Sherie Gee: Male or Female? June 29, 2013

NOAA Teacher At Sea
Sherie Gee
Aboard the R/V Hugh R. Sharp
June 27 — July 7, 2013

Mission:  Sea Scallop Survey
Geographical Area of Cruise:  Northwest Atlantic Ocean
Date:  June 29, 2013 

Science and Technology Log:

Most of the shifts consisted of sorting out the animals from the dredges and carrying out the process of weighing, measuring and counting.  One other component to the process is that on every dredge, five of the scallops are scrubbed, weighed and dissected.  Once this is done, gender can be determined since this species of sea scallops have separate sexes.  Then each scallop is numbered, labeled, tagged, and bagged.  These five sea scallops will be brought back to the lab on land to be analyzed and aged.  This is done by counting growth rings on the shell.   The part of the scallop that is used as food is not the actual animal but the adductor muscle that is located in the middle of the shell.  This is the muscle that can open and close the scallop’s shell.  This is the only bivalve to be motile.  Often times other organisms find a nice little resting spot inside of the shells of the scallops.  This is a form of commensalism where the organism benefits while not harming the host.  We saw a small red hake living inside the shell of a dissected sea scallop.

The Atlantic Sea Scallop
The Atlantic Sea Scallop

After every other dredge, the crew brings out the CTD which is an apparatus that collects conductivity, temperature, and depth.  This data enters the database and is used in the labs on shore.  We could always tell when they were lowering the CTD because the ship had to come to a complete stop while collecting data.  Then they would bring the CTD back in and the ship would resume forward.

The CTD - Conductivity, Temperature and Depth
The CTD – Conductivity, Temperature and Depth

Did you Know:

The male sea scallop’s gonad is white and the female’s gonad is red.  Gonads are reproductive organs.

Personal Log:

I learned the secret to gearing up efficiently with the boots and foul weather overalls from Larry.  When you are ready to take them off, pull the overall part down toward the boots and leave about an inch of the boots exposed. Then just step out of the boots into regular shoes.  I’m glad I brought some slip-on shoes which made things a lot easier.  Then when it is time to gear up again, all I had to do was slip back into the boots and pull up the pants and suspenders.  We also had to wear rubber work gloves that kept us from cutting ourselves during the dredges.

Boots and Foul Weather Gear
Boots and Foul Weather Gear

I interviewed our steward, Lee, for one of my requirements by NOAA. I found her to be a very interesting and social person.  She is also the cook so she takes on two responsibilities at one time. She has to plan the meals, cook the meals and clean up after the meals. In addition to taking care of all kitchen duties, she also has to clean the heads (bathrooms), vacuum the carpets, clean the staterooms and do the laundry. She had to take some extensive courses on basic safety training for commercial vessels. Her satisfaction to the job is making food that people like and keeping up morale on the ship.  She has a designated drawer which serves as a treasure chest of gold only the gold is actually tons of candy. All kinds of candy.  She also keeps one big freezer full of ice cream and a refrigerator full of most types of can sodas.

Lee's Shrimp Jambalaya
Lee’s Shrimp Jambalaya
The Ship's Treasure
The Ship’s Treasure
Lee- The Ship's Cook and Steward
Lee- The Ship’s Cook and Steward

Sherie Gee: Scalloping Across the Seafloor, June 28, 2013

NOAA Teacher At Sea
Sherie Gee
Aboard R/V Hugh R. Sharp
June 26 – July 7

Mission:  Sea Scallop Survey
Geographical area of Cruise:  Northwest Atlantic Ocean
Date:  June 28, 2013 

Science and Technology Log:

Dredging is the other method of collecting the data needed for this research.  First, I would like to mention that there are predetermined stations that are collected from. Chief Scientist Nicole explained that a computer selects the stations by random and then she basically connects the dots and sets the course.  This way there is no bias in the selection process of the stations and they won’t be used more than once.

Map Showing the Course of Stations
Map Showing the Course of Stations
The Dredge and Platform
The Dredge and Platform
Spare Dredge on Deck
Spare Dredge on Deck

The crew is in charge of bringing the dredge up after towing for 15 minutes at each station.  As soon as the dredge is up on the platform and all of the organisms are lying on the platform, the scientists head out with their rubber work boots, foul weather pants, and life jackets.  They grab two orange baskets, some white buckets and a smaller plastic container.  Everyone stands at the edge of the platform and starts sorting out the organisms.  The pace of sorting is fast and furious as the scientists are quickly placing the organisms in these baskets and buckets.  The organisms are sorted out into sea scallops, small skates, fish, and all other organisms.  The most abundant organisms on most of the dredges were a species of sea stars called the armored sea star, Astropecten americanus.  Some of the other dredges had mostly sand dollars in it.  The combination of these animals varied from station to station.

Once all of the organisms are placed into the baskets and buckets, they are then lined up by the wet lab.  Here is where everything is counted, weighed, and measured. Larry, our watch chief, is in charge of that process making sure everything is done correctly.  The groups of organisms are weighed on scales and entered into the computer with a very remarkable program  called FSCS (Fisheries Scientific Computing System). It is an application used by four science centers (NEFSC, NWFSC, AFSC, AND SEFSC) to collect at-sea information on the research vessels that go out. Each sea scallop is measured by placing one side next to a backboard and using a magnetic tool to touch the end of the scallop to the fish board which records the length automatically and entered into the computer. You can tell when the length has been recorded because a ringing sound will go off. Then the next scallop is processed. It usually takes two people during this process; one to measure and one to feed the person measuring more scallops from the baskets.

Fish Board In the Wet Lab
Fish Board In the Wet Lab

While this is being done with the sea scallops, the fish are measured in the same way.  It is a very quick way to get this quantitative data.  A sub sample is also taken on each dredge by taking a portion of each basket and compiling it into a smaller container and counted.  In these sub-samples I counted Astropecten americanus, crabs, and whelks.  The reason for counting these species is to look at the populations of the sea scallop’s predators.  This is a very important factor in analyzing the population of a species.

Basket of Goosefish
Basket of Skates
Basket of Sea Scallops
Basket of Sea Scallops

Once the entire process has been completed, all specimens are returned to the ocean to resume their niche in their habitat.

Organisms Seen:

Atlantic Sea Scallop, rock crabs, sand dollars, armored sea star, Asterias sea star, four spot flounder, monkfish (goosefish), ocean pout, gulf stream flounder, red hake, yellow-tailed flounder, little skate, waved wake, mermaid purses (skate egg cases), sea mouse, whelks, clams, hermit crabs, American lobster

Did you know:

The sea mouse is actually a polychaete which is a type of marine segmented worm.

Ventral View of a Sea Mouse
Ventral View of a Sea Mouse

Personal Log:

Being a part of this science team has had a tremendous impact on me.  The scientists prove to be very dedicated to their work, all working for a common goal.  I am amazed at the plethora of animals being dredged up in the Atlantic Ocean.  Of course I am very partial to the fish brought up on board.  I wish I had more time with them to observe them closer and in more detail.  The goosefish also called the monkfish is a type of angler fish with an adaptation that looks like a fishing pole and bait.  It reminds me of my little frogfish that is also a type of angler fish.  I was also excited to find so many skate egg cases also called mermaid purses.  They were empty which meant that the skates had already hatched.

Empty Mermaid Purses AKA Skate egg cases
Empty Mermaid Purses
AKA Skate egg cases

Sherie Gee: The Flying HabCam, June 27, 2013

NOAA Teacher At Sea
Sherie Gee
Aboard R/V Hugh R. Sharp
June 26 — July 7 

Mission:  Sea Scallop Survey
Geographical Area of Cruise:  Northwest Atlantic Ocean
Date:  June 27, 2013 

Weather Data from the Bridge:
Latitude:  40  23:09 N
Longitude:  072:34.42 W
Relative Wind Speed:  11.4 Knots
Air Temperature:  23:50 degrees C
Humidity:  84%
Surface Seawater Temperature:  21.8354 degrees C
Surface-Sea water salinity:  31.1071 PSU

Science and Technology Log:

Two methods were used by these scientists to determine population numbers and trends.  They can use the HabCam which stands for Habitat Mapping Camera System  which takes pictures of the organisms on the bottom of the seafloor and they can use the dredge to collect specimens off the bottom of the seafloor to physically count.  We started out using the Habcam which is a towed vehicle that has to be carefully lowered into the ocean by the skilled crew members.  Since it is a towed vehicle, it must use a fiberoptic, winch-controlled wire to tow HabCam, and it is this wire that we pay in and out via the remote control winch box at the pilot station.  It is very similar to the video games that I have seen the students play.  The HabCam takes six pictures per second of the organisms on the ocean floor. The scientists can see these organisms being photographed on the computers.   One computer is used to monitor the organisms and tabulate the number of several species.  In the beginning, we counted scallops, fish, and convict worms.  Then later we counted fish, skates and convict worms.  On another computer, a scientist  controls the HabCam with a remote control joy stick.  The screen shows the bottom contours which is actually a side-scan sonar which pings out 50 meters to the left and right of the vehicle.    The joy stick controlled the wire cable that the HabCam was hooked to.  That is what raised and lowered the HabCam.  Both shifts monitored and controlled the HabCam for about twenty hours and a total of 126 miles.  I will describe and discuss the dredging process on the next blog.

