Eric Koser: Concluding Matters, July 17, 2018

NOAA Teacher at Sea

Eric Koser

Aboard NOAA Ship Rainier

June 22-July 9, 2018

Mission: Lisianski Strait Survey, AK

Geographic Area: Southeast Alaska

Date: July 17, 2018: 900 HRS

 

Weather Data From the Front Porch
Lat: 44°9.48’          Long: 94°1.02’
Skies: Clear
Wind 6 knots, 50°
Visibility 10+ miles
Seas: no seas!
Water temp: no precip to measure
Air Temp: 22°C Dry Bulb

 

Science and Technology Log

Hydrography matters. It allows mariners to travel safely. It allows many of the goods that arrive here in Minnesota to get here! Containers of goods arrive in Minnesota by truck and train from both coasts as well as the great lakes and by barge on the Mississippi river. Right here in Mankato, we often see shipping containers on trucks and trains. But I wonder if many people stop to consider what it takes to assure that the goods they desire arrive safely.

 

These trains carry containers that likely come from one of the coasts on a ship. The containers often transfer to semi trucks to go to their final destinations.

Intermodal Truck

Shipping containers like this one are very common on Minnesota roadways and railways!

In Minnesota, it’s very common to see containers on trucks. The more I am aware, the more often I realize there are shipping containers all around. I wonder how many people stop to consider that trip that some of the containers here on trucks have taken. I would guess that many of them have traveled on the ocean and many across international waters.

 

 

 

Intermodal Truck

Many carriers distribute merchandise via the intermodal system.

 

Seafood matters. People enjoy Alaskan fish, even here in the Midwest. Fishing boats are successful in part due to safe navigation made possible by current charts. The ledges and shoals identified by the hydro scientists on Rainier keep mariners safe, and ultimately support the commerce that many enjoy around the world.

Salmon isn't native to Minnesota!

This looks like a tasty ocean treat!

Navigation matters in many areas! All mariners in the US have free access to the latest navigational charts for inland and coastal waterways, thanks to the work of NOAA’s hydrographers aboard ships like Rainier. The updates we made in Alaska that are most pertinent to safety will be posted in a matter of weeks as “Notice to Mariners.” Here is an example. The general chart updates made by the team will be in the online charts within a year.

——-

It’s been both exciting and rewarding to be a part of this work. I’ve developed a good understanding of the techniques and tools used in basic ocean hydrography. There are so many great applications of physics – and I’m excited to share with my students.

One of the key take-aways for me is the constant example of team work on the ship. Most everywhere I went, I witnessed people working together to support the mission. In the engineering department, for example, Ray, Sara, Tyler, and Mike have to communicate closely to keep the ship’s systems up and running. More often than not, they work in a loud environment where they can’t speak easily to each other. Yet they seem to know what each other needs – and have ways to signal each other what to do.

On the bridge, one way the teamwork is evident in the language used. There is a clearly established set of norms for how to control the ship. The conn gives commands. The helm repeats them back. The helm reports back when the command is completed. The conn then affirms this verbally. And after a while, it all seems pretty automatic. But this team work is really at the heart of getting the ship’s mission accomplished automatically.

Hydro Team

Here the hydrographers work together with the cox’n to assure our launch captures the needed data.

The hydrographers aboard Rainer sure have to work together. They work in teams of three to collect data on the launches – and then bring that back to the ship to process. They need to understand each other’s notes and references to make accurate and complete charts from their observations. And when the charts are sent on to NOAA’s offices, they need to be clear. When running multibeam scanning, the hydrographer and the cox’n (boat driver) have to work very closely together to assure the launch travels in the right path to collect the needed data.

Even the stewards must be a team. They need to prepare meals and manage a kitchen for 44 people. And they do this for 17 days straight—no one wants to miss a meal! The planning that happens behind the scenes to keep everyone well fed is not a small task.

