David Madden: Otolithia and The Tragedy of the Commons, July 27, 2019

NOAA Teacher at Sea

David Madden

Aboard NOAA Ship Pisces

July 15-29, 2019


Mission: South East Fishery-Independent Survey (SEFIS)

Geographic Area of Cruise: Atlantic Ocean, SE US continental shelf ranging from Cape Hatteras, NC (35°30’ N, 75°19’W) to St. Lucie Inlet, FL (27°00’N, 75°59’W)

On board off the coast of North Carolina – about 45 miles east of Wilmington, NC (34°18’ N, 77°4’ W)

Pisces Route
Pisces Route as of July 27, 2019


Date: July 27, 2019

Weather Data from the Bridge:

Latitude: 34°18’ N
Longitude: 77°4’ W
Wave Height: 3-4 feet
Wind Speed: 6.68 knots
Wind Direction: 42°
Visibility: 10 nm
Air Temperature: 28.0°C 
Barometric Pressure: 1022.4 mb
Sky: Partly cloudy


Science and Technology Log

Today, with the help of friends Zeb and Todd, I’d like to take a deep dive into the mission of this cruise.  Starting with the fish work up process aboard Pisces, first explained in blog #3.  Below is a picture flowchart I drew up to help visualize what’s going on. 

NOAA Fish Protocol (color)
NOAA SEFIS Fish Survey Protocol

This sequential process is rather straight forward following steps 1-8, rinse (the gear) and repeat. It’s the before and after; what comes before step 1 and after step 8, that’s important; How and where is the data used.  If you follow along into steps 9, 10, 11… you start with the laboratory analysis of the biological samples – otoliths and gonads – used to age the fish, and determine reproductive activity and spawning seasons, respectively.  This information is vital to proper management of fisheries.  Here’s why. 

This cruise, and SEFIS in general, originally came into existence because of red snapper.  Scientists determined around 2009 that the red snapper population in the SE Atlantic was at historically low levels.  Strict regulations were put in place to help the species rebound.  This on its own was a good measure, but only one step.  In order to assess the effect of the regulations, scientists would have to monitor the abundance of red snapper in the region.  However, charting changes in abundance would not be enough with this species (or with many others) due to the nature of its life cycle and reproduction.  See, all populations have a natural age structure balance.  This includes species specific traits – like its survivorship curve (how likely it is for an individual to die at different points in their life – for red snapper and many other reef-associated species it’s incredibly high at their larval and juvenile stages).  It also includes pertinent developmental characteristics such as when the species is reproductively mature.  Like many similar fish, older, mature red snapper have greatly increased reproductive potential, also known as fecundity.  So while the population has been bouncing back in terms of numbers, the number of older, mature, more fecund fish is still considerably lower than historical levels; thus the population is still recovering.  *this information is gathered from the data collected by scientist here on our SEFIS mission, and others like them. 

SEFIS survey site locations
SEFIS survey site locations.

The next step is to share this data with other scientists who will then, in conjunction with other information on the species, analyze the data and bring the results and conclusions of their analyses to policy makers (FYI, the government is moving towards making governmentally gathered scientific data available to the public).  Discussion ensues, and climbs the political decision-making-ladder until allowable catch regulations are determined.  Florida fishers, check here for your current snapper regulations or maybe this Fish Rules app will help.  Fish safe, my friends!

Morning Crew
Morning crew: Mike, Dave, Brad, Me, Todd, Oscar the Octopus, Mike, Zeb
gear
Macabre medieval cutlery? Or otolith extraction gear?

Ultimately this is a tricky and tangled issue of sustainability.  Commercial fishermen are understandably upset, as this can threaten their livelihood.  Although real, this concern is inherently short sighted, as their long term earnings depend on healthy and robust populations, and ecosystems.  The difficult part is to gather the necessary scientific data (very challenging, especially for marine organisms) and marry that to the many financial, social, and political concerns.  Comment below with thoughts and suggestions.  And while you’re at it, here’s a lovely and quick (fish-related) tutorial overview of this situation in general – the tragedy of the commons – and the challenges of managing our resources. 

A quick note about otoliths.  Within the fish processing protocol (above) – the most satisfying part is otolith extraction.  On board competitions abound: people vie for first chair (the spot in the lab that’s the coolest and best lit) and for the sharpest knives and scissors.  Much like a wild west showdown, most important is fastest extraction times.  Dave H opts for the classic chisel-through-the-gills technique, while the rest of us opt for the saw-through-the-skull-with-a-knife-and-crack-the-head-open-just-behind-the-eyes technique.  While Brad looks to perform the “double-extraction” – both otoliths removed in the tweezers at the same time, I look to perform the please-don’t-slice-my-hand-open extraction.  The quest for otoliths is usually straight forward.  But sometimes an ill-sliced cut can leave you digging for the tiny ear bones forever. 

This leaves us with: Why otoliths?  These tiny little ear bones help function in the fish’s vestibular system.  That’s a fancy way of saying the balance and orientation system of the fish.  They help vertebrates detect movement and acceleration, and they help with hearing.  These little bones help you determine your head and body orientation – turn your head sideways, it’s your otoliths who will send the message.  All vertebrates, including you, gentle reader, have them.  This makes me wonder if folks with exceptional balance and proprioception and court awareness have bigger otoliths?  Fish requiring more balance, those that sit and wait to hunt vs. those that swim predominantly in straight lines, have bigger otoliths. 

Otoliths are made of layered calcium carbonate (side question – does ocean acidification impact otolith formation?  Like it does with other calcium carbonate structures in the ocean?)  The fish secretes new layers as it ages: thicker layers during good times, thinner layers during lean times – correlated with summer and winter seasonality – just like with tree rings.  Once you dig out the otoliths, they can be analyzed by on-shore scientists who slice ‘em in half and take a really thin slice, deli-meat-style.  Voila! You can then count up the rings to tell how old the fish is. 

Fish Otolith
From Andrews et al 2019, published in the Journal of Marine and Freshwater Research: Illustration of a red snapper (top right), a photo of a red snapper otolith (top left), and an image of a cross-section of that otolith (bottom) http://www.publish.csiro.au/MF/fulltext/MF18265
cod otolith
From Hardie and Hutchings 2011, published in the journal Arctic: A cross-section of the sagittal otolith of an Atlantic cod.

Retrieved from https://www.researchgate.net/publication/255711740_The_Ecology_of_Atlantic_Cod_Gadus_morhua_in_Canadian_Arctic_Lakes

Black sea bass otoliths
Black sea bass otoliths with fingers for size comparison. Photos from Dave Hoke
Fish Count July 25th
Yesterday’s Fish Count.


Personal Log:

I’ve been continuing my work aboard the Pisces.  Lately the focus has been on conversations with scientists and ship personnel.  The source of most of today’s blog came primarily from conversations with Zeb and Todd.  They were both super helpful and patient in communicating the goals and mission of this cruise and SEFIS.  I’m also trying to contribute some things that might be useful to the NOAA scientists after the cruise is completed, and things that will be helpful to my students now and during the school year – like the drawings and diagrams, along with some upcoming videos (topics include: CTD color and pressure, Underwater footage featuring a tiger shark and hammerhead shark, Waves, All Hands on Deck, and a general cruise video). 

The food and mood of the cruise continues to be good.  * note: my salad eating has taken a hit with the expiration of spinach and leafy greens – it’s amazing they lasted as long as they did – the stewards, Rey and Dana, are amazing! 

General Updates:

  1. The other night I had my first bit of troubled sleeping.  The seas were roaring!  Actually, just about 6 feet.  But it was enough to rock the boat and keep me from falling asleep.  It was almost a hypnic jerk every time the ship rolled from one side to the other.  Special sensations for when my head dipped below my feet. 
  2. Two more book recommendations:  a. Newberry Book Award Winner: Call it Courage, by Armstrong Sperry.  I loved this book as a little boy.  I did a book report on it in maybe the 2nd or 3rd grade.  I spent more time drawing the cover of the report than I did writing it.    B.  A few years ago I read The Wave, by Susan Casey.  Great book about the science of waves and also the insane culture of big wave surfers. 
  3. I haven’t seen all that much lately in terms of cool biodiversity.  The traps did catch some cute swimming crabs, a lionfish, and a pufferfish.   * more below.
  4. Zeb won the Golden Sombrero Award the other day.  This is a momentous achievement awarded to a chief scientist after six consecutive empty fish traps!
  5. Lauren crafted us an extra special tie-dye octopus named Oscar.  He’s wearing the Golden Sombrero in the photo above.     
  6. Only 2.5 days till I’m back home.  Can’t wait to see my family. 

 

Neato Facts =

Back to general update #3 and today’s neato fact.  Both lionfish and pufferfish are toxic.  But are they poisonous? Or venomous?  Wait.  What’s the difference?  Both poisons and venoms are characterized as toxins, and often they are used interchangeably.  The distinction lies in the means of entry into your body.  Venoms get into you via something sharp – you’re either bitten with fangs or stung with stingers or spines.  Examples include our friend the lionfish, snakes, and bees.  Poisons, conversely, get into you when you eat it.  Examples include pufferfish, poison dart frogs,

Here’s a simple way to remember: Injection = Venom, Ingestion = Poison.  Click these links for interesting lists of poisonous animals, poisonous plants, and venomous animals

Pufferfish
Pufferfish from today’s fish trap.
Lionfish and Pufferfish
Lionfish (Venomous) and Pufferfish (Poisonous). Injection = Venom, Ingestion = Poison http://www.peakpx.com/487337/lion-fish-and-blue-puffer-fish

Please let me know if you have any questions or comments. 

David Madden: Engines, Dolphins, and Sharksuckers, July 24, 2019

NOAA Teacher at Sea

David Madden

Aboard NOAA Ship Pisces

July 15-29, 2019


Mission: South East Fishery-Independent Survey (SEFIS)

Geographic Area of Cruise: Atlantic Ocean, SE US continental shelf ranging from Cape Hatteras, NC (35°30’ N, 75°19’W) to St. Lucie Inlet, FL (27°00’N, 75°59’W)

On board off the coast of South Carolina – about 50 miles east of Charleston (32°50’ N, 78°55’ W) – after a slight change of plans last night due to the approaching tropical depression.

Date: July 24, 2019

Weather Data from the Bridge:
Latitude: 32°50’ N
Longitude: 78°55’ W
Wave Height: 3-4 feet
Wind Speed: 15 knots
Wind Direction: Out of the North
Visibility: 10 nm
Air Temperature: 24.6°C 
Barometric Pressure: 1011.8 mb
Sky: Cloudy

Sunset over the Atlantic Ocean
Sunset over the Atlantic Ocean
NOAA Pisces Full Track 7-20-19
This is a map from the other day outlining the path of the ship. The convoluted pattern is the product of dropping off and picking up 24 (6 x 4) fish traps per day, along with the challenges of navigating a 209 foot ship in concert with gulf stream currents and winds.



Science and Technology Log

Life and science continue aboard NOAA Ship Pisces.  It seems like the crew and engineers and scientists are in the groove.  I am now used to life at sea and the cycles and oddities it entails.  Today we had our first rain along with thunderstorms in the distance.  For a while we seemed to float in between four storms, one on the east, west, north, and south – rain and lightning in each direction, yet we remained dry.  This good thing did indeed come to an end as the distant curtains of rain closed in around us.  The storm didn’t last long, and soon gathering the fish traps resumed. 

Dave with red grouper
Processing fish: measuring length and weight of a red grouper, Epinephelus morio.
Fish Count for July 23, 2019
Yesterday’s fish count. Compare to other day’s catches: Tons of vermillion snapper, tomtate, and black sea bass. And one shark sucker (read on for more). Thank you, Zeb, for tallying them up for me. 


The highlight of yesterday (and tied for 1st place in “cool things so far”) was a tour of the engine room lead by First Assistant Engineer, Steve Clement.  This tour was amazing and mind-blowing.  We descended into the bowels of the ship to explore the engine rooms and its inner workings.  I think it rivals the Large Hadron Collider in complexity. 

I kept thinking, if Steve left me down here I would surely get lost and never be found.  Steve’s knowledge is uncanny – it reminded me of the study where the brains of London cab drivers were scanned and shown to have increased the size of their hippocampus.  (An increase to their memory center apparently allows them to better deal with the complexities of London’s tangled streets.)  And you’re probably thinking, well, running a massive ship with all its pipes and wires and hatches and inter-related, hopefully-always-functioning, machinery is even harder.  And you’re probably right!  This is why I was so astounded by Steve’s knowledge and command of this ship.  The tour was close-quartered, exceptionally loud, and very hot.  Steve stopped at times to give us an explanation of the part or area we were in; four diesel engines that power electric generators that in turn power the propeller and the entire ship.  The propeller shaft alone is probably 18 inches in diameter and can spin up to 130 rpm. (I think most of the time two engines is enough juice for the operation).  Within the maze of complexity below ship is a smooth running operation that allows the crew, scientists, and NOAA Corps officers to conduct their work in a most efficient manner. 

Dave and Steve and engines
First Assistant Engineer Steve Clement and TAS Dave Madden in the Engine Room

I know you’ve all been wondering about units in the marine world.  Turns out, students, units are your friend even out here on the high seas!  Here’s proof from the bridge, where you can find two or three posted unit conversion sheets.  Makes me happy.  So if you think that you can forget conversions and dimensional analysis after you’re finished with high school, guess again!

conversions
Posted unit conversion sheets

Speaking of conversions, let’s talk about knots.  Most likely the least-understood-most-commonly-used unit on earth.  And why is that?  I have no idea, but believe me, if I were world president, my first official action would be to move everyone and everything to the Metric System (SI). Immediately. Moving on. 

Back to knots, a unit used by folks in water and air.  A knot is a unit of speed defined as 1 nautical mile/hour.  So basically the same exact thing as mph or km/hr, except using an ever-so-slightly-different distance – nautical miles.  Nautical miles make sense, at least in their origin – the distance of one minute of longitude on a map (the distance between two latitude lines, also 1/60 of a degree).  This works well, seeing as the horizontal lines (latitude) are mostly the same distance apart.  I say mostly because it turns out the earth is not a perfect sphere and therefore not all lines are equidistant.  And you can’t use the distance between longitude lines because they are widest at the equator and taper to a point at the north and south pole.  One nautical mile = 1852 meters.  This is equal to 1.15 miles and therefore one knot = 1.15 miles/hour. 

This next part could double as a neato fact: the reason why this unit is called a “knot” is indeed fascinating.  Old-time mariners and sailors used to measure their speed by dropping a big old piece of wood off the back of the boat.  This wood was attached to some rope with knots in it, and the rope was spun around a big spool.  Once in the water the wood would act kind of like a water parachute, holding position while the rope was let out.  The measuring person could then count how many evenly spaced knots passed by in a given amount of time, thus calculating the vessel’s speed. 



Personal Log

The scientists on board have been incredibly helpful and patient.  Zeb is in charge of the cruise and this leg of the SEFIS expedition.  Brad, who handles the gear (see morning crew last post), is the fishiest guy I’ve ever met.  He seriously knows everything about fish!  Identification, behavior, habitats, and most importantly, how extract their otoliths.  He’s taught me a ton about the process and processing.  Both Zeb and Brad have spent a ton of time patiently and thoroughly answering my questions about fish, evolution, ecology, you name it.  Additionally, NOAA scientist Todd, who seeks to be heroic in all pictures (also a morning crew guy), is the expert on fish ecology.  He has been exceptionally patient and kind and helpful. 

