Tom Savage: Tuning in to Sei Whales, June 16, 2015

NOAA Teacher at Sea
Tom Savage
On Board NOAA Ship Henry B. Bigelow
June 10 – 19, 2015

Tuning in to Sei Whales

Mission: Cetacean and Turtle Research
Geographic area of Cruise: North Atlantic
Date: June 16, 2015

Weather Data from the Bridge
Air temperature: 13 C
Wind speed: 10 knots
Wind direction: coming from the North West
Relative humidity: 95%
Barometer: 1004 millibars

Personal Log

Today is my third day at sea and I’m enjoying every moment; time onboard the ship flies. Although time onboard is dwindling, lots of discovery remains. Sunday brought sunny skies and warm temperatures, another perfect day for whale identification. It has been a real joy working with this exceptional group of professionals. Everyone is very supportive of each other and mission focused.

Science and Technology Log

The mission of this cruise is Cetacean research, but what exactly is a Cetacean? Cetus is a Latin word used in the context of biology defined as “whale”. Whales and dolphins are included within this order of classification. As stated in my earlier blogs, we are focusing on sei whales, pronounced ‘say” and beaked whales.

Why study sei and beaked whales? These whales are some of the least studied and scientists know relatively little about them. Information collected so far on sei whales: they have poleward migration trends, feed on small fish, krill and copepods (small crustaceans), and are thought to be populated along boundaries of elevated sea floors such as Georges Bank. Along the border of Georges Bank, upwelling of small prey occur due to ocean currents creating a perfect feeding ground for whales. Sei whales will also skim the ocean surface for food. Unfortunately, due to this feeding habit, many sei whales are struck and killed by large ships.

The other type of whale we are searching for are beaked whales. These whales are extremely difficult to identify due to their feeding and swimming behaviors. They are deep divers and spend a lot of time at depths of more than a thousand feet feeding on squid and fish. When they surface, they are inconspicuous and not acrobatic, and they are very difficult to see. Because they are found offshore in very deep waters, there are few opportunities to study them. Most of what is known about these species comes from individuals that have stranded on beaches where people can find them.

Spectrogram

Acoustician scientist, Chris, analyzing a spectrogram

One method scientists on board use to detect the presence of sei whales is to listen for them using hydrophones (underwater microphones). For this cruise, the acousticians are deploying sonobuoys: short term recorders that can transmit live audio feed through VHF channels. Sei whales generate tonal calls and produce a “down sweep “ from high to low frequency with a range from of 80 – 30 Hz. Sei whales are classified as a Baleen Whale.

Sei whale

Sei whale, photo courtesy Northeast Marine Fisheries, NOAA Whale permit mmpa # 17355

Baleen whales produce tonal calls typically under 1 kHz. For some species, like the humpback whale, song is known to be produced only by males, presumably to attract mates. After deploying the sonobuoy, we quickly began receiving signature tonal calls of sei whales. A sound spectrogram is used to interpret and project these acoustics on a graph with frequency on the y axis (vertical) and time on the x axis (horizontal). The darker plots indicate that the whale is close and lighter plots are weaker signals. Sometimes they will call in doubles or triple sweeps. Below is an example of a sei whale tonal call of the coast of Nova Scotia. Can you find the call?

Spectrograph

Sei whale acoustic sample recorded off the coast of Nova Scotia.

Scientists are not sure at this point what purpose these calls serve; for example, they could be used to maintain contact between individuals, attract mates, or advertise feeding areas.

Atlantic White Sided Dolphin

Atlantic White Sided Dolphin Photo taken by Hillary Moors-Murphy

Scientists are also trying to understand the oceanographic and habitat factors that are correlated with sei whale distribution. One question is what kind of prey are in the areas where sei whales are and are not found. In the evening hours, fishing nets are deployed to take a sample of organisms present in the ocean at that location. Shallow nets, called bongos, are used to take samples of zooplankton in the water down to 200m. Tonight, we are in deeper waters and the mid-water trawl net went down to 650 meters for 45 minutes. The net is then pulled in and fish are identified, counted and entered into a computer database. As mentioned above, sei whales like to feed on copepods and small arthropods. Guess what we pulled out of the bongo nets last night?