The HabCam on Deck
The HabCam on Deck
Chad Flying the HabCam
Chad Flying the HabCam
Sara identifying and tabulating sea scallops, skates and convict worms
Sara identifying and tabulating sea scallops, skates and convict worms
Brittle stars and a blenny on the seafloor
Brittle stars and a blenny on the seafloor

Organisms Seen:
sea scallops
sand dollars
skates
various fish
stingrays

Did You Know:

  • One nautical mile (nm) is equal to 1.2 miles.
  • The amount of data that the HabCam collected was about one terra bite.

Personal Log:

I really enjoyed maneuvering the HabCam; I can’t believe they actually trusted me to drive it.  I am so impressed at all the technology that is involved in this type of research.   I also enjoyed tabulating and identifying the various organisms on the floor.  It goes by very quickly so you have to keep your eyes on the screen at all times or you will miss collecting the data.

Well, twelve hours has a new meaning for me.  The time working actually went by fairly quickly but the sleeping twelve hours went by double time.  There really is no down time because a person is either working the twelve hours or sleeping the twelve hours. The only time for some interaction amongst us is when we are in the dry lab waiting to rotate on the computers.  I have enjoyed working with these other scientists and our chief scientist Nicole.  They are all so knowledgeable, helpful and wonderful.  They answered all the questions that I had for them.

Nicole - Chief Scientist
Nicole – Chief Scientist

Janet Nelson: On Georges Bank, June 22, 2012

NOAA Teacher at Sea
Janet Nelson Huewe
Aboard R/V Hugh R. Sharp
June 13 – 25, 2012

Mission: Sea Scallop Survey
Geographic Area: North Atlantic
Friday, June 22, 2012 

Weather Data from the Bridge:
Longitude: 068 24.69 West
Latitude: 41.40.50 North
Wind speed: 7.9 kt
Air temp: 18.5 C
Depth: 194.7 feet (32.2 fathoms)

Science and Technology Log:

Our route in George’s Bank
Our route in George’s Bank

Yesterday was a 12 hour shift of towing the HabCam. The strangely unique thing about that was the terrain. We are on the western edge of Georges Bank and the sand waves on the ocean floor are incredible! There are waves as high as 10 meters that come upon you in a blink of an eye. By observing the side scan sonar it looks very similar to being in a desert, or on the surface of Mars. We refer to driving the HabCam through these areas as piloting the “White knuckle express”.

side scan sonar/sand waves
side scan sonar/sand waves

To get through these areas Scott was able to use geographic images collected by the United States Geological Survey and created an overlay of the pictures onto our tow path, alerting us to any possible hazards in navigation. This data allowed us to anticipate any potential dangers before they arose.

Irritated sea scallop
Irritated sea scallop

We continue to see skates, various fishes, lobsters and sand dollars, and in places, huge amounts of scallops. The images will be reviewed back at the lab in Woods Hole, MA. I have been able to see some of them and the clarity is amazing.

Today, we are continuing to tow the HabCam. When finished, we will have taken images from hundreds of nautical miles with over 4 million images taken on Leg II! We will put in the scallop dredge toward the end of my shift. We will then conduct back to back dredge tows on the way back to Woods Hole totaling over 100 nautical miles for this portion of the trip.

Me, heading in to get my foul weather gear on
Me, heading in to get my foul weather gear on

Personal Log:

Yesterday was a beautiful day at sea. It was, however, strange. The sea was really calm and the sun was shining in a big beautiful sky. The strange thing was that about 300 yards out was fog. There were many commercial fishing vessels all around us. It felt like being in an episode of “The Twilight Zone” or some creepy Steven King novel. I am thankful, however, for smooth sailing.

Commercial fishing vessel
Commercial fishing vessel

 

a day at sea
A day at sea

The crew continues to be awesome. We had flank steak and baked potatoes for supper last night. Lee, our chef, is amazing. Everything she makes is from scratch and there is always plenty. The only reason someone would go hungry on this ship is if it was by choice. Lee takes very good care of us! I have had ample opportunity to get to know others who share my shift. Mike, Jessica and I are science volunteers. Jon and Nicole are the NOAA staff along with Scott an associate scientist at WHOI( Woods Hole Oceanographic Institute) on the science team. We get along “swimmingly” and have fun banter to break up any monotony.

I am sleeping very well at night. I think it’s the rocking of the ship that lulls me to sleep. I think I will miss that when I get home. Funny, how at the beginning of this journey I was cursing the very waves that now rock me to sleep. The way the body adjusts is amazing.

I will be home in four days. This week has swiftly gone by. Although I miss home, I feel I will miss people from this ship and the experience of being at sea (minus the sickness!) My mind is already putting together science lessons for my biology classes this fall. I do, however, have three full days left on this ship and I plan to make the most of it. Keep checking the blog to find out what happens next on the great adventure in the North Atlantic Ocean!

Sunset, 6/21/12
Sunset, 6/21/12

Janet Nelson: Sand Dollars and Sea Stars! June 20, 2012

NOAA Teacher at Sea
Janet Nelson Huewe
Aboard R/V Hugh R. Sharp
June 13 – 25, 2012

Mission: Sea Scallop Survey
Geographic Area: North Atlantic
Wednesday, June 20, 2012 

Weather Data from the Bridge:
Latitude: 41.03.21 North
Longitude: 071 32.79 West
Air temp: 21 C
Wind Speed: 15.6 kt
Depth: 135.2 feet

Science and Technology Log:

I came on shift yesterday at noon with three back to back dredge tows (we have done 30 dredges thus far on Leg II). We are off the coast of Long Island. Most of the dredges around here have been filled with sand dollars and sea stars. In total, we have processed and counted on this leg of the survey 5, 366 scallops, 453 skates, and 58 Goosefish, a very interesting fish that  buries itself in the sand and uses a filamentous lure to attract prey and engulf them. In addition, we have counted 132, 056 sea stars (wow!) and 590 crabs. The HabCam had some glitches yesterday but we began running the vehicle on our shift at approximately 1245 hrs. It made a run for approximately three hours and 57 minutes, with approximately 22.387 nautical miles of pictures before we dredged again.

While looking at the images of the HabCam, it astounds me at seeing prior dredge track marks from commercial scallopers and clamers. By looking at the side scan sonar, some of the dredges are very deep and very invasive. It reminds me of strip mining and clear cutting in terrestrial ecosystems. It is also evident, by observing the images, that little is left in those areas but shell hash. With that said, there are still some interesting species that get photographed, such as jelly fish and sea stars in patterns you would think they orchestrated.

We are working our way toward Georges Bank and will be there, from what I’m told, sometime late this afternoon or evening. All equipment is running well and what time we lost with the late departure has mostly been made up. It’s amazing what technology can do!

Personal Log:

As of yesterday, I have been away from home with little to no contact for six days, so when I was told yesterday morning prior to coming on shift that we had cell phone signal, I immediately went up on deck and called my husband! Although I only got an answering machine, it was good, and familiar, to hear his voice.

We then had a fire drill at noon and after that, set to work. It was nice to be outside working for the next 4 hours. I think I finally have my sea legs. However, the seas have also been cooperating with only 1-3 foot swells, at best. When they are higher, I sometimes feel like the Scarecrow in “The Wizard of Oz”. It’s a good thing I can laugh at myself when I look completely ridiculous while tripping through a door or, with no warning whatsoever, bump into a wall!  From what I understand, this ship has a flatter bottom than most so every wave and swell catches it and tosses it in whatever direction that wave is going, despite having just gone in the opposite direction! I am hoping the sea remains calm when we get to Georges Bank.

I am learning a great deal about the critters that live in the ocean around here. It is so strange to have at times hundreds upon hundreds of sand dollars being pulled up in the dredge at one location and then to have mostly sea stars pulled up at another location. My favorite, however, are the hermit crabs! They are so cool! They will begin to crawl out of their shells, see you coming to pick them up and immediately crawl way back inside and stare at you. I actually think I saw one blink at me. Not really, but my imagination does run away at times.