Ocean Sunset

Sunset on the ocean is an occasion in itself! Its easy to be captivated by such beauty at sea!

I look forward to sharing lots about my experiences. I have been asked to speak at a regional library to share my story and photos. I also will present at our state conference on science education this fall. And surely, my students will see many connections to the oceans!  Kids need to understand the interconnectedness of our vast planet!

Finally, I’m very appreciative of NOAA both for the work that they do and for the opportunities they provide teachers like myself to be involved!

Teacher at Sea

This Teacher at Sea has had a great experience!

 

Angela Hung: “Don’t Give it A Knife!”, June 30, 2018

NOAA Teacher at Sea

Angela Hung

Aboard NOAA Ship Oregon II

June 27-July 5, 2018

 

Mission: SEAMAP Summer Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: June 30, 2018

 

Weather Data from the Bridge

Conditions at 2112

Latitude: 28° 40’ N

Longitude: 95° 43’ W

Relative Humidity: 76%

Temperature: 28.4° C

Wind Speed: 18 knots

 

Science and Technology Log

What are groundfish? They are basically what they sound like, the fish that live in, on or near the bottom of a body of water. NOAA Ship Oregon II samples waters in coastal Gulf regions from Florida to Texas using an otter trawl net. Our net includes a “tickler chain” that moves just ahead of the opening to disturb the bottom sediment so that organisms swim up to be scooped up.

Diagram of an otter trawl net

Diagram of an otter trawl net used collect groundfish. Photo credit: http://www.fao.org/docrep/008/y7135e/y7135e06.htm

We tow for a short half hour at each station to get an idea of what species can be found at different locations. Fishing boats tow for much longer, hours at a time with larger nets. The cod end where the fish collect, is created by a knot beautifully tied by Chief Boatswain Tim Martin that holds during the tow but easily pulls open to release the catch which drops into large baskets. Tim works on the deck to launch the CTD (conductivity-temperature-dissolved oxygen probe) and the trawl net. The baskets are weighed and then dumped onto a conveyor belt to be sorted.

The otter trawl in action.

The otter trawl in action.

knot

This knot closes the net during a trawl but pulls open to release a catch.

 

We start by putting whatever looks alike together, which is much easier said than done. If it turns out to be tricky, the wet lab is equipped with a range of resource guides to reference. Once everything is sorted out, each species is individually sampled: the count of individuals, the total weight of that species, the lengths of up to 20 individuals, and the weight and sex of every fifth individual. This information is entered into Fisheries Scientific Computer Systems (FSCS) and added into a database that gets uploaded for public knowledge.

Everyone is lined up and sorting through fish. It's the first trawl of the cruise so the night shift got excited and joined us.

Everyone is lined up and sorting through fish. It’s the first trawl of the cruise so the night shift got excited and joined us.

 

 

For commercial species, such as shrimp and red snapper, every individual is measured and sexed; up to 200 for shrimp and up to 20 red snapper.

Shrimp and more shrimp. Brown shrimp, Farfantepenaeus aztecus to be specific!

Shrimp and more shrimp. Brown shrimp, Farfantepenaeus aztecus to be specific! NOAA’s FishWatch recommends them as a “smart seafood choice”. https://www.fishwatch.gov/profiles/brown-shrimp

It’s a lot of work, but data entry is relatively easy using a magnetic board. You line the specimen up at the end of the board and simply press the magnet at the end of the animal’s body. The board is connected to a computer and automatically sends the measurement when the magnet is pressed. The scale is also connected to a computer and sends that information directly. However, every species’ scientific name is manually entered into a list for each station before measurements are taken.

 

So many kinds of fish, but color is not a way to sort!

So many kinds of fish, but color is not a way to sort!