Copepod Soup

Copepod soup. A delicious dinner for sei whales!

Until next time, happy sailing!

Tom

Tom Savage, Introduction, June 2, 2015

NOAA Teacher at Sea
Tom Savage
     (Almost)  On Board NOAA Ship Henry B. Bigelow
        June 10 – 19, 2015

Mission: Cetacean and Turtle Research
Geographic area of Cruise:  North Atlantic
Date: June 2, 2015

Personal Log

Greetings from Western NC.  My name is Tom Savage, and I am a Science teacher at the Henderson County Early College in Flat Rock, NC. I currently teach Chemistry, Earth Science, Biology and Physical Science. In a few days I will be flying to Rhode Island and boarding NOAA ship Henry B. Bigelow, a research vessel. We will be traveling in the North Atlantic region, mostly in Georges Bank which is located east of Cape Cod and the Islands.  The research mission will focus on two types of whales: Sei and Beaked Whales. Our primary goals will be photo-ID and biopsy collection, acoustic recording, and prey sampling.  I am looking forward to learning about the marine life and ocean ecosystem, and I look forward to sharing this knowledge with my students.

This will not be the first time that I have been out to sea.  A few years ago, I spent a week with eighteen other science teachers from across the county, scuba diving within the Flower Garden Banks National Marine Sanctuary. This week long program was sponsored by the Gulf of Mexico Foundation and NOAA.  This exceptional professional development provided an opportunity to explore, photograph and develop lesson plans with a focus on coral reefs. I also learned about how important the Gulf of Mexico is to the oil industry.  I had the opportunity to dive under an abandoned oil platform and discovered the rich, abundant animal life and how these structures improve the fish population.

Prior to becoming a teacher, I worked as a park ranger at many national parks including the Grand Canyon, Glacier and Acadia. Working at these national treasures was wonderful and very beneficial to my teaching.

Providing young adults with as many experiences and career possibilities is the hallmark of my teaching. During the year, I arrange a “Discover SCUBA” at the local YMCA. Students who have participated in this have gone on to become certified. In the fall I have offered “Discover Flying” at a local airport, sponsored by the “Young Eagles” program. Here students fly around our school and community witnessing their home from the air. A few students have gone on to study various aviation careers.

Flying

“Discover Flying”

 

I am very excited in learning about the many career opportunities that are available on NOAA research vessels. It would be very rewarding to see a few of my students become employed with the NOAA Corps or follow a career in science due to this voyage.

Regards,

~  Tom

 

 

Kelly Dilliard: Day 1 and 2, May 17, 2015

NOAA Teacher at Sea
Kelly Dilliard
Onboard NOAA Ship
 Gordon Gunter
May 15 – June 5, 2015

Mission: Right Whale Survey
Geographical area of cruise: Northeast Atlantic Ocean
Date: May 17, 2015

Weather Data from the Bridge:

Air Pressure:  1018.34 millibars
Air Temperature: 11.3 degrees C
Wet Bulb Temperature: 11.0 degrees C
Relative Humidity: 97%
Wind Speed: 10.4 knots
Wind Direction: 33. 69 degrees

Science and Technology Log

The Right Whale cruise that I am on has several objectives.  The main objective is to collect photo identification and biopsy samples of baleen whales, specifically Right Whales and Sei Whales, and apply dermal tags to the whales via small boats (RHIB = Rigid Hull Inflatable Boat) launched from the stern on the Gordon Gunter.

Once the targeted whales are tagged, a team from Woods Hole Oceanographic Institute (WHOI) will conduct oceanography sampling around the tagged whales using a CTD (which measures conductivity, temperature, and depth).  The CTD will be deployed every 20 minutes for as long as the tag stays on the whale and will collect vertical profile data including conductivity, temperature, depth, and information about zooplankton using a video plankton recorder (VPR) and an optical plankton counter (OPC).

Zooplankton will also be sampled via ring nets off the ship or the small boats.  Another objective is to do visual scans and report observations from the observation deck via large binoculars referred to as “big eyes”.  These observations will be tied into acoustical data being collected by two autonomous vehicles, referred to as gliders, which are surveying the Great South Channel, and sonabouys that can be deployed from the ship or small boats.  The gliders can detect and classify the calls of various baleen whales almost in real time.  Today let’s talk about identification of various marine mammals that we have seen and might see on this cruise.  In future blogs we will look into the acoustics of marine mammals and zoo plankton.

