
Ship speed: 12  kn

Weather Data from the Bridge:
Air temperature:
Surface water temperature:
Wind speed: 13.01 kn
Wind direction: 271.17
Barometric pressure: 1,008.6 mb

Science and Technology Log:

Yesterday was the first day at sea for this 18 day research cruise.  You should now be able to follow the Oscar Dyson online by visiting the NOAA ship tracking website:  http://shiptracker.noaa.gov/shiptracker.html

ShipTracker Zoom in

The path the Oscar Dyson is taking through Shelikof Strait

The red triangle shows the location of the  Oscar (photo courtesy of NOAA)

The red triangle shows the location of the Oscar Dyson (photo courtesy of NOAA)

Here are some questions I’m getting from my students.

From Kathy H.:

Why is the Pollock so popularly used for our fast food meals and imitation crab? I am thinking it must be plentiful, dense, and mild.

You are correct Kathy! One reason Pollock is used for fast food restaurant and imitation crab is that it is a mild fish. Another reason would be that  when cooked it has the desired characteristics of being white, dense, and flakey.  Also, the pollock is higher in oil counts which make this fish more flavorful than others.

Pollock waiting to be measured.

Pollock waiting to be measured.

From Lorie H.: Do you know if the Pollock are fished in other areas besides Alaska?

The Alaskan Pollock that the scientists are studying here on the Oscar Dyson are commonly found in the Bering Sea, Gulf of Alaska, and the Russian Sea of Okhotsk.  Another type of pollock is the Atlantic pollock. These are not fished at the same level as the Alaskan pollock.  While about 11 million pounds of the Atlantic pollock are fished each year around 1 million tons of Alaskan Pollock are fished in a year.      

Me waiting for the fish to come in.

Me waiting for the fish to come in.

Personal Log:

Since many of you asked to hear more about what it is like to live on the Oscar Dyson, the following will give you an idea of  some of the amenities on board the Oscar Dyson.

I get top bunk!

I get top bunk!

Head

The head (bathroom)

The Oscar Dyson has 21 state rooms.  I share this room with another scientist.  Our stateroom consists of a porthole (window), a set of bunks (I have top bunk), desk, telephone, refrigerator, and a set of lockers.  My roommate and I are on opposite watches.  The rooms are very small and quickly become crowded when just two people are in the room.   She works from 4 in the morning to 4 in the afternoon, while I work from 4 in the afternoon to 4 in the morning.  Each stateroom has its own head (bathroom) with a toilet, sink, and shower.

There are several common areas as well.  Across the passage way from me is the lounge.  This is a very comfortable room with a couch, large chairs, many books, games, and a large screen TV with a DVD player. Another popular common area is the galley.  This popularity probably can be attributed to the fact that the stewards on the ship are excellent cooks.

The Galley

The Galley

Did You Know:

pollock_otolith

A pollock otolith

Fish have tiny bones in their heads known as otoliths.  This bone is found in the ear of the fish.  These bones have circular rings and can help scientists determine the age of a fish.   Do you remember learning about other rings in nature that can be used to determine age?  Reply below if you can think of one.

For Next Time:  The Labs on the Oscar Dyson

Kathleen Harrison: …and Ending the Adventure, July 22, 2011

NOAA Teacher at Sea
Kathleen Harrison
Aboard NOAA Ship  Oscar Dyson
  July 4 — 22, 2011

Location:  Gulf of Alaska
Mission:  Walleye Pollock Survey
Date:  July 22, 2011

Weather Data from the Bridge
True Wind Speed:  15.33 knots, True Wind Direction:  214.98°
Sea Temperature:  8.3° C, Air Temperature:  8.8° C
Air Pressure:  1014.59 mb
Overcast, 5 foot seas
Latitude:  55.54° N, Longitude:  155.57° W
Ship heading:  119°, Ship speed:  10.5 knots

Personal Log:  The time has come for me to pack my bright orange suitcase (thanks, Mom) and leave the NOAA ship Oscar Dyson.

my orange suitcase

Ok, so it is orange, at least I can find it in the luggage carousel at the airport.

