NOAA Teacher at Sea
Steven Frantz
Onboard NOAA Ship Oregon II
July 27 – August 8, 2012
Mission: Longline Shark Survey
Geographic area of cruise: Gulf of Mexico and Atlantic off the coast of Florida
Date: August 5, 2012
Weather Data From the Bridge:
Air Temperature (degrees C): 29.0
Wind Speed (knots): 10.28
Wind Direction (degree): 138.68
Relative Humidity (percent): 076
Barometric Pressure (millibars): 1022.33
Water Depth (meters): 28.45
Salinity (PSU): 35.612
On my last blog I introduced you to five species of shark found so far. I think you can tell which one is my favorite, which is yours?
Even though our mission is to collect data on sharks, you never know what might come up on the end of a hook (or tangled in the line!). Data is still collected on just about everything else we catch. For today’s blog I have put together a photo journey on the so many other beautiful creatures we have caught.
Basket Starfish with pieces of soft red coralBlack Sea BassBlue Line Tile Fish (Unfortunately damaged by a shark)Box CrabClearnose SkateConger EelRed GrouperMermaid’s Purse (egg case from a skate or ray)Candling the Mermaid’s Purse reveals the tail and yolk of the animalAmberjackScallop ShellScomberus japonicus (Can you come up with a common name?)Sea UrchinSpider CrabStarfishRed Snapper (10Kg)
There you have it. I hope you enjoy the pictures of just some of the beauty and diversity in the Atlantic Ocean. Be sure to visit my next blog when we tie up loose ends!
NOAA TEACHER AT SEA JASON MOELLER ONBOARD NOAA SHIP OSCAR DYSON JUNE 11 – JUNE 30, 2011
NOAA Teacher at Sea: Jason Moeller
Ship: Oscar Dyson
Mission: Walleye Pollock Survey
Geographic Location: Gulf of Alaska
Dates: June 25-27, 2011
Ship Data
Latitude: 55.58 N
Longitude: -159.16 W
Wind: 14.11
Surface Water Temperature: 7.2 degrees C
Air Temperature: 9.0 degrees C
Relative Humidity: 90%
Depth: 85.61
Personal Log
Anyone who has seen the show Deadliest Catchknows how dangerous crab fishing can be. Fishing for pollock, however, also has its dangers. Unfortunately, we found out the hard way. One of our deck hands caught his hand between a cable and the roller used to pull up the trawl net and hurt himself badly.
The cable and the roller.
Fortunately, the injuries are not life threatening and he will be fine. The injuries did require a hospital visit, and so we stopped at Sand Point to treat him.
This is the town of Sand Point.Clouds hang over the hills at Sand Point. The airstrip is in the left edge of the photo.
We stayed at Sand Point for nearly 48 hours. What did we do? We fished, of course! We used long lines and hooks, and had a great time!
Bill and Alex cast fishing lines in the harbor. We tied the lines off on the boat and hauled them up from time to time to check the bait.Alex with a flounder that he caught! He also caught several cod and a 32-lb Pacific halibut!Cod and the flounder in a bucket!As with every fishing trip, we also managed to catch things that we didn't mean too! Tammy (the other NOAA Teacher at Sea) especially liked the kelp!A few visitors always hitched a ride on the kelp we caught. Here is a tiny sea urchin.
This crab was another hitchhiker on the kelp.
We were bottom fishing for Halibut, and a starfish, the largest one I've ever seen, went after the bait!
A one-day fishing license in Alaska costs $20.00. We had internet, so five of us went online and bought the fishing passes. Was it worth it?
You bet it was! This is the 25-lb halibut I caught! It was AWESOME!!!
We filleted it and had the cooks make it for dinner. With the halibut, we also cut out the fleshy “cheeks” and ate them as sushi right on the spot! It doesn’t get any fresher (or tastier!) than that!
Science and Technology Log
Today we will look at the acoustic system of the Oscar Dyson! Acoustics is the science that studies how waves (including vibrations & sound waves) move through solids, liquids, and gases. The Oscar Dyson uses its acoustic system to find the pollock that we process.
The process begins when a piece of equipment called a transducer converts an electrical pulse into a sound wave. The transducers are located on the underside of the ship (in the water). The sound travels away from the vessel at roughly 1500 feet per minute, and continues to do so until the sound wave hits another object such as a bubble, plankton, a fish, or the bottom. When the sound wave hits an object, it reflects the sound wave, sending the sound wave back to the Oscar Dyson as an echo. Equipment onboard listens to the echo.