Those are also the times someone, usually me or the watch chief (chief scientist is guilty of this too!), bursts into song or starts quoting a movie line, and then half the crew is joining in. I have gotten more proficient at using the technology equipment on board that does the recording of the measurements of the specimens, and also at cutting/shucking the scallops. Never thought I would know how to do that! I have a feeling there are a few things I never thought I would do before this cruise is over. I have five more days at sea. Anything is possible!

Side note: Today is beautiful for being at sea! Clear sky, moderate winds, and sea legs that are working!!

Cheers!

This slideshow requires JavaScript.

Anne Byford, June 11, 2010

NOAA Teacher at Sea
Anne Byford
Aboard R/V Hugh R. Sharp
June 8 – 15, 2010

Mission: Sea Scallop Survey
Geographic Location:  off the coast of New England
June 11, 2010

Weather Data at 1:35pm
EDT: Clear, 14.4˚C
Location at 1:35pm
EDT: Lat: 40 30.07 N
Long: 69 08.66 W
Water Depth: 77.5 m
4th Day at Sea

Why Count Sea Scallops?

That had to be the most common question I got asked before coming on this trip. Much of the information below is from the NOAA FishWatch website (www.nmfs.noaa.gov/fishwatch/species/atl_sea_scallop.htm).

Economically, sea scallops are an important species; in 2008 the scallop harvest was about 53.5 million pounds and was worth about $370 million. The population is not currently considered to be overfished and has been above minimum sustainable levels since 2001. Formal management began in 1982 with the Atlantic Sea Scallop Fisheries Management Plan. The management plan includes limiting new permits, restrictions on gear and on the number of crew on a boat. Since about 2000, the biomass of scallops has been increasing. Biomass is estimated by using the weight of scallops per tow on cruises like this one. Combinations of biomass estimates and estimates of the commercial catch are used to update and adjust the management plan.

Sea Scallops (Placopecten magellanicus) are filter feeders. They can live up to 20 years and begin reproducing at about 2 years, with maximum fertility reached at 4 years. A single female scallop can produce up to 270 million eggs in her life. This high reproductive capacity has helped the scallop population recover relatively quickly. Gender can be determined by the color of the gonad; females are orange while the male gonad is white. Adult scallops average between 6 and 7 inches from hinge to tip (called height) but can be as big as 9 inches. Age can be estimated by counting the rings on the shell. Scallops can “swim” by opening and closing the two shells. This is a useful adaptation for escaping from predators, including flounder, cod, lobsters, crabs, and sea stars. Scallops are harvested for the adductor muscle (the one that opens and closes the shell). There is no commercial aquaculture of scallops in the US as of August 2009.

scallop dorsal and ventral

Personal Log

A storm moved through beginning on Wed. evening (day 2) and stayed with us most of Thursday. By the end of shift on Wednesday, we were working on deck in full foul weather gear and life jackets. Thursday we had an 8 hour steam between dredge sites and by the end of shift on Thursday, the seas had begun to smooth out. Friday was quite nice, weather-wise.

I am learning to shuck scallops, though I am about half the speed of many on the boat. I am also learning to tell the various types of flounder and other fish apart as well. It’s not always obvious which type of founder or hake is which.

New Species

Goose fish (aka monk fish), several more varieties of flounder, sea urchins, sea cucumbers, eel pout, some very large skates, 3 types of sea stars and 1 type of brittle star.

Alicia Gillean: Introduction, April 29, 2012

NOAA Teacher at Sea
Alicia Gillean
Soon to be aboard R/V Hugh R. Sharp
June 27 — July 8, 2012

Mission:  Sea Scallop Survey
Geographical area of cruise: Northwest Atlantic Ocean
Date: Sunday, April 29, 2012

Personal Log

Alicia Gillean
Alicia Gillean, 2012 NOAA Teacher at Sea

Hello from Oklahoma!  My name is Alicia Gillean and I am ecstatic that I was selected as a 2012 NOAA (National Oceanic and Atmospheric Association) Teacher at Sea!  I am passionate about adventure, lifelong learning, and the ocean.  I can’t wait to merge these three passions together for twelve days at sea this summer and to share my learning with all of my students and coworkers back in Oklahoma. I will be blogging about my adventure and learning while aboard the ship and you are invited to follow my journey and get involved by asking questions and posting comments. I’ll start by telling you a little bit about myself, then I’ll fill you in on the details of my Teacher at Sea adventure.

A Bit About Me

When I’m not pursuing adventure on the high seas, I am the school librarian (also known as a library media specialist) at Jenks West Intermediate School, a school of about 600 5th and 6th graders in the Jenks Public Schools District, near Tulsa, Oklahoma.  I might be a bit biased, but I believe that I have the best job in the school and that I work with some of the finest teachers and students in the world.

You are probably wondering, “How did a librarian from Oklahoma become part of an ocean research cruise?”  I’m glad you asked.  It just so happens that this blog entry answers that very question.

I’ll admit it; I was born and raised a landlubber. There just aren’t many opportunities to visit the ocean when you grow up in the Midwest.  Rumor has it that I touched the ocean once when I was about 3, but I didn’t touch it again until I was 21. More on that later.

My passion for the ocean began in high school when I took a Marine Biology class where my mind was blown by the diversity and beauty of life in the sea and the complex network of factors that impact the health of an ocean environment.  I took Marine Biology 2 and 3 the following years where I set up and maintained aquariums in elementary schools and taught ocean-related lessons for elementary students.

Aquarium newspaper photo
Alicia showing a shark jaw to a three year old at the Oklahoma Aquarium

I started to become a little obsessed with marine life, went to college to become a teacher, and did a happy dance when I learned that an aquarium was going to open in Jenks, Oklahoma.  I landed a job as a summer intern in the education department of the Oklahoma Aquarium and was overjoyed to be a part of the team that opened it in 2003.  When I graduated from college, the aquarium hired me as an education specialist, where I worked with learners of all ages to promote our mission of “conservation through education” through classes, camps, fishing clinics, sleepovers, animal interactions, crafts… the list goes on and on. 

In 2006, I became a 6th grade teacher in Jenks Public Schools, then I earned my Masters degree and became the school librarian in 2010.  I love to work with all the kiddos in my school as they learn to develop as thinkers, scientists, and citizens who have the power to impact the world.  They are just the kind of advocates that the environment needs and I want to help prepare them for this important role any way possible.  My experiences as a Teacher at Sea will certainly help!

Let’s go back to my actual experiences with the ocean for a moment.  After graduating from college and marrying my high school sweetheart David, I hightailed it to an ocean as fast as possible.  We honeymooned in Hawaii where we snorkeled, explored tidepools, went on a whale watch, and temporarily filled the ocean-shaped void in my heart.

Alicia in ocean
Alicia on a Maui Beach

I’ve been back to the ocean several times and each time I am reminded of the delicate balance that must be maintained for the fascinating world under the waves to survive and thrive.  It is critical we protect the oceans and that people realize that their actions impact the oceans.  Even in the landlocked state of Oklahoma, our actions matter.

So, that’s why a school librarian from Oklahoma will spend the summer of 2012 on a ship in the Atlantic Ocean, counting sea scallops.  I can hardly wait for the adventure to begin!  Enough about me, let’s talk about the research cruise now.

Science and Technology Log

I’ll be participating in a sea scallop survey in the Atlantic Ocean, along the northeast coast of the United States, from Delaware to Massachusetts.  My adventure at sea will begin June 27, 2012 and end July 8, 2012.

What is a sea scallop?

A sea scallop is an animal that is in the same category as clams, oysters, and mussels. One way that sea scallops are different from other animals with two shells (bivalves) is that a sea scallop can move itself through the water by opening and closing its shells quickly.  How do you think this adaptation might help the sea scallop?  Watch these videos to see a sea scallop in action:

 

Importance of  Sea Scallops/Sea Scallop Survey

People like to eat scallops, so fishermen drag heavy-duty nets along the ocean floor (called dredging) to collect and sell them.  Most of them are harvested in the Atlantic Ocean along the northeastern coast of the United States. The United States sea scallop fishery is very important for the economy.

Sea Scallop Habitats
Map of sea scallop habitats from NOAA’s fishwatch.gov

The problem is that sometimes people can harvest too many scallops and the sea scallops can’t reproduce quickly enough before they are harvested again.  Eventually, this could lead to the depletion of the sea scallop population, which would be bad news for the ocean and for people.

