Andrea Schmuttermair: Collecting Data, June 30, 2012

NOAA Teacher at Sea
Andrea Schmuttermair
Aboard NOAA Ship Oregon II
June 22 – July 3

Mission: Groundfish Survey
Geographical area of cruise: Gulf of Mexico
Date: June 30, 2012

Ship  Data from the Bridge
Latitude: 2830.05N
Longitude: 8955.4W
Speed: 10 knots
Wind Speed: 7.11
Wind Direction: S/SW
Surface Water Salinity: 29.3
Air Temperature: 28.4C
Relative Humidity: 63%
Barometric Pressure: 1012 mb
Water Depth: 257.19m

Don’t forget to follow the Oregon II at: www.shiptracker.noaa.gov

Science and Technology Log

fish board

This is the fish board we use for measuring each critter in our sample.

Now that we’ve talked about how we collect, sort, and measure our catch, let’s take a closer look at the way we measure, weigh and sex our critters.

When measuring the critters, we use a fish board that is activated by a magnetic wand to measure the animal to the nearest millimeter.

When the fish is placed on the measuring line, we touch the magnetic wand to the board and the length is recorded into our computer program, FSCS (Fisheries Scientific Computer System).

Depending on the type of fish we catch, there are different ways to measure it.

scorpion fish total legnth

Here is Alex measuring the total length of our scorpion fish.

total length measurement

This is how we would measure a fish for its standard length, which is just before the tail fin starts.

fork length measure

This is how we would measure a fish for its fork length.

Cutlass measuring

For fish such as this cutlassfish, we measure the length from the head down to the anus, as seen here on the board.

When we are done measuring, the fish is placed on a scale to determine its weight to the nearest gram. When we confirm the weight of the fish, that weight is automatically put in the computer for us- no need to enter it manually.

Our last task is to determine the sex of the fish. For many fish, this is done by making an incision in the belly of the fish from their anus to their pelvic fins. It’s easiest to determine the sex when it is a female with eggs. In the males, you can see milt, or sperm, which is a milky white color.

male fish

This is a male fish. Notice the arrow pointing to the testes.

female fish

Here we have a female fish.

For the flatfish, you can see the female’s ovaries when you hold the fish up to the light. Males lack this feature.

male flat fish

This is a male flat fish.

female flat fish

Here we have a female flat fish- notice her gonads.

Because we were catching quite a few shrimp earlier in the leg, I got pretty good at sexing the shrimp. Remember, we take samples of 200 for each type of shrimp, and we often had more than one type of shrimp in each trawl. Male shrimp have a pestama on their first pleura to attach onto the females. The females are lacking this part. Although it’s not necessarily an indication of sex, on average the female shrimp tend to be larger than the males.

male shrimp

Here is a male shrimp.

female shrimp

Here we have a female shrimp, which is lacking a pestama.

You  know from my previous post what we do with the data we gather from the shrimp, but what about the other fish? With the other fish and critters we catch, we use the data to compare the distribution across the Gulf and to compare it to the historical data we’ve collected in the past to look for trends and changes.

Sometimes scientists also have special requests for samples of a certain species. Some scientists are doing diet studies to learn more about what certain types of fish eat.  Other studies include: species verification, geographic range extensions, age and growth, and distribution. Through our program, we have the ability to create tags for the scientists requesting the samples, allowing us to bag and freeze them to send to labs when we return to land.

showers

There are 2 communal showers for our use on the bottom deck.

Personal Log

I’ve had a few people ask me what the living quarters and the food is like on the ship, so I wandered around the ship with my camera the other day to snap some shots of the inside of the Oregon II. There are 17 staterooms on board. Most of the staterooms are doubles, such as mine, and are equipped with bunk beds to sleep on. It makes me reminisce of my days at camp, as it’s been a while since I’ve slept on a bunk bed! We have a sink and some cabinets to store our belongings. Once a week they do room inspections to ensure our rooms are neat and orderly. Most importantly, they want to make sure that our belongings are put away. If we hit rough waters, something such as a water bottle could become a dangerous projectile.