The computers look at two critical pieces of information from the returning sound wave. First, it measures the time that it took the echo to travel back to the ship. This piece of information gives the scientists onboard the distance the sound wave traveled. Remember that sound travels at roughly 1500 feet per minute. If the sound came back in one minute, then the object that the sound wave hit is 750 feet away (the sound traveled 750 feet to the object, hit the object, and then traveled 750 feet back to the boat).
The second critical piece of information is the intensity of the echo. The intensity of the echo tells the scientists how small or how large an object is, and this gives us an idea of what the sound wave hit. Tiny echos near the surface are almost certainly plankton, but larger objects in the midwater might be a school of fish.
An image of the computer screen that shows a great number of fish. This was taken underneath the boat as we were line fishing in Sand Point.The same spot as above, but with practically no fish.An image of the screen during a trawl. You can actually see the net--it is the two brown lines that are running from left to right towards the top of the screen.
One of the things that surprised me the most was that fish and bubbles often look similar enough under water that it can fool the acoustics team into thinking that the bubbles are actually fish. This is because many species of fish have gas pockets inside of them, and so the readout looks very similar. The gas pockets are technically called “swim bladders” and they are used to help the fish control buoyancy in the water.
Swim bladder of a fish.
Species Seen
Northern Fulmar
Gulls
Cod
Pacific Halibut
Flounder
Sea Urchin
Crab
Kelp
Reader Question(s) of the Day
Today’s questions come from Kevin Hils, the Director of Chehaw Wild Animal Park in Chehaw, Georgia!
Q. Where does the ship name come from?
A. Oscar Dyson was an Alaska fisheries industry leader from Kodiak, Alaska. He is best known for pioneering research and development of Alaska’s groundfish, shrimp, and crab industry. Dyson was a founding partner of All Alaskan Seafoods, which was the first company actually controlled by the fishermen who owned the vessel. He also served on the North Pacific Fisheries Management council for nine years. He is in the United Fishermen of Alaska’s hall of fame for his work. The ship was christened by his wife, Mrs. Peggy Dyson-Malson, and launched on October 17, 2003.
Oscar DysonThe launching of the Oscar Dyson
Q. How do you see this helping you teach at Knoxville Zoo, not an aquarium?
A. This will be a long answer. This experience will improve environmental education at the zoo in a variety of different ways.
First, this will better allow me to teach the Oceanography portion of my homeschool class that comes to the zoo every Tuesday. For example, I am in the process of creating a hands on fishing trip that will teach students about the research I have done aboard the Oscar Dyson and why that research is important. Homeschool students will not just benefit from this experience in Oceanography, but also in physics (when we look at sound and sonar) and other subjects as well from the technical aspects that I have learned during the course of the trip.
Scouts are another group that will greatly benefit from this experience as well. The Girl Scout council wishes to see a greater emphasis in the future on having the girls do science and getting real world experiences. While the girls are still going to desire the animal knowledge that the zoo can bring, they will also expect to do the science as well as learn about it. My experience aboard the Dyson will allow me to create workshops that can mimic a real world animal research experience, as I can now explain and show how research is done in the field.
The same can be said of the boy scouts.
In addition, one of the most common badges that is taught to boy scout groups that come in is the fish and wildlife merit badge. In the past, the badge has primarily focused on the wildlife aspect of this topic. However, I now have the knowledge to write and teach a fisheries portion for that merit badge, as opposed to quickly covering it and moving on. This will enrich future scouts who visit the zoo for this program.
A major focus for all scouts is the concept of Leave No Trace, where scouts are supposed to leave an area the way they found it. The fisheries research being done aboard the Dyson is focused toward that same goal in the ocean, where we are attempting to keep the pollock population as we found it, creating a sustainable fishery. The goal aboard the Dyson is similar to the goal in scouting. We need to be sustainable, we need to be environmentally friendly, and we need to leave no trace behind.
School children on field trips will greatly benefit, especially students in the adaptations section. There are some bizarre adaptations that I never knew about! For example, sleeper sharks slow, deliberate movement coupled with their fin and body shape basically make them the stealth fighter of the fish world. They can catch fish twice as fast as they are! Lumpsuckers are neat critters too! This knowledge will enhance their experience at the zoo during field trip programs.
