Trevor Hance: Life, As You (Already) Know It… June 21, 2015

NOAA Teacher at Sea
Trevor Hance
Aboard R/V Hugh R. Sharp
June 12 – 24, 2015

Mission: Sea Scallop Survey
Geographical area: New England/Georges Bank
Date: June 21, 2015

Teacher at Sea?
Teacher at Sea?

Science and Technology Log

The rhythm of a ship rocking and rolling through varied wave heights while catching some zzzz’s in a small, curtain-enclosed bunk provides an opportunity to get some really amazing deep sleep.  Last night I had a dream that one of my childhood friends married Dan Marino.  It seemed completely bizarre until I remembered we saw lots of dolphins yesterday.

Dan? Mrs. Marino? Is that you?
Dan? Mrs. Marino? Is that you?

Seas have calmed substantially from the ride we had a couple of days ago, and for the past few days the ride has been so smooth I feel more like a “Teacher at Pond” than “Teacher at Sea.”  Unfortunately, it looks like that awful weather system my friends and family have been dealing back home in Texas is about to make its way to us here off the coast of New England (what many Texans consider “the southern edge of Santa-land”) and there’s even a chance today might be our last full day at sea.

At the helm: Estoy El Jefe!
At the helm: Estoy El Jefe!

Operations

Operationally, we’ve shifted back and forth from dredge to HabCam work and it is a decidedly different experience, and as with everything, there are pros and cons.

HabCam

As mentioned in an earlier blog, the HabCam requires two people to monitor two different stations as pilot and co-pilot, each with several monitors to help keep the system running smoothly and providing updates on things like salinity, depth and water temperature (currently 4.59 degrees Celsius – yikes!!!).

Views of the screens we monitor: from 6 o’clock, moving clockwise:  the winch, altitude monitor, cameras of back deck, sonar of the sea floor and photos being taken as we travel
Views of the screens we monitor: from 6 o’clock, moving clockwise: the winch, altitude monitor, cameras of back deck, sonar of the sea floor and photos being taken as we travel

The pilot gets to drive the HabCam with a joystick that pays-out or pulls in the tow-wire, trying to keep the HabCam “flying” about 2 meters off the sea floor.  Changes in topography, currents, and motion of the vessel all contribute to the challenge. The co-pilot primarily monitors and annotates the photographs that are continually taken and fed into one of the computers in our dry-lab.  I’ll share more about annotating in the next blog-post, but essentially, you have to review, categorize and sort photos based on the information each contains.

The winch has its own monitor
The winch has its own monitor

Driving the HabCam gives you a feeling of adventure – I find myself imagining I am driving The Nautilus and Curiosity, but, after about an hour, things get bleary, and it’s time to switch and let one of the other crew members take over.  My rule is to tap-out when I start feeling a little too much like Steve Zissou.

Dredge

Dredge work involves dropping a weighted ring bag that is lined with net-like material to the sea floor and towing it behind the vessel, where it acts as a sieve and filters out the smallest things and catches the larger things, which are sorted, weighed and measured in the wet lab on the back deck.

Close up of the dredge material
Close up of the dredge material; HabCam in the background

Dredge work is a little like the “waves-crashing-across-the-deck” stuff that you see on overly dramatized TV shows like “Deadliest Catch.”  As my students know, I like getting my hands dirty, so I tend to very much enjoy the wind, water and salty experience associated with a dredge.

Yours truly, sporting my homemade jolly roger t-shirt after a successful dredge
Yours truly, after a successful dredge, sporting my homemade Jolly Roger t-shirt

While the dredge is fun, my students and I use motion-triggered wildlife cameras to study the life and systems in the Preserve behind our school, and I fully realize the value those cameras provide — especially in helping us understand when we have too much human traffic in the Preserve. The non-invasive aspects of HabCam work provide a similar window, and a remarkable, reliable data source when you consider that the data pertaining to one particular photograph could potentially be reviewed thousands of times for various purposes.  The sheer quantity of data we collect on a HabCam run is overwhelming in real-time, and there are thousands of photos that need to be annotated (i.e. – reviewed and organized) after each cruise.

More Science

Anyway, enough of the operational stuff we are doing on this trip for now, let’s talk about some science behind this trip… I’m going to present this section as though I’m having a conversation with a student (student’s voice italicized).

Life needs death; this is a shot of 8 or 9 different crabs feasting on a dead skate that settled at the bottom. Ain't no party like a dead skate party...
Life needs death; this is a shot of 8 or 9 different crabs feasting on a dead skate that settled at the bottom. Ain’t no party like a dead skate party…

Mr. Hance, can’t we look at pictures instead of having class?  I mean, even your Mom commented on your blog and said this marine science seems a little thick.

We’ll look at pictures in a minute, but before we do, I need you to realize what you already know.

The National Wildlife Federation gives folks a chance to support biodiversity by developing a “Certified Wildlife Habitat” right in their own backyard.  We used NWF’s plan in our class as a guideline as we learned that the mammals, amphibians, reptiles and birds we study in our Preserve need four basic things for survival:  water, food, shelter and space (note:  while not clearly stated in NWF’s guidelines, “air” is built in.)

This same guide is largely true for marine life, and because we are starting small and building the story, we should probably look at some physics and geology to see some of the tools we are working with to draw a parallel.

Ugh, more water and rocks?  I want to see DOLPHINS, Mr. Hance!

Sorry, kid, but we’re doing water and rocks before more dolphins.

Keep in mind the flow of currents around Georges Bank and the important role they play in distributing water and transporting things, big and small.  Remember what happened to Nemo when he was hanging out with Crush? You’ll see why that sort of stuff loosely plays in to today’s lesson.

Let There Be Light! And Heat!
Let There Be Light! And Heat!

As I mentioned in an earlier post, Georges Bank is a shallow shoal, which means the sea floor has a lot more access to sunlight than the deeper areas around it, which is important for two big reasons. First, students will recall that “light travels in a straight line until it strikes an object, at which point it….” (yada, yada, yada).  In this case, the water refracts as it hits the water (“passes through a medium”) and where the water is really shallow, the sunlight can actually reflect off of the sea floor (as was apparent in that NASA photo I posted in my last blog.)

Also important is the role the sun plays as the massive energy driver behind pretty much everything on earth.  So, just like in our edible garden back at school, the sun provides energy (heat and light), which we know are necessary for plant growth.

Okay, so we have energy, Mr. Hance, but what do fish do for homes?

The substrate, or the sediment(s) that make-up the sea floor on Georges Bank consists of material favorable for marine habitat and shelter.  The shallowest areas of Georges Bank are made mostly of sand or shell hash (“bits and pieces”) that can be moved around by currents, often forming sand waves.  Sand waves are sort of the underwater equivalent of what we consider sand dunes on the beach.  In addition to the largely sandy areas, the northern areas of the Bank include lots of gravel left behind as glaciers retreated (i.e. – when Georges Bank was still land.)