Every day there is a watch schedule with three scientists on watch at once, unless there is fog, and then there is only one monitoring the weather.  These scientists stand above the bridge with two big eyes, one on the port side (left) and one on the starboard side (right).  The third scientist is stationed at the computer inputting sightings.

Via the big eyes, you can record the bearing of the sighting, somewhere between 270 and 90 degrees, and the distance of the sighting, in reticles.  The binoculars are at 25 power, that is an object looks 25 times larger than seen with the naked eye.  The scientists are on the half hour rotation between the three stations, starting with the port side, then the computer, then starboard side.  Watch starts at 6 am and ends at 8 pm (or until it gets dark).  Data collected for a sighting includes the type of animal (right whale, sei whale, minke whale, unidentified dolphin, unidentified whale, etc…), number seen, number of calves, swim direction, certainty of identification, and what was the indicator (blow, breach, body…).  So in order to help out with watch, one needs to learn how to recognize the different species that one might see.

Me standing at the big eyes scope on watch.  (photo taken by Divya )

Me standing at the big eyes scope on watch. (photo taken by Divya Panicker)

The target species of the cruise are North Atlantic right whales (Eubalaena glacialis), which are an endangered species and are protected under both the U.S Endangered Species Act and the Marine Mammal Protection Act.  Right whales are identified by: their “V” shaped blow, a large head with an arched jaw, black and white patterns on the head (callosities are the white), and no dorsal fin or hump.

North Atlantic Right Whale drawing. Note the curved jaw and the white callosities. (image from Duke University – OBIS Seamap)

Another targeted species are sei whales (Balaenoptera borealis), which are another endangered species.  Sei whales are large whales reaching almost 19.5 meters (64 feet) long.  Sei whales are identified by: their pointed head with one ridge, a tall dorsal fin, and seeing the blow and the dorsal fin at the same time.

Sei whale drawing (from BBC news).

Other whales include humpback whales, fin whales, and minke whales.  Humpback whales (Megaptera novaeangliae) are identified by: knobs on their head, white or black undersides (ventral), a low dorsal fin with a broad base that can have distinct nicks or scarring, an S-shaped fluke with a distinct notch, and unique white or black coloring on the ventral side of their fluke.  Humpback whales also tend to breach (come up out of the water) and flap their tails and flippers.  Fin whales (Balaenoptera physalus) are commonly mistaken for Sei Whales and vice versa.

Luckily the data collected usually groups the two whales, fin/sei.  Fin whales have a dorsal fin that sits far back, like a sei whale.  They have a lower, white right jaw and a chevron pattern behind their blowhole.  Minke whales (Balaenoptera acutorostrata) have a pointed head with a ridge, they are small in size, and have a pointed fluke.  Their blow is not usually seen.  Other marine mammals that can be seen include dolphins (various species) and seals.

Humback whale

Drawing of a humpback whale courtesy of NOAA Fisheries: West Coast Region.

Fin whale drawing. (Image from University of California – San Diego)

Minke whale drawing. (image from NOAA PMEL Acoustics Program)

Personal Log

Today is day three on the ship.  We set sail from Newport, RI on Friday at 5 pm and headed towards the Great South Channel, which is located to the southeast of Cape Cod between the Nantucket Shoals and Georges Bank.  Both the Nantucket Shoals and Georges Bank are remnants of past glaciations and have been subsequently modified by marine transport.  The Great South Channel provides a link between the Gulf of Maine and the Northwest Atlantic Ocean and is funnel-shaped with a wider and deeper end toward the north and the Gulf of Maine.  Water flowing in the channel results in the upwelling of nutrients and zooplankton that whales, especially right whales, like to feed on.  The autonomous acoustic gliders picked up signals of whales in the area so we headed towards those waypoints.

Map of Great South Channel

Bathymetric map showing the location of the Great South Channel with reference to the Nantucket Shoals and Georges Bank. The ship path is shown in red (map is from Saturday, May 16th).