This is where the NOAA Sea Scallop Survey comes in.  Every year, NOAA sends scientists out in a ship to count the number of Atlantic sea scallops (Placopecten magellanicus) in various parts of their habitat.  The sea scallops live in groups called beds on the ocean floor 100-300 feet deep, so scientists can’t just peer into the ocean and count them.  Instead, they have to dredge, just like the fisherman, to collect samples of scallops in numerous places.  The scientists record data about the number, size, and weight of sea scallops and other animals. Based on the data collected, decisions are made about what areas are okay for people to harvest scallops in and what areas need a break from harvesting for a while.  I’m considered a scientist on this cruise, so I’ll get to participate in this for 12 hours a day.  I hear it is messy, smelly, tiring, and fascinating.  Sounds like my type of adventure!  I think most good science is messy, don’t you?

The Ship

I’ll be sailing on the research vessel Hugh R Sharp. You can take a virtual tour of the ship here.  It was built in 2006, is 146 feet long (a little bit shorter than the width of a football field), and is used for lots of different scientific research expeditions. When I’m out at sea, you can see where I am on the journey and track the ship here.

RV Hugh R. Sharp
R/V Hugh R. Sharp; photo from NOAA Eastern Surveys Branch

What I hope to Learn

I’m very interested to experience what daily life is like on an ocean research vessel, how scientists use inquiry, data-collection, math, and other skills that we teach our students in a real-world setting.  Of course, I’m also hoping to see some fascinating ocean critters and get my hands dirty doing the work of a real scientist.

I’d love for you to join me on this adventure by following this blog and leaving your thoughts and questions in the comment section at the bottom of each blog entry.  Let’s make this a learning experience that we will all remember!

Jessie Soder: Steamin’ and Swimmin’, August 10, 2011

NOAA Teacher at Sea
Jessie Soder
Aboard NOAA Ship Delaware II
August 8 – 19, 2011 

Mission: Atlantic Surfclam and Ocean Quahog Survey
Geographical Area of Cruise:  Northern Atlantic
Date: Wednesday, August 10, 2011 

Weather Data
Time:  16:00
Location:  40°41.716N, 67°36.233W
Air temp: 20.6° C (69° F)
Water temp: 17° C (63° F)
Wind direction: West
Wind speed: 11 knots
Sea wave height: 3 feet
Sea swell:  5-6 feet 

Science and Technology Log

View from the flying bridge departing Woods Hole

Our departure from Woods Hole has been delayed a number of times due to several factors.  We were scheduled to leave the dock on Monday at 2pm, but due to rough seas (8ft on Georges Bank—which was where we were planning to go first) and a crane that needed to be fixed our departure was rescheduled for Tuesday at 10am.  On Tuesday, the crane was fixed, but then it was discovered that the ship’s engineering alarm system was not working properly, so our departure was delayed again for a few hours.  The crew worked hard to get the ship off the dock and we departed at 1:15 on Tuesday.  Yay!  We were on our way to Georges Bank, which was about a 15 hour “steam,” or, trip.

The purpose of the NOAA Fisheries Atlantic surfclam and ocean quahog survey is to determine and keep track of the population of both species.  This particular survey is done every three years.  NOAA Fisheries surveys other species too, such as ground fish (cod, haddock, pollock, fluke), sea scallops, and northern shrimp.  These species are surveyed more often—usually a couple of times each year.  Atlantic surfclams and ocean quahogs are surveyed less often than other fished species because they do not grow as fast as other species.  In fact, the ocean quahog can live for more than 150 years, but it only reaches about 6  inches across!  In comparison, the sea scallop lives for only 10 to 15 years and reaches a size of 8 inches.

There are 27 people on board this cruise.  Each person is assigned a watch, or shift, so that there are people working 24 hours a day. The work never stops!  Seventeen people on board are members of the crew that are responsible for the operation and navigation of the ship, machinery operation and upkeep (crane, dredge, etc.), food preparation, general maintenance, and electronics operations and repair.  There are a lot of things that need to happen to make things on a research ship run smoothly in order for the scientific work to happen!

NOAA Ship Delaware II docked in Woods Hole

Twelve people on board are part of the science team, including me, who collect the samples and record the data.  We are split into two watches, the noon-midnight watch and the midnight-noon watch.  We sort through the material in the dredge for the clams and the quahogs.  We measure and weigh them as well as document the location where they are collected.  Several members of the science team are volunteers.

Personal Log

A swimming beach near Nobska Lighthouse

Our delayed departure has given me a lot of time to talk to crew and to explore Woods Hole—which I have really enjoyed.  I have learned a lot about the responsibilities of the different members of the crew and about the maritime industry, which is something that has always interested me.  I was also able to visit the Woods Hole aquarium (twice!) and attend a talk given by crew from the R/V Knorr. The Woods Hole Oceanographic Institute operates the R/V Knorr and it was on this ship that the location of the wreck of the Titanic was located for the first time in 1985.  Additionally,  in 1977 scientists aboard this ship discovered  hydrothermal vents  on the ocean floor.  And, lastly, I had time to go swimming in the Atlantic Ocean!  The water was a bit warmer off the coast of Massachusetts than it is off the coast of Alaska…

Questions to Ponder

What is the difference between an ocean quahog and an Atlantic surfclam?

Kathleen Brown: Last Days at Sea, June 16-17, 2011

NOAA Teacher at Sea
Kathleen Brown
Aboard R/V Hugh R. Sharp
June 7 – 18, 2011

Mission: Sea Scallop Survey
Geographical area of cruise: North Atlantic
Dates: June 16-17, 2011

June 17, 2011

Weather Data from the Bridge
Time: 9:27 AM
Winds 7.2 KTs
Air Temperature: 14.89 degrees C
Latitude 41 47.28 N
Longitude 069 49.13 W

Personal Log

We are headed back into Woods Hole sometime tomorrow.

In one of my conversations with Captain Jimmy, he told me that he likes scientists to “enter the ship as customers and leave as family.” Without a doubt, I feel like the whole R/V Hugh R. Sharp team has made that happen. From the excellent meals cooked three times daily, to the willingness of the crew to answer any of my questions, I have felt included and welcome.

Sunset from the deck
Sunset from the deck

My fellow scientists have made travel on this journey fun and worthwhile. I can’t count the number of times someone yelled over to me, “Hey Kathleen, get a picture of this. Your students will love it!” It has been a pleasure to be around others who are curious and passionate about the sea.

In my classroom, I try to convey to my students that science is about collaboration. I will have many real life examples to share with them when I return.

My thanks to the NOAA Teacher at Sea Program, my colleagues and students at Freeport Middle School, and my family, for supporting me on this adventure of a lifetime!

June 16, 2011

Weather Data from the Bridge
Time: 1:28 PM
Winds 9.3 KTs
Air Temperature: 14.67 degrees C
Latitude 41 08.86 N
Longitude 069 20.97 W

Science and Technology Log

It has been amazing to me to see the variations in the catches from the many tows. When the tension on the wire used to haul the net is high, it might be because we have a huge haul of sea scallops. Sometimes the table will be filled with so many sand dollars it is difficult to see anything else. We had a number of tows that contained large amounts of brittle stars. The arms of the brittle stars move like little worms. (It is eerie to see thousands of them wiggling.) The last tow, in the open area, had only forty-six scallops. The pile was filled with quahogs, urchins, starfish, sea cucumbers, hermit crabs, and rocks. Sometimes the animals we collect are covered in mud and sometimes the sediment is very sandy. We are now traveling in the shipping channel and the sea floor is rocky. Before we began to tow in this area, the scientists put the rock chains on the dredge. There is also a metal chute attached to the table so that the larger rocks can more easily be rolled back into the ocean.

Brittle Stars
Brittle Stars

We have now completed the inventories in the closed areas of Georges Bank. I learn that large areas in the Gulf of Maine had originally been closed as a measure to restore groundfish stocks. What scientists discovered is that, over time, the sea scallops flourished in the closed areas. It was an unintended result of the fisheries management policies.

There is always something interesting to learn about the species that we collect. Sea scallops have the ability to move through the water column by clapping their shells together. Sometimes, moving up five or six inches can mean escape from a predator like a starfish. (Of note, during this study we also count and measure empty sea scallop shells, provided that they are still hinged together. These empty shells are called clappers.) Speaking of starfish, on this trip we have seen five species of starfish, in colors ranging from purple to yellow to orange. The common name for my favorite starfish is sunburst, an animal that looks just like it sounds. Monkfish, sometimes referred to as goosefish, are called an angler fish. There is a modified spine at the top of its mouth that appears as though the fish is dangling bait. With this structure, the monkfish can lure a prey near its enormous mouth (and sharp teeth) and capture it. The longhorn sculpin feel like they hiss or grunt when they are picked up. I have learned that it is likely the sound is the vibration of a muscle in their chest.