These data are primarily used by NOAA for stock assessments. By documenting species abundances, size and distribution, fishery managers can calculate catch quotas for the year that maintains healthy stocks. These data are also used by NOAA for their database to help you make sustainable seafood choices: https://www.fishwatch.gov/ .  It is also part of NOAA’s mission to be “Dedicated to the understanding and stewardship of the environment,” which is why everything that is captured is counted. Federal data are publicly available, so these surveys might be used by scientists to study a range of questions about any species that we counted, including the ecology of non-commercial species.

It’s really interesting to see exactly where seafood comes from. In the 10 miles or so between stations, the communities change drastically. Shrimp are abundant in east Texas, but not where blue crab start to appear in west Texas. It’s also interesting to see the different sizes (ages) of fish change between stations. One station brought in snapper over 10” long, while the next two stations delivered their 5-6” juveniles. Aside from that, I got the chance to handle so many species I’ve only seen on TV and never imagined that I would get to hold in my hand!

 

This slideshow requires JavaScript.

 

Blue crabs, Callinectes sapidus. The two upturned crabs are females carrying eggs.

Blue crabs, Callinectes sapidus. The two upturned crabs are females carrying eggs.

“Don’t give it a knife!”

“Stop giving it things!”

-things you say when trying to separate blue crabs that are latched onto each other

It’s reassuring to see the Gulf teeming with gorgeous biological diversity as evidence that U.S. fisheries are responsibly managed and that we have a strong model of stewardship in our seas—SEAMAP Groundfish Survey literally only scratches the surface of the coastline.

 

Personal Log

The meals in the galley are great. Valerie McCaskill of Naples, FL and Arlene Beahm from Connecticut are the Stewards onboard and they work diligently to feed us delicious home cooked meals. I’ll be a few pounds heavier when you see me after this trip. “Arlene’s trying to kill you with food!” Tim observed. These two ladies are stand-in moms, making sure we have heaping plates at meal times and snack times and anytime in between.

Lunchtime

Finally got to eat some of the white shrimp we caught. And a whole steak for good measure. (Only the galley is allowed to take a part of the catch cook it for the ship.)

That’s a great thing because the 12 hour shifts work up an appetite. NOAA Ship Oregon II sails from one sampling station to the next, ranging from 5-12 miles in between, but as many as 20+ miles. On short runs, the next station comes up pretty quickly and we find ourselves finishing one just in time to start the next. We process four to five stations each shift with only short breaks during trawls.

It’s hugely humbling and an exercise in insecurity to watch the scientists work. At a glance they can recite the full scientific name of the hundreds of species that pour out of the net. I’ll be happy if I can come back with ten new species in my memory bank.

C. similis

Baby blue crabs? Nope, these are adult Callinectes similis, blue crabs are C. sapidus.

The researchers onboard have been doing this for years. Identifying species takes time and practice to learn like any other skill, and it showcases the dedication and fulfillment they find in this kind of work.

Alonzo Hamilton, left, and Taniya Wallace, right, enter species into FSCS.

Alonzo Hamilton, left, and Taniya Wallace, right, enter species into FSCS.

It’s hot, dirty work.  There’s no air conditioning in the wet lab and around 1000+ fish can be brought aboard at a station. I, and probably everybody else within smelling range, am grateful to have hot showers and laundry onboard. Kristin Hannan emphasizes that “field work isn’t for everyone, but you don’t have to work in the field to study marine science.” But, the wet lab is where you witness the enthusiasm that brings the crew and the scientists back day after day in the heat of July, year after year. Squeals of excitement and giant grins appear with favorite species: Calappa crabs (I learned a name!), triggerfish, beautiful snail and clam shells, the infamous mantis shrimp, a chance sea anemone and of course sharks to name a few. Fisherman James Rhue, a crewman who works with Tim and operates the winches, comes to check out (as in play with) the catch a couple times a day; the fishing crew must be as skilled with identifications as the researchers—they do it during their off hours. During the half hour of the tow, we are often talking about plankton diversity in the dry lab.

Kristin Hannan, a shark researcher, pauses to examine a young hammerhead.

Kristin Hannan, a shark researcher, pauses to examine a young hammerhead.