Finally, I can pass the knowledge from this experience on to my coworkers. This will not only better the experience of my students, but it will also improve the outreach programs, the bedtime programs, the camps, and other programming done at the zoo.
Q. Are you old enough to be on a ship? You look like you’re 13???!!!!
A. SHHHHHHH!!!! You weren’t supposed to tell them my real age! They think I’m 24!
NOAA Teacher at Sea
Channa Comer On Board Research Vessel Hugh R. Sharp May 11 — 22, 2011
Mission: Sea Scallop Survey Leg 1 Geographical area of cruise: North Atlantic Date: Monday, May 15, 2011
Weather Data from the Bridge
Air Temperature: 16.2C, Mostly Cloudy
Wind Speed: 11.6 knots
Water Temperature: 13.4C
Swell Height: 1.0 meters
Science and Technology Log
Question of the Day (See the answer at the end of the post)
How do you count a basket of crabs?
It’s hard to believe that we’re already at the halfway mark of the cruise. Since my last log, we’ve covered a total of 966 nautical miles. Today, we’ve traveled from Hudson Canyon which is 60 nautical miles east of Atlantic City to about 50 nautical miles from the coast of Point Pleasant, NJ.
Bucket of Crabs
Each day, the boat stops at predetermined points along the route. At each stop, the scallop dredge is lowered to the ocean floor at depths ranging from 15 to 60 fathoms. The dredge is then towed for 15 minutes at a speed of 3.8 knots. When 15 minutes has passed, the dredge is brought up and the catch is dumped onto a platform were we all wait anxiously to see what comes up. Once the empty dredge is secure, we get to work sorting the catch. Scallops and fish get separated, with everything else collected into baskets, cataloged as “trash” and returned to the ocean. The scallops are measured, and the fish are sorted by species, then counted, weighed and in some cases saved for further scientific study back at NOAA labs. Once everything has been counted, weighed and measured, it’s time for my favorite activity – shucking! Scallops are shucked and if there’s time, washed bagged and placed in the deep freezer for Paul to use in the galley for meals. To date, we’ve completed 90 tows and dredged 23,212 scallops.
What comes up at each catch depends on the location of the tow. The southernmost, areas that have been open, or those areas that have recently been closed will usually yield fewer scallops. Scallop yields increase as we head northward and in areas that are closed to fishing. In addition to scallops, our tows have included a variety of deep sea fish, starfish, lots of live sand dollars (with their accompanying green slime), and very often, mud.
At select tows, representative samples of scallops are processed beyond the usual length measurements. The shells are scrubbed clean and weights are recorded for the meat and gonad (reproductive organ). The shells are then labeled and bagged for transport to the lab where they will be aged. The age of scallops are determined by counting the number of growth rings on the shell – similar to counting rings on a tree.
Every three tows is my favorite – Crabs and Stars!! In this tow, in addition to the usual sorting and measuring, all Cancer crabs are collected, counted and weighed and a representative sample of starfish are sorted by species, then counted and weighed. Astropecten, a small starfish is a predator of scallops and the most abundant species of starfish that we’ve counted. Usually, a tow that has large numbers of Astropecten has very few scallops. Being a stickler for detail, having the job of counting starfish has been perfect for me.
Did you know?
Starfish eat a scallop by attaching themselves to the scallop in numbers, forcing the shell open, then extruding their stomachs into the shell and digesting the meat.
Animals Seen
Dolphins
Red Hake
Sea Mouse
Chain Dogfish
Little Skate
Four Spot Flounder
Red Sea Robin
Sea Urchin
Snake Eel
Ocean Pout
Sand Dollar
Sand Lance
Goosefish
Starfish
Gulf Stream Flounder
Black Sea Bass
Hermit Crab
Sea Raven
Personal Log Day 3 – Thursday, May 12, 2011
With my sea sickness over after the first day and having adjusted to my new sleep schedule — I actually get to sleep a full 8 hours! — the days are starting to take on a nice flow. It’s been great being part of a team. We’re like a well-oiled machine. Everyone in my crew continues to be generous, sharing the best shucking techniques and giving me a little extra time to take photos and collect samples. We’ve jokingly renamed the “crabs and stars” tow to “crabs, stars and mud”. It’s really hard to count starfish when they’re covered in mud. Dinner was especially delicious today with salmon in pesto sauce with potatoes and broccoli.