The fish we’re primarily working with are in the perches: Perciformes.  These fish include most of your classic-looking fish.  Zeb says, “your fish-looking fish.”  Gotcha!  This includes pretty much all the fish we’re catching except sharks, eels, and other rare fish. 

For more on fish evolution here are two resources I use in class.  Fish knowledge and evolution: from Berkeley, A Fisheye View of the Tree of Life.

Fish Tree of Life Berkeley
Fish Tree of Life, from University of California-Berkeley

And check out Neil Shuban’s Your Inner Fish series.


General Updates:

  1. Plenty of exciting animals lately.  Here’s a picture of those spotted dolphins from the other day.
  2. The weather has been great, apart from yesterday’s storm.  Sunrises and sunsets have been glorious and the stars have been abundant. 
  3. We found a common octopus in the fish trap the other day.  The photo is from crew member Nick Tirikos.      
  4. I’m missing home and family. I can’t wait to see my wife and son. 
  5. That tropical depression fizzed out, thankfully. 
spotted dolphins
Spotted Dolphins
common octopus
Common Octopus (Photo by crewmember Nick Tirikos)


Neato Facts =

Yesterday we caught a shark sucker in the fish trap.  I was excited to see and feel their dorsal attachment sucker on top of their head. 

Hold on.  I just read more about these guys and turns out that sucking disc is their highly modified dorsal fin!  That is the most neato fact so far.  What better way to experience the power of this evolutionarily distinct fish than to stick it to your arm?!  The attachment mechanism felt like a rubber car tire that moved and sealed against my skin. (Brad calls them sneakerheads).

Shark sucker
Shark Sucker on Dave’s Arm

Consider all the possible biomimicry innovations for the shark sucker’s ability to clasp onto sharks and fish and turtles while underwater.  This grasp and release adaptation surely has many cool possible applications.  Here are a few: Inspiring New Adhesives.  Robotic Sticky Tech.   Shark Sucker biomimicry

I’d love to hear your questions and comments!

David Madden: Preparing for Pisces 2019, July 11, 2019

NOAA Teacher at Sea

David Madden

Preparing to Board NOAA Ship Pisces

July 15 – 29, 2019


Mission: South East Fisheries Independent Survey

Geographic Area of Cruise: Atlantic Ocean, SE US continental shelf ranging from Cape Hatteras, NC (35º30’ N, 75º19’W) to St. Lucie Inlet, FL (27º00’N, 75º59’W)

Date: July 11, 2019

NOAA Ship Pisces
NOAA Ship Pisces. Photo by National Oceanic and Atmospheric Administration.

Introductory Post

Personal Log:

Hello friends,

My name is David Madden. I am a high school science teacher at Maclay School in Tallahassee, FL, and I’m getting ready to go on my NOAA Teacher at Sea cruise! I recently completed my 21st year teaching – it’s been a super fun journey. I am as excited heading into year 22 as I was in years 1-5. I’ve been in love with nature since I can remember.

Madden Science logo
Madden Science logo

Over the course of my career I’ve taught: AP Biology, regular Biology, Physics, Integrated Science (bio, chem, phys combined), and Marine Biology. This upcoming year I will also be teaching AP Environmental Science. I’ve loved every minute of my job – teaching and learning with students, challenging myself and being challenged by my friends and colleagues, and exploring new adventures – like NOAA Teacher at Sea. Along the way I’ve also been a coach, helping kids learn the value of sports, including: volleyball, basketball, tennis, and track.

Over the last few years I’ve started making educational videos for my students – as a way for them to further develop their love of science and grow their scientific literacy: Madden Science on YouTube and www.maddenscience.com.

Madden family
The hardest part of the trip will be missing these two!

Starting on July 15th, 2019, I will be aboard NOAA Ship Pisces as part of the Southeast Fishery-Independent Survey (SEFIS). The mission of the cruise will be to conduct “applied fishery-independent sampling with chevron fish traps and attached underwater video cameras, and catch rates and biological data from SEFIS are critical for various stock assessments for economically important reef fishes along the southeast US Atlantic coast.” It’s an amazing opportunity for me to participate in important scientific research. I have the opportunity to work alongside and learn from some of the best scientists in the world.

Pisces Picture Wikipedia
NOAA Ship Pisces. Photo by National Oceanic and Atmospheric Administration.

There are so many things about NOAA Teacher at Sea that I’m looking forward to. Here’s a few:

  1. Spending time out on the ocean, experiencing the energy and power of the wild sea.
  2. Working with and learning from some of the world’s leading oceanic and atmospheric scientists.
  3. Learning about fish and marine biodiversity in the Atlantic.
  4. Asking tons of questions and hopefully learning more about the ocean and its central importance in our changing world.
  5. Sharing my experience with you; my family, friends, students, and the public.   I’ll share this adventure via this blog and also via videos I hope to create while on NOAA Ship Pisces. My goal is for these blog posts and videos to serve as a real-time record of the cruise, to be helpful and interesting right now, and also to help serve as resources for my classes and other classrooms around the world.

Neato Fact:

NOAA Ship Pisces is 209 feet (64 meters) long. To give you an idea, that’s basically 70% of a football field. That’s longer than two blue whales (~90 feet), the largest and longest animal to ever live! Usain Bolt can run that far in 6.13 seconds (assuming 9.58 s for 100 m). A starfish, traveling at 60 feet/hour, would take about 3.5 hours to travel the length of Pisces.

Madden Pisces diagram
NOAA Ship Pisces is 209 ft long.

I’d love it if you could join in with me on this adventure – please comment and ask questions. I’ll do my best to respond in a helpful and interesting way!

Leah Johnson: Fish Identification & Pisces Farewell, August 1, 2015

NOAA Teacher at Sea
Leah Johnson
Aboard NOAA Ship Pisces
July 21 – August 3, 2015

Mission: Southeast Fishery – Independent Survey
Geographical Area of Cruise: Atlantic Ocean, Southeastern U.S. Coast
Date: Saturday, August 1, 2015

Weather Data from the Bridge:
Time 12:13 PM
Latitude 033.995650
Longitude -077.348710
Water Temperature 24.37 °C
Salinity 36.179 ppt
Air Temperature 27.4 °C
Relative Humidity 83 %
Wind Speed 15.95 knots
Wind Direction 189.45 degrees
Air Pressure 1012.3 mbar

Science and Technology Log:
I am still amazed at the wealth of data collected aboard the Pisces on this survey cruise. I am getting better at identifying the fish as they are hauled up in the traps, as well as when I see these fish on video. Because of light attenuation, many fish look very different in color when they are underwater. Light attenuation refers to the gradual loss of visible light that can penetrate water with increasing depth. Red light has the longest wavelength on the visible light spectrum, and violet has the shortest wavelength. In water, light with the shortest wavelength is absorbed first. Therefore, with increasing depth, red light is absorbed, followed by orange, then yellow. Fish that appear red in color at the surface will not appear red when they are several meters below the sea surface where they are captured on camera.

For example, we hauled in some blackfin snapper earlier this week. At the surface, its color is a distinct red like many other types of snappers, and it has a black spot near the base of its pectoral fin. When I looked at the videos from the trap site, I did not realize that all of the fish swimming around with yellow-looking tails were the very same blackfin snappers that appeared in the traps! When I remembered that red light is quickly absorbed in ocean water and noticed the black spot on the pectoral fin and shape of the dorsal fin, it made more sense.

Top: Blackfin snapper collected from trap.
Bottom: Video still of blackfin snappers swimming near trap.

I tell my geology students every year that when identifying minerals, color is the least reliable property. I realize now that this can also apply to fish identification. Therefore, I am trying to pay closer attention to the shape of the different fins, slope of the head, and relative proportions of different features. The adult scamp grouper, for example, has a distinct, unevenly serrated caudal fin (tail) with tips that extend beyond the fin membrane. The tip of the anal fin is elongated as well.

scamp grouper

Scamp grouper

Another tricky aspect of fish identification is that some fish change color and pattern over time. Some groups of fish, like wrasses, parrotfish, and grouper, exhibit sequential hermaphroditism. This means that these fish change sex at some point in their lifespan. These fish are associated with different colors and patterns as they progress through the juvenile phase, the initial phase, and finally the terminal phase. Some fish exhibit fleeting changes in appearance that can be caught on camera. This could be as subtle as a slight darkening of the face.

The slight shape variations among groupers can also lead groups of scientists to gather around the computer screen and debate which species it is. If the trap lands in an area where there are some rocky outcrops, a fish may be partially concealed, adding another challenge to the identification process. This is no easy task! Yet, everyone on board is excited about the videos, and we make a point to call others over when something different pops up on the screen.

warsaw grouper

We were all impressed by this large Warsaw grouper, which is not a common sight.

I have seen many more types of fish and invertebrates come up in the traps over the past week. Here are a few new specimens that were not featured in my last “fish” post:

Did You Know?

Fish eyes are very similar to those of terrestrial vertebrates, but their lenses that are more spherical.

lens from fish eye

Lens from fish eye

Personal Log:

I love being surrounded by people who are enthusiastic about and dedicated to what they do. Everyone makes an extra effort to show me things that they think I will be interested to see – which I am, of course! If an interesting fish is pulled up in the trap and I have stepped out of the wet lab, someone will grab my camera and take a picture for me. I continue to be touched by everyone’s thoughtfulness, and willingness to let me try something new, even if I slow down the process.

me, standing on the deck at the stern

Me, on the deck of the ship. We just deployed the traps off the stern.

As our cruise comes to an end, I want to thank everyone on board for letting me share their work and living space for two weeks. To the NOAA Corps officers, scientists, technicians, engineers, deckhands, and stewards, thank you for everything you do. The data collection that takes place on NOAA fishery survey cruises is critical for the management and protection of our marine resources. I am grateful that the Teacher at Sea program allowed me this experience of a lifetime. Finally, thank you, readers! I sincerely appreciate your continued support. I am excited to share more of what I have learned when I am back on land and in the classroom. Farewell, Pisces!

Leah Johnson: Career Spotlight: NOAA Corps Officer, July 30, 2015

NOAA Teacher at Sea
Leah Johnson
Aboard NOAA Ship Pisces
July 21 – August 3, 2015

 Mission: Southeast Fishery – Independent Survey
Geographical Area of Cruise: Atlantic Ocean, Southeastern U.S. Coast
Date: Thursday, July 30th, 2015

Weather Data from the Bridge:
Time 12:13 PM
Latitude 34.18282
Longitude -76.13712
Water Temperature 25.62 °C
Salinity 35.3592 ppt
Air Temperature 29.8 °C
Relative Humidity 71 %
Wind Speed 13.23 knots
Wind Direction 159.25
Air Pressure 1013.2 mbar

Science and Technology Log:
Career Spotlight: I would like to introduce everyone to Ensign Hollis Johnson, one of the Junior Officers on NOAA Ship Pisces. She was kind enough to let me ask her a few questions about life at sea.

Ens Hollis Johnson

Ensign Hollis Johnson

Q: What is the role of a Junior Officer (JO) on this ship?

A: The primary duty of a JO is driving the ship. We are also the eyes and ears of the Commanding Officer (CO). We carry out standing orders, ensure ship safety, and also make sure the scientists are getting what they need for their survey work.

Q: Does this job description vary depending on the ship?

A: This is a generic fleet-wide description, and some ships are a little different. On hydrographic ships, there is more computer-based work with data collection. On fisheries ships, collateral duties are split amongst the JOs; for example, we have an environmental compliance officer, a safety officer, a movie officer, and a navigation officer.

Q: What do you like best about your job and being at sea?

A: I really like driving the ship. Few jobs offer this kind of an opportunity! I also like the fact that no two days are ever the same, so my job is a constant adventure. The best things about being at sea in general are the sunrises and sunsets, and the dolphins, of course.

Q: What do you find to be the most challenging aspect of your job and life at sea?

A: This job requires long hours. We can easily work 12-16 hour days, and while in port we still have to work some weekends. Because of this time commitment, we have to make sacrifices. But, we get that time back with our land assignments because there is more flexibility.

Q: When do NOAA Corps officers go to sea, and for how long do they stay?

A: After a 5-month training period, JOs are sent straight to sea assignments for 2 year periods. This can be extended or shortened by 6 months depending on what you are looking for in your next assignment. I extended my assignment at sea for 5 months so I could get my upcoming land assignment in California to work with dolphins for 3 years. After the land-based assignment, NOAA officers typically return to sea as operations officers, then back to land, then sea as executive officers, and so on. That is how you move up.

Q: What exactly will you be doing when you are on your next assignment in California?

A: The title of my position will be Cetacean Photo Specialist. I will be in La Jolla, CA, doing boat and aerial surveys, lots of GIS work and spatial surveys of marine mammal populations. I will participate in the center’s marine mammal stranding network. I will also be involved with outreach and education, which includes giving tours and presentations on scientific studies happening at the lab.

Q: Is life at sea different from what you expected?

A: Actually, it is easier than I thought it would be. I have always been a homebody and lived near my parents, I’m always busy here so time flies. I have internet and phone service so I still feel connected.

Q: Where did you go to college, and what degree did you earn?

A: I attended the University of Georgia, and earned a B.S. in Biology with a focus in marine biology.

Q: When / how did you decide to pursue a career in science?

A: When I was a kid I went to Sea World and fell in love with the whales and dolphins. I always loved animal planet. I also considered being a veterinarian for a while. I tried to be realistic because it is hard to land a career as a marine biologist, but I interned at a lot of places and made connections so I could do what I wanted to do.

Q: How did you find out about careers with NOAA?

In college, I took a summer course about marine mammals and toured a NOAA lab. About a year later, in June, my uncle saw the NOAA Ship Nancy Foster in port in Georgia, and I talked to someone on board about the work they were doing at sea. I immediately applied, interviewed, and was commissioned in January. It all happened very fast once I found out about it.

Q: You were one of the divers who recovered the missing trap this week. How long have you been diving?

A: I was certified to dive when I was 18. It is amazing, and something everyone should try. When I became an officer, the first thing I did was beg my command to send me to the NOAA Dive Center for training as a working diver.

Q: If a high school student is interested in a career like yours, what advice would you give?

A: Do a lot of volunteer work before you expect to get paid. You are investing in your future. If you want it bad enough you have to make sacrifices – but it will pay off. Make connections. If a marine biologist gives a presentation at your school, hang out after and talk with them. Ask for their email address and follow up. It’s a small world in marine research and networking is key.

Q: What is your favorite marine animal, and why?

A: I love thresher sharks and octopuses, but I’ll say Orcas. I’ve always found their species-wide diversity fascinating.

Personal Log:

There are so many people on this cruise who scuba dive and see amazing things below the sea surface. I have only snorkeled. I see dive certification in my future!

Did You Know?

The NOAA Commissioned Officer Corps is one of the seven uniformed services in the United States. Their motto is “Science, service, stewardship”.

map and control panel on the bridge

Chart and control panel on the bridge

Leah Johnson: Career Spotlight: Survey Technician, July 29, 2015

NOAA Teacher at Sea
Leah Johnson
Aboard NOAA Ship Pisces
July 21 – August 3, 2015

Mission: Southeast Fishery – Independent Survey
Geographical Area of Cruise: Atlantic Ocean, Southeastern U.S. Coast
Date: Wednesday, July 29, 2015

Weather Data from the Bridge:
Time 12:13 PM
Latitude 033.707470
Longitude -076.827550
Water Temperature 25.8 °C
Salinity 37.1618 ppt
Air Temperature 29.2 °C
Relative Humidity 75 %
Wind Speed 16.08 knots
Wind Direction 25.88 degrees
Air Pressure 1013.2 mbar

Science and Technology Log:
Career Spotlight: I would like to introduce everyone to Danielle Power, the Survey Technician on NOAA Ship Pisces. She was kind enough to let me interview her today.

survey technician working in the acoustics lab

Editing map area coordinates in the acoustics lab

Q: What is the role of a survey technician (ST) on this ship?