We had a beautiful day on Saturday, May 16th.  We woke up to glassy water and blue skies.  The watch started around lunchtime and we had an active day of spotting whales and other marine animals.  We saw humpback whales, minke whales, fin whales and sei whales.  We also saw lots of dolphins playing, a seal or two and some basking sharks.  Towards the later afternoon/early evening we came across a group of sei whales and we stopped the ship to observe.  A sonabouy was deployed in the midst of the whales.  It was a fun experience watching these whales swim around the sonabouy for hours (marked by a small orange blow-up float).  Last light, three of the scientists saw two right whales, recognized by their distinct V-shaped blow.

Sei whales

Sei whales swimming around the orange float of the deployed sonabuoy.  (Images taken under permit NEFSC MMPA number 17355.)

In the middle of the afternoon we performed the safety drills, including mustering on the correct deck with our life jacket and immersion suit, also known as the “gumby suit”.  We then went back to our rooms and had to put on our “gumby suit” in under a minute, without assistance.  This is not an easy feat and after doing it once with a large size (which was way to big for me), I had to do it again with a small size.

Gumby suit

Me in a “gumby suit”. (Photo taken by Suzanne Yin)

Sunday, May 17th, we woke to the ships’ foghorn.  We had fog for most of the morning and off and on during the day.  When fog occurs the person who would normally be on the computer (the center) is stationed up on the bridge observing the weather.  I was a bit intimidated about going on the bridge, but once there had some wonderful conversations with the Captain and several of the crew.  I ended up spending an hour and half up there (well past my shift).  Today was not as active with whales, but we saw several dolphins playing off the bow of the ship.

Whale #1

Whale #1  (Images taken under permit NEFSC MMPA number (17355)

Whale #2

Whale #2  (Images taken under permit NEFSC MMPA number (17355)

Whale #3

Whale #3 (Images taken under permit NEFSC MMPA number (17355)

Alexandra Keenan: Watching for Whales, June 21, 2012

NOAA Teacher at Sea
Alexandra Keenan
Onboard NOAA Ship Henry B. Bigelow
June 18 – June 29, 2012

Mission: Cetacean Biology
Geographical area of the cruise: Gulf of Maine
Date: June 21, 2012

Weather data from the bridge:
Air temperature: 15.84° C
Wind speed: 7.42 knots
Wind direction: coming from N
Relative Humidity 94.9%

Science and Technology Log:

We departed from Naval Station Newport (NAVSTA) shortly after 2:00 pm on June 18th. During our first three full days at sea, we have been intermittently retrieving marine acoustic recording units (MARUs–more on this later) and recording whale sightings on Georges Bank.

Georges Bank is an elevated area of sea floor extending from Cape Cod, Massachusetts to Cape Sable Island in Nova Scotia. This special place is a feeding ground for cetaceans because the topography and position of the bank result in an upwelling of nutrient-rich water which supports a high level of productivity.

Our day begins at 7:30 am when we begin watch sessions.  Every hour and a half, we rotate through three stations. Scientists at two stations use high-power binoculars, dubbed “big eyes,” while a scientist at another station records sightings.

sighting data entry

Peter Duley enters data from a sighting on the fly bridge.

big eyes

Me on the “big eyes” scanning for whales.

The following information is recorded for each sighting:

  • species
  • position of animal relative to the ship
  • distance of animal from ship
  • number of animals in the group
  • calves (if present)
  • animal behavior (porpoising, swimming, breaching, etc.)
  • swim direction

Environmental conditions and ship position data are recorded concurrently. All of this data can then be used together to monitor certain species and to create statistical models of whale populations.

In this area, we expect to see humpback, sei, fin, pilot, and right whales. In order to distinguish species while on watch, we must take into account a few important characteristics:

Spout: The spout is a column of moist air emitted from the whale’s nostril (blowhole) on its back as it exhales. Right whales and humpbacks have short, bushy spouts, while fin and sei whales have tall, columnar spouts. If the wind is strong, it can be hard to distinguish them. Luckily, there are a couple of other ways to identify whales  from a distance.