Day 4 – Friday, May 13, 2011
The day started out cloudy and overcast, but the sun made an appearance late in the afternoon. The first tow of the day was my favorite — Crabs and Stars!! — with accompanying mud. As part of the Teacher at Sea program, in addition to my logs, I am required to write a lesson plan. I’ve started to draft what I think will be a great unit using the sea scallop as a springboard to explore issues in ecology and the nature of ecological science. Highlights will be an Iron Chef style cooking competition using scallops and a design challenge where students will have to build a working model of a scallop dredge. Vic has been great with providing whatever data, materials and background information that I need for my lessons. Lunch today was chicken burritos with fresh, spicy guacamole.
Day 6 – Sunday, May 15, 2011
Since its Sunday, I decided to take it easy and instead of trying to get a lot done before my shift and during the breaks, I took it easy and watched a little TV. With satellite TV and a large selection of DVDs, there are always lots of options. Although the guys tend to prefer sports or reality TV. The first few tows were back to back which meant little time for breaks, or snacks, or naps. Just enough time to clean up, shuck and be ready for the next tow.
Day 7 – Monday, May 16, 2011
The trip is half over. It’s hard to believe. The tows were once again, back to back with a fair amount of scallops, but I think after today, we won’t need to shuck anymore. Yay! Today was the day that the animals fought back. I was chomped by a scallop and a crab! The scallop was more of a surprise than a pain, but the crab clawed right through my glove. After days with no restrictions, we received the warning from the engineers today that we have to be careful with the faucets. Dripping faucets waste water and it takes time for the water to be converted through condensation in the condenser to usable water. If we’re not more careful, we’ll be faced with restrictions on how much water we can use……… I hope that doesn’t happen since I think we all officially smell like fish. Lunch today was cream of asparagus soup, yummy and reminiscent of my recent trip to Peru. The only thing missing was Quiona. And finally, today was the day that I’ve been waiting for. I found my favorite ice cream. I’ve been rationing myself to one per day, but after I found my favorite – butter pecan ice cream sandwiches – I could not resist a second.
NOAA Teacher at Sea
Anne Byford
Aboard R/V Hugh R. Sharp
June 8 – 15, 2010
Mission: Sea Scallop Survey
Geographic Location: off the coast of New England
June 11, 2010
Weather Data at 1:30pm EDT: Clear and sunny, 14.5˚C
Location at 1:30pm EDT: Lat: 4123.78 NLong: 6656.64 W
Water Depth: 68.2 m
8th Day at Sea
What kinds of things are you going to catch?Part 2 – non-fish along with a few new fishes
There are many more species in the areas than I have listed here; these are simply the ones that I found most interesting. There are several different types of bivalves, sea weeds, etc. Material about the species on this page came from several sources, including the Bigelow and Schroeder’s book referenced in the previous posting. Also, Kenneth Gosner’s A Field Guide to the Atlantic Seashore published by Houghton Mifflin Company in Boston, Ma, 1978. I also used Norman Mein-Koth’s Field Guide to North American Seashore Creatures published by Alfred A. Knopf in New York in 1990.
Sea Stars (aka starfish) – Every third dredge, the contents of the dredge are sampled and the sea stars are separated by species and counted. Most sea stars can regenerate a lost arm, but a few can regenerate an entire organism from the lost arm as well. All sea stars are predators; many species do eat scallops.
Hippasteria phygiana
Hippasteria phygiana – a cushion star with a much wider central disk and shorter arms than the other types of sea stars.
Northern Sea Star
Northern Sea Star (Asterias vulgaris) – is one of the more common sea stars found. It can have a radius of up to 20 cm.
Blood Star
Blood Star (Henricia sanguinolenta) – is a thin armed sea star that ranges in color from bright red to orange. This particular blood star shows some aberant regeneration occurring on one arm.
Leptasterias tenera
Leptasterias tenera – smaller sea stars than the others. They are usually whitish-tan. Some have purple centers and arm bands.
Sclerasteras tanneri
Sclerasteras tanneri – are spinier than the other sea stars seen. They are bright red with thin arms.
Spiny Sun star
Spiny Sun star (Crossaster papposus) – is the only sea star that I’ve seen here with more than 5 arms. It has concentric rings of color radiating from the central disk of the sea star.