The past 3 weeks have been an incredible adventure, and I am now making the journey home to Virginia Beach.  Almost everything I have seen and experienced has been new for me — especially identifying the animal species here in the Gulf of Alaska.  I am extremely grateful to the Teacher at Sea Program for allowing me to participate — I now have a better understanding of how real science is conducted, and am very excited to share this experience with my students, colleagues, family, and friends.

The title of this log entry might be Ending the Adventure, but I hope it is not the end of my relationship with NOAA.  I would like to be active in the Teacher at Sea Alumni group, and participate in other teacher activities that NOAA sponsors, such as Teacher in the Field, and Teacher in the Lab.  And, every time that I tell someone about this adventure, I will be reliving it all over again.

sunrise in Shelikof Strait

Sunrise in Shelikof Strait, 5:30 am.

In reflecting over the time that I have spent on board the ship, I have come to some conclusions about science, and life at sea:  1) Science is not easy, glamorous, or neat most of the time.  2) Science is messy, time-consuming, and frustrating most of the time.  3) Scientists must talk to each other, discussing ideas and problem solving.  4) Scientists on a team must at least get along with each other, and it is helpful if they actually like each other. 5) Scientists set very high goals, and then spend their time trying to make equipment work, manage millions of data points, and praying for good weather.  6)  The work that marine scientists do is vital to our understanding of the seas.  7)  Every science teacher should participate in real world research.  8) Alaska is a beautiful place.  9)  One can get used to the smell of fish.  10) I wonder what it will be like to walk on a non-moving surface again?

rain gear, the height of fashion

Rain gear pants, used to keep the fish slime off.

Mountains of the Alaskan peninsula

Snow covered peaks of the Alaskan Peninsula.

Thank you for reading this log, I hope that you have been informed and found it interesting.  The next time that you eat seafood, or see fish in an aquarium, think of the countless scientists, ship’s crew, and whales who have contributed their knowledge and skills to the conservation and use of the world’s oceans.

And thank you to my husband and daughters for letting me be away for 3 weeks.

Anne Mortimer: Shelikof Strait, July 16, 2011

NOAA Teacher at Sea
Anne Mortimer
Onboard NOAA Ship Oscar Dyson
July 4 — 22, 2011 

Mission: Pollock Survey
Geographical area of cruise: Gulf of Alaska
Date: July 16, 2011

Weather Data from the Bridge
Sat. July 16, 2011—sunny and windy
Air Temperature:  10.8⁰C
Sea Temperature: 9.3 ⁰C
Wind direction: 208.9⁰C
Wind speed: 23 knots

Science and Technology Log

Everyday on the ship there are many other research projects that are occurring, in addition to the pollock survey. Other scientists (currently not on this leg) are collecting data from a multiple beam system to look at the characteristics of the ocean floor, such as roughness or sound reflectivity, using 30 sound beams (of various frequencies between 100 and 115kHz) in a fan-shaped configuration. For this project, the researchers use several devices. First, they need updated temperature and depth data, which allows them to calculate the speed of sound and the attenuation coefficient (how easily a fish is penetrated by a beam – a large attenuation coefficient means that the beam is quickly weakened as it goes through the fish), which vary as a function of temperature and salinity. To do this, they have chosen select locations to release an expendable bathythermograph, or “XBT.”

This chart shows locations for XBT drops. The yellow and blue stars show where on the transect the XBT should be released.

This torpedo-shaped device is launched overboard with a gun-like dispenser. It has a long coil of fine, copper wire that begins spinning out when it’s released and the wire transmits temperature data back to the ship through the cable in the launch dispenser, and then to the database in the lab. The depth is calculated based on the assumed descent rate of the torpedo.