A: The survey technician keeps track of scientific equipment and spaces. This includes calibrating sensors and maintaining and repairing equipment. When science parties are on the ship, the ST assists with data collection and oversees CTD operation.

Q: Does this job description vary depending on the ship?

A: Yes. On the Nancy Foster and other ships with big dive platforms, STs do a lot of diving and deck work. There are often two STs on board, each working a half-day shift. These STs do not work so intensively with fish. Hydrographic vessel STs deal with mapping and tide station installs.

Q: What do you like best about your job and being at sea?

A: My favorite thing about life at sea is that there are no bugs, and I don’t have to deal with allergies! I also meet awesome people on every cruise. Every trip is a little different, so I am always learning new things.

Q: What do you find to be the most challenging aspect of your job and life at sea?

A: Being at sea for a long time, all the time, is taxing.

Q: Is life at sea different from what you expected?

A: Yes. This job requires living with 20 other people in a confined space all the time, and it isn’t easy. I didn’t fully realize this back in college. I don’t have easy access to things I might want or need. I also have to give up certain aspects of social life. You can’t just take a day off, you have to take an entire leg of a cruise off (up to 2 weeks), which is a lot of money to not be making and a lot of work to be missing. So I have to miss some big events for important people in my life, like weddings and holidays.

Q: Where did you go to college, and what degree did you earn?

A: I graduated from Old Dominion University in Norfolk, Virginia. I earned a B.S. in biology with a concentration in marine biology.

Q: When / how did you decide to pursue a career in science?

A: In 6th grade, I went on a family vacation to Disney world. I went to Sea World, and it ignited my love for all things ocean. I have stuck with it ever since.

Q: If a high school student is interested in a career like yours, what advice would you give?

A: Work hard, and get a college degree that is relevant. Make sure you know that this is a job you truly want to do. Find internships and experience life on a ship before you commit. If you enjoy it, then make the most of the career and all of the opportunities that come with it.

Q: What is your favorite marine animal, and why?

A: An Octopus! Cephalopods are very intelligent creatures, and I love that they can blend into environments so well that they cannot be seen. They can change not just their color, but their texture. They are so interesting! They can go into small spaces, because they can fit anywhere their beaks fit and they use parts of their environment as tools.

survey technician working in the wet lab

recording data in the wet lab

Personal Log:
I am blown away by all of the different jobs that need to be filled while out at sea. Working on a boat was something that I never even considered when I was in high school. The idea just never occurred to me, and I didn’t know anyone at the time who did anything like this. There are so many interesting career opportunities that exist, and new types of jobs will develop as needs and technology change over time.

Read all about career opportunities with NOAA here!

Did You Know?

NOAA stands for “National Oceanic and Atmospheric Administration”. It officially formed in 1970, but the environmental agencies that came together to form NOAA originated in the 1800s. Learn more about NOAA’s history here.

Leah Johnson: Trap Recovery, July 27, 2015

NOAA Teacher at Sea
Leah Johnson
Aboard NOAA Ship Pisces
July 21 – August 3, 2015

Mission: Southeast Fishery – Independent Survey
Geographical Area of Cruise: Atlantic Ocean, Southeastern U.S. Coast
Date: Monday, July 27, 2015

Weather Data from the Bridge:
Time 12:38 PM
Latitude 034.384490
Longitude -076.576130
Water Temperature 23.75 °C
Salinity -No Data-
Air Temperature 30.8 °C
Relative Humidity 62 %
Wind Speed 10.15 knots
Wind Direction 88.23 degrees
Air Pressure 1014.8 mbar

 Science and Technology Log:
As I mentioned in an earlier post, flexibility is key. Things don’t always go according to plan. Originally, we were going to head northeast from Morehead City Port, but the weather did not cooperate with us. We headed south to avoid a large storm, and then moved closer inshore. This forced us to choose some different areas to sample. Most of our sample sites are situated over the continental shelf between Cape Fear and Cape Hatteras. Tomorrow we hope to move to deeper waters beyond the shelf break.

Pisces cruise pathway so far. Image from Shiptracker.

Map of Pisces route so far. Image from Shiptracker.

On July 23, we lost a trap. After one of the deckhands threw the hook out to catch the buoy rope and started the winch, the rope went taut and then snapped. Occasionally this happens because the traps can shift and become wedged under or hooked onto a rocky ledge on the seafloor. We do our best to avoid this, but it happens. This is why it is important to have extra traps, cameras, and camera housings on board.

Map showing locations of the two lost traps. Image from Shiptracker.

Map showing positions of two lost traps. Water depth is shown in feet.

We planned to retrieve our trap the following day, but the storm chased us out of the area. Two days later, we lost a second trap! Unfortunately, this one was too deep to recover on a dive. The traps we deploy have zinc clasps that dissolve after ~24 hours, so fish can eventually exit the traps on the off chance that we are unable to retrieve them. Still, we don’t want to simply abandon traps on the seafloor or run short on gear, so we made plans to retrieve the first trap. We just had to remain patient and hope for calmer seas. Finally, our window of opportunity opened up today.

Zodiac dive boat

The small boat is on a davit on the 01 deck.

A small boat is located on 01 deck near the stern of NOAA ship Pisces. The deck chief oversees operations as it is lowered for the divers, the dive master, and deckhands to board. They take an inflatable buoy and rope with them, and then head out to the coordinates of the trap. The divers descended ~20 meters to the shelf where the trap was indeed wedged on a rocky ledge. First, the divers removed the two GoPro cameras that were attached to the trap. Next, they secured a rope attached to a buoy on the trap. The ship will then be able to use this buoy to retrieve the trap as typically done. The divers ascended the line and were picked up with the small boat.

dive boat returns after successfully locating the trap

The small boat returns after successfully finding the trap.

The deckhands then attached our standard buoys to the rope, and returned to the Pisces. The divers climbed up a rope ladder on the starboard side of the ship, and the small boat was hoisted up. We then hauled up the missing trap like we would any other. The trap was empty, and all of the bait was gone – not surprising after a 4-day soak!

Personal Log:

I make a point to stand near the bow of the ship and watch the sea and sky for a while every day. I usually see some flying fish, which are fun to watch. They zip out of the water, dart across the waves, and then dive back under. One of them landed on deck after a storm, so I had a chance to see one up close.

flying fish found on deck

Flying fish

The skies are beautiful, too. I have seen some impressive clouds and gorgeous sunrises and sunsets. The view is completely unobstructed, so I can just take it all in without distraction. I find it all very peaceful.

The skies at sea are stunning.

Did You Know?

After otoliths and tissue samples are collected from the fish we keep, the fish are filleted, frozen, and donated to local food banks.

removing tissue samples from a fish

Collecting tissues from a fish.

Leah Johnson: All About the Fish, July 24, 2015

NOAA Teacher at Sea
Leah Johnson
Aboard NOAA Ship Pisces
July 21 – August 3, 2015

Mission: Southeast Fishery – Independent Survey
Geographical Area of Cruise: Atlantic Ocean, Southeastern U.S. Coast
Date: Friday, July 24, 2015

Weather Data from the Bridge:
Time 12:38 PM
Latitude 033.235230
Longitude -077.298950
Water Temperature 25.88 °C
Salinity -No Data-
Air Temperature 28.3 °C
Relative Humidity 78 %
Wind Speed 5.76 knots
Wind Direction 355.13 degrees
Air Pressure 1011.3 mbar

Science and Technology Log:
When the traps are reeled in, the GoPro camera attachments are unclipped and brought into the dry lab. The cameras are encased in waterproof housing that can withstand the higher pressure at the seafloor. One camera is placed on the front of the trap, and one camera is placed on the back. Each video card captures ~45 minutes of footage. The videos will be carefully scrutinized at a later date to identify the fish (since many do not enter the traps), describe the habitat, and also describe the fish behavior. While aboard the ship, the videos are downloaded and watched just to make sure that the cameras worked properly, and to gain a general idea of what was happening around the trap. Occasionally, there are some really exciting moments, like when a tiger shark decided to investigate our trap!

tiger sharkThis tiger shark appeared in the video from both trap cameras as it circled.

While the cameras are being prepped in the dry lab for the next deployment, we are busy in the wet lab with the fish caught in the traps. The first step is identification. I could not identify a single fish when the first trap landed on the deck! However, I am slowly learning the names and distinctive features of the local fish. Here are a few examples of the fish that we have hauled in so far:

Once the fish are identified, they are sorted into different bins. We record the mass of each bin and the lengths of each fish. Most of the smaller fish are returned to the ocean once the measurements are recorded. Some fish are kept for further measuring and sampling. For each of these fish, we find the mass, recheck the total length (snout to tail), and also measure the fork length (snout to fork in tail) and standard length (snout to start of tail).

I measured the fish while one of my crew mates recorded the data.

I measured the fish while one of my crew mates recorded the data.

The fish is then ready for sampling. Depending on the species of fish, we may collect a variety of other biological materials:

  • Otoliths (ear stones) are made of calcium carbonate, and are located near the brain. As the fish grows, the calcium carbonate accumulates in layers. As a result, otoliths can be used – similarly to tree rings – to determine the age of the fish. I retrieved my first set of otoliths today!
  • Muscle tissue (the part of the fish that we eat) can be used to test for the presence of mercury. Since mercury is toxic, it is important to determine its concentration in fish species that are regularly consumed.
  • Gonads (ovaries in females or testes in males) can be examined to determine if a fish is of reproductive age, and whether it is just about to spawn (release eggs / sperm into the water).
  • The stomach contents indicate what the fish has eaten.

This toadfish had snail shells in its stomach!

This toadfish had snail shells in its stomach!

The soft tissues are kept in bags and preserved in a freezer in the wet lab. Sample analyses will take place in various onshore labs.

Personal Log:
It is important to remember that this ship is home to most of the people on board. They live and work together in very close quarters. There are daily routines and specific duties that individuals fill to keep Pisces running smoothly. Cooperation is key. I do my best to be useful when I can, and step aside when I cannot. Despite my inexperience at sea, everyone has been incredibly kind, patient, and helpful. I am lucky to be surrounded by so many amazing people who are willing to show me the ropes!

Did You Know?
The lionfish is an invasive species in the Atlantic Ocean. Its numbers are increasing in waters off the Southeastern U.S. coast. These fish have few predators, and they are consuming smaller fish and invertebrates which also sustain local snapper and grouper populations.

lionfish

This lionfish was in one of our traps yesterday.

Leah Johnson: The Sampling Begins, July 22, 2015

NOAA Teacher at Sea
Leah Johnson
Aboard NOAA Ship Pisces
July 21 – August 3, 2015

Mission: Southeast Fishery – Independent Survey
Geographical Area of Cruise: Atlantic Ocean, Southeastern U.S. Coast
Date: Wednesday, July 22, 2015

Weather Data from the Bridge:
Time 12:20 PM
Latitude 034.242730
Longitude -076.394350
Water Temperature 24.99 °C
Salinity 36.5532 ppt
Air Temperature 29.5 °C
Relative Humidity 80%
Wind Speed 15.45 knots
Wind Direction 229.54 degrees
Air Pressure 1012.5 mbar

Science and Technology Log:
As a fishery-independent survey, our task is to monitor the population of fish – mostly those of commercial value – at a wide variety of locations. While commercial operations provide some information based on their annual catch, a fishery-independent survey is able to conduct a broader assessment in a given area of the ocean, even though fewer fish are caught. Because there is no limitation on fish size and a wider array of locations are sampled, these surveys can be used in conjunction with reports from commercial fishing vessels to provide a better picture of changing fish populations over time.

I am on the second leg of the sampling survey in the Southeast Atlantic, and I am working the 6:00 AM – 6:00 PM shift. We will be setting traps and cameras in waters between Myrtle Beach, SC and Hatteras, NC. NOAA Ship Pisces left port at 2:00 PM on Tuesday, July 22. I stood near the bow of the ship as we headed out to sea, and watched flying fish zip through the spray. Once we left the sheltered waters near Morehead City Port, the seas became rough. High winds led to high swells, and we were unable to set any fish traps that afternoon. Because of these conditions, we changed our plans so that we could shelter behind a cape overnight. Flexibility is key!

Map of Pisces route upon departure on Tuesday, July 22.

Map of Pisces route upon departure on Tuesday, July 22. Source: Shiptracker

Today, skies were clear and the water was calm. We deployed a total of 18 traps in three areas over the course of the day. I helped to bait the chevron traps and line them up on the deck. Once the ship was over the chosen location, the traps and buoys were pushed overboard. Most of the traps today were deployed at a depth of ~25 meters. Six traps are deployed in an area, and are set at least 200 meters apart. The traps soak for 90 minutes, and then the ship circles back for the first trap. It is hauled up on the starboard (right) side, and the fish fall into a large tray placed beneath the trap opening.

The crew pulls up a trap.

The crew pulls up a trap.

We collected a variety of fish which had to be sorted, measured, and either kept for further sampling or returned to the sea based on the species. The bulk of the fish were black sea bass, but there was also a wide range of small fish (including scup, pinfish, and tomtate), red snapper, gag grouper, toadfish, and triggerfish. A small octopus came up with the second trap, which was exciting for the whole crew! One trap line snagged during retrieval, so a couple people may try to collect it on a future dive. The camera footage has been interesting too, as there are many fish that may swim near the trap but never enter. Therefore, the cameras provide additional data for the survey. Just today, a tiger shark was caught on tape!

A variety of fish in a chevron trap

A wide variety of fish are brought up in a chevron trap.

Personal Log
I have only spent one full day at sea so far, but I am enjoying every second of it. I am fascinated by all of the fish and other marine life. I spent some quality time watching dolphins jumping alongside the ship in the afternoon, and just looking out over the water. Sometimes the horizon is completely empty. Occasionally, I can see a lighthouse on a cape or another ship. Most of the time, we are surrounded by only sea and sky. The color of the water varies with weather conditions and water depth.

I have not experienced any sea sickness, and I am grateful for that. It was a little difficult getting used to the movement of the ship. I was definitely wobbling all over the place on day one. The swells were big though, so everyone was wobbling around with me. Putting food on my plate during dinner was especially challenging – and keeping it on my plate while walking to a table was more challenging still! However, my sea legs are improving, and I managed to do some yoga at sunset on the fly deck with a couple of the crew members! I didn’t fall over…. much. It was great way to wrap up the day. Keeping up with regular activities, like exercise, is really important while at sea. I am also growing used to the sensation of being rocked to sleep at night.

Did You Know?
The triggerfish earned its name because of its dorsal fin. If you press down on the first spine (a long, thin bone) at the front of the fin, it won’t budge. However, if you place your finger on a lower, shorter spine (the “trigger”), you can collapse the fin. Cool!

I love triggerfish!

I love this gray triggerfish!

Emina Mesanovic, Wet Lab: Something Fishy Is Going on Here, July 23, 2014

NOAA Teacher at Sea

Emina Mesanovic

Aboard the NOAA ship Pisces

July 20 – August 2, 2014

Mission: Southeast Fishery- Independent Survey

Geographic area of the cruise: Atlantic Ocean, off the coast of North Carolina and South Carolina

Date: July 23, 2014

Weather Information from the Bridge

Air Temperature: 27.4 C

Relative Humidity: 85%

Wind Speed: 13 knots

 

Science and Technology Log

The goal of the Southeast Fishery Independent Survey (SEFIS) is to assess the location and abundance of different species focusing on snappers and groupers as well as collecting bathymetric data about the ocean floor that can be used in the future. The scientists are divided into day and night shifts, the night shift maps the ocean floor, while the day shift uses these maps to set traps and catch fish.