Dorsal fin: This is the fin on the whale’s back behind the blowhole. Right whales do not have dorsal fins, and humpback whales have a bit of an extra “hump” on their dorsal fin. Fin and sei whales are slightly more tricky to distinguish. The best way to distinguish them is to recognize that the dorsal fin on a sei whale is taller than on a fin whale. There is also a white coloration pattern forward of the dorsal fin on a fin whale called a chevron. Sei whales do not have these. Fin whales also have white markings on their lower jaws, which sei whales do not have.

Fluke: The fluke is the whale’s “tail.” Humpbacks and right whales show their flukes more often than the others when they dive. Right whales have a very smooth black fluke, while humpback whales have more deeply notched flukes that can range in color from all white to all black.

So far on this cruise we have seen: humpback whales, pilot whales, fin whales, sei whales, minke whales, sperm whales, common dolphins, white-sided dolphins, Risso’s dolphins, striped dolphins, bottle-nose dolphins, mola-mola, and a Portuguese man o’ war.

No right whales yet, though tomorrow we plan to cross the Great South Channel in order to retrieve more MARUs, with a possibility of a sighting there. There was also an aerial survey over Georges Basin– the extreme northern edge of George’s Bank– today that reported 12 right whales. We hope to see plenty before the cruise is over, as right whales are the species targeted for biopsy and photo-identification on this mission.

Common Atlantic white sided dolphin

Dozens of common dolphins surrounded the ship on June 19th.

dolphins near ship

Dolphins playing around the ship.

Listening to dolphins

Genevieve Davis records dolphin whistles using the ship’s hydrophone as I listen on headphones.

From the starboard 01 weatherdecks (the decks on the right side of the boat when facing forward), I was able to hear the dolphins whistling to each other as they played around the ship on June 19th. Scientists Denise Risch and Genevieve Davis recorded their acoustics using a hydrophone mounted on the ship’s centerboard.

Personal Log:

Henry B. Bigelow

Galley stores are loaded on to Henry B. Bigelow just before departure.

Seeing the Bigelow from my cab as we drove onto the pier on June 17th was a bit of a shock for me. I didn’t realize quite how huge it was going to be. As I sauntered up the gangway with my backpack, I thought there was no way I could get seasick on a ship this big. My confidence grew as we left port on the 18th and I felt fine. By the end of the next day (our first full day at sea), though, I was looking for a rock to hide under. A stationary rock.

Happily, today felt great. I feel like my normal self again, have gotten into the swing of things aboard, and know my way around the ship. Everyone here has been exceptionally welcoming and nice which made the seasickness easy to forget. Tonight the ship had a summer solstice party on the flybridge. The weather was absolutely beautiful– complete with an orange sunset and glassy seas.

survival suit

Me in my survival suit during an abandon ship drill.

Overall, things are going great here. The ship is  comfortable, the food is delicious, and the whale sightings have been absolutely incredible. I could get used to this.

The video below is a short tour of my stateroom.

Happy sailing!

Ellen O’Donnell: Whales Up Close, May 18, 2012

NOAA Teacher at Sea
Ellen O’Donnell
Onboard NOAA Ship Delaware II
May 14 – May 25, 2012

Mission: Northern Right Whale Survey
Geographical are of the cruise: Atlantic Ocean, Georges Bank
Date: May 18, 2012

Weather observations: Light and variable winds not over 5 knots. Seas with mixed swells from 4 – 7 feet. High pressure system. Partly cloudy

Last night the ship crew worked as we slept. They take conductivity, temperature and pressure readings, through the use of a CTD monitor, which ultimately gives us information on the salinity and depth of the water. The ship ran set transects through the water deploying the CTD monitor at various locations along the transect, collecting this information.

The ship was really rocking and rolling all night long and I woke up at 5:30 AM not feeling very well, and knowing I had to get some fresh air. So I went up on the fly deck, this is where we make our whale observations, and sat up there and watched the sunrise. The ocean is so beautiful and I find myself very drawn to it. It can be a beautiful place and it can be one filled with raw power. Luckily for me today it was on the peaceful side. Looking out at the horizon I can understand why people thought the world was flat. It really does look as if you will reach the end and fall off. As I was waiting for my shift, I saw three whales in the distance, either fin or sei whales, and several Atlantic white striped dolphins. I thought nothing could get better than that. Boy was I wrong!