Moving currents and the size of the sediment on the sea floor are important factors in scallop population, and they play a particularly significant role relating to larval transportation and settlement.  Revisiting our understanding of Newton’s three laws of motion, you’ll recognize that the finer sediment (i.e. – small and light) are easily moved by currents in areas of high energy (i.e. – frequent or strong currents), while larger sediment like large grains of sand, gravel and boulders get increasingly tough to push around.

Importantly, not all of Georges Bank is a “high energy” area, and the more stable areas provide a better opportunity for both flora and fauna habitat.  In perhaps simpler terms, the harder, more immobile substrates provide solid surfaces as well as “nooks and crannies” for plants to attach and grow, as well as a place for larvae (such as very young scallop) to attach or hide from predators until they are large enough to start swimming, perhaps in search of food or a better habitat.

With something to hold on to, you might even see what scientists call “biogenic” habitat, or places where the plants and animals themselves make up the shelter.

Substrate samples from one of our dredges; sand, rocks/gravel/pebbles,
Substrate samples from one of our dredges; shells, sand, rocks/gravel/pebbles, “bio-trash” and a very young crab
There is one strand of a plant growing off of this rock we pulled up.  Not much, but it's something to hold on to!
There is one strand of a plant growing off of this rock we pulled up. Not much, but it’s something to hold on to!

Hmmmmmmmmmmmmm, rocks and one weed, huh… I wonder what’s happening at the pool…

Whoa, hold on, don’t quit — you’re half way there!

Before you mind drifts off thinking that there are coral reefs or something similar here, it is probably important that I remind you that the sea floor of Georges Bank doesn’t include a whole lot of rapid topography changes – remember, we are towing a very expensive, 3500 lb. steel framed camera at about 6 knots, and it wouldn’t make sense to do that in an area where we might smash it into a bunch of reefs or boulders.  Here, things are pretty flat and relatively smooth, sand waves and the occasional boulder being the exceptions.

Okay, our scallops now have a place to start their life, but, what about breathing and eating, and why do they need “space” to survive?  Isn’t the ocean huge?

As always, remember that we are trying to find a balance, or equilibrium in the system we are studying.

One example of a simple system can be found in the aquaponics systems we built in our classroom last year. Aquaponics is soil-less gardening, where fish live in a tank below a grow bed and the water they “pollute” through natural bodily functions (aka – “poop”) is circulated to the grow bed where the plants get the nutrients they need, filter out the waste and return good, healthy water back to the fish, full of the micronutrients the fish need to survive.  I say our system is simple because we are “simply” trying to balance ammonia, nitrates and phosphates and not the vast number of variables that exist in the oceans that cover most of our Earth’s surface.  Although the ocean is much larger on the spatial scale, the concept isn’t really that much different, the physical properties of matter are what they are, and waste needs to be processed in order for a healthy system to stay balanced.

Our simple classroom system
Our simple classroom system

Another aspect of our aquaponics system that provides a parallel to Georges Bank lies in our “current,” which for us is the pump-driven movement of water from the fish to the plants, and the natural, gravity-driven return of that water to the fish.  While the transportation of nutrients necessary to both parties is directionally the exact opposite of what happens here on Georges Bank (i.e. – the currents push the nutrients up from the depths here), the idea is the same and again, it is moving water that supports life.

But, Mr. Hance, where do those “nutrients” come from in the first place, and what are they feeding?

Remember, systems run in repetitive cycles; ideally, they are completely predictable.  In a very basic sense where plants and animals are concerned, that repetitive cycle is “life to death to life to death, etc…”  This is another one of those “here, look at what you already know” moments.

When marine life dies, that carbon-based organic material sinks towards the bottom of the ocean and continues to break down while being pushed around at depth along the oceans currents. Students will recognize a parallel in “The Audit” Legacy Project from this spring when they think about what is happening in those three compost bins in our edible garden; our turning that compost pile is pretty much what is happening to all of those important nutrients getting rolled around in the moving water out here – microscopic plants and animals are using those as building blocks for their life.

Our new compost system
Our new compost system

Oh wait, so, this is all about the relationship between decomposers, producers and consumers?  But, Mr. Hance, I thought that was just in the garden?

Yes, “nutrient rich” water is the equivalent of “good soil,” but, we have to get it to a depth appropriate for marine life to really start to flourish.  Using your knowledge of the properties of matter, you figured out how and why the currents behave the way they do here.  You now know that when those currents reach Georges Bank, they are pushed to the surface and during the warm summer months, they get trapped in this shallow(ish), warm(ish) sunlit water, providing a wonderful opportunity for the oceans’ primary producers, phytoplankton, to use those nutrients much like we see in our garden.

Ohhhhhhhhhhhh, I think I’m starting to see what you mean. Can you tell me a little more about plankton?

The term plankton encompasses all of the lowest members of the food chain (web), and can be further divided into “phytoplankton” and “zooplankton.”  Yes, “phyto” does indeed resemble “photo,” as in “photosynthesis”, and does indeed relate to microscopic plant-like plankton, like algae.  Zooplankton pertains to microscopic animal-like plankton, and can include copepods and krill.

Plankton are tiny and although they might try to swim against the current, they aren’t really strong enough, so they get carried along, providing valuable nutrients to bigger sea creatures they encounter.  Just like on land, there are good growing seasons and bad growing seasons for these phytoplankton, and on Georges Bank, the better times for growing coincide with the spring-summer currents.

Dude, Mr. Hance, I didn’t know I already knew that…. Mind…. Blown.

Yeah little dude, I saw the whole thing. First, you were like, whoa! And then you were like, WHOA! And then you were like, whoa…  Sorry, I got carried away; another Nemo flashback. While I get back in teacher-mode, why don’t you build the food web. Next stop, knowledge…

You've got some serious thrill issues, dude
You’ve got some serious thrill issues, dude

But, Mr. Hance, you are on a scallop survey.  How do they fit into the food web? You told us that you, crabs and starfish are their primary natural predators, but, what are they eating, and how?

Scallops are animals, complete with muscles (well, one big, strong one), a digestive system, reproductive system, and nervous system.  They don’t really have a brain (like ours), but, they do have light-sensing eyes on their mantle, which is a ring that sits on the outer edge of their organ system housed under their protective shell.  Acting in concert, those eyes help scallops sense nearby danger, including predators like those creepy starfish.

Predators
Predators

Scallops are filter feeders who live off of plankton, and they process lots of water.  With their shells open, water moves over a filtering structure, which you can imagine as a sort of sieve made of mucus that traps food.  Hair-like cilia transport the food to the scallop’s mouth, where it is digested, processed, and the waste excreted.

DSCN0154
The text is small, but, it describes some of the anatomy of the scallop. Click to zoom.

DSCN0158

But, Mr. Hance, do they hunt? How do they find their food?

Remember, scallops, unlike most other bivalves such as oysters, are free-living, mobile animals; in other words, they can swim to dinner if necessary.  Of course, they’d prefer to just be lazy and hang out in lounge chairs while the food is brought to them (kind of like the big-bellied humans in my favorite Disney film, Wall-E), so can you guess what they look for?