Getting Ready to Launch

Getting Ready to Launch

Link to Graph of XBT data

In order to confirm the suspected bottom composition from the multi-beam measurements, a drop camera is deployed at specific locations. The drop camera is usually performed off the side of the ship at night, so it doesn’t interfere with operations that can only happen during the day.  The deck crew will deploy the drop-camera using a hydraulic winch, where it is lowered to the bottom. The camera then records for 5 minutes of time at the bottom. Several camera drops are usually completed in an area.


Another operation that happens mostly at night, is using the “Drop TS” or Drop Target Strength echo-sounder. The DTS is used to get a stronger signal at closer range to fish. This helps the scientists differentiate the signals, or echo, that individual fish may give. Many fish have swim bladders (or air bladders) that allow them to regulate their buoyancy in the water. There is a large difference in the sound velocity in air and in water, so this swim bladder causes fish to give strong echo returns.  The DTS can give them a better idea of fish counts when looking at the echograms, but they aren’t perfect. No fish will remain still or perfectly straight. Just like the echograms from the single source mounted on the hull of the ship, the colors red and brown show strong signals, yellow is medium, and blue and green are weak.

This echogram was created with data from the DTS. Each wavy line is probably a separate fish.


Shelikof Strait

We are now traveling south through Shelikof Strait. This body of water runs northeast to southwest along the Alaska Peninsula on the east side of the Kodiak Archipelago. It extends about 150 miles and is dominated by many glaciers, cliffs, and both active and dormant volcanoes. The Alaska Peninsula and Aleutian Islands are part of the Pacific “Ring of Fire.” This is a seismically active area because the Pacific plate is subducting below the North American plate. This has been occurring for millions of years, also giving glaciers time to scour away at the mountains, creating U-shaped valleys and sharp peaks. We’ve had particularly good weather the past few days and caught a great sunset behind the island-volcano Augustine.

Sunset on Augustine

Raspberry Island

Personal Log

So far we are on day 2 (3?) of fair weather and partly sunny skies and I love it. Shelikof Strait is just amazing–there are volcanoes every direction you look and we’ve had beautiful sunset after beautiful sunset. The transect lines we are running in these waters run east-west so we are very close to shore every few hours which means lots of time for pictures. Tonight I went to the flying bridge with Kathleen, the other teacher, so we could whale watch. She had been up earlier (she works the day shift!) and saw a fin whale not too far from the shore and boat. We saw lots of whale blows far off in many directions, but none again that close.

Later after the sun went down and I had started my laundry and next blog entry. The net was in the water for another trawl. Luckily it wasn’t a big catch (I was tired and not ready to slice open tons of fish), but a very little one — literally! We caught mostly juvenile pollock and some smelt fish called eulachon and capelin. We also got our token salmon — we seem to catch one with every trawl — and some squid and jellies. We had some technical difficulties with the catch-processing program, so we were a little delayed in getting started and we had a team of two rather than three. Needless to say, we didn’t finish until after 2 am. Just in time to have some Cheerios for dinner.

The highlight of the night was Dall’s porpoises, which were following the boat to four different drop-camera sights! They were darting everywhere — it was fantastic!

Species Observed

Humpback whales, seagulls, storm petrel, northern fulmar, Dall’s porpoises, juvenile pollock, eulachon, capelin, squid, adult pollock, chum salmon

Kathleen Harrison: CTD, XBT, Drop, July 18, 2011

NOAA Teacher at Sea
Kathleen Harrison
Aboard NOAA Ship  Oscar Dyson
July 4 — 22, 2011


Location:  Gulf of Alaska
Mission:  Walleye Pollock Survey
Date: July 18, 2011

Weather Data from the Bridge
True Wind Speed:  19.35 knots, True Wind Direction:  231.44°
Sea Temperature:  10.5° C, Air Temperature:  10.11° C
Air Pressure:  1010.53 mb
Latitude:  57.54° N, Longitude:  154.37° W
Ship speed:  12.4 knots, Ship heading:  134.5°
Fog on the horizon, overcast

Science and Technology Log

One thing that I have learned on this trip (don’t worry, I have learned more than one thing) is that the government, and scientists, like to use abbreviations for equipment, procedures, and groups of people.  For example,  did you know that MACE stands for Midwater Assessment Conservation Engineering?   Well, now you do. The NOAA scientists that are aboard the Oscar Dyson work for the Alaska Fisheries Science Center, which is part of MACE.  Three of the abbreviations that I have become familiar with are:  CTD (conductivity, temperature and depth), XBT (expendable bathythermograph), and Drop (Drop camera).  These are devices or procedures that the NOAA scientists use on board the Oscar Dyson to gather information that will help in determining the biomass of Pollock.