We started our watch at 7AM and started to see whales very quickly. Even though there were large swells there were no whitecaps. We saw minke, which are small whales, because they swam along the ship. We also saw sei, fin and humpback whales. Around 11:00AM we saw our first group of right whales and that’s when the real fun began.

Today I got to go in the little gray boat and we sped across the water to get close-up shots of whales.

Me getting ready to take pictures

Biologists Jamison Smith and Jen Gatzke help direct the small boat from the flybridge (photo: Genevive Davis)

There is a list of right whales that need biopsies. A biopsy is when you shoot a dart into the back of the whale and get a small piece of skin and blubber. Typically, there is little response from the whales when you do this. You could probably equate it to a mosquito bite for us. The skin biopsy is then analyzed for the genetic code, or DNA, in a lab. This gives scientists an idea of who is related to whom, in the whale world, so to speak. Through this data they have found that there are a small number of male right whales fathering the calves. Why? At this point they don’t know but you can sure whale biologists are trying to figure this out. The blubber is immediately preserved and then it too is analyzed. However, the blubber is analyzed to determine the possible level of contaminants in the whale.

Two right whales together close to our boat

We took close up shots of both the left and right heads of each whale and checked to make sure it wasn’t one we needed to biopsy. Remember, you identify right whales by their callosities. While we didn’t find any that needed biopsies, we got close to eleven right whales! We got close to one group of three right whales who were following each other like a train. One head would come up, then the body, then the fluke went up and it would go under. Just as the first whale went under the second came up right by the first’s fluke, did the same thing, and then the third. It was fascinating. It also gets a bit confusing trying to identify all three animals and making sure you have the correct pictures. The scientists are great at sorting through the information quickly and trying to keep track of the individuals.

At one point we were tracking a right whale and it was surrounded by sei whales feeding in the same location. We had about 10 whales all around us and at times it was hard to follow our right whale because we had to wait for the sei whales to get out of our way! It was amazing we could really see how they fed close up (more on their feeding methods in the next blog). Sei whales have a very different head and of course the dorsal fin I mentioned before. They are very sleek and streamlined looking whereas, I feel the right whales look more like the hippopotamuses of the ocean!

Sei Whale (photo Allison Henry 5/18/12)

Right whale looking like a hippo

Very little is know about sei whales, which are also endangered species, so effort is being made to start biopsying them. Therefore, while we were out there, Peter Duley, our chief scientist biopsied a sei whale. He uses a cross-bow with an arrow, that is designed to cut a small piece of blubber. Pete hit the whale on the first try. It was a great shot!

Peter Duley NOAA biologist targets sei whale (photo: Genevive Davis 5/18/12)

slumber

“Slumber” Humpback whales are identified by their fin patterns

We also got very close to a humpback whale. Humpbacks are identified by the patterns on their flukes. They also have a dorsal fin, but the shape can be quite variable and sometimes is just like a knob. Therefore, they are often mistook as a right whale until you see their fluke. We took pictures of this humpback so that the scientists studying them will get an accurate sighting on where this individual is located. In fact, upon communication with one of the humpback experts we were able to identify this whale which was first identified in 1999 and is called “Slumber”.

On our way back we went near a few basking sharks. These are sharks that are also filter feeders. They just swim slowly with their mouth open and collect any krill in the water. We were just about done, finishing up with our last right whale and he breached in front of us about 30 feet from the boat. It was amazing. We were out on the little gray boat for nearly five hours. It is five hours I will never forget for the rest of my life.

And to top off one of the best days of my life, mother nature decided to give us one spectacular sunset. Life is good.

Sunset off the Delaware II

Personal Log:

Another excellent part of this trip is one I bet a lot of you are thinking about. How is the food? I had heard that the food on board NOAA ships is good, but I wasn’t ready for the exceptional meals I have been served. The food is fantastic! Every night I have had some kind of fish or seafood , although there is always a choice of chicken or beef as well. My family will tell you that although I love seafood, fish is really not my thing. OK, I have officially changed my mind! I have had haddock, swordfish and halibut and every bite was a treat, especially the blackened swordfish with a mango chutney sauce. And meals aren’t everything. There is always some tasty treat hot out of the oven, or fresh fruit, available in between meals.