Green Sea Urchin
Green Sea Urchin (Strongylocentrotus droebachiensis) – can grow up to 8.3 cm wide and 3.8 cm high. The shell (test) is usually a greenish color and the spines are all approximately the same length.
Sand Dollar
Sand Dollar (Echinarachnius parma) – the common sand dollar. This species does not have openings in the test like the Keyhole type that is commonly found off the coast of the Carolina’s, but does have the flower-like markings on the dorsal side. A great many of these (hundreds of thousands) are found in the dredge on some tows.
Hermit Crabs
Hermit Crabs (various species) – move from shell to shell as they grow.
Northern Lobster
Northern Lobster (Homarus americanus) – can grow up to 90 cm in length. Lobsters are scavengers and can be cannibalistic. Claws and tail are highly prized for meat.
Winter flounder
Winter flounder (Pseudopleuronectes americanus) – are darker than the other flounder. Like summer flounder, they can change color to match the underlying ocean floor. Winter flounder can live up to 15 years. They can reach a maximum size of 64 cm and 3.6 kg, with the average being 31-38 cm and 0.7-0.9 kg. Winter flounder eat mostly small invertebrates, like polychaetes and shrimp and some small fishes. They are preyed upon by cod, skates, goosefish, and spiny dogfish.Winter flounder are the thickest of the flatfish, but are considered over-exploited.
Haddock
Haddock (Melanogrammus aeglefinus) – a silvery fish that is dark grey on the dorsal side with a dark patch behind the gills. The largest recorded haddock was 111.8 cm long and 16.8 kg. The average haddock is 35-58 cm long and 0.5-2 kg. Small haddock eat crustaceans, polychaetes, and small fish, while larger haddock eat more echinoderms, but will eat most anything. Predators include spiny dogfish, skates, cod, other haddock, hakes, goosefish, and seals. Haddock aquaculture was begun in 1995. The biomass of haddock was considered below maintenance levels in the late 1990s.
Fawn Cusk-eel
Fawn Cusk-eel (Lepophidium profundorum) – are greenish with light green or tan spots down the sides and, unlike true eels, have pectoral fins. They average about 26 cm in length. They eat sea mice, shrimp, and echinoderms. Larger fawn cusk-eels eat flatfish as well. They are eaten by skates, spiny dogfish, hakes, flounders, and sea ravens.
Winter Skate
Winter Skate (Leucoraja ocellata) – large, heart-shaped skate. Like the barndoor skate, winter skates can be quite large, up to 150 cm long. They eat bivalves, shrimp, crabs, echinoderms, and many types of fishes. They are eaten by sharks, other skates, and grey seals. They are considered to be commercially important.
Personal Log
I have to admit, when I first went up to the bridge of the ship, with its wrap-around windows, the first words that came to mind were the lines from Rhyme of the Ancient Mariner (which I may have not remembered entirely correctly)
Water, water everywhere
And not a drop to drink
Water, water everywhere
And all the boards did shrink
At the time that I was there, no land and no other ships were within sight; there was nothing but water and wavelets as far as I could see.We’ve see several ships on the horizon, and two container ships close enough to get a good look at. One of those passed quite close as we had a dredge down.
NOAA Teacher at Sea
Anne Byford
Aboard R/V Hugh R. Sharp
June 8 – 15, 2010
Mission: Sea Scallop Survey Geographic Location: off the coast of New England June 15, 2010
Aboard: R/V Hugh R. Sharp
Weather Data at 1:30pm
EDT: Clear and sunny, 14.5˚C
Location at 1:30pm
EDT: Lat: 41 23.78 N
Long: 66 56.64 W
Water Depth: 68.2 m
8th Day at Sea
What kinds of things are you going to catch? Part 2 – non-fish along with a few new fishes
There are many more species in the areas than I have listed here; these are simply the ones that I found most interesting. There are several different types of bivalves, sea weeds, etc. Material about the species on this page came from several sources, including the Bigelow and Schroeder’s book referenced in the previous posting. Also, Kenneth Gosner’s A Field Guide to the Atlantic Seashore published by Houghton Mifflin Company in Boston, Ma, 1978. I also used Norman Mein-Koth’s Field Guide to North American Seashore Creatures published by Alfred A. Knopf in New York in 1990.