Traps on the back deck ready to go.
Traps on the back deck ready to go.

Each morning the scientists set up six chevron traps on the back deck of the Pisces, each trap is stocked with 24 menhaden, which serves as the baitfish. The traps contain the same amount of bait, two cameras one on the front and one on the back, and each trap stays underwater for 90 minutes. Chief Scientist Zeb Schobernd works in the dry lab to let the crew know when and where to drop the traps (more on this later).

Trap going down the rap into the water.
Trap going down the ramp into the water

When its time to retrieve the traps the crew of the Pisces works with chief scientist and the Bridge to retrieve the traps.  When you are on the deck waiting for the traps to be lifted on board you have to wear a safety helmet and life preserver. Once the traps on are on the deck the scientists really start to hustle. They remove the cameras from the traps and empty the trap into black bins.

IMG_0738
Chevron Trap being lifted onto the deck

Once we are in the wet lab the first step is to sort the fish by species. In the picture on below you will see 3 bins with red porgy, vermilion snapper, and trigger fish these are 3 of the 4 most common commercially important fish we catch the 4th is black sea bass.

Sorting the fish
Sorting the fish

Red Porgy, Vermillion, & Trigger Fish
Red Porgy, Vermilion Snapper, & Trigger Fish

Measuring the total length of the fish
Measuring the total length of the fish

Next we need to weight the sample in kilograms and record the total size of the fish in millimeters. The fish that are not being kept for further study are returned to the ocean. It can get very busy and messy in the wet lab when the traps produce a large catch. The goal is to process one trap before the next trap is brought on deck. The traps are dropped three times daily for a total of 18 traps caught per day; it is the scientist’s goal to completely process the traps before the completion of their 12 hours shift. Certain fish are of special interest to the scientists because they are commercially and recreationally important to the fishing community so these fish are set aside for further study. On Monday July 21st we caught a 10.47 kg Red Grouper, which is one of the fish that is studied in more detail.

Red Grouper caught on Monday July 21, 2014
Red Grouper caught on Monday July 21, 2014

For this fish in addition to recording the weight and total length, scientists also record the fork length and standard length. The scientists also collect the otoliths (ear bones) from the fish which are used to determine the age of the fish just likes rings on a tree are used to determine age. Finally scientists collect DNA and part of the gonads for additional study back at the laboratory.

 

 

 

 

 

 

Personal Log

My first few days on the Pisces have been busy and very exciting there is so much to see and learn. Everyone on board has been very friendly and welcoming. As I look out my window every morning all is see is blue for miles. Even though we are only 10-50 miles off the coast of North Carolina on any given day there is nothing out here but ocean. It’s impressive how vast the ocean is and how little we know about the geography of the ocean or the animals that inhabit the sea floor.

Leaving Morehead
Leaving Morehead City, North Carolina

Looking down from the top deck of the Pisces.
Looking down from the top deck of the Pisces.

 

 

 

 

 

 

 

 

 

 

 

We set sail from Morehead City, North Carolina at 10am on Sunday July 20th and I had a great view from the top deck of the Pisces as we left the harbor. After lunch we practiced the abandon ship and fire drills, however I was not able to participate because I was seasick. Did you know that seasickness occurs when our brain receives conflicting information from our body. Onboard the Pisces it doesn’t look like anything is moving so my eyes sent my brain a message that there was no movement, but my inner ear, which is responsible for balance, sensed the motion of the boat and this conflicting information caused my seasickness. By Monday I was feeling much better and I was ready to get to work.

The bunks in our stateroom
The bunks in our stateroom

Life on the Pisces is very comfortable. I am sharing a stateroom with Mary who is a great roommate. We each have our own bunk with a curtain for privacy as well as lockers for storage. Additionally our bathroom is located in our room, which was a wonderful surprise because I thought that we would all be sharing a single bathroom. There is a lounge across from our room with large comfy chairs and an impressive DVD collection, however I have been too tired from working in the wet lab to enjoy it yet. There is also a gym somewhere on the ship but I don’t think that I will ever have enough balance onboard the ship to use the gym safely. Stay tuned, tonight I’m going to spend the night mapping the ocean floor and I’ll let you know how it goes.


SCIENTIST SPOT LIGHT

Zeb Schobernd : Chief Scientist

Education: Masters from Earlham College and a Masters from College of Charleston in Marine Biology

How long have you worked with NOAA? Since 2007, started this project in 2010

Chief Scientist Zeb Schonberned in the dry lab
Chief Scientist Zeb Schonberned in the dry lab

How important is collaboration in your research? Being able to share and work together is a large part of the marine biology community. On this cruise for example we are collaborating with scientists from Beaufort as well as with local universities we have 2 volunteers from the College of Charleston sailing with us.

How long have you participated in this survey? Since the start of the SEFIS survey in 2010, currently in its 5th season.

Does your team change every year? The core group of research scientists stays the same, but the volunteers and lab assistants’ changes year to year.

How does the Pisces compare to other ships? The Pisces is larger than other ships I have worked on. It’s more comfortable, there is more space for scientists to spread out and work. Additionally the Pisces has the equipment need to map the floor, which makes determining where to drop traps more efficient.

How many days a year do you go out to sea? I spend about 45 days out at sea. 

What do you do when you are not out at sea? I work on processing the videos that were collected on the cruise; we need to identify the fish species that are on caught on camera. The cameras are often more valuable then the fish that we trap because some fish may never go in the trap so these videos allow us a better picture of the underwater ecosystem.

What is the biggest challenge about doing research at sea? The biggest challenge would be bad weather that impacts sea conditions. Also time away from home can be challenge on long cruises.

What would be your dream research cruise? I would like to be able to use a submersible to record videos of tropical fish for further study.

Any advice you have for students interested in marine biology as a career? Gain hands on experiences in the field by doing internships while in college to determine if this is what you really want to do. What I do on a day to day basis is very similar to what I experienced on a research cruise while I was in grad school.

Coolest catch: 6 Gilled Shark

Favorite fish: Groupers

COOL CATCH OF THE DAY

Shark sucker attached to Kate's arm.
Shark sucker attached to Kate’s arm.

Emina Mesanovic, An Adventure Begins, July 13, 2014

NOAA Teacher at Sea

Emina Mesanovic

(Almost) Aboard NOAA Ship Pisces

July 20 – August 2, 2014

 

Mission: Southeast Fisheries-Independent Survey

Geographic area of the cruise: Atlantic Ocean

Date: July 13, 2014

 

Personal Log

Hello everyone! My name is Emina Mesanovic and I am so excited to have been selected by NOAA (National Oceanic and Atmospheric Administration) to be a part of the 2014 Teacher at Sea field season. July 20th can’t come fast enough.

I am very excited to share this experience with everyone on the blog this summer and back at school in the fall.  As I learn more about the research being done on the Southeast Fishery-Independent Survey (SEFIS), and my ship the Pisces, so will you!

During the school year I teach science at Danbury High School and I LOVE my job. The students at DHS are amazing and I enjoy watching them learn and grow as they explore science inside and outside the classroom.

Students collected physical, biological and chemical information on Long Island Sound for Project Periphyton.
Students collected physical, biological and chemical information on Long Island Sound for Project Periphyton.

In the classroom I try to give my students experiences and interactions with science content so that they can truly internalize the knowledge and be active participants in the learning process. I know that the experiences that I will have while on the cruise will enhance my ability to craft and deliver lessons, by incorporating current research into the classroom. My students are always more interested in topics that are current and relevant and I am looking forward to bringing back stories of scientists working collaboratively to study and solve problems.

Students collecting physical data on the Shepaug River for Project Periphyton.
Students collecting physical data on the Shepaug River for Project Periphyton.

When I am not teaching I enjoy being outdoors preferably near water. I love the beach and there is nothing I enjoy more then listening to the calming noise of the ocean while I read a good book. In planning a vacation my first thoughts are always is it near warm water and what cool and exciting things can I do there. That is how I found myself Zip-lining through the forest in the Dominican Republic and Ice Skating on the beach in San Diego.

Zip lining in the Dominican Republic
Zip lining in the Dominican Republic

 

Soon I will be heading out on the NOAA Ship Pisces into the Atlantic Ocean whereI will be find out more about the various jobs my shipmates have, information about ocean ecology, and life onboard a ship. Stay tuned and let me know if you have any questions.

Picture courtesy of NOAA
The Pisces my home for the next 12 days. Picture courtesy of NOAA

 

Kevin McMahon: Fireworks, Red Grouper, and The Deepest Trap, July 7, 2014

NOAA Teacher at Sea

Kevin McMahon

Aboard the NOAA ship Pisces

July 5 – July 18, 2014

Mission: Southeast Fisheries- Independent Survey

Geographic area of the cruise: Atlantic Ocean, off the coast of North Carolina and South Carolina

Date: July 8, 2014

Weather Information from the Bridge

Air Temperature:           26.6 ° C

Relative Humidity:         70%

Wind Speed:                 10.96 knots

 

You will notice that my blogs will now have two sections. The first section called “Science and Technology Log’” is where I will discuss our mission, the data that we are collecting and any other science-related news from our trip.

In the second section, called “Personal Log”, I will share about how it feels to be a part of this expedition and what it is like to live and work on the Pisces. I will also add a glossary at the end of each blog entry for some of the science and ship terms that might be unfamiliar to you.

Science and Technology Log

I am one of many people helping chief scientist, Nate Bacheler, collect data about the abundance of reef fish. Nate is a research fishery biologist and he coordinates the Southeast Fishery Independent Survey.

This work is exactly what you think it is. We are catching fish to collect data on how abundant the reef fish are off the southeast coast of the United States.

They use a trap called a chevron trap, to collect the fish. It gets its name from its unique shape.

 

Chevron Trap
Chevron Trap

 

Each time that the scientists deploy the fish traps, they use the same procedure. For instance, they use the same size of traps, the same number of traps, the same type of bait, the same amount of bait in each trap, and the same “soak time” in the ocean.

Most days, the traps will be deployed three times. Once the traps reach the surface, we sort the fish by species, measure their mass (in kg), and measure their length (in mm).

On some of the more important species that humans use for food, the scientists will take samples for other scientists to examine in order to determine how healthy a particular fish species is.  For example, scientists remove the ear bones, called otoliths, to determine the age of the fish that was caught. Determining the age of the fish from the otoliths is like counting rings on a tree because the otoliths form growth marks each year.

So far, we have caught fish of all different shapes and sizes. On one of our first traps, we caught a red grouper that weighed 11.67 kilograms and was 881 mm long.

 

Kevin McMahon with Red Grouper
Kevin McMahon with Red Grouper

 

Today, we sent a trap that went down 102.97 meters. That was the deepest that the Southeast Fishery Independent Survey has ever deployed! We caught a scamp (which is a type of grouper), many red porgy, and a blackfin snapper. This was the first blackfin snapper that Nate has seen.

Personal Log

Wow, I have just had an amazing few days.

The night before we set off on our cruise, I was able to watch the fireworks from the bow of the boat. Even though it was July 5, the fireworks were delayed one day because of Hurricane Arthur.

The best view of the Morehead City,NC  fireworks show was from the deck of the Pisces.
The best view of the Morehead City,NC fireworks show was from the deck of the Pisces.

The morning came quickly, and, we headed out to sea.

 

This is my last view of land for a while!
This is my last view of land for a while!

Here are some of my initial thoughts:

I am in awe over the vastness of our ocean. I wish that I was a poet because then I could describe it a lot better. To me, it seems like we are a million of miles from the coast. Everywhere you look, you see the most beautiful blue color. I think the Crayola crayon company should create a new color in honor the ocean and call it “ocean blue” if they haven’t already created a crayon this color.

Check out the color of the ocean  while the deck crew wait to deploy the next trap.
Check out the color of the ocean while the deck crew wait to deploy the next trap.

 

But, even though all I see is water in every direction, we are only 60.5 miles south, southeast off the coast from the Beaufort Inlet.

I also am impressed with all the collaboration that is necessary to make the mission a success.  For instance, there are two different groups of scientists on the boat. One group spends the night mapping the ocean floor using multibeam sonar. They share this information with the fishery scientists early in the morning so that they can decide where to place the traps for the next day. The scientists also have to coordinate with the crew of the ship. The scientists are constantly communicating with the crew and the crew are constantly communicating with the scientists. This work could not happen with out the help of everyone on board.

I also like how everyone is conscious about safety. At school we have fire drills and tornado drills in case of emergencies. On the ship, we also have fire drills and “abandon ship” drills. Check out the picture of me in my “gumby” suit during our “abandon ship” drill. I had to go to my lifeboat location and then put on my survival suit to protect me from hypothermia in case I fell in the water in the unlikely event that we had to abandon ship. We also needed to bring a hat, a long-sleeve shirt, and long pants for the “abandon ship” drill. Why do you think we need that?

 

Kevin McMahon in his survival suit
Kevin McMahon in his survival suit

 

GLOSSARY OF TERMS 

Bow – the front end of the ship.

Bridge – the part of the ship that is the command center. The officers navigate the ship from this location. 

Hypothermia- a dangerous condition when your body temperature drops too much, usually as a result of being exposed to cold temperatures for too long.

 

Paul Ritter: Sixteen Days… July 31, 2013

NOAA Teacher at Sea
Paul Ritter
Aboard NOAA Ship Pisces
July 16– August 1, 2013 

pisces team picture
Pisces team picture

Mission: Southeast Fishery-Independent Survey (SEFIS)
Geographical area of cruise: southeastern US Atlantic Ocean waters (continental shelf and shelf-break waters ranging from Cape Hatteras, NC to Port St. Lucie, FL)
Date: July 31, 2013

Weather Data from the Bridge

8-01-13 ship data

Science, personal, Technology Log

Date: Wednesday July 31, 2013
One day before we leave but you would not know it on the ship.  We are business as usual.  Our team is somewhere off of the coast of Cape Canaveral, and we have three sets of traps to set before we can call it a day.  With NASA’s Cape Canaveral Space Center in the background, we began laying traps in a zigzag pattern over the top of an underwater rock formation that the acoustics lab found the night before.

Our day’s catch was much better than in days past due to the fact that we he had moved much closer to shore.  For some reason our leg of the expedition experienced an unusual upwelling of cold water upon the continental shelf where we were exploring.  Our temperatures for most of the trip ranged from 14 to 16 degrees Celsius. Once we traveled closer to shore our temperatures went up to around 19 degrees Celsius.  This change in location meant that the water on the ocean floor was warmer and warmer water means more reef fish that are hungry.  FISH ON.

Notably, something that stands out in my mind that has made the entire trip successful is the camaraderie of the acoustics, and the wet /dry lab teams.  You would not know by looking, that many of them had never met prior to this trip.  Arguably, these people are the best of the best in the marine biology industry, and none of them have egos. They are so fun to be around.  They are very much a family.  Every time someone enters either lab, a round of “HEY’S” is shouted out by the entire group, as if we had not seen each other in years.   It reminds me of the old television show Cheers, when Norm would walk in to the bar and everyone would yell his name “NORM”.  I loved that show.  Anyway, I would give almost anything to work, side by side, with these people the rest of my life.  I imagine that this group of scientist is exactly what all other researchers aspire to have.