Gee, Mr. Hance…. Let me guess, water that moves the food to them?

Yep, see, I told you this was stuff you already knew.

I highlighted the shadows in one of the HabCam photos to show you proof that scallop swim.
I highlighted the shadows in one of the HabCam photos to show you proof that scallop swim.

While plankton can (and do!) live everywhere in the shallow(ish) ocean, because they are helpless against the force of the current, they get trapped in downwellings, which is a unique “vertical eddy,” caused by competing currents, or “fronts.”  Think of a downwelling as sort of the opposite of a tug-o-war where instead of pulling apart, the two currents run head-on into one another.  Eventually, something’s gotta give, and gravity is there to lend a hand, pushing the water down towards the sea floor and away, where it joins another current and continues on.

Those of you who have fished offshore will recognize these spots as a “slick” on the top of the water, and there is often a lot of sea-foam (“bubbles”) associated with a downwelling because of the accumulation of protein and “trash” that gets stuck on top as the water drops off underneath it.

Those
Those “smooth as glass” spots are where currents are hitting and downwellings are occurring
This particularly large group of birds gathered together atop a downwelling, likely because the water helped keep them together (and because fishing would be good there!)
This particularly large group of birds gathered together atop a downwelling, likely because the water helped keep them together (and because fishing would be good there!)

Because plankton aren’t strong enough to swim against the current, they move into these downwellings in great numbers.  You can wind up with an underwater cloud of plankton in those instances, and it doesn’t take long for fish and whales to figure out that nature is setting the table for them.  Like our human friends in Wall-E, scallops pull up a chair, put on their bibs and settle at the base of these competing fronts, salivating like a Pavlovian pup as they wait on their venti-sized planko-latte (okay, I’m exaggerating; scallops live in salt water, so they don’t salivate, but because I’m not there to sing and dance to hold your attention while you read, I have to keep you interested somehow.)

If you become a marine scientist at Woods Hole, you’ll probably spend some time looking for the “magic” 60m isobaths, which is where you see scallop and other things congregate at these convergent fronts.

Before you ask, an isobaths is a depth line.  Depth lines are important when you consider appropriate marine life habitat, just like altitude would be when you ask why there aren’t more trees when you get off the ski lift at the top of the mountain.

Um, Mr. Hance, why didn’t you just tell us this is just like the garden!  I’m immediately bored.  What else ya got?

Well, in the next class, we’ll spend some time talking about (over-)fishing and fisheries management, but for now, how about I introduce you to another one of my new friends and then show you some pictures?

I don’t know, Mr. Hance, all of this talk about water makes me want to go swimming.  I’ll stick around for a few minutes, but this dude better be cool.

Lagniappe: Dr. Burton Shank

Today, I’ll introduce another important member of the science crew aboard the vessel, Dr. Burton Shank.  As I was preparing for the voyage, I received several introductory emails, and I regret that I didn’t respond to the one I received from Burton asking for more information.  He’s a box of knowledge.

That's Burton, on the right, sorting through a dredge with lots and lots of sand dollars.
That’s Burton, on the right, sorting through a dredge with lots and lots of sand dollars.

Burton is a Research Fishery Biologist at National Marine Fisheries Service in Woods Hole working in the populations dynamic group, which involves lots of statistical analysis (aka – Mental Abuse To Humans, or “MATH”).  Burton’s group looks at data to determine how many scallops or lobsters are in the area, and how well they are doing using the data collected through these field surveys.  One of my students last year did a pretty similar study last year, dissecting owl pellets and setting (humane) rat traps to determine how many Great Horned Owls our Preserve could support.  Good stuff.

Burton is an Aggie (Whoop! Gig ‘Em!), having received his undergraduate degree from Texas A&M at Galveston before receiving his master’s in oceanography from the University of Puerto Rico and heading off as a travelling technical specialist on gigs in Florida, Alaska and at the Biosphere in Arizona.  For those unfamiliar, the biosphere was a project intended to help start human colonies on other planets, and after a couple of unsuccessful starts, the research portion was taken over by Columbia University and Burton was hired to do ocean climate manipulations.  Unlike most science experiments where you try to maintain balance, Burton’s job was to design ways that might “wreck” the system to determine potential climate situations that could occur in different environments.

As seems to be the case with several of the folks out here, Burton didn’t really grow up in a coastal, marine environment, and in fact, his childhood years were spent in quite the opposite environment:  Nebraska, where his dad was involved in agricultural research.  He did, however, have a small river and oxbow like near his home and spent some summers in Hawaii.

It was on during a summer visit to Hawaii at about 9 years old that Burton realized that “life in a mask and fins” was the life for him.  On return to Nebraska, home of the (then!) mighty Cornhusker football team, many of his fellow fourth grade students proclaimed that they would be the quarterback at Nebraska when they grew up.  Burton said his teacher seemed to think being the Cornhusker QB was a completely reasonable career path, but audibly scoffed when he was asked what he wanted to be and said he would be a marine biologist when he grew up.  I welcome any of you young Burton’s in my class, anytime – “12th Man” or not!

Photoblog:

RSCN0090
Sheerwater, I loved the reflection on this one
Such a nice day
Such a nice day
You'll never look at them the same, will you?
You’ll never look at them the same, will you?
Cleaning up after a dredge
Cleaning up after a dredge; shot from vestibule where wet-gear is housed.  We spent lots of time changing.
So fun to see lobsters and crabs when
So fun to see lobsters and crabs when “HabCam’ing.” They rear back and raise their claws as if to dare you to get any closer.
Good night!
Good night!

Playlist:  Matisyahu, Seu Jorge, Gotan Project, George Jones

Okay, that’s it, class dismissed.  Get outta here…

Mr. Hance

Trevor Hance: Permission to Come Aboard? May 28, 2015

NOAA Teacher at Sea
Trevor Hance
Soon to be Aboard R/V Hugh R. Sharp
June 12 – 24, 2015

Mission: Sea Scallop Survey
Geographical area: New England/Georges Bank
Date: May 28, 2015

Personal Log: Permission to Come Aboard?

Greetings from Austin, Texas.  In less than two weeks, my grand summer adventure begins.  I will be flying out of Austin, and heading to Boston where Peter Pan will magically transport me down the Woods (Rabbit?) Hole and out to sea aboard the R/V Hugh R. Sharp, where I will support scientists conducting a Sea Scallop Survey.

sharp_deck_copy
Photo from the NOAA Fisheries website that I’ve been using to determine how to dress!