Sea Stars (aka starfish) – Every third dredge, the contents of the dredge are sampled and the sea stars are separated by species and counted. Most sea stars can regenerate a lost arm, but a few can regenerate an entire organism from the lost arm as well. All sea stars are predators; many species do eat scallops.
Hippasteria phygiana – a cushion star with a much wider central disk and shorter arms than the other types of sea stars.
H. phygiana dorsal
Northern Sea Star (Asterias vulgaris) – is one of the more common sea stars found. It can have a radius of up to 20 cm.
Northern Sea star dorsal
Blood Star (Henricia sanguinolenta) – is a thin armed sea star that ranges in color from bright red to orange. This particular blood star shows some aberant regeneration occurring on one arm.
Blood Star
Leptasterias tenera – smaller sea stars than the others. They are usually whitish-tan. Some have purple centers and arm bands.
L. tenera
Sclerasteras tanneri – are spinier than the other sea stars seen. They are bright red with thin arms.
S. tanneri
Spiny Sun star (Crossaster papposus) – is the only sea star that I’ve seen here with more than 5 arms. It has concentric rings of color radiating from the central disk of the sea star.
Sun Star
Green Sea Urchin (Strongylocentrotus droebachiensis) – can grow up to 8.3 cm wide and 3.8 cm high. The shell (test) is usually a greenish color and the spines are all approximately the same length.
Green Sea Urchin
Sand Dollar (Echinarachnius parma) – the common sand dollar. This species does not have openings in the test like the Keyhole type that is commonly found off the coast of the Carolina’s, but does have the flower-like markings on the dorsal side. A great many of these (hundreds of thousands) are found in the dredge on some tows.
Sand Dollar
Hermit Crabs (various species) – move from shell to shell as they grow.
Hermit Crabs
Northern Lobster (Homarus americanus) – can grow up to 90 cm in length. Lobsters are scavengers and can be cannibalistic. Claws and tail are highly prized for meat.
Lobster with eggs
Winter flounder (Pseudopleuronectes americanus) – are darker than the other flounder. Like summer flounder, they can change color to match the underlying ocean floor. Winter flounder can live up to 15 years. They can reach a maximum size of 64 cm and 3.6 kg, with the average being 31-38 cm and 0.7-0.9 kg. Winter flounder eat mostly small invertebrates, like polychaetes and shrimp and some small fishes. They are preyed upon by cod, skates, goosefish, and spiny dogfish. Winter flounder are the thickest of the flatfish, but are considered over-exploited.
Winter Flounder Dorsal
Haddock (Melanogrammus aeglefinus) – a silvery fish that is dark grey on the dorsal side with a dark patch behind the gills. The largest recorded haddock was 111.8 cm long and 16.8 kg. The average haddock is 35-58 cm long and 0.5-2 kg. Small haddock eat crustaceans, polychaetes, and small fish, while larger haddock eat more echinoderms, but will eat most anything. Predators include spiny dogfish, skates, cod, other haddock, hakes, goosefish, and seals. Haddock aquaculture was begun in 1995. The biomass of haddock was considered below maintenance levels in the late 1990s.
Haddock Large
Fawn Cusk-eel (Lepophidium profundorum) – are greenish with light green or tan spots down the sides and, unlike true eels, have pectoral fins. They average about 26 cm in length. They eat sea mice, shrimp, and echinoderms. Larger fawn cusk-eels eat flatfish as well. They are eaten by skates, spiny dogfish, hakes, flounders, and sea ravens.
Fawn Cusk eel dorsal
Winter Skate (Leucoraja ocellata) – large, heart-shaped skate. Like the barndoor skate, winter skates can be quite large, up to 150 cm long. They eat bivalves, shrimp, crabs, echinoderms, and many types of fishes. They are eaten by sharks, other skates, and grey seals. They are considered to be commercially important.
Winter Skate Female Dorsal
Personal Log
I have to admit, when I first went up to the bridge of the ship, with its wrap-around windows, the first words that came to mind were the lines from Rhyme of the Ancient Mariner (which I may have not remembered entirely correctly)
Water, water everywhere
And not a drop to drink
Water, water everywhere
And all the boards did shrink
At the time that I was there, no land and no other ships were within sight; there was nothing but water and wavelets as far as I could see. We’ve see several ships on the horizon, and two container ships close enough to get a good look at. One of those passed quite close as we had a dredge down.