Scientist of the day watch
Scientist of the day watch

The technology used to support the science on this survey is remarkable. In the dry lab, there are fifteen computer screens being used to track all of the data collected. These are in addition to the many that are being used to manage the ship. Everything is computerized: the CTD collection, the route mapping, and the information about the species we are catching. After each tow, the Chief Scientist or Crew Chief can immediately plot the data from the catch. Several screens show images from the cameras that are placed at various locations on board the deck. From the dry lab, the scientists can watch the dredge go in and out and view the tension on each cable. When the technology fails, as it did for four hours one day this week, it is up to the crew and scientists to figure out what is wrong and how to fix it.

When the ship is off shore for hundreds of miles, the skills and talents of each individual on board must be accessed for anything that happens out of the ordinary. The Captain is the chief medical officer. The crew acts as firefighters. The scientists and crew work together on mechanical issues – like yesterday when the hydraulics on the CTD stopped working. Working aboard a scientific research vessel is perfect for those who are flexible and innovative.

Personal Log

It is difficult to explain how beautiful the scene from the back deck of the ship looks. All I can see to the horizon lines is dark blue water. Flocks of seagulls follow the ship to scavenge the buckets of fish we throw overboard. Last evening the full moon was bright and round. When I breathe in the salt air, I think about how grateful I am that I am here.

Question of the Day
Why are the rubber rain pants worn by marine workers called “oilers”?

Channa Comer: If Sand Dollars Were Real Dollars, May 19, 2011

NOAA Teacher at Sea
Channa Comer

On Board Research Vessel Hugh R. Sharp
May 11 — 22, 2011

Mission: Sea Scallop Survey Leg 1
Geographical area of cruise: North Atlantic
Date: Thursday, May 19, 2011

Science and Technology Log
I started this post at just before my shift started and from the portholes (windows) in the conference room it looks like a beautiful, sunny day. I’ve learned to enjoy the sun while its out since the weather can change very rapidly. We’ve had some rough weather over the last few days. It was rough enough on Tuesday that dredging was suspended from 11:30 in the evening until 5am Wednesday morning. Since then, the tows have been proceeding as scheduled and we are on track to complete the 155 scheduled tows by Saturday.

Sand Dollars
Sand Dollars

Yesterday was sand dollar day. We completed 12 tows during the day shift and each tow seemed to have more sand dollars than the last. In our final tow of the shift, there were 48 46-liter baskets of sand dollars and one basket of scallops. If only they were real dollars, everyone on the boat would be able to retire.

All the data that we collect is entered into the Fisheries Scientific Computer System (FSCS). The FSCS is the system that is used on the Sea Scallop survey to collect station and biological data for each tow. The SCS collects data during each tow via vessel sensors and manual data entry. At a random location the operator starts a program that logs the station location data into a series of files during the 15 minute tow. Examples of the data collected are, latitude, longitude, ocean depth, vessel speed, time, and various meteorological measures. The data is then compiled and additional values are calculated from the 1 second interval files, tow length, tow duration, average speed, etc. The additional data is important for monitoring and standardizing each tow to a set of default parameters. With a tow duration of 15 minutes, at a speed of 3.8 knots the dredge should cover about 1 nautical mile of distance on the bottom of the ocean. The raw files from the SCS are sent to the mobile sampling van and made available to users there.

After the dredge is brought up and the catch has been sorted, we break up into three teams of two and head to the van. Each work station has an electronic fish measuring board to measure each species, a touch sensitive monitor used to pick the species to work on, and a motion compensating digital scale to weigh individual fish. The main workstation has an additional large scale. The large scale is use to measure each species as a whole rather than an individual within one species. The three computers are interconnected and each workstation can observe the entire list of species being processed.

There are additional FSCS computers in a second, “dry” lab. The computers in the dry lab log data during the measuring process. Each workstation in the dry lab is wired through the ship to the van. All data is backed up immediately to the main FSCS server. Once all data is collected after a tow, the Watch Chief loads the data into a database and audits the data for accuracy. While it is a complex system, we are generally able to process a catch within 30 to 40 minutes.

New Animals Seen
Winter Skate
Fluke
Witch Flounder
Conger Eel
Small Mouth Flounder
Winter Flounder
Snail Fish
Windowpane Flounder
Spotted Hake
Spider Crab
Yellow Tail Flounder
Silver Hake
Sea Grape
Sea Squirt

Personal Log
Day 9 – Thursday, May 19, 2011
Today Vic gave us a lesson in putting together the iron rings that are used in the construction of the scallop dredge. Two inch diameter iron rings are connected with small iron compression links. The rings are put together with a tool called a link squeezer which looks like a giant bolt cutter. I felt very strong after putting a few together and I may use them to make a nautical themed belt. We brought in the largest eel of the trip today, a 64 cm long Conger Eel. Steve who held the fish so that I could photograph it had a hard time since it was pretty strong, slippery and wiggling furiously.

As the cruise draws to a close, while I’ve had a great time, I am anxious to return to NY. I can’t wait to share my photos, experience and the samples that I’ve collected with my students and friends. I also can’t wait to sleep in my own bed, have a long shower in my own bathroom, and have a big bowl of broccoli — seriously. I’m sure that I’ve gained at least 10 lbs on this trip.

Anne Byford: June 11, 2010

NOAA Teacher at Sea: Anne Byford
Aboard: R/V Hugh R. Sharp

Mission: Sea Scallop Surveys
Location: Off the Coast of New England
Date: June 11, 2010

Weather Data at 1:35pm EDT:
Clear, 14.4˚C
Location at 1:35pm EDT: Lat: 40 30.07 N Long: 69 08.66 W
Water Depth: 77.5 m

4th Day at Sea

Why Count Sea Scallops?

That had to be the most common question I got asked before coming on this trip. Much of the information below is from the NOAA FishWatch website (www.nmfs.noaa.gov/fishwatch/species/atl_sea_scallop.htm).

Economically, sea scallops are an important species; in 2008 the scallop harvest was about 53.5 million pounds and was worth about $370 million. The population is not currently considered to be overfished and has been above minimum sustainable levels since 2001. Formal management began in 1982 with the Atlantic Sea Scallop Fisheries Management Plan. The management plan includes limiting new permits, restrictions on gear and on the number of crew on a boat. Since about 2000, the biomass of scallops has been increasing. Biomass is estimated by using the weight of scallops per tow on cruises like this one. Combinations of biomass estimates and estimates of the commercial catch are used to update and adjust the management plan.

Sea Scallops (Placopecten magellanicus) are filter feeders. They can live up to 20 years and begin reproducing at about 2 years, with maximum fertility reached at 4 years. A single female scallop can produce up to 270 million eggs in her life. This high reproductive capacity has helped the scallop population recover relatively quickly. Gender can be determined by the color of the gonad; females are orange while the male gonad is white. Adult scallops average between 6 and 7 inches from hinge to tip (called height) but can be as big as 9 inches. Age can be estimated by counting the rings on the shell. Scallops can “swim” by opening and closing the two shells. This is a useful adaptation for escaping from predators, including flounder, cod, lobsters, crabs, and sea stars. Scallops are harvested for the adductor muscle (the one that opens and closes the shell). There is no commercial aquaculture of scallops in the US as of August 2009.

Personal Log

A storm moved through beginning on Wed. evening (day 2) and stayed with us most of Thursday. By the end of shift on Wednesday, we were working on deck in full foul weather gear and life jackets. Thursday we had an 8 hour steam between dredge sites and by the end of shift on Thursday, the seas had begun to smooth out. Friday was quite nice, weather-wise.

I am learning to shuck scallops, though I am about half the speed of many on the boat. I am also learning to tell the various types of flounder and other fish apart as well. It’s not always obvious which type of flounder or hake is which.

New Species

Goose fish (aka monk fish), several more varieties of flounder, sea urchins, sea cucumbers, eel pout, some very large skates, 3 types of sea stars and 1 type of brittle star.