At the end of the day, trap six, the last trap, was pulled and we finished with a haul of good ol’ Black Sea Bass.  You got to love it.  The time was 3:45 and it was time to pack it up and clean the labs.  As a team, we boxed all of the equipment up, we scrubbed everything from top to bottom, and did it with the same enthusiasm we had had the entire trip.  We got the word from James Walker, Chief Bosun on the Pisces, to get all of our gear ready to be put into cargo nets ASAP.  He informed us that we were scheduled to arrive at Mayport Naval Station for a 7:00 A.M. dock time.  It did not take long for all of us to amass the gear and ready it all for transport.

At some point after supper, which was crab legs, and rib eye steaks, Ryan Harris, the skilled fisherman, and I were walking the deck and realized that we were about to get wet from a storm.  Thinking quickly, we moved all of the non-waterproof materials inside the wet lab.  I told Ryan I would see him in the morning and headed to my stateroom.  For some reason I could not get to sleep.  I was exhausted but just could not shutdown.  Zach, my roommate, and I talked about going home and all of the things we were going to do when we got there, for around an hour and then called it a day.

The Pisces steamed through the night and we were right on time.  Grabbing a cup of coffee, I raced out to the ships observation deck so I could watch us come into the dock.  It was amazing.  The crew and the bridge worked flawlessly together to bring our ship, that we have called home for the last sixteen days, back dockside.  My hat goes off to them.  James directed everyone to get into their positions. A small rubber ball with a long lines attached was hurled by one of the men, who was on port bow of the ship, overboard and onto land.  Waiting on shore, several young Navy men caught the ball and pulled the rope onto land forming a tight rope between the ship and land that any member of the Wallenda family could walk.  As the onshore men placed the rope on the davit, the ship motored forward to use the rope to pull the ships aft to the dock.  Upon docking, the crew of the Pisces completed our landing by connecting the massive cables that were lifted by a crane on shore.  These cables allowed the ship to shut off her engines, that had been going nonstop for the last sixteen days, and run on shore power.  Ah quiet at last.  Just because we were tied to land, it did not mean that our jobs were over.

OLYMPUS DIGITAL CAMERA
Off loading the scientific equipment aboard the Pisces.

We still had to move the cargo nets with all of our scientific equipment to land, and then the arduous task of loading it all into the team moving van.  The task of loading the van should have taken hours but the phrase “many hands make light work” was reaffirmed as the entire scientific party jumped in and made light work of the job.  Once complete, we all gathered, took our last pictures, hugged, and said our goodbyes.  And just like that, I jumped in a minivan with five of the ship’s crew and Matt Wilson, the team hydrographer.

Within 20 minutes we were at the airport and all headed to our gates.  My flight from Jacksonville was relatively easy, with no issues but when I arrived at O’Hare the same could not be said.  I think at last count my gate was moved at least 3 times before I made my way to gate G1.  Twenty minutes before flight time, I noticed that we had not boarded the plane yet.  The gate attendants were scurrying around like a mouse running from my cats, and then the ominous “ding” came over the speaker.  “Ahh ladies and gentlemen, we are sorry about the delay but we are experiencing some mechanical issues with plane”.  “We will try to keep you informed as to the progress and hopefully get you on to your final destination quickly”.  “Thank you for your understanding”.  After an hour or so, we finally got the direction that we were again moving to another gate.

As we were walking to our final exiting point, I started talking to a couple of the flight attendants and asked them what had happened.  Apparently, my original plane had taken a goose missile to one of the engines and it totally destroyed any chances that plane would fly again in the next several weeks.  As you could imagine, the attendants said it was quite a stressful situation.  I, for one, am very thankful that they changed my plane.  Finally, I boarded my new plane and made my way to my seat.  I could not wait to see my wife who was waiting for me at the airport.  As we taxied down the runway, the pilot came on the planes intercom and informed us that she was going to try to speed up our flight time a bit.  Speed up a bit?  I guess.  Our scheduled flight was to take 45 minutes to travel from Chicago O’Hare to Bloomington Regional Airport.  Our captain did it in 25 minutes flat.  Woo hoo.  I am going to American Airlines to request that she trains the entire fleet.  Just before landing, as if I could have scripted it, our plane flew over my hometown of Pontiac, Illinois.  It was then at that moment, that I knew I was home.  I could not wait to see my wife.  The plane landed and we rolled to the gate.  I don’t think it was 3 minutes and we were all off of the plane.  I hurried out the door, ran through the terminal, and there she was.  My wife was smiling and more beautiful than ever before.  I had missed her and my girls so much.

I will miss my new brothers and sisters of our scientific team and ship’s crew.  My students, family and friends are going to be amazed by all of the stories, pictures and videos. I am excited that all of them and others are going to be able to participate in reading the data from the real research we did on board.  I could not be more thankful to NOAA for my opportunity to live my childhood dream.  As I write these last sentences of my blog I am welling up with tears.  For sixteen days, in July of 2013, I aboard the NOAA Ship Pisces got to be a Marine Biologist, and ocean explorer.  I will never forget it.

OLYMPUS DIGITAL CAMERA
Paul Ritter in front of the ‘Pisces’ sign

Did You Know?  

I took a lot of pictures on my trip and these are what I consider my top 20 photos.

IMG_4772
Paul Ritter in a “gumby” suit

OLYMPUS DIGITAL CAMERA
Playing Bean Bags on the Pisces

xbt launch
Warren Mitchell and Paul Ritter lock and load the XBT

OLYMPUS DIGITAL CAMERA
Me…. and my Moray

OLYMPUS DIGITAL CAMERA
Sea turtle off the port bow

OLYMPUS DIGITAL CAMERA
Paul Ritter and Shark Sucker in the wet lab of the Pisces

OLYMPUS DIGITAL CAMERA
Paul Ritter and a 24 lb. Red Snapper in the wet lab of the Pisces

OLYMPUS DIGITAL CAMERA
Paul Ritter setting Traps on the Pisces

OLYMPUS DIGITAL CAMERA
Paul Ritter getting to know a Blue Crab

OLYMPUS DIGITAL CAMERA
Paul Ritter driving the Pisces

OLYMPUS DIGITAL CAMERA
Sunset on the Pisces

OLYMPUS DIGITAL CAMERA
Catch of the day.

OLYMPUS DIGITAL CAMERA
Paul Ritter and Ryan Harris catching Bonito.

OLYMPUS DIGITAL CAMERA
Paul Ritter with a Palm Warbler

OLYMPUS DIGITAL CAMERA
Atlantic Spotted Dolphins

vlcsnap-2013-07-19-20h12m25s184
Nurse Shark caught on our Go Pro camera

IMG_4901
Paul Ritter – Safety drill aboard the Pisces

IMG_4787
Paul Ritter and some of the many Sea Stars.

IMG_4907
Common Octopus

OLYMPUS DIGITAL CAMERA
Paul Ritter catching a Barracuda aboard the Pisces.

Paul Ritter: Lock and Load the XBT – The Joke is on Me, July 22, 2013

NOAA Teacher at Sea
Paul Ritter
Aboard the NOAA Ship Pisces
July 16– August 1, 2013 

Mission: Southeast Fishery-Independent Survey (SEFIS)
Geographical area of cruise: southeastern US Atlantic Ocean waters (continental shelf and shelf-break waters ranging from Cape Hatteras, NC to Port St. Lucie, FL)
Date: July 22, 2013

Weather Data from the Bridge

7-22-13 ship data

Science and Technology Log

Yesterday was a very exciting day.  After we dropped off our first traps, the ship’s officers brought the ship to a full stop and it was time to release the CTD.  What is a CTD?  CTD stands for Conductivity, Temperature, and Depth.  The CTD unit  is an array of sensors that is lowered to just above the bottom of the ocean to take a continuous profile of the water column.  Moments after the CTD reaches the bottom it is brought back to the surface and the deck hands bring it back on board the ship.  From here, the scientific crew can analyze the data from the CTD to determine the water conditions for the drop area.  On some expeditions, the CTD is fitted with a device that actually takes water samples at the different depths for chemical and biological analysis.   This information allows the scientists to get a complete picture of the water column where the traps are set and where the fish live.

What is a CTD? CTD stands for Conductivity, Temperature, and Depth.

Another instrument that is used by the ship is the Expendable Bathythermograph or XBT.  This device was used by the military for many years to measure the temperature of the water at various depths.  The most interesting thing about this probe is how it is deployed.

Warren Mitchell, a fisheries biologist for NOAA’s Beaufort Laboratory, decided it would be a good idea for me to be trained firsthand to deploy this vital instrument.  The first thing I had to do was put on my hardhat and safety vest and step on to the recovery deck.  At that point Warren called up to the bridge to ask for permission to drop the XBT.  The officers on the bridge gladly gave us permission and Warren then got me into a launching position with my feet spread apart and my elbow braced on hip.  The CO then happened to walk by and asked me if I had my safety glasses on, to which I immediately said yes.

It was at this point that Warren gave me permission to launch the XBT.  I was excited.  I was ready.  I could not wait for Warren to give me the signal.  The only problem was I did not know the signal and I could not find the trigger.  I did not know what to do.  I was getting worried.  Warren then repeated the orders “launch”.  “How?” I replied.  Tip the barrel forward, lean forward, he replied, and the XBT slid out of the tube into the water.

The joke was on me.  Here I had been led to believe that this was going to be some grand launch something just shy of the space shuttle taking off into space.  The reality was that the XBT just falls into the water.  Very non-exciting for me but everyone on the boat laughed for hours.  So did I.  It is good to be treated like one of the family.  After our final set of traps for the day, I ventured out to see what it is like to work in the acoustics lab.

Warren Mitchell NOAA Scientist instructs Paul Ritter on the proper use of the XBT.
Warren Mitchell NOAA Scientist gives instruction to Paul Ritter on the proper deployment of the XBT.

Personal Log

Monday 7-22-13

Nurse shark outside chevron trap.
Nurse shark outside our chevron trap.

To this point this expedition has been so amazing.  Would you believe there are 3 people aboard the NOAA Ship Pisces that live or once lived within 60 miles from my home town? Crazy I know.  We have had only one medium sized squall to this point with 3 to 5 foot seas.  We have brought up traps with tons of jellyfish, in which I got a nematocyst (jellyfish stinging cell) to the hand.  It was not too bad but I did feel a slight burning sensation.

We have had a number of different types of starfish, all of which I have never seen.  One particular trap that we sent to the ocean floor, while upon retrieval did not have any fish, but did have a secret to share.  After Julie Vecchio, one of our volunteer scientists replayed the video cameras that are on the top of the trap, we discovered that a nurse shark had been trolling the area around our trap. I have seen so many amazing things.  Several days ago we were hauling traps and just as we brought our trap up there was a sea turtle that came up to the boat.  I snapped a couple of photos, as quick as I could and then went right back to work.  It was not two minutes later and I saw a baby sea turtle the size of a fifty cent piece.  Immediately, the first thing that came to my mind was thought of Crush and Squirt from Disney’s Finding Nemo talking to me.

Crush: Okay. Squirt here will now give you a rundown of proper exiting technique.

Squirt: Good afternoon “Paul”. We’re gonna have a great jump today. Okay, first crank a hard cutback as you hit the wall. There’s a screaming bottom curve, so watch out. Remember: rip it, roll it, and punch it.

 Paul: Whoa! Dude! That was totally cool!

Turtle off the port bow.
Turtle off the port bow.

Tuesday July 23, 2013

Somewhere in the middle of the night the wind picked up and so did the waves.  I share a stateroom with Zach Gillum a graduate student from East Carolina University.  This kid is amazing.  We really have become great friends.

One of the great things about this trip is to be totally immersed in an expedition with like-minded people. We will all hang around waiting for traps, or eating dinner and start conversations about some environmental issue or ecological principle.  I sure wished I lived closer to my new friends.  Anyway, our stateroom window is about 4 foot above the waterline.  Many times during the night, our window was under the water as a wave passed by.  When we woke up, the wind and waves increased.  A four to seven foot wave is enough to make many run for the toilet.  So far so good for me when it comes to sea sickness.

I just hope we don’t find any bigger waves.  We gathered on the aft deck as we usually do but we delayed deployment, waiting for improvement in weather conditions.  The major problem we had was with larger waves comes the possibility of the traps bobbing up and down on the ocean floor.  With adverse conditions on pick-up, we are also more likely to drag traps across the bottom.  We set the first six traps, pulled them up and just as we had suspected not many fish.  Around 1:00 P.M. Zeb Schobernd, our Lead Scientist, made the decision to head to another location.   It just goes to show you that when you are at sea, you need to follow the 3 F’s.  Flexibility, fortitude, and following orders.

Waiting to work.
Waiting to work.

Did You Know?

Did you know that a jelly fish’s nematocyst are like mini speargun?

These little stinging cells fire when they come in contact with the surface of and organism.  Some jellyfish tentacles can contain up to 5000 or more nematocyst.

Paul Ritter: Teamwork, July 20, 2013

NOAA Teacher at Sea
Paul Ritter
Aboard the NOAA Ship Pisces
July 16– August 1, 2013 

Mission: Southeast Fishery-Independent Survey (SEFIS)
Geographical area of cruise: southeastern US Atlantic Ocean waters (continental shelf and shelf-break waters ranging from Cape Hatteras, NC to Port St. Lucie, FL)
Date: July 20, 2013

Weather Data from the Bridge

7-20-13 ship data

Science and Technology Log

OLYMPUS DIGITAL CAMERAEach day the fish traps aboard the NOAA Ship Pisces are baited and prepared with cameras, and sent to the ocean floor where they must sit for ninety minutes.  It is necessary to keep this time consistent for all locations and traps so we can compare apples to apples.  We call this a “control variable”.  The particular parameter that someone measures that is a constant and non-changing point of comparison in an experiment or scientific observation is a controlled variable for consistency.

After being on the bottom for the time allotted, the officers on the bridge drive the ship back to the number one trap and drives alongside the trap’s buoys.  Approximately, half way down the ship is the side sampling deck.  From the side sampling station, approximately halfway down the ship, we take a grappling tied to a long rope and hurl it over the side, aiming between the two buoys. It is important that we hit it on the first attempt.

If we miss, the ship has to take vital time to maneuver around to make another attempt at the buoys.  Have we missed?  Honestly, yes but only a couple of times.  If we have done our job correctly, we pull in the grappling hook and with it the buoys, and rope.  The buoys are then unhooked from the rope and the rope is threaded into a pot hauler, which is a large tapered wheel that grabs onto the rope without slipping.  The pot hauler then hydraulically pulls the rope and trap up to the surface.  Once at the surface, another hook and winch is connected to the trap and the entire rig is pulled up on the side sampling deck.  It is at this time that our team attacks the trap by taking off the cameras and unloading its cargo of fish.  If we have fish, they are taken to the wet lab and all the measurements are taken.  Once empty, the trap is carried to the main aft deck and prepared for the next round of trapping.  It really is a lot of heavy work but it is all worth it to understand the ecology of our ocean reefs.

Personal Log

OLYMPUS DIGITAL CAMERA
Patrick and I Working on a Red Snapper

7-20-13

Today started around 12:30 am.  It was not something that I intended to do.  The night before we went to bed around 10:00 pm.  I was sore and very tired from the long and hard day we had fishing.  For some reason I woke up and looked out the window and saw that it was very bright outside.  I thought it was daybreak and it was time to get up.  I looked at my clock and it said it was 12:30.  But that could not be.  It was too light outside for just pass midnight.  I actually thought my clock was broke so I fired up my computer to check the time.  Sure enough, it was 12:30.