My Real Job

I teach at a fantastic public school in Austin that incorporates student interest surveys in lesson design and enrichment opportunities across subjects.  Although we are within the city of Austin, our campus backs up to a wildlife preserve (30,000 acres, total) that was set aside as land use patterns changed, and threatened habitat and ecosystems of 2 endangered birds, 8 invertebrates and 27 other species deemed “at risk.”  We have about 5 “wildspace” acres on our actual campus property that is unfenced to the larger Balcones Canyonlands Preserve.  We use that space as our own laboratory, and over the last decade, fifth grade students at our school have designed, constructed and continue to support the ecosystem through ponds supported by rainwater collection (yes, they are quite full at the moment!), a butterfly habitat, water-harvesting shelter/outdoor classroom, grassland/wildflower prairie and a series of trails.  In the spring, I post job descriptions for projects that need work in our Preserve and students formally apply for a job (i.e. – resume/cover letter).  They spend the balance of the spring working outdoors, conducting research relating to their job, and doing their part to develop a culture and heritage of sustainability on our campus that transcends time as students move beyond our campus during their educational journey.  My path through the curriculum is rooted in constructivist learning theory (project-based, place-based and service learning) and students are always outdoors.  Parents, of course, always get a huge “thank you” at the end of the year from me for not complaining that I’ve ruined too many pairs of shoes.

Below are a few pictures from our game cameras and shots I’ve taken of my classes in action this spring.

Capture2
Texas bluebonnets are beautiful, and even more spectacular when you get close and see “the neighborhood.”
DSCN7879
Rain or shine
DSCN8205
Early morning observation in the Preserve
DSCN8303
Gambusia — my favorite!
DSCN8341
Western ribbon snake snacking at the tadpole buffet.
DSCN9907
One of our frog surveys in action
IMG_0092
So, did anyone figure out what does the fox say?
IMG_0106
Wild pigs rooting
IMG_0995
Bandits abound when the sun goes down.

 

2015 05 13 GCW top of observation area
The endangered golden cheeked warbler, taken by me early May

As I write, there are about 5 days left of this school year, which means that most of our big projects are complete and the rain has paused, so we’re spending a few days having a big “mechanical energy ball” competition (aka – “kickball”), and I get the distinct feeling that the students are quite prepared for their summer break!

My Background

I was an “oilfield kid” and grew up in Lafayette, Louisiana, the heart of Cajun Country, and about an hour’s drive to the Gulf of Mexico.  In college, I worked in the oilfield a bit, and after finishing law school, I was a maritime attorney, so I was able to spend some time aboard vessels for various purposes.  My time aboard the Hugh R. Sharp will be my longest stint aboard a vessel, and I’m quite excited for the work!

My Mission

R/V Hugh R. Sharp (btw students, it is a vessel or ship, not a “boat”) is a 146-foot general purpose research vessel owned by the University of Delaware (go Fighting Blue Hens!).  Each summer I get a travel coffee mug from the college where I attend a professional development course, and I’m hopeful I can find one with a picture of YoUDee on it this year!

GofMmap_750_272953
Photo from the Woods Hole Center for Oceans and Human Health

 

LARGEIMAGE_920423
Photo from the University of Delaware bookstore website of the mug I might pick up while traveling this summer

 

rvSharp-AcousticTrials
R/V Hugh R. Sharp

 

While aboard the vessel, we will be conducting surveys to determine the distribution and abundance of scallops.  My cruise is the third (and northernmost) leg of the surveys, and we’ll spend our time dredge surveying, doing an image based survey using a tethered tow-behind observation vehicle, and some deeper water imaging of lobster habitat.  Those of you who know me, know that I am genuinely and completely excited and grateful for the opportunity to “nerd out” on this once-in-a-lifetime get-away-from-it-all adventure!  Check back over the summer and see what I’ve been up to!

Trevor Headshot
That’s me!

Carol Glor: Lights, Camera, Action, July 7, 2014

NOAA Teacher at Sea

Carol Glor

Aboard R/V Hugh R. Sharp

July 5 – 14, 2014

Mission: Sea Scallop Survey (Third leg)

Geographical Area: Northwest Atlantic Ocean

Date: July 7, 2014

Weather Data from the bridge: Wind SW 18-20 knots, Seas 4-7 ft,  Visibility – good

Science and Technology Log: Starring the HabCam

The HabCam is a computerized video camera system. It is a non-invasive method of observing and recording underwater stereo images, and collecting oceanographic data,such as temperature,salinity, and conductivity.  The vehicle is towed at  1.5 – 2 meters from the floor of the ocean. The main objective of this mission is to survey the population of scallops as well as noting the substrate (ocean floor make-up) changes. Most substrate is made up of sand, gravel, shell hash and epifauna. We also note the presence of roundfish (eel, sea snakes, monkfish, ocean pout, and hake), flatfish (flounders and fluke), whelk, crab, and skates. Although sea stars (starfish) are a major predator of scallops, they are not included in our annotations.

HabCam
The HabCam awaiting deployment.

The crew and science staff work on alternate shifts (called watches) to ensure the seamless collection of data. The scallop survey is a 24-hour operation. The science component of the ship consists of 11 members. Six people are part of the night watch from 12am-12pm and the remaining members (myself included) are assigned to the day watch which is from 12pm until 12am. During the HabCam part of the survey all science staff members rotate job tasks during their 12-hour shift. These include:

A. Piloting the HabCam – using a joystick to operate the winch that controls the raising and lowering of the HabCam along the ocean floor. This task is challenging for several reasons. There are six computer monitors that are continually reviewed by the pilot so they can assess the winch direction and speed, monitor the video quality of the sea floor, and ensure that the HabCam remains a constant 1.5 – 2 meters from the ocean floor. The ocean floor is not flat – it consists of sand waves, drop-offs, and valleys. Quick action is necessary to avoid crashing the HabCam into the ocean floor.

HabCam pilot
Carol piloting the HabCam.

B. The co-pilot is in charge of ensuring the quality of digital images that are being recorded by the HabCam. Using a computer, they tag specific marine life and check to see if the computers are recording the data properly. They also assist the pilot as needed.

HabCam image
One of the images from the HabCam

C. Annotating is another important task on this stage of the survey. Using a computer, each image that is recorded by the HabCam is analyzed in order to highlight the specific species that are found in that image. Live scallops are measured using a line tool and fish, crabs, whelk and skates are highlighted using a boxing tool so they can be reviewed by NOAA personnel at the end of the cruise season.

Personal Log:

When not on watch there is time to sleep, enjoy beautiful ocean views, spot whales and dolphins from the bridge (captain’s control center), socialize with fellow science staff and crew members, and of course take lots of pictures. The accommodations are cozy. My cabin is a four-person room consisting of two sets of bunk beds, a sink, and desk area. The room is not meant to be used for more than sleeping or stowing gear. When the ship is moving, it is important to move slowly and purposely throughout the ship. When going up and down the stairs you need to hold onto the railing with one hand and guide the other hand along the wall for stability. This is especially important during choppy seas. The constant motion of the ship is soothing as you sleep but makes for challenging mobility when awake.

Top bunk
My home away from home.
Captain Jimmy
Captain Jimmy runs a tight ship.