As satisfying as the work can be for some, the challenges certainly come with living on a relatively small boat built in a different time. While long overnight shifts sound tough, seasickness jumps to mind more readily when you say “boat”.  When you’re seasick, everyone volunteers a range of interesting remedies, from watching the horizon, which is qualified as BS; lying down; sleeping, which isn’t easy when you’re sick; eating to keep your stomach full, counterintuitive but actually a useful one; ginger candy; staying cool, which does not describe the wet lab; to just chewing on a chunk of raw ginger, distracting, I’m sure! The Teacher at Sea organizers recommend working to keep your mind off of the nausea. Arlene was also very kind and donated a couple of her seasickness patches to my cause. For me, standing outside and watching the waves for flying fish helped immensely in the few minutes between processing catches. And there is far too much work and creatures to see to think about my stomach.

The blue dots are sampling stations along the Texas coastline. The red line shows where we've been. Thankfully, we're not trying to hit every station, but there's plenty to do!

The blue dots are sampling stations along the Texas coastline. The red line shows where we’ve been. Thankfully, we’re not trying to hit every station, but there’s plenty to do!

 

Did You Know?

Although scientific names sound like gibberish, they are in Latin and often physical descriptions of the species. Portunus spinicarpus for example is a crab named for the long spike (spini) on its wrist (carpus).

P. spinicarpus

P. spinicarpus

Lagocephalus translates to “rabbit head”, the name given to the group of puffer fishes, but you might have to squint to see it.

 

John Schneider, July 18-20, 2009

NOAA Teacher at Sea
John Schneider
Onboard NOAA Ship Fairweather 
July 7 – August 8, 2009 

Mission: Hydrographic Survey
Geographical Area: Kodiak, AK to Dutch Harbor, AK
Date: July 18-20, 2009

Position
Shumagin Islands, in transit to Dutch Harbor

Weather Data from the Bridge 
Weather System:
(July 18th) Low system approaching from the South
(July 19th) Fog, gusty wind in the morning, clear afternoon, but getting windier; Wind: southwesterly at 4-6 kts; Sea State: 1-2 feet

Weather System:  Projected for the July 20-21 overnight
Barometer: falling rapidly (a warning sign of unsettled weather) Wind: sustained at 30-40 kts, gusting to 55 kts (This would qualify as a “gale”)
Sea State: Predicted wave height next 24-36 hrs – 18 feet!

Andy and lunch—a nice halibut!

Andy and lunch—a nice halibut!

Science and Technology Log 

On the 18th and 19th, the launches went out (including me on the 19th) to clean up some holidays and get more near-shore data.  When we got back on the 19th, we found out that a major low pressure system was building to the south and expected to be in our area within a day and a half.  A major low system can reach out a couple of hundred miles and the CO decided that we would leave the Shumagins about 18 hours earlier than originally planned.  I discussed this with him (he is remarkably approachable) and he reiterates to me what I had already believed: his responsibilities are in three priorities – 1. His crew.  2. His ship.  3. The mission. Our research in the Shumagins does not represent life-or-death, it represents the continuing quest for knowledge and the expansion of our understanding of the Earth.  I’m sure you’ve realized it already, but Captain Baird and his officers have earned my highest regard.

We are in the center of the radar screen and two other ships described below – with their courses projected from the boxes that represent them – are behind us. The green line is our track ahead.

We are in the center of the radar screen and two other ships described below – with their courses projected from the boxes that represent them – are behind us. The green line is our track ahead.

On board the Fairweather is a phenomenal array of electronics.  Our positioning equipment is able to determine our position with just a couple of meters and when we are on a course it can tell if the course error is as little as a decimeter! Operating in Alaska, where fog is a way of life, RADAR (Radio Direction And Ranging) is an absolute must, and we have redundant systems in the event one breaks down. Probably the coolest thing about the radar is the use of ARPA technology. ARPA (Automated Radar Plotting Aid) is a system that not only identifies other vessels on the water, but diagrams their projected course and speed vectors on the screen. It does this from as far as 64 miles away!