Walter, doing what he loves

My stateroom is on the bottom deck, where there are also communal showers and toilets for us to use. We can do our laundry down here, providing the seas aren’t too rough. Most of the staterooms are on this bottom deck, as the upper 2 levels are the “living areas” of the ship. On the main deck is the galley, where we eat all our meals, or where we head to when we are trying to make it through the shift to grab a snack or a cup of coffee. This tends to be right around 4:30/5:00am for me, especially when we aren’t too busy. I’ve gotten used to the night shift now, but it still can be tiring, especially when we have a long wait in between stations. Our stewards take very good care of us, and there is always something to snack on. Meals have been pretty tasty too, with plenty of fresh seafood. My favorite!

chart room

Junie, one of the NOAA Corps officers, working in the chart room on the navigational charts

On the top deck we have the lounge, a place where we hang out in between shifts. We have quite a good movie selection on board, but to be honest we haven’t had the time to take advantage of it. They’ve kept us very busy on our shifts so far, and today is one of the first days we’ve had a lot of downtime. Outside we also have some workout equipment- a bike and a rowing machine- to use on our off time. When you set the rowing machine out on deck, it’s almost like you are rowing right on the ocean!

dive

LT Harris, LT Miller, and Chris getting ready for the dive. Jeff and Reggie help them prepare.

The other day, 2 of the NOAA Corps officers, LT Harris and LT Miller (who is also the XO for the Oregon II) and 2 of the deck crew, Chris and Tim, got ready to go out on a dive. NOAA Corps officers need to do a dive once a month to keep up their certification. Sometimes they may need to fix something that is wrong with the boat, and other dives are to practice certain dive skills. They dove in the Flower Gardens, which is a national marine sanctuary with a wide diversity of sea life. I was hoping they’d see a whale shark, but no such luck. We stopped all operations for the duration of their dive.

Favorite Catch of the Day: Here are a few cool critters we pulled up today. In addition to these critters, we also started seeing some sea stars, lots of scallops, and a variety of shells.

angel shark

An angel shark

jelly soup

How about some jelly soup?
(there are about 500 jellies in there!)

large flounder

Southern Flounder

roundel skate

A roundel skate

Critter Query: This isn’t a critter question today, but rather a little bit of NOAA trivia. 

What is the oldest ship in the NOAA fleet and where is its home port?

Don’t forget to leave your answers in the comments below!

Mark Silverman: An Unfortunate Situation, November 16, 2011

NOAA Teacher at Sea
Mark Silverman
Onboard NOAA Ship Oregon II
November 11 – 13, 2011

Mission: Cancelled

I arrived safely in Pascagoula Mississippi.  I was met by an awesome and enthusiastic group of scientists from the Southeast Fisheries Science Center (SEFSC).  Unfortunately I was told the ship had a problem with its water heater and the cruise may be in jeopardy.  I had a tour of the lab and saw the OREGON II from the dock.  All I could do was wait.

OREGON II at the Pascagoula, Miss. SEFSC dock awaiting repair.

After several attempts at repair by the CO and crew, I was told that the heater was not repairable.  A new heater was needed, and this was a lengthy process.  To my great disappointment, the mission was scrubbed.  I know all the scientists were equally saddened by the turn of events.  I was to return home without sailing.  I am sorry to bring this news to all my students and others who were following this Blog.  It is no one’s fault,  just the circumstances that occurred.   I can only hope that I can join another NOAA TAS mission in the near future…

Signing Off,

Mark Silverman

Kimberly Lewis, July 13, 2010

NOAA Teacher at Sea Kimberly Lewis
NOAA Ship: Oregon II
July 1 -July  16 2010

Mission: SEAMAP Summer Groundfish Survey
Geographical Area of Cruise: Gulf of Mexico
Date: Sunday, July 13, 2010

Ecosystem Conservation and some of the people who monitor it

Me holding a skate.

Me holding a skate.

Weather Data from the Bridge 
Time: 1130 (11:30 AM)
Position: Latitude = 28.57.59 N;
Longitude = 94.49.73 W
Present Weather: Clear
Visibility: 8-10 nautical miles
Wind Speed: 14.97 knots
Wave Height: 4 feet
Sea Water Temp: 29.1 C
Air Temperature: Dry bulb = 31.4 C; Wet bulb = 27.0 C
Barometric Pressure: 1013.77 mb

Science and Technology Log

“IT’S ALL CONNECTED.” Everything in an ecosystem is connected to everything else. This is a guiding principle of studying and managing ecosystems. This past spring in one of my online communities we were discussing whole ecosystem monitoring for conservation rather than the traditional ‘save one species at a time”.

I’m seeing it now in the Gulf of Mexico. Obviously, the ocean environment is connected to human activities – the BP-Deepwater Horizon oil spill makes that abundantly clear. But there are also countless natural connections, and much less obvious human impacts, that must be understood and assessed if the Gulf ecosystem is to be protected. Commercial fish and shrimp stocks can only be sustained through a careful understanding of the human impact and natural connections in the Gulf.