The moon was so bright and reflecting off of the water in a way that the light was coming right into my room.  Crazy.  After the confusion, I finally made it back to sleep.  Around 5:30 my internal alarm clock went off.  I actually never need an alarm clock to wake up, ever.  For some reason I always have been able to just think about when I want to get up and I do.  Anyway, I got up, brushed my teeth and headed to work.

OLYMPUS DIGITAL CAMERA
Our Team in the Wet Lab

At 6:15, I met up with my brothers and sisters of the trap setting team which consists of Doug Devries – NOAA Scientist; Patrick Raley – NOAA Scientist; Jenny Ragland – NOAA Scientist; Julie Vecchio – volunteer Scientist; Zach Gillum – graduate student / Scientist, and me – the new guy scientist.  Have you ever watched Star Trek?  Usually each show’s scientific mission consists of Captain Kirk, Mr. Spock, Bones, Lt. Uhura, who are all in one color uniform, and a new guy who is in the red shirt.  The mission goes something like this.  Captain Kirk will say “Mr. Spock go check out the nondescript rock.  Bones see if you can get some readings on that green flower over there, Uhura please open up a channel to the ship, and New Guy, go check out that purple pulsating blob over next to the cliff.”  I really hope these guys don’t watch Star Trek…..

To be completely honest, it is nothing like Star Trek at all.  Our team is amazing.  I am very humble that they have accepted me into their family.  They are so fun to be around and I could not be more thankful for their friendship and guidance.  Each of us has to play many vital roles in the mission. This expedition would not work if we did not have each other to rely on.  I don’t want to let my teammates down, and I will do anything to make sure that does not happen.

Anyway, back to the traps…..  We set our first set of traps of the day and ninety minutes later we discovered that our return was not very good.  Our second set of traps, on the other hand, were much better and netted many fish.  Some of the fish included Black Sea Bass, Grey Trigger, Tomtate, White Grunt, and one of the most desirable fish on the market, the Red Snapper.  Red Snapper is a fish that can grow upwards of 40 lbs. and live as long as 50 years if it can escape being caught.  This amazingly beautiful red fish has had much pressure from commercial and sport fishermen and as a result their numbers have dwindled.  After speaking with Zeb Schobernd, our mission’s Chief Scientist, it is his hope that due to strict regulation of the harvest of the species, we will see an increase of the population.  The data we are collecting will help develop a better survey for reef fish populations in the future, especially grouper and red snapper..  Lunch was at 11:00 and what a lunch it was.  Crab legs, and prime rib.  Man, the crew of the Pisces eats very well and I am thankful.  My wife is a great cook, and I would say that the ship’s chief steward is a close second.  After lunch, we quickly we set our third series of traps and were able to increase our catch exponentially.  Dinner consisted of Jamaican jerk chicken, pork roast, green beans, lettuce salad, and cheese cake.  After dinner I took a little time to visit the team in the acoustics lab.  The acoustics lab is responsible for mapping out the ocean floor to determine where we should put traps out the next day.  I will probably touch more on them in my next blog.

Swabbing the deck
Swabbing the deck

Did you know?

Did you know that NOAA ships do not just stay in one particular location of the world?

The Pisces has sailed from Canada, to the Gulf of Mexico, and down to Venezuela and back.  Not to mention the Pisces is one of the fastest ships in the NOAA fleet capable of reaching speeds greater than 17 knots with a following current.

Paul Ritter: Trap-Tastic – A Great Day in the Sun, July 18, 2013

NOAA Teacher at Sea
Paul Ritter
Aboard the NOAA Ship Pisces
July 16– August 1, 2013 

Mission: Southeast Fishery-Independent Survey (SEFIS)
Geographical area of cruise: Southeastern US Atlantic Ocean waters (continental shelf and shelf-break waters ranging from Cape Hatteras, NC to Port St. Lucie, FL)
Date: July 18, 2013

Weather Data from the Bridge

7-18-13 ship data

Science and Technology Log

IMG_4763
Paul Ritter onboard NOAA Ship Pisces

Life at sea is crazy and amazing.  It is kind of like Forrest Gump would say “ you never know what you’re gonna get”.  Today we set out our first two sets of traps.  Six individual traps are baited up with a fish called Menhaden—Brevoortia tyrannus.

Menhaden are about 15 to 35 cm long and they very stinky.  They might stink more than any fish I have ever smelled.  Menhaden are high in oil and a major source of omega-3 fatty acids, which make them delicious to other fish and keeps them from having heart disease and Alzheimer’s.  It must work.  Think about it, I have never heard of a fish having a heart attack let alone Alzheimer’s.  Back to the traps….

Each trap gets four bait lines of Menhaden and then we cut up and throw in eight more just for good measure, kind of like they did in Jaws.  Once the bait is in, the trap door is shut, and cameras are put on tops of each trap.  One camera facing forward and one camera facing backwards completes the setup for the reef survey chevron trap.  The cool thing about the cameras on the traps is the front ones are Go Pro video cameras which are most often used in extreme sports.  I actually own two of them.  No. I am not really in to extreme sports.  We use them as helmet cams when we ride our four wheelers on trails.

The traps, which are individually numbered, are laid out on the aft deck (back) of the ship to prepare for sending them to the ocean floor.   An amazing feature of the ship is the ramp deck.  The moment Zeb “the chief scientist” gives the shout on the radio, Ryan “the skilled fisherman” (his actual title) pulls the lever and the back of the ship, or ramp deck, slides down.  It is at this point when the traps, cameras, and Menhaden are pushed off the back and all fly to the reef below.   It takes a little over a minute for the trap to reach the bottom which is around 70 meters or 223 feet deep.  Ninety minutes later we recover the traps one by one and inspect the catch.

OLYMPUS DIGITAL CAMERA
Menhaden bait fish dangling from stringers

Personal Log

Thursday July 18, 2013

Well, the great big exciting news for this expedition….  I don’t get sea sick.  Woo Hoo.  You might not think this is such an amazing thing but you have no idea how happy I am to be able to say this.  We had at least one person who got sick already and I am thankful not to have gone through it.

I woke up around 5:30 A.M. this morning to get ready for our first day of work.  Breakfast consisted of pancakes, sausage, bacon, eggs, and juice.   I am here to tell you that the Chief Steward (Moises) aboard the NOAA Ship Pisces might be one of the best things to happen to her.   While I have only been on board for 48 hours, it is readily apparent that the crew has been well taken care of when it comes to eating.  Delicious.

After breakfast our team made our way to set up our video/chevron live trap on the aft (back)deck to prepare for the day’s work.  At around 7:45, we got the call from Zeb (the chief scientist) in the dry lab to start dropping traps.  First set of six traps made it into the water with no trouble.   Ninety minutes later we hauled them all back in one by one.  We emptied the live fish from the traps into tubs and placed them into the wet lab.  Zack Gillum, a graduate assistant from East Carolina University and my roommate for this expedition, and I carried the traps back to the aft deck and prepared them for re-baiting.  With the ship in full gear it only took about a half hour for us to reach our second drop zone or sampling area.

After our ninety minute bottom time, the traps came up, the traps were cleaned out and we were done sampling for the day.  The main reason we were done is that it was going to take us quite awhile to travel to our next sample site.    During this time of cleaning up, we emptied the traps, which were very smelly, and filled with half eaten Menhaden.  Wow they even stink after they have been underwater for ninety minutes.  which included swabbing the deck.  The only thing I could think of when we were scrubbing away is a song I learned during my childhood… It goes something like this….

Maybe you've heard the expression, "Swab the Deck?" It just means "Mop the Floor."
Maybe you’ve heard the expression, “Swab the Deck?” It just means “Mop the Floor.”

If you’re a pirate and you know it, swab the deck (swish, swish),

If you’re a pirate and you know it, swab the deck (swish, swish),

If you’re a pirate and you know it, then your face will surely show it (swish, swish),

If you’re a pirate and you know it, swab the deck (swish, swish).

Trust me if you sing it once it will stick in your head the rest of your life, it has mine for the last 35 plus years.

Somewhere in the middle of about the 50th verse of the song, we had an emergency fire drill.  It was relatively easy.  We simply had to quickly make our way to our prearranged staging area.  No big deal.  Shortly after that the Captain of the Pisces called an emergency evacuation drill.  This drill was not quite as easy. We had to run to our stateroom, grab long sleeve t-shirts, long pants, a hat, and our survival suit.  Once on deck we had to don all of our gear in about sixty seconds.  Man that thing was hot and sweat was pouring off of me like water going over Niagara Falls.  What is worse, I looked like a giant red Gumby Doll.  After the drill we finished cleaning up our messes, and filleted all of our fish and whatever we do not need to keep for research, will get donated to the local food pantries.  NOAA is amazing and so are her people.

IMG_4772
Paul Ritter, in his ‘Gumby Suit’

 

Did You Know? 

Ships use different terms to describe direction on a ship.  They are easy to remember.

Port = left side

Starboard = Right side

Aft = Back

Carmen Andrews: Transforming Fish into Data, July 15, 2012

NOAA Teacher at Sea
Carmen Andrews
Aboard R/V Savannah
July 7 – 18, 2012

Mission: SEFIS Reef Fish Survey
Location: Atlantic Ocean, off the coast of Cape Canaveral, Florida
Date: July 15, 2012

Latitude:      28 ° 50.28   N
Longitude:   80 ° 26.26’  W       

Weather Data:
Air Temperature: 28.6° C (83.48°F)
Wind Speed: 18 knots
Wind Direction: from the Southeast
Surface Water Temperature: 27.6 °C (81.68°F)
Weather conditions: Sunny and Fair

Science and Technology Log

How are fish catches transformed into data? How can scientists use data derived from fish to help conserve threatened fish species?

The goal of the Southeast Fishery-Independent Survey or SEFIS is to monitor and research reef fish in southeast continental shelf waters.  Marine and fisheries scientists have developed sophisticated protocols and procedures to ensure the best possible sampling of these important natural resources, and to develop fisheries management recommendations for present and future sustainability.

During the cruise, important commercial fish in the snapper and grouper families are caught over as wide an area as possible; they are also taken in large enough numbers that they can be worked up into statistically reliable metrics. In addition to counts and measurements, biological samples are also taken at sea for future analysis in land-based research labs.

Gag grouper ready for its work up
Gag grouper ready for its work-up

Scientists strive to render an informative snapshot of reef fish stocks in a given time interval. Reports that analyze and summarize the data are submitted to policy-makers and legislators to set fisheries rules, restrictions and possible quotas for commercial and sports fishermen.

After fish are caught and put on ice, processing includes several kinds of measurement that occur on deck. This data is referred to as ‘Length Frequency’. Tag information from the trap follows the fish through all processing.  Aggregate weight measurements for all the fish of one species caught in a trap are made and recorded in kilograms.

David is weighing the gag grouper, with Adam P. looking on
David is weighing the gag grouper, with Adam P. looking on

The length for each fish in the trap is noted, using a metrically scaled fish board. Not all fish are kept for further processing.

David measuring the length of the gag grouper
David measuring the length of the gag grouper

Species-specific tally sheets randomly assign which fish from the catch are kept and which ones are tossed back into the ocean. These forms, which specify percentages of fish identified as ‘keepers’, are closely consulted by the data recorder and the information is shared with the scientist who is measuring the catch.

Shelly is recording length frequency measurement data
Shelly is recording length frequency measurement data

Length frequency data entries
Length frequency data entries

Red Porgy keep/toss percentage sheet
Red Porgy keep/toss percentage sheet

Kept fish are put in a seawater and ice slurry. The others are thrown over the side of the boat.

Age and reproductive sampling are done next in the wet lab.

Small yellow envelopes are prepared before fish work up can begin. Each envelope is labeled with cruise information, catch number, fish number, and the taxonomical name of the fish, using  binomial nomenclature of genus and species.

Adam P. and Shelly labeling envelopes and plastic specimen containers
Adam P. and Shelly labeling envelopes and plastic specimen containers

A small color-coded plastic container (the color indicates fish species tissue origin), with the fish’s source information riveted at the top, is also prepared. This container will store fish tissue samples.

The fish trap catch number is documented on another data form, along with boat and science team identification, collection method and other important information about the circumstances surrounding the fish catch.  Each species’ data is separately grouped on the data form, as individual fish in a catch are sequentially numbered down the form.

Me, transcribing fish weight & length data
Me, transcribing fish weight & length data

Each fish is weighed, and the weight is noted in grams. The scale is periodically calibrated to be sure the fish is weighed accurately.

Vermilion snappers and scamp, labeled and  ready for dissection
Vermilion snappers and scamp, labeled and ready for dissection

Three length measurements that are made: standard length (SL), total length (TL), and if the fish species has a fork tail — fork length (FL). The fish is laid, facing left on a fish board. The board is long wooden plank with a metric measuring scale running down the center.

Standard length does not include the caudal fin or tail. It begins at the tip of the fish’s head; then the fish measurer lifts the tail up slightly to form a crease where the backbone ends. Standard length measurement includes the fish’s head to end of backbone dimension only. Total length is the entire length of the fish, including the caudal fin. In fork-tailed species, the fork length measurement begins at the fish’s snout and ends at the v-notch in the tail.

Fish length measurements
Fish length measurements

Source: Australian Government – Department of Environment, Water, Population and Communities

Part of the dissection of every fish (except gray triggerfish) is the extraction of  otoliths from the fish’s head. An otolith is a bone-like structure made of calcium carbonate and located in the inner ear of fish. All vertebrates have similar structures that function as gravity, balance, movement, and directional indicators. Otoliths help fish sense changes in horizontal motion and acceleration.

To extract the otoliths, the scientist makes a deep cut behind the fish’s head and pulls it away from the body. The left and right otoliths are found in small slits below the brain. They must be removed carefully, one at a time with forceps. They can easily break or slip into the brain cavity.

Red snapper with removed otolith
Red snapper with removed otolith

Otoliths reveal many things about a fish’s life. Its age and growth throughout the first year of its life can be determined. Otoliths have concentric rings that are deposited over time. The information they show is analogous tree ring growth patterns that record winter and summer cycles. Other otolith measurements can determine when the fish hatched, as well as helping to calculate spawning times in the fish’s life.

The oxygen atoms in calcium carbonate (CaCO3) can be used to assay oxygen isotopes. Scientists can use these markers to reconstruct temperatures of the waters the fish has lived in. Scientists also look for other trace elements and isotopes to determine various environmental factors.

Each pair of otoliths is put into the small labeled yellow envelope.

The otoliths on the gray triggerfish are too small to be studied, so the spine from its back is collected for age and growth analysis.

Spine removed from a gray triggerfish
Spine removed from a gray triggerfish

The last step standard data collection is determining the sex and maturity of the fish. The fish is cut open at the belly, similar to preparing the fish as a filet to eat it.

Making a cut into a vermilion snapper
Making a cut into a vermilion snapper

If the fish is big, the air bladder must be deflated. The intestines are moved or cut out of the way. The gonads (ovaries and testes) are found, and the fish can be identified as a male or female. (Groupers can be hermaphroditic.) The fish’s stage of maturity can also be determined this way.  Maturational stages can be classified with a series of codes:

U = undetermined

1 = immature virgin (gonads are barely visible)

2 = resting (empty gonads – in between reproductive events)

3 = enlarging/developing (eggs/sperm are beginning to be produced)

4 = running ripe (gonads are full of eggs/sperm and are ready to spawn)

5 = spent (spawning has already occurred)

Dissected gonad specimens are removed from the fish and placed in a plastic containers, snapped shut and stored in a formalin jar to preserve them. These preserved samples will be analyzed later by histology scientists. Histology is the science of organ tissue analysis.