John Sammons, August 4, 2005

NOAA Teacher at Sea
John Sammons
Onboard NOAA Ship Albatross IV
July 25 – August 4, 2005

Mission: Ecosystem Survey
Geographic Region: Northeast U.S.
Date: August 4, 2005

Screen shot 2014-02-02 at 10.26.11 PMWeather Data from the bridge

Latitude: 42° 5’ N
Longitude: 67° 28’ W
Visibility: undetermined
Wind direction: E ( 107 degrees)
Wind speed:  12 knots
Sea wave height: 3’
Swell wave height: 0’
Sea water temperature: 14°C
Sea level pressure:  1022.2 millibars
Cloud cover: 30% Partly cloudy,cumulus

Question of the Day: Last day at sea

Yesterday’s Answer: Scallops are categorized as invertebrates. Scallops belong to the animal kingdom.

Science and Technology Log

On Thursday, we got word that our ship would be back in port by early Friday morning between 4 and 7 a.m. Once we complete the last 20 or so stations, it will be time to clean up and prepare the ship for docking. A large spider crab was brought in at station 454.

The chart below shows a selected number of species and the total and average catch weights from July 25–August 3.

LOGGED_SPECIES_NAME

TOTAL # CAUGHT

TOTAL MASS (grams)

AVERAGE MASS (grams)

OBJECTS WITH SIMILAR MASS

HAGFISH ATLANTIC

41

3230

79

SPINY DOGFISH

1

1560

1560

BARNDOOR SKATE

31

35342

1140

WINTER SKATE

183

196116

1072

LITTLE SKATE

1,628

638483

392

SMOOTH SKATE

19

9517

501

THORNY SKATE

32

7739

242

ATLANTIC HERRING

3

402

134

SILVER HAKE

1,018

117103

115

COD

32

11498

359

HADDOCK

348

64742

186

WHITE HAKE

9

8180

909

RED HAKE

2,941

407185

138

SPOTTED HAKE

2

310

155

FOURBEARD ROCKLING

23

296

13

AMERICAN PLAICE

102

30261

297

FLUKE

18

28240

1569

FOURSPOT FLOUNDER

798

126633

159

YT FLOUNDER

463

111390

241

WINTER FLOUNDER

61

48560

796

WITCH FLOUNDER

47

18300

389

WINDOWPANE FLOUNDER

126

27576

219

GULF STREAM FLOUNDER

344

9189

27

BLACKBELLY ROSEFISH

1

8

8

SCULPIN UNCL

6

18

3

MOUSTACHE SCULPIN

31

33

1

LH SCULPIN

571

88391

155

SEA RAVEN

29

21468

740

ALLIGATORFISH

4

2

1

NORTHERN SEAROBIN

1

47

47

CUNNER

2

493

247

ROCK GUNNEL

18

75

4

NORTHERN SAND LANCE

26

37

1

OCEAN POUT

290

71883

248

FAWN CUSKEEL

11

382

35

GOOSEFISH

389

1046990

?

AMERICAN LOBSTER

22

34552

1571

CANCER CRAB UNCL UNSEXED

1,138

123203

108

STARFISH UNCL

78,925

161850

2

ASTERIAS BOREAL

36,851

243218

7

ASTROPECTEN SP

2,833

15623

6

ICELAND SCALLOP LIVE

18

447

25

SCALLOP ICELAND CLAPPER

3

56

19

CONGER EEL UNCL

1

200

200

SEA SCALLOP CLAPPER

1,980

227126

115

SEA SCALLOP LIVE

114,868

20960122

?

SNAKE EEL UNCL

5

59

12

ILLEX SQUID

12

1442

120

LOLIGO SQUID

3

186

62

SPOONARM OCTOPUS

8

201

25

SCORPIONFISH AND ROCKFISH

1

4

4

1) Use a calculator to find the average masses of the goosefish and sea scallops. You can find these averages by dividing the total mass by the total number caught.
2) Which species had the most average mass?
3) Which species had the least average mass?
4) Which two or three species have about the same mass?
5) Complete the last column in the table by finding everyday objects that have similar masses. Choose at least ten.
6) Select the top ten heaviest species and create a bar graph comparing their masses.

Personal Log

A Fond Farewell 

The time has come to say goodbye to all our friends for now,
The night watch worked from 12 til six, it’s time to take a bow.
Larry crunched the numbers and helped it make more sense,
Vic was the head scientist who made things seem less tense.
KB shared her knowledge in a very caring way,
While Lara measured up the scallops quickly every day.
Erin took the sign and camera to the pile to pose,
It was Kris who was in charge and kept us on our toes.
Nikolai had a funny way of helping us all learn,
And with that said I, John, must conclude, it’s over, let’s adjourn!

Ode to the ALBATROSS IV 

By John Sammons

Arrived on early Sunday eve to find the ship was docked,
Passing through the metal gate that I only thought was locked.
Resting from her recent trip, she makes a humming sound,
Waiting for her crew to board and get a look around.
The sun reflects and sparkles in the ever choppy sea,
I wonder what this exciting adventure will bring to me.

The waves come toward the ALBATROSS and into the lengthy side,
Feel the rocking back and forth, so hold on for the bumpy ride.
Prepare the dredge and send it forth to bring up another load,
Bring out the baskets and buckets and pads to get in a sorting mode.
Place the containers on the scale then measure the scallop’s shell,
Soon the shift will come to an end with only stories left to tell.

Steaming forward to the station that is just right up ahead,
Six hours is up, and our shift will end, so it’s time to go to bed.
Before I rest and take a nap, some chow I would like to eat,
It will be good to rest a little while and get off from my feet.
The food is great, so many choices that we are able to choose,
Just fill ‘er up and head to bed and settle for a snooze.

Time to muster and be alert for another shift begins,
Shells and starfish wait for us, along with things with fins.
Pull up a bucket and a pad to sample and to sort,
It’s been three days since ALBATROSS steamed from the distant port.
Ouch! I bellowed as a scallop clamped onto my finger,
Upon the deck you sort and scoop, but dare not stand and linger.

Let me stop and ponder now about the time I’ve spent,
It seems like days and nights have passed, they’ve come, they’ve gone, they went!
Zigging left and zigging right, we have sailed right out to sea,
It seems so wide and open, such an awesome sight for me.
There’s so much to learn from everyone who works upon this ship,
It’s hard to think that soon we’ll be halfway through our trip.

Stand in awe as the sun begins to finally set,
Awash in orange and red and yellow, it is hard to forget.
What a lasting beauty as the sky begins to glow,
Its splendor in the many colors that it will show.
Waiting for its lasting blaze of light to end the day,
Now I lay me down to sleep, I ask of Him, I pray

The heavy dredge is ready for another timely tow,
Expect to catch the scallops, to the surface they will go.
Dropping to the bottom where its 80 meters deep,
Spending fifteen minutes dragging and bringing in the keep.
Then they’re sorted on the surface while hiding in their shell,
The aging/growth ridges on their outside’s what they tell.

Working two shifts makes it hard to fully stay awake,
But ignoring the wakeup call could be a big mistake.
So much to choose from when it’s finally time for us to eat,
Better be there when it is your time to get a decent seat.
Take a minute or two to rest while the ship is on a steam,
When it’s time to go to bed, enjoy that time to dream.

Ten minutes to go before it’s time for another CTD,
When the crew will set and drop it down into the sea.
It only takes a moment for the thing to take a dash,
To the bottom it will go, watch that it doesn’t crash.
Then it’s time to drop the dredge and ready for the tow,
Soon you’ll hear them haul it in, and it’ll be time to go.

With just a few days left before we enter the home port,
We still continue to collect and sample and we sort.
The number of each species catch continues to go up,
We even brought a dogfish in that was only just a “pup”.
What more can we expect to find within the capture net,
From this station to the next one, we’ll take what we can get.

The time has come to say goodbye to all our friends for now,
The night watch worked from 12 til six, it’s time to take a bow.
Larry crunched the numbers and helped it make more sense,
Vic was the head scientist who made things seem less tense.
KB shared her knowledge in a very caring way,
While Lara measured up the scallops quickly every day.
Erin took the sign and camera to the pile to pose,
It was Kris who was in charge and kept us on our toes.
Nikolai had a funny way of helping us all learn,
And with that said I, John, must conclude, it’s over, let’s adjourn!

John Sammons, August 3, 2005

NOAA Teacher at Sea
John Sammons
Onboard NOAA Ship Albatross IV
July 25 – August 4, 2005

Mission: Ecosystem Survey
Geographic Region: Northeast U.S.
Date: August 3, 2005

Weather Data from the Bridge

Latitude: 42° 5’ N
Longitude: 67° 28’ W
Visibility: undetermined
Wind direction: E ( 107 degrees)
Wind speed:  12 knots
Sea wave height: 3’
Swell wave height: 0’
Sea water temperature: 14°C
Sea level pressure:  1022.2 millibars
Cloud cover: 30% Partly cloudy,cumulus

Questions of the Day: In what group is the scallop categorized – vertebrates or invertebrates? What kingdom does the scallop belong – monerans, protests, fungi, plants, or animals?