That’s why we identify and count every organism we bring up in a trawl. Sometimes we get 50 or more different species in one catch, and we don’t just count the commercially important ones like red snapper and shrimp. We count the catfish, eel, sea stars, sea squirts and even jellyfish we haul in. Why? Because even though these organisms might seem “unimportant” to us, they might be important to the red snapper and shrimp. They also might be important to the organisms the red snapper and shrimp depend on. And even if they’re not directly important, studying them might tell us important things about the health of the Gulf.

Brittany

Brittany on the deck

Bruce and I are learning a lot about this from the incredibly knowledgeable marine biologists in the science party. Brittany Palm is a Research Fishery Biologist from NOAA’s Southeast Fishery Science Center (SEFSC) in Pascagoula, MS, and leader of the day watch on this leg of the Oregon II’s Summer Groundfish Survey. Brittany is working on her M.S. on a fish called croaker, Micropogonias undulatus, studying its stomach contents to better understand its position in the food web. Croaker is not an economically important species, but it lives in the same shallow sea floor habitat as shrimp so shrimpers end up hauling in a huge amount of croaker as bycatch. So, when the shrimping industry declined in 2003-2004, the croaker population exploded. Since croaker are closely associated with shrimp habitat and the shrimp fishery, we might gain important insights by studying croaker population and understanding what they eat, and what eats them.

Alonzo

Alonzo helping to dissect a fish

Alonzo Hamilton is another NOAA Fishery Biologist from the SEFSC. Alonzo explained that there’s a lot to be learned by looking at the whole ecosystem, not just the 23 commercial species that are managed in the Gulf. For example, many of the crabs we commonly catch in our trawls are in the genus Portunas, known as “swimming crabs.”

Portunas spinicarpus

Portunas spinicarpus

Portunas species normally live on the sea floor, but when severe hypoxia sets in, Portunas crabs can be found at the surface, trying to escape the more severe oxygen depletion that typically takes place at the bottom of the water column.

Sean

Sean on the deck

Geoff on the deck

Geoff on the deck

Sean Lucey and Geoff Schook are Research Fishery Biologists from NOAA’s Northeast Fishery Science Center in Woods Hole, Massachusetts. They are working on the Oregon II right now to support the SEFSC because of huge manpower effort demanded by the oil spill. The NEFSC has been conducting their groundfish survey annually since 1963, making it the longest-running study of its kind. Originally the survey only looked at groundfish population, but as our understanding of ecosystem dynamics increased over time, more and more factors were analyzed. Now NEFSC looks at sex, age, stomach contents and many other species besides groundfish to obtain a more complete picture of the food web and the abiotic factors that affect groundfish. NEFSC even measures primary production in the marine ecosystem as one tool to estimate the potential biomass of groundfish and other species at higher trophic levels.

Fisheries biologist Andre DeBose
Andre DeBose is a NOAA Fishery Biologist from the SEFSC and the Field Party Chief for the Summer Groundfish Survey. In addition to leading the science team on the Oregon II, Andre is conducting research on Rough Scad, Trachurus lathami, an important food species for red snapper and important bait fish for red snapper fisherman. By gaining a better understanding of the relationship between Red Snapper and its prey we can better understand, and better manage, the ecosystem as a whole.

There’s a lot of information to be learned beyond just counting fish. By taking a wide look at the marine environment we can better understand how the whole ecosystem functions. This enables us not only to be more informed in setting sustainable catch levels, but also enables us to identify and respond to things that contribute to hypoxia and other problems that degrade habitat and reduce populations. It’s all connected.

Personal Log

Everyone in the scientific party has been working very hard to gather data. A 12 hour shift can be long at times, and other times fly by. Today Andre told us we will start cleaning up Thursday morning. It doesn’t seem possible that my 17 days with the Oregon II will soon be over. Part of me is excited to get back home to see my family and sleep in a bed that isn’t affected by the Gulf waves. The other part of me is sad due to the fact I will not longer be working with some remarkable people and worked with ongoing scientific research. It is very hard work, but very exciting to see what goes on at sea. I am sure I will call on some of them in the future for collaboration.

Chef Walter made some great meals over the past few days. Crab cakes, roasted buffalo, chicken curry, and quail, not to mention those great breakfasts. Based on my first two days of sea not able to keep anything down and not wanting to eat, I thought for sure I would go back to Ohio 15 pounds lighter. But the sea sickness wore off and I am enjoying food and adjusting to boat life.