Dissected fish gonads
Dissected fish gonads

Red snappers have their fins clipped to provide a DNA sample. They may also have their stomachs removed and the contents studied to better understand their diets.

Video data from the underwater cameras is downloaded in the dry lab. This data will be analyzed once scientists return to their labs on land.

Personal Log

Many different kinds of echinoderms and other invertebrates have been pulled up in the fish traps. Several are species that I’ve never seen before:

Basket Star
I am holding a basket star. It is a type of brittle star in the echinoderm phylum.

A red sea star
A red sea star

Spikey sea star
Spikey sea star

Small crab, covered in seaweed, shell and sand
Small crab, covered in seaweed, shell and sand

We also catch many unusual large and small fish in the traps and on hooks. Several of these have been tropical species that I’ve only seen in salt water aquariums.

Lizardfish
Lizardfish

Sargassumfish
Sargassumfish

Hooked blacktip shark
Hooked blacktip shark

Scrawld Filefish
Scrawld Filefish

Spotted butterflyfish
Spotted butterflyfish

Jack knife fish
Jack knife fish

Carmen Andrews: News from Somewhere in the Atlantic Ocean off the Coast of Georgia, July 9, 2012

NOAA Teacher at Sea
Carmen Andrews
Aboard R/V Savannah
July 7 – July 18, 2012

Mission: SEFIS Reef Fish Survey
Geographical Location: Atlantic Ocean, off the coasts of Georgia and Florida
Date: July 9, 2012

Location Data:
Latitude: 30 ° 54.55’   N
Longitude: 80 ° 37.36’  W       

Weather Data:
Air Temperature: 28.5°C (approx. 84°F)
Wind Speed: 6 knots
Wind Direction: from SW
Surface Water Temperature: 28.16 °C (approx. 83°F)
Weather conditions: Sunny and fair

Science and Technology Log

Purpose of the research cruise and background information

The Research Vessel, or R/V Savannah is currently sampling several species of fish that live in the bottom or benthic habitats off the coasts of Georgia and Florida.

Reef fish study area
The coastal zone of Georgia and Florida and the Atlantic Ocean area where the R/V Savannah is currently surveying reef fish

These important reef habitats are a series of rocky areas that are referred to as hard bottom or “live” bottom areas by marine scientists. The reef area includes ledges or cliff-like formations that occur near the continental shelf of the southeast coast. They are called ‘reefs’ because of their topography – not because they are formed by large coral colonies, as in warmer waters. These zones can be envisioned as strings of rocky undersea islands that lie between softer areas of silt and sand. They are highly productive areas that are rich in marine organism diversity. Several species of snapper, grouper, sea bass, porgy, as well as moray eels, and other fish inhabit this hard benthic habitat.

Reef fish
Hard bottom of reef habitat, showing benthic fish — black sea bass is on left and gray trigger fish is on right side of image.

It is also home to many invertebrate species of coral, bryozoans, echinoderms, arthropods and mollusks.

Bottom organisms pulled up with fish traps
Bottom-dwelling organisms, pulled up with fish traps deployed in the reef zone.

The rock material, or substrate of the sea bottom, is thought to be limestone — similar to that found in most of Florida. There are places where ancient rivers once flowed to a more distant ocean shoreline than now. Scientists think that these are remnants of old coastlines that are now submerged beneath the Atlantic Ocean. Researchers still have much to discover about this little known ocean region that lies so close to where so many people live and work.

The biological research of this voyage focuses primarily on two kinds of popular fish – snappers and groupers. These are generic terms for a number of species that are sought by commercial and sports fishing interests. The two varieties of fish are so popular with consumers who purchase them in supermarkets, fish markets and restaurants, that their populations may be in decline.

Red snapper close up
Red snapper in its reef habitat

At this time, all red snapper fishing is banned in the southeast Atlantic fishery because the fish populations, also known as stocks, are so low.

How the fish are collected for study

The fish are caught in wire chevron traps. Six baited traps are dropped, one by one from the stern of the R/V Savannah. The traps are laid in water depths ranging from 40 to 250 feet in designated reef areas. Each trap is equipped with a high definition underwater video camera to monitor and record the comings and goings of fish around and within the traps, as well as a second camera that records the adjacent habitat.

Chevron fish trap
Fish swimming in and out of a chevron fish trap

I will provide the details of the fish trapping and data capture methods in a future blog.

Who is doing the research?

When not at sea, the R/V Savannah is docked at the Skidaway Institute of Oceanography (SKIO)on Skidaway Island, south of Savannah, Georgia. The institute is part of the University of Georgia. The SKIO complex is also the headquarters of the Gray’s Reef National Marine Sanctuary. The facility there has a small aquarium and the regional NOAA office.

The fisheries research being done on this cruise is a cooperative effort between federal and state agencies. The reef fish survey is one of several that are done annually as part of SEFIS, the Southeast Fisheries Independent Survey. The people who work to conduct this survey are located in Beaufort, North Carolina. SEFIS is part of NOAA.

The other members of the research team are from MARMAP, the Marine Research Monitoring Assessment and Prediction agency, which is part of the South Carolina Department of Natural Resources . This team is from Charleston, South Carolina.

Carmen, suited up to retrieve fish from traps
Mrs. Andrews, on deck near the stern of the R/V Savannah, getting ready to unload fish traps

NOAA also allows “civilians” like me — one of the Teachers at Sea– as well as university undergraduate and graduate students to actively participate in this research.

Kristy Weaver: What’s a Reef Fish Survey? May 30, 2012

NOAA Teacher at Sea
Kristy Weaver
Aboard The R/V Savannah
May 23 – June 1, 2012

Mission: Reef Fish Survey
Location: 44 miles off the coast of Jacksonville, FL
Date: May 30, 2012

Current Weather: 80 degrees and sunny

Science and Technology Log

Today is our last full day at sea.  We have caught about 2,000 fish in the past week!  A lot of them were thrown back into the water because we only need to keep a fraction of them for the reef fish survey.  The fish that we keep are studied by the scientists for a few reasons.

First, every fish we catch is measured and weighed.

David, a fisheries biologist, measures every fish that we catch

Then we have a sheet that tells us which fish we “keep” and which fish we “toss” back into the ocean.

Stephen writes down the length of every fish as David calls out the numbers

After Stephen writes down the length he uses this paper to tell David to keep the fish or toss it back into the ocean

Every fish that we keep gets its own ID number and envelope.

After it gets dark we stop fishing and go inside to the lab to collect information about the fish we caught that day.  Every single fish that we keep gets its own ID number, and gets weighed and measured again.  We write everything down.  These notes are data.

Here I am writing down the length and weight of each fish as Stephen weighs and measures them

When you make observations using your senses you are collecting data too!  Can you think of a time you collected data or made an observation like a scientist?

After we  record the length and weight I give Stephen the envelope and the other scientists come get the fish.

Passing Stephen the envelope for the fish he just measured and weighed

Scientists Jennifer and David take parts of the fish that they will study under a microscope later

Once all of the information is brought back to the scientists at the lab, they look at different parts of the fish using a microscope.  This will tell the scientists three main things…

1) Is the fish a male (boy) or a female (girl)?

2)How old is the fish?

And

3) Are these fish from all different families, or are they all related to each other?

Once the scientists answer these questions, they can decide if its okay for people to go fishing for certain types of fish, or if too many fish are being taken out of the ocean and need to be protected.  Right now fisheries are not allowed to take Red Snapper out of the Atlantic Ocean.  That fish is a very important part of our survey.

Special thanks to Captain Raymond and the crew and of the R/V Savannah and to Zeb, the chief scientist, and his team of scientists for a great experience!

Ok, I got him!  He was heavy!

This Red Snapper nearly knocked me over

Kristy Weaver: The Sea is All I See, May 23, 2012

NOAA Teacher at Sea
Kristy Weaver
Aboard R/V Savannah
May 22, 2012-June 1, 2012

Mission: Reef Fish Survey
Geographical Location: Atlantic Ocean, off the coast of Savannah, GA
Date: May 23, 2012

Current Weather: 85 and Sunny

Hello from the Atlantic Ocean!  Right now we are about 75 miles off the coast of Savannah, GA.  and there is water all around me!  The last time we saw land was about an hour after we left the dock yesterday.

Sunset on our first night at sea

Before I left many of you asked that I be careful while I am out here.  I wanted to tell you that I am safe and that safety seems to be a very important part of being a scientist, especially when you are on a ship.  I took photographs of a lot of the safety equipment and information throughout the ship.  We even had a safety meeting before we went out to sea.  The first mate (he does a lot of work on the ship) showed us how to put on a survival suit, which is something you wear that covers your whole body and has a hood.  This suit will keep you warm and floating if something happens and you need to go into the water.

After the meeting we had a fire drill just like we have at school, except we didn’t leave the boat.  The captain (he is the leader of the ship) sounded the alarm and we all put on life vests and met on the deck.  The deck is the back of the ship–the part that is outside.  A life vest is also called a life jacket or life preserver.  A life vest is put on like a jacket, but it doesn’t have any sleeves.   It’s bright orange and gets buckled and tied around you so that you can float if you go in the water.  You can see a picture of me in my life vest in the safety video that I made.

Many children asked what type of marine life is in the water here.  Here is a list and pictures of the animals I have seen so far.

Scamp Grouper
Scamp

Black Sea Bass
Black Sea Bass

Red Porgy
Red Porgy

After we empty the traps we sort the fish by family. Jennifer (a scientist) and I are sorting Red Porgy in this picture.
After we empty the traps we sort the fish by family. Jennifer (a scientist) and I are sorting Red Porgy in this picture.

The Red Snapper is the large pink fish. The black fish is a Shark Sucker.

If you look closely you can see that the Shark Sucker has a flat head with deep pockets on it that work like suction cups.

Spotted Dolphin
Spotted Dolphin

Gray Trigger Fish

One of the fishermen caught a shark with a fishing pole.  We had to get a picture of it quickly so that we could get it back into the water as soon as possible!

AND…to answer the #1 question that I have received…(drumroll please) YES!  Someone did catch a small shark today!

Did you know that you do things in science class that I have seen real scientists do  on this ship?  What things do you think you do that make you like a real scientist?  Check my next blog to find out how you already are a student scientist!

Kristy Weaver: Ms. Weaver Goes to Sea


NOAA Teacher at Sea
Kristy Weaver
Aboard R/V Savannah
May 23 – 31, 2012

Hello from Hillside, New Jersey! First, for any out-of-state readers, allow me to say that despite what you may have seen on “reality” television about this beautiful state, we do not all tease our hair and have VIP memberships to tanning salons.  (Okay, so I may tease it a little, but only for special occasions!  Yes, this is my attempt at humor; bear with me.)  All kidding aside,  thank you for visiting.  I am excited to tell you about the NOAA Teacher at Sea Program!

Perhaps I should introduce myself before I start making corny jokes.  I am Kristy Weaver and I am happy to say I have been a first grade teacher here at The A. P. Morris Early Childhood Center for the past 12 years.  Our building is home to every pre-k, kindergarten, and first grade classroom in the district, and we  are currently a community of 668 students.

Hillside is part of the Partnership for Systemic Change which is a collaboration between the Merck Institute for Science Education (MISE) and six other urban or semi-urban school districts.  Through this partnership I have been a part of the Academy for Leadership in Science Instruction, which is an intensive staff development series that takes place over the course of three years.  I have also been a Peer Teacher Workshop facilitator and have had the opportunity to discuss effective science instruction at length with my fellow science teachers and professionals from MISE and partner districts.

Here is a little video trailer my class helped make to tell everyone about my trip.  See if you can spot the cameo appearance from our beloved class pet, Jerry.  My students had the responsibility of casting him in this role and are all super excited that Jerry will now be “famous.”

The purpose of the NOAA Teacher at Sea program is to provide teachers with real life experiences with scientific research and for us to then share that knowledge with the community upon our return.  This will strengthen my own content knowledge and expose our students to scientific research and science careers while increasing environmental awareness.  I am passionate about the pedagogy behind effective science instruction and while I hope that this experience will be shared with many classes, it will definitely be utilized to its fullest potential in my district.  This opportunity already inspired an impromptu math lesson when I showed my class my ship,  the R/V Savannah.  In order to grasp how big the 92 foot vessel is, we used 60 inch measuring tapes and counted by fives until we got to 90 feet.  Then we estimated two feet to help us get a sense of the size of the R/V Savannah.

This is my class, 92 feet down the hall! Wow! The R/V Savannah is larger than we thought!

I love being a teacher, and it is definitely where my passion lies.   However,  when I was a child I never  felt that being a scientist was an option for me because I didn’t know where to begin.  I had an innate curiosity about the water, but didn’t know that I could have built a career around it.   It’s my job to make sure that my students are afforded every opportunity, know that their dreams are within their reach,  and feel as if the world is at their fingertips- because it is!

How Did I Hear About Teacher at Sea?

Two years ago I attended the National Science Teachers Association Convention in Philadelphia, PA.  One of the booths at the exhibition center was for NOAA‘s (National Oceanic and Atmospheric Administration) Teacher at Sea Program.  It was fascinating to talk with teachers who had gone out to sea with NOAA in the past, and I immediately knew it was something I would pursue.  My whole life I had lived vicariously through scientists on various nature shows, and I was thrilled to learn that I even had the possibility to experience something like this first hand.

What the Research Says

So how is this going to help first graders?  In 2011 Microsoft Corp. commissioned two national surveys with Harris Interactive for parent and student opinions on how to motivate the next generation of STEM (Science, Technology, Engineering and Mathematics) professionals.

For most, the decision to study STEM started before college.

  • Nearly four in five STEM college students said they decided to study STEM in high school or earlier (78 percent). One in five (21 percent) decided in middle school or earlier.
  • More than half (57 percent) of STEM college students said that before going to college, a teacher or class got them interested in STEM.

This gives me, a first grade teacher, the opportunity to plant the seed early and expose children to STEM careers before they even reach the second grade.  If I can motivate just one child with this experience, or prove to them that they too should chase their dreams, then any amount of seasickness will be worthwhile.

Speaking of Motivation…Here is Mine:

Barnegat Lighthouse
“Old Barney”
Long Beach Island, NJ
Photo by Captain Al Kuebler

I have always been fascinated by the ocean and how something could be equally tranquil and ferocious.  As a child I never “sat still” and my boundless energy had me bouncing from one activity to the next with less than a heart beat in-between.  Yet, even as early as three years old, I can remember sitting on my grandfather’s lap in Long Beach Island and just staring out at the water for what seemed like hours.  In retrospect it may have only been 15 minutes, but regardless, just looking at the ocean had me calm, captivated, and thoroughly entertained in the silence of my own thoughts.

Feeding Sea Turtles at the Camden Aquarium

When I was young I always loved the underwater pieces in my parents’ National Geographic magazines, but it never crossed my mind that I could someday be a diver.  When I grew up a little I decided that it was something I would definitely do “someday.”  I finally realized that someday never comes unless you make your “someday” today.  I became a certified diver three years ago, and up until this point, it is one of the best things I have ever done.  As an adult, I have always watched nature shows, but never in my wildest dreams did I believe that I would someday have the opportunity to experience something like Teacher at Sea.  I think this helps send an important message to my students: You should always  go out and experience everything you want in life.  I did a shipwreck dive to 109 feet, have fed sea turtles, swam with sharks, flew a helicopter, , and have been on a trapeze in two different countries.  Yet somehow, I have a feeling that all of these things will pale in comparison to the adventure I am about to have.