 

Before heading out to sea it is important to practice safety drills. Each person is made aware of their muster station (where to go in the event of an emergency), and is familiarized with specific distress signals. We also practiced donning our immersion suits. These enable a person to be in the water for up to 72 hours (depending upon the temperature of the water). There is a specific way to get into the suit in order to do so in under a minute. We were reminded to put our shoes inside our suit in a real life emergency for when we are rescued. Good advice indeed.

immersion suit
Carol dons her immersion suit.
life jacket
Life jacket selfie.

 

Did you know?

The ship makes it’s own drinking water. While saltwater is used on deck for cleaning purposes, and in the toilets for waste removal, it is not so good for cooking, showers, or drinking. The ship makes between 600 and 1,000 gallons per day. It is triple-filtered through a reverse-osmosis process to make it safe for drinking. The downside is that the filtration system removes some important minerals that are required for the human body. It also tends to dry out the skin; so using moisturizer is a good idea when out at sea.

Photo Gallery:

Sharp
Waiting to board the RV Hugh R. Sharp
WG flag
West Genesee colors; flying high on the Sharp
Floating Frogs
Floating Frogs at the Woods Hole Biological Museum.
Seal at aquarium
Seal at the Woods Hole Aquarium – Oldest Aquarium in the US.

 

 

 

 

Carol Glor: The Adventure Continues, June 25, 2014

NOAA Teacher at Sea

Carol Glor

(Soon to be aboard) R/V Hugh R. Sharp

July 5 – 14 2014

Mission: Sea Scallop Survey, Third Leg

Geographical area of cruise: North Atlantic Ocean

Date: June 25, 2014

Personal Log:

commander
Last summer I served as the Commander for our simulated mission during my week-long adventure at Space Camp.

Hello, my name is Carol Glor and I live in Liverpool, New York (a suburb of Syracuse). I teach Home & Career Skills at Camillus Middle School and West Genesee Middle School in Camillus, New York. Last summer, I was selected to participate in Honeywell’s Educators at Space Academy at the US Space and Rocket Center in Huntsville, Alabama. It was a week-long camp full of activities that use space to become more effective educators within science, technology, engineering and math. When one of my space camp teammates told me about her experiences as a Teacher at Sea, I knew that I had to apply.

I am so excited to have been chosen by NOAA (National Oceanic and Atmospheric Administration) to be part of the 2014 Teacher at Sea field season. As a Home & Career Skills teacher, I have the opportunity to educate students about the connections between real-life skills in math, science, technology and engineering while learning about important topics such as conservation, career exploration and current events. The best way that I can learn to teach these skills is by practicing them myself. During my upcoming cruise, I will become a real scientist and learn more about the scientific research that is involved in keeping our oceans alive for generations to come.

Onondaga Lake
View from Onondaga Lake West Shore Trail Expansion.
Girls Varsity Crew
Liverpool High School Crew on Onondaga Lake

Sustainability is an important topic of concern for our oceans as well as our lakes and streams. I currently live less than a mile from Onondaga Lake. For many years it has been considered one of the most polluted bodies of water in the US. Since 2007, the Honeywell Corporation has implemented the Onondaga Lake Remediation Plan (slated for completion in 2015) to result in an eventual recovery of the lake’s habitat for fish and wildlife as well as recreational activities on and around the lake. Most recently, the West Shore Trail Extension was opened for the public to enjoy. Onondaga Lake Park has always been one of my favorite places to go to experience nature while walking, running, biking or watching my daughters’ crew races. Now I can enjoy it even more.

Science and Technology:

I will be sailing from Woods Hole, Massachusetts aboard the R/V Hugh R. Sharp to participate in an Atlantic sea scallop survey. The R/V Hugh R. Sharp is a coastal research vessel, built in 2006, is 146 feet long, and is part of the University of Delaware’s College of Earth, Ocean, and Environment fleet.

R/V Hugh R Sharp
R/V Hugh R Sharp out at sea

The purpose of a sea scallop survey is to determine the scallop population on the east coast. This survey is important to protect the sea scallop from being over-harvested. By collecting digital video data and sea scallop samples, the science crew is able to advise which areas of the east coast are open for scallop fishing.

The Atlantic Sea Scallop
The Atlantic Sea Scallop

What I hope to learn:

Recently, I had the pleasure of visiting Martha’s Vineyard, Massachusetts. While there, I experienced the beauty of the coastal island as well as savoring the bounty from the sea. As a casual observer, I noticed a few lobster boats, trawling vessels and pleasure cruisers. Each has a stake in the future abundance of sea life in the Northwest Atlantic Ocean. I would like to learn first-hand the impact of over-harvesting on sea scallops and be able to observe them in their natural habitat. My work as a scientist will give my students a taste for the vast amount of research careers that are available to them.

Edgartown Lighthouse
Edgartown Lighthouse on Martha’s Vineyard
Lobsterman
A Lobsterman hauling in his catch in Nantucket Sound.

Virginia Warren: Adios, Ciao, Shalom, Arrivederci, Adieu, Auf Weidersehen, in other words Goodbye for Now, July 17, 2013

NOAA Teacher at Sea
Virginia Warren
Aboard the R/V Hugh R. Sharp
July 9th – 17th, 2013

Mission: Leg 3 of the Sea Scallop Survey
Geographical Area of Cruise: Sailing Back to Woods Hole, Massachusetts
Date: July 17th, 2013

Weather Data from the Bridge: Mostly sunny with occasional fog and 1 to 2 foot seas (The weather was perfect for the last two days of the trip!)

Personal Log: 

I’ve had the most wonderful time on this trip and made some really great new friends! I enjoyed it so much that I almost hated to see it come to an end! I worked with an awesome group of people on my watch who were always full of information! Erin has a marine biology degree, as well as a technology graduate degree. She was great to talk to, learn from, and she always helped me make the right decisions. Adam was our watch chief on the day watch crew, which means that he was responsible for collecting data and directing the rest of the science crew as we sorted the contents of the dredge. He was always very helpful and knowledgeable about the different types of species that came up with the dredge. Jon was the chief scientist for the leg 3 sea scallop survey. Jon had a very busy job because he was in charge of both science crews, communicating with the home lab, collaborating with the ship crew, deciding on dredge spots and HabCam routes, and for showing me the ropes. I really do appreciate all the time he took out of his busy days to help me and teach me! Jared was the HabCam specialist on board for this leg of the sea scallop survey. He has an ocean engineering degree and works for WHOI, which is the Woods Hole Oceanographic Institute. Jared helped design and test the HabCam vehicle so that it would protect the camera and other equipment while underwater. He also kept our crew entertained with ‘tunes’ and laughs. This group of people was great to work with and I would do it again with them in a heartbeat. I really hope that I will get another opportunity to do something like this again in the future!