Conductivity, Temperature and depth device

The CTD measures conductivity, temperature and depth of sea water.

When I say “the CTD”, I am referring to a device, but the letters actually come from the procedures that the device performs.  It is lowered into the water on a cable, and its instruments measure the conductivity (how much electricity will pass through – an indirect way of measuring salinity) and  temperature of the sea water, and depth.  Niskin bottles may be attached to the CTD frame to collect sea water at selected depths.  This information gives scientists knowledge about sea water properties, and over time, will indicate changes in the environment.

Watch this video to see the data as it is being collected.

launching the XBT

A hard hat and flotation device are required on the weather deck (any deck open to the weather), even to launch the XBT.

Launching the XBT has been one of my jobs on the Oscar Dyson, at least during my shift.  This device measures temperature and depth of sea water.  It is basically thrown overboard out of a handheld launcher, which looks like a giant pistol thing, and remains attached to a very thin wire.  Data is sent through this thin wire until it reaches the ocean floor, then the wire is broken.  The device is not retrieved – hence the name – expendable.

thermocline

The data is graphed, and a beautiful thermocline is produced.  An XBT is launched 3 – 4 times a day, in different locations.

camera and light attached to frame

The Drop Camera is attached to a frame to protect it. The light is at the bottom of the frame.

The Drop Camera is an underwater camera that is lowered to the ocean floor.  The camera is pressure activated, so it starts recording at a certain depth.  It has a bright light that comes on when the camera is operating.  Extra line is fed out, because the ship is still moving, and the scientists do not want the camera to drag across the bottom.  It records for a few minutes, then it is hauled back to the boat, the memory card is retrieved, and the video is examined.  This information about the ocean floor is valuable to commercial fishermen, and future scientific missions.

sea stars and flat fish

The ocean floor close to Alaska's coast is home to a variety of sea stars, including brittle stars, as well as flat fish such as sole, flounder, and halibut. (NOAA Ocean Explorer)

New Species Seen  

Minke whale

Great Northern Diver (Loon)

Harbor Seal

Fin Whale

Humpback whale

4:30 am, Shelikof Strait

I was blessed to see this full moon about 4:30 am, with Mt. Douglas (elev. 7000 ft) in the background, in the Shelikof Strait.

Personal Log

Today was a fantastic day for wildlife and scenery viewing, as the sun was shining, the winds were calm, and it stays light until midnight here in the Shelikof Strait, west of Kodiak Island.  I started the day by going to the bridge around 4:30 am, and was delighted to see a bright full moon, and volcanoes of the Alaskan Peninsula.  The day only got better, as the sun rose around 5:30 am.

fin whale blow and dorsal fin

I have new respect for whale photographers, they are very hard to capture in a photo, here is my amateur attempt.

I spent a lot of time on the flying bridge, looking for whales, and finally took a photo of a spout and fin.  I was so excited!  You have to be looking at the right spot, at the right time.  Our transects take us close to Kodiak Island and its rocky cliffs, as well as the Alaskan Peninsula with its impressive glacier covered volcanoes.

bold and steep cliffs of Kodiak

The cliffs of Kodiak rise straight up out of the sea, bold and stunning.

We had a successful trawl today, and I spent several hours in the fish lab.  My head was kept warm by this pink knit hat that my sister made for me.  Thanks, Jan!

the fish lab is cold, need a hat

Thanks, Jan, for making this hat for me, I was nice and warm while processing fish today!