Me at the Saltwater Marsh in Stone Harbor, NJ
Photo by Myron Weaver- Hi Dad 🙂

So What’s Next?

I am getting ready to head out to sea and my students and I are so excited.  The next time I write I will most likely be somewhere near Savannah, GA where I will be setting sail on the R/V Savannah for an 8 day reef fish survey.  While the first grade students are my target audience for my blogs while I am at sea, I encourage people of all ages to follow me along my journey.  I hope that everyone will be able to get something out of it, and that secondary teachers will be able to use this experience as a starting point for some of their lessons as well.

Please feel free to post your comments or questions, and I will do my best to bring back the information you are most curious about!

Marian Wagner: My Final Words and Hurricane Irene’s in Charge, August 23, 2011

NOAA Teacher at Sea
Marian Wagner
Aboard R/V Savannah
August 16 — 26, 2011

Mission: Reef Fish Survey
Geographical Area: Atlantic Ocean (Off the Georgia and Florida Coasts)
Date: Tuesday, August 23, 2011

A Fine Bunch to Live with at Sea: Front: Katie Rowe (Scientist), Sarah Goldman (Scientist Watch Chief, Night), Stephen Long (Scientist), Warren Mitchell (Lead Scientist). Middle: Marian Wagner (Teacher-at-Sea), Shelly Falk (Scientist), Christina Schobernd (Scientist, Video). Back: John Bichy (Marine Technician), Richard Huguley (Engineer), Harry Carter (2nd Mate), Raymond Sweatte (Captain), Michael Richter (1st Mate), David Berrane (Scientist Watch Chief, Day), Mike Burton (Scientist). Missing: Joel Formby (Master of the Galley)

Weather Data from the Bridge (the wheelhouse, where the controls of the ship are)

E-NE Wind at 10 knots  (This means wind is travelling 10 nautical miles per hour,
1.15 statute miles = 1 nautical mile)

Sea depth where we traveled today ranged from 33 meters to 74 meters

Seas 2-4 feet (measure of the height of the back of the waves, lower the number = calmer seas and steadier boat)

Science and Technology Log

IRENE: On Tuesday evening, we discussed the impact of Hurricane Irene on our cruise plans, and scientists and crew needed to make a decision about when we should return to dock. Originally, the plan was to return in the morning on Friday, August 26, but due to projections of Irene, they predicted that the seas would be too rough for us to lay traps beyond Wednesday (8/24).  When the seas are too rough, the traps bounce around and cameras do not pick up a steady, reliable picture.  When seas get to be 6-7 feet+ on a boat the size of the R/V Savannah (92 feet long), it also makes our work (and life) on the boat very difficult. Additionally, with Irene’s landfall projected in North Carolina, where half of the scientists live, they would need to get home in time to secure their homes and potentially evacuate.  Not in the case of Irene, but if a hurricane was expected to hit Savannah/Skidaway, where the boat moors, the ship’s crew would need to prepare for a hurricane-mooring.  To do this, they would run the ship up the Savannah River and put on a navy anchor that weighs 3,000 pounds.  Even with the use of the electric crane, it’s not an easy task to pull a 3,000 pound anchor onboard.  This would not be done unless a direct hit to the area was expected.  It has been done once before to the Savannah in the 10 years of her existence.  The forecast did not project Savannah to be affected by Irene, so we did not need to prepare for a hurricane mooring.

After difficult deliberation on Tuesday night about hurricane Irene’s potential Category (see how hurricanes are ranked here), and considering the success of the research accomplished on the trip already, scientists decided the most practical and reasonable decision was to dock Tuesday night, unpack Wednesday morning, and allow North Carolina scientists to return to their homes by Wednesday night.  (From reports I received post-Irene, there was landfall of the hurricane eye over their houses, but the storm weakened between Wednesday night and Saturday and was Category 1 when it came ashore.  None of them sustained significant loss.  Many downed trees and three days without power, but no floods or structure damage. Phew!)

NOAA’s National Weather Service is the sole official voice of the U.S. government for issuing warnings during life-threatening weather situations.  Follow Seattle’s “Weather Story” at NOAA’s National Weather Service.

OUR RESEARCH PROCESS…A STORY CONCLUDED

Here on my final blog entry, I want to finish the story of our research process.  Here’s the story I’ve told so far, in outline form:

  1. research begins with baiting fish traps and attaching cameras, and we stand-by on deck
  2. when we arrive at a research location with reef fish habitat (as observed via depth sounder and GPS), we drop the trap to the bottom and it sits for 90 minutes; buoys float above each trap so we can find and retrieve them near where traps were deployed, we run the Conductivity, Temperature, and Depth Profiler (CTD) to get information about abiotic conditions at each sampling site. The CTD takes vertical water column profiles, measuring: Pressure, Temperature, Conductivity/Salinity, Chlorophyll fluorometer, Color dissolved organic matter fluorometer (CDOM), Photosynthetic Active Radiation (PAR), Backscatter, Dissolved oxygen, and Transmissometer -10 and 25 cm path lengths
  3. after 90 minutes have passed, we return to the traps and pick them up, and secure the fish caught
  4. we identify each fish, measure length, weight, and frequency (how many fish were      caught), and then keep the fish that our research is targeting
  5. in the wet lab, we dissect target fish, removing parts of fish that are sent back to the lab for further research

AT THIS POINT, WE ARE DONE with our research with the bodies of the fish, but we have 99% OF THE FISH’S BODY LEFT! What should we do?

I was very impressed with the compassionate and humane action the scientists do with the fish after research.  Scientific research guidelines don’t dictate what a research study should do with edible fish flesh. We could have just discarded fish back into the ocean. However, scientists see an opportunity to provide food to people in need of  nutritional support in our communities, and they coordinated with a regional food bank in Savannah to do just that. Despite the work and time it takes to process the fish for donation, it did not seem to be considered a burden at all by any of the scientists.

I am perfecting my fillet!

Fresh fish fillets ready for food bank distribution

To process the fish for donation, we cut fish into fillets, wrap the fillets in butcher paper, and freeze them onboard the ship.

When we reached land, Warren
contacted the regional food bank, who came out to the dock with a refrigerated truck to pick up fish.  Within a few days the fish was distributed through charitable organizations in the region to people who were most in need.

These scientists are not just natural scientists but social scientists too! (just as I fancy myself!)

Personal Log

Captain Raymond Sweatte and First Mate Michael Richter

Interview with Raymond Sweatte, captain of R/V Savannah

Marian: What  makes a good crew?

Raymond: A crew that sees things that need to be done and does them because they know it all goes smoother when they do.

 

M: Have you ever run into or had a close call running into another ship?

Raymond: No, but the closest I came was when I was passing under the bridge at the Skidaway when a barge was coming through at the same time. Because it was easier for me to maneuver, I pulled over to side to let the barge use the majority of the channel. But the barge stayed on my side of the channel and was coming right at me. My boat was leaning upon the bank so there was no where for me to go.  I got him on the horn and asked, “What’s going on?”  He pulled over right away. He was new and very apologetic. 

M: Have you ever been in a terrible storm before?

Raymond: A few times we’ve had 15-16 foot seas coming back from the Gulf. When you have a north wind at 35 knots [strong wind coming from the North] and north-going current opposing the wind, the seas get very rough. Waves were coming up over the ship. [picture Marian’s eyes VERY wide at this point in the conversation] When seas are really rough, you get lifted up out of bed and down again. I remember trying to sleep one night in rough seas when my head kept hitting against the wall, so I turned around so my feet were up hitting against the wall.

M: What were things like before radar, satellite, and so many electronic navigation tools
you use today?

Raymond: Things were not as accurate. Communication was on a single sideband, navigation was with Loran-C, though VHF radio was somewhat the same as now.  To follow ships and determine their speed we had radar on dash but we had to use an eye cup we looked into to correlate with the radar, and then go over to the chart to plot them.  Then, we did it again six minutes later and multiplied by 10 to find their speed.  Now we have an automatic identification system [we can click on a ship on the radar] that tells us where they are, who they are, where they came from, where they are going, and what they are doing.  

M: What are the right-of-ways when vessels are crossing paths; who moves when two vessels are in course to collide?

Raymond: [On ships, aircraft and piloted spacecraft] a red light is on the left or port side of the craft and a green is on the right or starboard side. When two vessels have crossing paths, each will see a red or green light. If you’re looking at another vessel’s port side you see red, and it’s his right-of-way. If you are on their starboard side, you see the green light, and the right is yours.

Also, right-of-way rules give priority to vessels with the most difficulty maneuvering. The ranks in right-of-way, starting with the highest are:

1)Not under command

2)Restricted in ability to maneuver

3)Constrained by draft (stay away from shallower water to avoid running aground)

4)Fishing

5)Sail

6)Power

7)Sea Plane

Remember this mnemonic: New Reels Catch Fish So Purchase Some.

M: Who’s easier to talk to, a Navy Sub Captain or a Coast Guard Helicopter Pilot?

Raymond: I don’t have a problem talking with any of them. Coast Guard generally would call you first. Navy sub pilots I’ve found to be very cordial. They have changed their course when we had traps out.

M: What message would you say to students interested in being a captain?

Raymond: All kids have to follow their own heart. If they like water and this environment, they should follow their heart and become a captain.

Thank you Captain Raymond! It was a genuine pleasure to talk to you and experience life at sea under your command and with such a stellar crew. It is no wonder you are revered by everyone you work with.  Read more about Captain Raymond Sweatte in the Savannah Morning News!

The powerful significance of this trip for me was that I did not just study a science lesson from a book or lab, but I was essentially given a chance to live a different life, that of a fisheries field biologist.  I did not dabble in the work; it was a full explosion into the curiosities, reasonings, and daily routines of working with live fish and fish guts while sharing friendship, humor and stories with scientists and crew aboard a boat that was a small bounded island of rich human culture within a vast ocean of life and scientific questions waiting to be answered.  I loved it.  If only I didn’t love teaching more…I could definitely live that life.  Thanks NOAA, thanks NC SEFIS folks, thanks SC DNR folks, and thanks Skidaway Institute of Oceanography folks.  You are all in my heart and in my classroom!

FASCINATING EXTRAS!

Flying fish!

At night especially, when looking out at the seascape, I noticed flying, bug-looking specimens scurrying out of and into the ocean’s surface.  WHAT WERE THEY?! I wondered. So I asked and learned they were FLYING FISH! A few of them flew right up on the vessel’s work deck.  Their wings are modifications of the pectoral fins.  They are so fascinating and their coloring was greenish/blue iridescence, a stunningly beautiful color!

RED SNAPPER: PROTECTED STATUS

“The Gulf and South Atlantic red snapper populations are currently at very low levels (overfished), and both red snapper populations are being harvested at too high a rate (overfishing).” See more where this quote came from at Fish Watch: US Seafood Facts.

It was clear to me how significant the concern for the red snapper population was when I learned that funding for this fisheries survey was drastically increased following the recent determination that red snapper were overfished and overfishing was occurring.  Fisheries managers, field biologists and members of the general public all want to see the red snapper population improve.  This cruise provided scientific data that will be useful when the status of the U.S. South Atlantic red snapper population is assessed again.

The lionfish's spines are so poisonous the only way to hold them is placing fingers in their mouths.

History of measuring speed in NAUTICAL MILES:

Wonder how a vessel’s speed was measured hundreds of years ago? Log Lines, knotted ropes with a log tied to one end and knots every nautical mile and one-tenth of a nautical mile, were tossed off the end of the ship while the knotted rope unraveled behind it. When the sand on a minute sand glass ran out, the rope was reeled back in and the knots counted to determine ship’s speed in knots-per-minute.

 LIONFISH: INVASIVE SPECIES

In its native waters of the Indian and Pacific Oceans, the lionfish population is not a problem. There it has natural predators and natural parasites to keep it from overpopulating, yet it can survive well enough to maintain a healthy sustainable population. However, in the Caribbean waters and along the Eastern Coast of the United States, the lionfish has recently been introduced, and the effects are alarming. “Lionfish have the potential to become the most disastrous marine invasion in history by drastically reducing the abundance of coral reef fishes and leaving behind a devastated ecosystem.”  See more where this quote came from at NOAA’s research on invasive lionfish here. In the U.S. south Atlantic, they consume large quantities of reef fish and have no natural predators or parasites. Their population is thriving in large numbers, and it is devastating other fish species.  Mark Hixon, Oregon State University zoology professor, co-authored a study in 2008 with Mark Albins that showed “a lionfish can kill three-quarters of a reef’s fish population in just five weeks.” Read NPR story here. This is a cool way to view an environmental problem: see this animated map of the lionfish invasion! Red Snapper

Marian Wagner: Preparing for Departure, August 12, 2011

NOAA Teacher at Sea
Marian Wagner
Aboard R/V Savannah
August 16 — 26, 2011

Mission: Reef Fish Survey
Geographical Area: Atlantic Ocean (Off the Georgia and Florida Coasts)
Date: August 12, 2011

Introductory Log

Naturalizing at my home beach in Seattle, Golden Gardens

I’m off to live the life of a NOAA research scientist aboard the Research Vessel (R/V) Savannah Our work is part of a population monitoring mission (estimating number of fish in population), doing fishery-independent sampling of reef fishes in the Atlantic off the coasts of Georgia and Florida.  See “terms defined” below to learn more.

Preparing to work with and make the most of my time with a team of scientists as a NOAA Teacher at Sea (TAS) participant means I have a lot to learn in a short amount of time!  This morning, I leave Seattle, and tonight I arrive in Savannah, GA.  I can’t believe this day has finally arrived!

I teach 3rd and 4th grade at Salmon Bay School in Seattle Public Schools, and students and families will tell you teaching SCIENCE! is my passion.  Central to my passion in teaching science is the importance of teaching students and teachers that we must better understand and protect the earth’s resources with which we are interdependent, and develop a more responsible and sustainable relationship with how we use these resources.  The fundamental goal of all my various ways of incorporating this NOAA research experience into my teaching will be to help students and teachers understand the ocean better and our relationships with it, and use this knowledge to protect the world’s oceans.

I have never had first-hand experience in conducting field research (outside of research with children for educational purposes), and I believe it is especially essential in the leadership roles I have come to serve in science education that I have this foundational knowledge first-hand of HOW research is conducted in the field.  I look forward to getting my hands dirty! (salty?)

A few days ago I received word that I have passed all my requirements to be endorsed to teach 6-12 grade biology and this experience will stretch me beyond coursework and provide a true field research experience, especially essential if I decide to use my biology endorsement to teach middle school or high school level biology, where I will draw upon this research experience in many valuable ways, especially by sharing methods of conducting research and by exposing students to the career options of working as a field scientist.

My 3rd and 4th graders (and my alumni too, I hope!) are sure to hear extensively about this field science research experience that I am about to dive into!  Time to dress for the airport!

Terms Defined:

Fishery-independent sampling means data are collected separately from the landings of any commercial fisheries, and thus can be separated from economic factors that would compromise population trends based on how many fish are caught in a year (e.g., price of fish or fuel).  So fishery-independent data are the closest we can come to a census, and are some of the most reliable data fed in to a “stock assessment”. The data we collect will have direct implications for stock assessment of these fish and ecosystem-based management of southeast U.S. marine fisheries.  Here’s a link  to more information on the work we are doing.

Seattle-ites: For more information, here’s a link to Federal stock assessment work in the Seattle area, perhaps more helpful because you might recognize your local species and habitats.