Virginia's Day Watch Crew
The day watch science crew taking the last dredge picture of the Leg 3 Sea Scallop Survey.
Pictured left to right: Erin, Virginia, Adam, Jon, and Jared

I also really enjoyed the crew of the Hugh R. Sharp. They were always welcoming and forthcoming with answers to questions about the ship. They also keep their ship clean and comfortable. My favorite place on the ship was the bridge, which is where they steer the ship. The bridge is the best place to watch for whales and sharks. It has panoramic glass all the way around it, plus you can walk right outside the bridge and feel the breeze in your face, or have some very interesting conversations with the ship’s crew.

R/V Hugh R. Sharp in Woods Hole, MA
R/V Hugh R. Sharp in Woods Hole, MA

Science and Technology Log:

As my trip came near to an end, I started wondering what were some of the differences between the research dredge we were using and the dredge a commercial scallop fisherman would use. Our research dredge was an 8 foot New Bedford style dredge, as opposed to the commercial ships who use two 15 foot dredges on either side of the ship. Scallop dredges are made up of connecting rings that keep the scallops in the dredge. The research dredge we used was made up of 2 inch rings. Commercial dredges are required to have a minimum of 4 inch rings. NOAA uses the smaller rings on their research dredges to be able to get an accurate population count of all the sizes of scallops in a given area. The commercial scallop fishermen are required to use the larger rings to allow smaller scallops to escape. The research dredge we used was equiped with a 1.5 inch streched mesh liner to keep other species, like fish, in the dredge because NOAA likes to measure and count them as well. Commercial scallop fishermen keep their dredges in for hours at a time.  NOAA only keeps their research dredge in the water for 15 minutes at a time. There are several other dredge regulations that commercial fisherman have to follow. Click here if you would like to read more about the regulations.

I also learned a lot about the anatomy of a sea scallop.

The anatomy of a sea scallop. Thanks to http://www.seattlefishnm.com/ for the anatomy  of a sea scallop chart.
The anatomy of a sea scallop. Thanks to http://www.seattlefishnm.com/ for the anatomy of a sea scallop chart.

Sea scallops are either male or female depending on the color of their reproductive gland, called the gonad. If a scallop has a red gonad, then that means it is a female scallop. If the gonad is a cream/yellow color, then that means the scallop is a male.

Inside View of a Male Scallop
Inside View of a Male Scallop
Inside View of a Female Scallop
Inside View of a Female Scallop

The scallop is connected to both sides of its shell with the large white part called the adductor muscle. This is the part that gets eaten. The adductor muscle is also the part that allows the scallop to clasp its shell shut. Scallops are also able to swim by sucking water into its shell and then quickly clasping the shell shut, which makes the scallop ‘swim’.

Sea Scallop's Adductor Muscle
The white chunk of meat is called the adductor muscle, which is the part of the scallop that most people eat.

Scallops have eyes that line the edges of both top and bottom shells. See if you can spot eyes on the scallops below.

Most of the scallops that we pulled up were only measured for individual length and cumulative weight, however some of the scallops were chosen to have their gonad and adductor muscle weighed, as well as their shells analyzed for age.

Virginia Measuring the Scallop's Meat Weight
Virginia Measuring the Scallop’s Meat Weight

Scallops are aged in a way similar to aging a tree. After the first two years of a scallop’s life, they are believed to grow a shell ring every year. In the picture below you can see how the shells age through the years.

Aged Scallops
Aged Scallops
Photo courtesy of Dvora Hart from the NMFS Sea Scallop Survey Powerpoint

Animals and Sights Seen:

 Beautiful Sunsets

Beautiful Sunset Near Nantucket
Beautiful Sunset Near Nantucket

Moonlight on the Water

Tons of Hermit Crabs:

Starfish:

Octopus:

Octopus
We put it in water to keep it alive while we finished sorting the table.

Barndoor Skate:

Dolphins:

Dolphin
This dolphin swam right up beside the ship.

Humpback Whales: The last night of the cruise we got to see the most amazing whale show. The pictures aren’t that great because they were a good ways away from the ship and it was right around sunset. I ended up putting the camera down so that I could just enjoy the show.

Extra Pictures:

Virginia Warren: Let the Dredging Begin, July 15, 2013

NOAA Teacher at Sea
Virginia Warren
Aboard the R/V Hugh R. Sharp
July 9 – 17, 2013

Mission: Leg 3 of the Sea Scallop Survey
Geographical Area of Cruise: Georges Bank
Date: July 15, 2013

Weather Data from the Bridge: South to south-west winds 10 to 20 knots, seas 4 to 6 feet, showers and scattered thunderstorms, areas of fog with visibility of 1 nautical mile or less early in the morning

Science and Technology Log:

After two days of using the HabCam to view the animals in their natural habitat, we moved to viewing the actual animals. We used a scallop dredge to bring the animals on deck so that we can count and measure them. The main goal is to find scallops, but we also sort other animals and measure them as well. In the dredge we have found sand dollars, different types of fish, crabs, sea stars, and of course scallops. The dredge gets pulled behind the ship for 15 minutes. Once the 15 minutes are up, the ship crew will pull the dredge onto the boat and then dump the contents onto the sorting table. Before sorting the contents of the dredge someone from the science crew is responsible for taking a picture of its contents. To keep the pictures separated from dredge to dredge, another person holds a white board that tells the number of the tow in front of each pile before the picture. Then the sorting begins!

Holding the Sign for the Station Picture
Holding the Sign for the Station Picture

Sorting the table can be very interesting because the things that come up depend on the location and how deep the water is. At times we sort through scallops and rocks, then the next dredge might be sand, or another time might be mostly sand dollars. While sorting the dredge contents, we sort all of the fish and skates from the scallops and put the fish and/or skates in a bucket to be sorted later. The items on the table that we are not sampling are considered to be trash. We have to keep up with each time we throw a ‘trash’ bucket overboard because a person on my crew has to count up the total amount of trash. Sometimes we also do a subsample of the number of starfish in the trash and the amount of crabs that came up in the dredge (hermit crabs not included). Crabs and starfish are natural predators  of scallops.

Once the sorting table is clear, we separate the types of fish based on species and then start weighing and measuring in the scientific ‘van’ on the ship. The watch chief takes the weights of everything and then passes it down to be measured by length. Before we can start measuring the length, we have to get the computer ready to receive the measurement data. The names of the people working the station are put into the computer and then the species is selected. To measure the length of an item, we spread it out on a measuring board starting at the beginning of the board. This board is connected to the computer and has a magnet that goes down the length of the ruler that is all the way down the middle of the board. Next, we take a hand-held magnet and press down on the board at the end of the item. The magnet picks up the measurement and sends it to the computer program. This will continue until everything that needs to be measured is complete.

Yellow Tale Flounder Being Measured
Yellow Tale Flounder Being Measured

Another station in the van is responsible for taking meat weights from a sample group of three to four scallops. The sample scallops first have to be scrubbed down with a wire brush to clean off anything growing on it. After the shell is clean, then the scallops get weighed and measured for length. Then the scallop gets shucked. The gonad gets taken out and weighed and then the muscle gets taken out and weighed. The muscle is the part of the scallop that gets eaten. Then the shells are dried off and bagged up for age testing when the ship gets back to port.