So why do we have such great meals? Well the credit has to go to John Rockwell, chief steward and Lydell Reed, second cook. John is in charge of purchasing, meal planning, cooking and cleaning. He comes by his culinary ability naturally, as he was raised in the restaurant business, and has an associates degree in culinary arts. He joined the wage mariner program (more on this later) and has been with the Delaware II for six years. Lydell also grew up in the food industry and worked as a sous chef before joining NOAA’s wage mariners.  Lydell has also been with NOAA for six years, but he is in a pool which means he moves around from ship to ship filling in for the second cook slot when needed. Whatever their background, they are amazing in the kitchen and it’s fun to walk down while they’re cooking. They always seem to be having a good time, you never know what music will be playing and there is always a great smell in the air.

John Rockwell and Lydel Reed creating gourmet food

Question of the Day: Why would sei whales and right whales be eating in the same places?

Christopher Faist: Beast or Famine, July 30, 2011

NOAA Teacher at Sea
Chris Faist
Aboard NOAA Ship Henry B. Bigelow
July 20 — August 1, 2011

Mission: Cetacean and Seabird Abundance Survey
Geographical Area: North Atlantic
Date: July 30, 2011

Weather Data
Air Temp:  19 ºC
Water Temp: 18 ºC
Wind Speed: 12 knots
Water Depth: 64 meters

Science and Technology Log

When traveling in the ocean you never know what you will get.  Scientists can try to predict the weather or the amount of animals that will be seen in a particular area but nothing is as valuable as going to the area and recording what you see.  For the last couple of days we have been traveling in deep water off the continental shelf of the east coast of the United States.  Yesterday, we made a turn toward the edge of the shelf and we were very surprised by what we found.  (Check the Ship Tracker to view our path.)

The ocean can best be described as a patchy, dynamic environment.  Some days we have traveled for hours and not seen a single animal but on days like yesterday, we saw so many animals our single data recorder was busy all day.  Since the start of this cruise we have averaged about 30 sightings a days.  Yesterday, we had 30 sightings in the first 30 minutes of observation and ended with over 115 sightings.

Two Common Dolphins

Two Common Dolphins

Species ranged from abundant Common Dolphin, to rare and elusive beaked whales.  The sighting conditions were so outstanding the Marine Mammal Observers were identifying everything from a small warbler to the second largest whale, a Fin Whale.  Large whales, like Sei and Minke Whales, were concentrated in one area, while the dolphins were seen in other areas.  We passed over several undersea canyons and cetacean abundance over these canyons was like nothing one of the scientists had ever seen.

Two tools in the ship’s wide array of scientific tools, help scientists document the small animals that the whales and dolphins might be feeding on over the top of the canyons.  One is the XBT, or Expendable Bathythermograph, and the second is a VPR, or Video Plankton Recorder.  The XBT is launched from the moving ship to document the temperature  and water density along the ship’s track.  They are inexpensive and record data in real-time, giving accurate and up to date information about the area the animals are most abundant.  The VPR is a tool used at night, while the ship moves slowly, to take pictures of the plankton that occurs along our route.

Example of a VPR image

Example of a VPR image

The combination of temperature, depth and photographs of plankton gives scientists a clear picture of the environment that congregates large densities of cetaceans.  By understanding the factors that contribute to cetacean population changes, scientists are able to make recommendations to lawmakers about how to protect this natural resource from human impact like bycatch from the fishing industry or ship strikes in commonly trafficked shipping lanes.

Personal Log

I am disappointed that we only have two days left on our trip.  I have thoroughly enjoyed my time at sea.  Crazy weather this morning of 30 knot winds and 6-8 foot seas will not be a fun memory but thankfully, this evening the weather settled down and we watched a beautiful sunset while playing games on the top deck.  I am not sure that I could be a marine mammal observer but I look forward to taking this unique opportunity and turning it into a learning experience for my students.

Since this will be my last post from sea I thought I would leave you with some images of ocean life that was not a marine mammal or seabird.  Enjoy.

Flying Fish

Flying Fish

Blue Shark

Blue Shark

Dusky Shark

Dusky Shark