(You may need to use a dictionary to look up these words before deciding the correct answer.)

Screen shot 2014-02-02 at 10.25.09 PM

Yesterday’s Answer: If the sea scallop population were to change drastically, then the population of starfish and crabs might change, too. Other organisms that are in the same community as the scallop are little skate, red hake, yellow tail flounder, and goosefish.

Science and Technology Log:

On Wednesday, the ALBATROSS IV began surveying the western edge of Georges Bank. Typically dense fog, cool temperatures, low visibility dominate the scene. We are currently about 55 miles offshore as we continue to meander between stations and conduct a sampling of the various strata. This morning we caught a dogfish shark in the dredge and took a photo opportunity. It is exciting when a new species (one we have not seen yet on this survey) appears in the dredge. The biggest excitement came when hagfish started to appear in the dredge. These snake-like fish tried to squirm their way off the deck. Several adjustments were made in the trackline (or stations we will visit) to account for time and problems with the tow.

The chart below shows a selected number of species and the total catch weights from July 25 – August 2.

Species Names

Catch Weight (grams)

HAGFISH ATLANTIC

3,230

SPINY DOGFISH

1,560

BARNDOOR SKATE

33,462

WINTER SKATE

152,976

LITTLE SKATE

608,663

SMOOTH SKATE

5,303

THORNY SKATE

6,199

ATLANTIC HERRING

402

SILVER HAKE

116,339

COD

11,498

HADDOCK

59,354

WHITE HAKE

7,140

RED HAKE

399,512

SPOTTED HAKE

310

FOURBEARD ROCKLING

191

AMERICAN PLAICE

30,250

FLUKE

27,660

FOURSPOT FLOUNDER

124,973

YT FLOUNDER

108,054

WINTER FLOUNDER

46,980

WITCH FLOUNDER

15,660

WINDOWPANE FLOUNDER

27,576

GULF STREAM FLOUNDER

9,189

BLACKBELLY ROSEFISH

8

SCULPIN UNCL

18

MOUSTACHE SCULPIN

33

LH SCULPIN

80,691

SEA RAVEN

21,468

ALLIGATORFISH

2

NORTHERN SEAROBIN

47

CUNNER

493

ROCK GUNNEL

75

NORTHERN SAND LANCE

40

OCEAN POUT

68

FAWN CUSKEEL

382

GOOSEFISH

933,330

AMERICAN LOBSTER MALE

34,550

CANCER CRAB UNCL UNSEXED

122,684

STARFISH UNCL

161,477

ASTERIAS BOREAL

242,902

ASTROPECTEN SP

15,623

ICELAND SCALLOP LIVE

450

SCALLOP ICELAND CLAPPER

56

CONGER EEL UNCL

200

SEA SCALLOP CLAPPER

222,600

SEA SCALLOP LIVE

19,863,690

SNAKE EEL UNCL

59

ILLEX SQUID

1,313

OCTOPUS SPOONARM

109

SPOONARM OCTOPUS

200

SCORPIONFISH AND ROCKFISH UNCL

4

UNKNOWN 01

19

1) Order the 10 highest amounts from greatest to least.
2) Order the 10 lowest amounts from least to greatest.
3) Which species has a total with a 9 in the millions place?
4) Which species has a total with a 6 in the ten thousands place?
5) Which species has a total with a 9 in the hundred thousands place?
6) Choose a species to research. Why do you think their numbers are higher or lower than the others are?

Personal Log

A Few Days Left 

With just a few days left before we enter the home port,
We still continue to collect and sample and we sort.
The number of each species catch continues to go up,
We even brought a dogfish in that was only just a “pup”.
What more can we expect to find within the capture net,
From this station to the next one, we’ll take what we can get.

John Sammons, August 2, 2005

NOAA Teacher at Sea
John Sammons
Onboard NOAA Ship Albatross IV
July 25 – August 4, 2005

Mission: Ecosystem Survey
Geographic Region: Northeast U.S.
Date: August 2, 2005

Weather Data from the bridge

Latitude: 42° 5’ N
Longitude: 67° 28’ W
Visibility: undetermined
Wind direction: E ( 107 degrees)
Wind speed:  12 knots
Sea wave height: 3’
Swell wave height: 0’
Sea water temperature: 14°C
Sea level pressure:  1022.2 millibars
Cloud cover: 30% Partly cloudy,cumulus

Questions of the Day: Explain what might happen if the sea scallop population were to change drastically. What other organisms are in the same community as the scallop?

(You may want to look at the Day 8 food web and the graph below.)

Yesterday’s Answer:

Scallops are predators because they eat something else, that is phytoplankton and zooplankton. They are primarily herbivores. Scallops are mostly prey to, or eaten by, sea stars and crabs.

Science and Technology Log

Screen shot 2014-02-02 at 10.24.04 PM*CTD = Conductivity, Temperature, Depth instrument is used to measure salinity, temperature, and depth at selected stations. This is important because different species of marine animals (including the sea scallop) have tolerances for certain temperatures and depths.

On Tuesday, the ALBATROSS IV continued surveying the northern edge of Georges Bank as it makes its way west toward Woods Hole. The weather has been very cooperative with a ridge of high pressure overhead, despite the routine early dense fog. Scallop counts are very low while other newer species are being observed, including various species of sea stars and the hagfish. The chart below shows a selected number of species and the stations in which they were found.

Sea Scallop Survey Leg II: Stations Where Species Were Found

Screen shot 2014-02-02 at 10.24.16 PM

Questions:

1) Which of these species was caught at the most stations?

2) Which of these species was caught at the least number of stations?

3) At how many more stations were the sea scallops caught than the red hake?

4) What might explain why sea scallops were found at the most number of stations on this survey?

5) What is the difference between the number of stations that the yellow tail flounder were located and the sea scallop?

Personal Log

Measuring Up 

Ten minutes to go before it’s time for another CTD,
When the crew will set and drop it down into the waiting sea.
It only takes a moment for the thing to take a dash,
To the bottom it will go, but watch that it don’t crash.
Then it’s time to drop the dredge and ready for the tow,
Soon you’ll hear them haul it in, and it’ll be time to go.

 

John Sammons, August 1, 2005

NOAA Teacher at Sea
John Sammons
Onboard NOAA Ship Albatross IV
July 25 – August 4, 2005

Mission: Ecosystem Survey
Geographic Region: Northeast U.S.
Date: August 1, 2005

Weather Data from the bridge

Latitude: 42° 5’ N
Longitude: 67° 28’ W
Visibility: undetermined
Wind direction: E ( 107 degrees)
Wind speed:  12 knots
Sea wave height: 3’
Swell wave height: 0’
Sea water temperature: 14°C
Sea level pressure:  1022.2 millibars
Cloud cover: 30% Partly cloudy,cumulus

Questions of the Day: What makes a scallop a predator? Is a scallop a carnivore, herbivore, or omnivore?  What is the scallop prey to?

Screen shot 2014-02-02 at 10.23.14 PM

Yesterday’s Answer:

Scallop Answers

Science and Technology Log

Facts About Sea Scallops* 

  • Largest wild scallop fishery in the world
  • Most valuable fishery in Northeast US
  • 2004 landings were about 28,000 meats (63 million lbs) worth over $300 million
  • Most landings come from about 300 vessels with “limited access” permits
  • Principal ports are New Bedford MA, Cape May NJ, Hampton Roads VA
  • Typical vessel is 70-90’ and uses two 15’ dredges
  • Most fishing occurs in the Mid-Atlantic area (Virginia to Long Island) and on Georges Bank
  • Sea scallops have an upper temperature tolerance of about 21 C.
  • Most important scallop predators are: sea stars, crabs and other decapods
  • Because they are filter-feeders, their main source of food is phytoplankton in the floor to surface water column.

*Thanks to Dvora Hart, Northeast Fisheries Science Center, for supplying the scallop information. 

On Monday, the ALBATROSS IV began surveying more open areas. Sunday’s 6 – midnight watch experienced very large catches as they sampled the closed areas from the Canada line westward. I got an opportunity to operate on a Goosefish in order to take a vertebrate sample. This will be used to determine the age of the fish. The catches are significantly small since we entered an open area for fishing.  With beautiful weather ahead of us, we should be able to continue to enjoy the sorting time as well as time on deck to relax. The weekly fire and abandon ship drills were held today.