Personal Log:

It has been foggy here on Georges bank, but work still continues on a ship. This ship constantly has either the HabCam in the water, or is dredging for scallops and the science crew is responsible for keeping the science research going 24 hours a day. This is the reason for the science crew to be split into two groups. The people in my crew are great to work with and are very helpful!

Close to the beginning of one of my shifts, we came across a dredge that was full of scallops. It had at least 10 baskets full of large scallops. We only measured a subsample of four baskets, but in the subsample alone we had over 400 scallops that were measured in. Then in the very next dredge, we had another dredge that was better than the first one. The baskets of scallops filled up the side of the ship and we were actually searching for baskets to put more scallops in.

I have had several ‘firsts’ on this trip. I got my first experience being on a research vessel. This was my first time shucking a scallop. It was also my first time being brought into a fisherman’s tradition. Apparently it’s tradition for all newbie scallop shuckers to shuck their own scallop and then eat it raw. This is not the best tradition in my mind because I have a very easy gag reflex and of course I started gagging, but I was able to keep it down. The cook on the ship taught me how to fillet a fish called whiting. Then as a special treat, he took the fish and fried it up for us to snack on. This was a great treat, because the fish came straight from dredge to be filleted and cooked up to be eaten. It was fresh and delicious!

Virginia Shucking Scallops
Virginia Shucking Scallops
Virginia Holding the 20 Pound Monk FIsh
Virginia Holding the 20 Pound Monk FIsh

Did You Know… that when dredging for scallops the part of the dredge that drags the bottom of the sea floor will come up looking polished.

The Dredge Coming Up Looking Polished
Look closely at the side of the dredge facing the camera and you will see that it is polished to a silver color because it is dragged over the bottom of the ocean floor. The rest of the dredge that doesn’t touch the ocean floor looks a rusted red color.

Animals Seen Recently:

–       Dolphins

Dolphins
Dolphins

–       Blue Shark

–       Lobster

–       Octopus

–       Monk Fish

–       Skates

Winter Skate
Winter Skate

–       Basking Shark

–       Pilot Whale

Pilot Whale
Pilot Whale

–       LOTS of scallops

Extra Pictures:

Eric Velarde: Rosette C.T.D. Analysis & HabCam V4 Operation, June 15, 2013

NOAA Teacher at Sea
Eric Velarde
Aboard R/V Hugh R. Sharp
Wednesday, June 13, 2013 – Monday, June 24, 2013

Mission: Sea Scallop Survey
Geographical Area: Cape May – Cape Hatteras
Date: June 15, 2013

Weather Data from Bridge
Latitude: 38°19.0778 N
Longitude: 74°15.9625 W
Atmospheric Pressure: 30.7in
Wind Speed: 11.5 Knots
Humidity: 70%
Air Temperature: 66.4°F
Surface Seawater Temperature: 66.2°F

Science & Technology Log

Deploying the Rosette to collect the first water sample for C.T.D. analysis & flying the HabCam V4 was the focus of work on June 15, 2013. The Rosette is deployed so that water samples can be collected to analyze the Conductivity, Temperature, and Depth (C.T.D.) of the seawater, providing data on the physical aspects of the Atlantic Sea Scallop’s (Placopecten magellanicus) habitat. The engineering team assumes responsibility of the Rosette, which is carefully lowered into the ocean through winch operation on the bridge. Once the Rosette has reached near the seafloor, it collects seawater and is then carefully retrieved through winch operation on the bridge. The seawater is then collected into an individual sampling bottle for analysis & calibration of the instrument.

Rosette C.T.D. Apparatus
Rosette C.T.D. Apparatus

Digital image rendering of the C.T.D. analysis allows for graphic visualization of the gathered oceanographic information, as well as calibration of the instrument. Analyzing the information demonstrates the two distinct layers of the ocean, separated by a relatively abrupt dividing boundary, which defines them. Atlantic Sea Scallops (Placopecten magellanicus) inhabit the seafloor in the lower layer of the ocean, whereas Plankton and Sea Scallop larvae can be found in the upper layer. Presentation of the C.T.D. readout gives accurate data of the Voltage (purple), Oxygen (blue), Temperature (red), and Salinity (green) levels.

C.T.D. Readout
C.T.D. Readout

As stated in my previous post, the HabCam V4 takes a tremendous amount of teamwork in order to operate at its maximum capacity. Correspondence with the engineering team is required to launch & retrieve the HabCam V4, the pilot must remain focused on ensuring that the HabCam V4 is close enough to the seafloor for maximum image quality, while at the same time being at a safe distance to prevent accidental collision, and the co-pilot is focused on incoming images & server traffic at a 2-monitor interface. All participating members of the crew must be attentive, communicative, and actively engaged in the contributing activities of other team members at all times.

HabCam V4 Co-Pilot Interface
HabCam V4 Co-Pilot Interface

The best way to describe piloting the HabCam V4 is to compare it to a video game, albeit one that has no “extra lives”. There is a pressure sensitive fiber optic cable feed & retrieval control lever that allows the pilot to either decrease or increase the depth of the HabCam V4. It is vital to maintain a safe distance while being in close enough range of the seafloor so that the incoming images are properly exposed and recognizable for the co-pilot. The optimum range is between 1.7 – 1.9 meters +/- 0.2 meters. Piloting the HabCam V4 during satisfactory weather is nearly effortless once having become acclimated to the 5-monitor interface and the control lever. Piloting the HabCam V4 during foul weather is quite difficult, requiring constant conscious concentration on all variables (seafloor depth, HabCam V4 depth, sonar readout, and fiber optic cable feed & retrieval) in order to prevent an accidental collision with the seafloor.

HabCam V4 Piloting
HabCam V4 Piloting

Co-piloting the HabCam V4 requires attention to the incoming images, as well as server traffic. Incoming images must be screened so that identified individual species can be time-stamped and tagged for analysis. Using software, the co-pilot can either tag observed species using digital identification markers, or manually input text to identify a particularly intriguing image that they wish to highlight for analysis. It is important to ensure that incoming images are being written to the server for digital archiving and future annotation. Digital data management, a scarcely celebrated 21st century character trait, is one of the many strengths of the crew aboard this vessel.

HabCam V4 Co-Piloting
HabCamV4 Co-Piloting

Personal Log

Despite a few bouts of violent seasickness, I have been having the time of my life while aboard the R/V Hugh R Sharp. The crew possesses seemingly infinite amounts of sincerity, honesty, and intelligence. The continued operation of this wonderfully engineered human machine has occurred without error, and will continue to do so while under the watchful eyes of the leadership heads. Thus far my favorite aspect of this research experience has been co-piloting the HabCam V4. Having vast amounts of digital imagery stream before my observation makes me feel as though I am at home, screening digital images that I stumble upon for both scientific beauty & significance.