The filleted tail of the halibut and some crabs found in its stomach

The tail of the halibut and some crabs found in its stomach

By looking at the screen, you can see the lines of other ships relative to your own and navigate accordingly. Furthermore, the system includes ECDIS, which is an Electronic Chart Display and Information System that identifies other ships as to their name, size, destination, and cargo!  So when you see on the radar that you are in a situation where you will be passing near to another vessel, you can call them on the radio by name! This technology is essential, especially going through Unimak Pass.  Unimak Pass is about 15 miles wide and is a critical point in commercial shipping traffic between the Americas and Asia. As we were transiting Unimak Pass, We were passed by an 800 foot long container ship that was en route to Yokohama, Japan and going the other way was a 750 foot ship going to Panama.  This is a critical area due to what is called “Great Circle” navigation.  I’ll address this point when in Dutch Harbor next week.

Eat your hearts out!

Eat your hearts out!

Personal Log 

Last night, after the beach party, Andy Medina (who has been on board for almost 200 days this year) was fishing off the fantail and caught a nice halibut. The crew who hail from Alaska all have fishing permits and when the day is done, if we’re anchored they get to use their free time for fishing.  They even got a freezer to keep their filets in.  Earlier in the cruise, we actually had halibut tacos made with about the freshest Alaskan halibut you can find (less than 12 hours from catch to lunch!)  Of course, with me being a bio guy, I asked for two things: 1 – to keep and freeze the head (I For the last night of the leg before making port in Dutch Harbor  (home of the World’s Deadliest Catch boats) the stewards, Cathy Brandts, Joe Lefstein and Mike Smith really outdid themselves.  I sure hope you can read the menu board, but if you can’t, dinner was Grilled NY Strip Steak and Steamed Crab legs with Butter! 

We went through about 10 trays like this!!!

We went through about 10 trays like this!!!

After dinner, everybody secured as much equipment as possible in the labs, galley and cabins as possible in anticipation of the run ahead of the weather into Dutch Harbor.  We ran through the night and got to Unimak pass in the middle of the day on the 20th. About half way through the pass was an unusual announcement, “Attention on the Fairweather, there are a lot of whales feeding off to starboard!” It’s the only time whales were announced and it was worth the announcement.  For about 2 to 3 miles, we were surrounded by literally MILLIONS of seabirds and a score or more of whales.  Comments from everybody were that they had never seen anything like it. I kept thinking of the old Hitchcock film The Birds and the scenes in Moby Dick where Ahab says to “watch the birds.” We were all agog at the sight.

Fifteen minutes of this! Incredible!

Fifteen minutes of this! Incredible!

With the collective 200-300 years of at-sea experience, no one had ever seen anything like it. After 2.5 weeks that seems like 2.5 days, we approach Dutch Harbor and are secured to the pier by 1700 hours. Tonight we’ll head into town, but if not for the news in the next paragraph, this would be the worst time of the trip, however . . .

The Best news of the trip: I’ve requested and been approved to stay on board the Fairweather for the next leg! WOO-HOO!!!  It’s called FISHPAC and deals with integrating bottom characteristics to commercially viable fish populations!  I’m going to the Bering Sea!!!

Questions for You to Investigate 

  1. When did the Andrea Doria and Stockholm collide?  Where?  In what conditions?
  2. What was the D.E.W. Line in the Cold War?
  3. Why did the Japanese want bases in the Aleutians in WWII?
  4. Why did we pass a ship going from North America to Yokohama well over 1000 miles north of both ends of the trip?
  5. What are Great Circles?

Did You Know? 

That almost 10% of all commercial fishing catch in the United States comes through Unalaska and Dutch Harbor?

Approaching Dutch Harbor

Approaching Dutch Harbor