Personal Log

Life at Sea 

Working two shifts makes it hard to fully stay awake,
But ignoring the wakeup call could be a big mistake.
So much to choose from when it’s finally time to eat,
Better be there when it is your time to get a decent seat.
Take a minute or two to rest while the ship is on a steam,
When it’s time to go to bed, enjoy that time to dream.

John Sammons, July 31, 2005

NOAA Teacher at Sea
John Sammons
Onboard NOAA Ship Albatross IV
July 25 – August 4, 2005

Mission: Ecosystem Survey
Geographic Region: Northeast U.S.
Date: July 31, 2005

Weather Data from the Bridge

Latitude: 41° 26’ N
Longitude: 66° 34’ W
Visibility: <1 mile
Wind direction: NW (306 degrees)
Wind speed: 7 knots
Sea wave height: 1’
Swell wave height: 1’
Sea water temperature: 15°C
Sea level pressure: 1023.3 millibars
Cloud cover: 90% fog, haze, dust

Screen shot 2014-03-01 at 8.35.50 AM

Question of the Day: Predict the mass and size of each scallop pictured above. Match them with the masses and lengths shown below.

Scallops Masses and Lengths

Yesterday’s Answer: Answers may be different.

  1. flat body allows it to lay camouflaged on the bottom
  2. tail fin allows it to move through the water
  3. spiny back and tail protect it from predators
  4. long, slender body allows it to move faster through the water
  5. strong muscle allows it to close the shell to keep out predators
  6. strong arms allow it to pry open shells for food

Science and Technology Log

“Scallops are a family of bivalve mollusks; there are several hundred species of scallops, found in marine environments all over the world.  Like most other bivalves, they consume phytoplankton and other small particles by filter-feeding. Unlike many bivalves (e.g., clams, which bury in the sediments), they live on the bottom surface, and can move by swimming. Atlantic sea scallops (Placopecten magellanicus, also known giant scallops or deep sea scallops) live only in the northwest Atlantic from Cape Hatteras to Newfoundland and the Gulf of St. Lawrence. Sea scallops usually spawn in late summer or early fall, though spring spawning may also occur. After hatching, larvae stay in the water column for 4-6 weeks. At settlement, they attach to a hard object by means of byssal threads produced by a gland at the end of their foot.”

*Thanks to Dvora Hart, Northeast Fisheries Science Center, for supplying the scallop information. 

On Sunday, I was able to operate the Conductivity, Temperature, and Depth instrument by myself. This instrument is lowered into the water at every third designated stations. Data is collected as the instrument descends to the bottom. This data includes salinity (saltiness), temperature, and depth of the water. This is important since various marine animals require ideal temperatures to survive. Today’s CTD went down to 80 meters (think 80 meter sticks deep) and recorded a temperature of about 5 °C. That ‘s cold!

Personal Log

Scallop Catch 

The heavy dredge is ready for another timely tow,
Expect to catch the scallops, to the surface they will go.
Dropping to the bottom where its 80 meters deep,
Spending fifteen minutes dragging and bringing in the keep.
Then they’re sorted on the surface while hiding in their shell,
The aging/growth ridges on their outside’s what they tell.

 

John Sammons, July 30, 2005

NOAA Teacher at Sea
John Sammons
Onboard NOAA Ship Albatross IV
July 25 – August 4, 2005

Mission: Ecosystem Survey
Geographic Region: Northeast U.S.
Date: July 30, 2005

Weather Data from the Bridge

Latitude: 41° 26’ N
Longitude: 66° 34’ W
Visibility: <1 mile
Wind direction: NW (306 degrees)
Wind speed: 7 knots
Sea wave height: 1’
Swell wave height: 1’
Sea water temperature: 15°C
Sea level pressure: 1023.3 millibars
Cloud cover: 90% fog, haze, dust

Question of the Day: What physical adaptations help the animals pictured in numbers 1 – 6 above survive in their environment? Give at least three.

 

Screen shot 2014-03-01 at 8.32.02 AM
Photos 7, 8, 9: Evening Sunset

 

Yesterday’s Answer: The cloud types shown in yesterday’s pictures are: 1) cirrus and stratus 2) stratus (fog) 3) cirrus 4) cirrus 5) cumulus 6) cirrus and stratus 7) stratus (fog)  8) stratus 9) cumulus (alto-or cirro-cumulus) There were no cumulonimbus (thunderstorm) clouds (which is a good thing). The crew on the Albatross IV was experiencing FAIR weather.

Science and Technology Log

Animal adaptations fall into two general categories – behavioral and physical. The physical adaptations are the structures on the animal that help in survive, while the behavioral adaptations are the actions the animal takes in order to survive. The structures may include fins, body shape, beaks, mouth parts, legs, gills, etc. that are important to the animal’s ability to endure within the habitat. For example, scallops have a hard shell that helps them survive by keeping out predators. The actions that animals may take in order to survive include playing dead, showing teeth, and licking your face. For example, scallops squirt water in order to push themselves away from their predators.

On Saturday we moved into Canadian waters and are now operating in an open area. We essentially have the same tasks to perform at each station, including taking a picture of the catch before it is sorted, weighing and measuring selected species, tagging and bagging requested species, cleaning the workstations after each station, and operating the CTD. More information about the Conductivity, Temperature, and Depth instrument will be shared in tomorrow’s log. Several whales, dolphins, sharks, and porpoises have been spotted. They are difficult to photograph because I never have a camera ready, and they are breaking the surface at unpredictable time.

The table below shows the amount of some of the marine species collected since our survey began.

Sammons Day 6 Table

  1. Can you tell which species was the most populated in the areas surveyed?
  2. Which species was the least populated?
  3. Are there any that have the same or close to the same amount?
  4. What’s the difference between the number of the most and least populated totals?

Personal Log

Ocean Sunset 

Stand in awe as the sun begins to finally set,
Awash in orange and red and yellow, it is hard to forget.
What a lasting beauty as the sky begins to glow,
Its splendor in the many colors that it will show.
Waiting for its lasting blaze of light to end the day,
Now I lay me down to sleep. . ., I ask of Him, I pray.

John Sammons, July 29, 2005

NOAA Teacher at Sea
John Sammons
Onboard NOAA Ship Albatross IV
July 25 – August 4, 2005

Mission: Ecosystem Survey
Geographic Region: Northeast U.S.
Date: July 29, 2005

Weather Data from the bridge

Latitude: 41° 02’ N
Longitude: 69° 15’ W
Visibility: 0
Wind direction: NNW (230)
Wind speed: 15 knots
Sea wave height: unknown
Swell wave height: unknown
Sea water temperature: 11.4° C
Sea level pressure: 1012 millibars
Cloud cover: Dense Fog

Question of the Day:

What cloud types are shown in below in the photographs (cirrus, cumulus, stratus, cumulonimbus)? What kind of weather would the crew on the ALBATROSS IV be experiencing (fair, rainy, stormy)?

Screen shot 2014-02-10 at 9.55.10 PM

Yesterday’s Answer: The ALBATROSS IV is currently located northeast of Virginia.

Science and Technology Log

Weather has a big influence on the decisions made at sea. Using instruments like the ones described in the Day 1 Log, the crew can determine whether conditions are safe and whether to change course. However, decisions about where to go can be affected by the types of clouds that are observed. One cloud formation that influences these choices is the stratus cloud on the ground, more easily known as fog. If it were not for the RADAR and other navigation instruments, dense fog could put an end to the trip. Other cloud types like cirrus clouds could indicate the edge of an approaching storm. With such warning, the ship could navigate around cumulonimbus, or storm, clouds or ride it out. An observant person on watch can make life-saving decisions using weather and cloud types.

The Friday morning watch (midnight – six) consisted of relatively uniform samples, because the tow moved through a restricted closed area of Georges Bank. It seems like this practice is working, since the scallop counts in the restricted and nonrestricted areas vary greatly.

Sampling of Sea Scallops on Georges Bank

The seas have settled a bit and are lower than two feet by the noon – six watch. The sky is almost clear with only a few distance clouds on the horizon. The water is a beautiful marine blue color, unlike the murky brown water near the coast.

Personal Log

Zig-Zagging 

Let me stop and ponder now about the time I’ve spent,
It seems like days and nights have passed, they’ve come, they’ve gone, they went!
Zigging left and zagging right, we have sailed right out to sea,
It seems so wide and open, such an awesome sight for me.
There’s so much to learn from everyone who works upon this ship,
It’s hard to think that soon we’ll be halfway through our trip.