HabCam V4 Co-Piloting
HabCam V4 Co-Piloting

In addition to the technological aspects of this experience, I have also found solace in the empathetic energy provided by the ship’s captain, Jimmy Warrington. His humor, experience, and leadership create an ideal teaching & learning environment. While many may dread the monotonous nature of a safety briefing, the one provided by the Captain was both engaging and informative. Following safety briefing, newcomers to the R/V Hugh R. Sharp are required to don a safety immersion suit in less than 60 seconds. The safety immersion suit is more commonly referred as a “Gumby Suit”. The suit is quite impressive, being both insulating and buoyant. It possesses a safety whistle, flashlight, interpersonal locking hooks, and even an inflatable pillow. It is reassuring to know that above all else, safety is the primary focus of the leadership on this vessel.

Safety Immersion Suit or "Gumby Suit"
Safety Immersion Suit or “Gumby Suit”

Being on duty from Midnight-Noon causes me to miss the opportunity to observe sunsets at sea on most nights, but I have been able to experience a few and they are simply the most breathtaking sunsets that I have ever seen. Watching the night divide the day is both awe-inspiring and thought provoking. Despite my colorblindness, I feel that I am still capable of absorbing all of the electromagnetic energy that the sun provides during this hour of magic.

Sunset Storm
Sunset Storm

Dredge tows will be the focus of upcoming days, and is something that I am looking forward to. As a biologist, I find all living organisms infinitely beautiful and stimulating. I cannot wait.

-Mr. V

Did You Know?

The Atlantic Sea Scallop Fishery is the largest & most valuable scallop fishery on planet Earth, valued at $580,000,000 in 2011.

Eric Velarde: First Day at Sea & HabCam V4 Operating Systems Management, June 13, 2013

NOAA Teacher at Sea
Eric Velarde
Aboard R/V Hugh R. Sharp
Wednesday, June 13, 2013 – Monday, June 24, 2013

Mission: Sea Scallop Survey
Geographical Area: Cape May – Cape Hatteras
Date: June 13, 2013

Weather Data from Bridge
Latitude: 38°47.3002 N
Longitude: 75°09.6813 W
Atmospheric Pressure: 30.5in (1032.84mb)
Wind Speed: 14.5 Knots (16.68mph)
Humidity: 70%
Air Temperature: 19.2°C (66.6°F)
Surface Seawater Temperature: 19°C (66.2°F)

Bridge Weather Data Collection
Bridge Weather Data Collection

Science & Technology Log

Cleaning, stabilizing, and testing the Habitat Mapping Camera System, or HabCam V4 was the focus of work on June 13, 2013. This work was done to ensure that all image collection & processing during the Sea Scallop Survey proceeds without any technical mishaps. Following cleaning, the HabCam V4 fiber optic cable needed to be stabilized to minimize vibrational interference using an ingenious combination of copious amounts of galvanized electrical tape & zip-ties. Once the HabCam V4 fiber optics cable was properly stabilized, the vessel set out to sea to conduct preliminary testing to ensure that all systems were operating properly.

Stabilizing the HabCam V4 Fiber Optic Cable
Stabilizing the HabCam V4 Fiber Optic Cable

What distinguishes the HabCam V4 from other HabCam systems is that the HabCam V4 records Stereo-Optic images (3D images) using 2 cameras in order to give an unprecedented view of the ocean floor organisms and their habitat substrate in the highest image quality available. In addition, the HabCam V4 also possesses a side scan acoustics system, which allows the HabCam V4 Pilot (AKA, “Flyer”) to visualize the sea floor using Sonar technology. Visualizing the sea floor using Sonar allows for more precise HabCam V4 flying so that the HabCam V4 is kept at a safe  distance from the sea floor, which is contoured similarly to Earth’s continents.

HabCam V4 Pilot Interface
HabCam V4 Pilot Interface

Flying the HabCam V4 requires tremendous amounts of teamwork, as there are several operations that must occur simultaneously to ensure seamless HabCam V4 winch operation, data retrieval & image annotation. The Pilot is stationed behind a 5 screen interface where the following information is received: fiber optics cable feed & receival (smaller, upper left screen), loading deck real-time camera feed (upper left screen), Sonar visualization (upper right screen), altimeter/fathometer data (lower left screen), and HabCam V4 real-time image feed (lower right screen). The HabCam V4 is controlled in the Dry Lab by the Pilot who uses the interface to determine how much of the fiber optics cable is needed to be fed or received so that the HabCam V4 remains at a safe distance from the sea floor.  A winch operator is stationed on the loading deck to assist in managing fiber optics cable feed & retrieval. In addition to piloting and winch operation, a co-pilot works at a 2 screen interface to monitor the movement of the HabCam V4 relative to the vessels motion, as well as annotate the incoming images in real time so that observed organisms can be categorized, flagged, and timestamped.

Vic & Amber Piloting/Co-Piloting HabCam V4 in Dry Lab
Vic & Amber Piloting/Co-Piloting HabCamV4 in Dry Lab

Due to incoming severe weather & HabCam V4 data retrieval complications, the vessel had to return to port in Lewes, DE to ensure the safety of all crew members & scientific technology. The vessel is set to return to sea once the seas have calmed down and when the HabCam V4 is at its full operational capacity.

Incoming Severe Weather
Incoming Severe Weather

Personal Log

This experience seems like a living dream. Flying from Raleigh-Durham International Airport into Philadelphia International Airport was a breathtaking flight. The clouds were wispy, full, and complex. My mind was filled with anxious anticipation, and perhaps quixotic wonder & awe. As the plane descended, I was still wandering in the clouds in my mind. Even the drive from Philadelphia to my hotel in Rehoboth, Delaware where I spent the night before boarding the vessel seemed to be filled with restless excitement.

Philadelphia Clouds
Philadelphia Clouds

I’ve been working hard to become well acquainted with everyone and everything on board. This has already become a life changing experience for me. I have never had the opportunity to eat, sleep, and work in such an immersive scientific environment until this experience. Being in such close proximity to other scientific minds is very fulfilling, providing transcendental feelings of scientific curiosity, sincerity, and beauty. My natural tendency to introvert has begun to fade and I cannot stop the feeling of wanting to contribute as much as possible to the successful operation of the vessel and our mission.

R/V Hugh R Sharp Stern View
R/V Hugh R Sharp Stern View

Mindfulness, teamwork ethic, and lightheartedness are shared integral parts of everyones personality and are key features of the personified identity of the R/V Hugh R Sharp. Teamwork is contagious aboard this vessel, and it is simply the most wonderful scientific feeling I have had in a long time. One of the unique relationships that I have made is with La’Shaun Willis, a ’98 graduate of Bennett College. Never had I imagined that I would have the opportunity to work with a Bennett Belle on this cruise. She makes me feel at home. I cannot wait to share this relationship with my students, faculty, and our higher education partner, Bennett College.

La'Shaun Willis, NOAA Museum Specialist
La’Shaun Willis, NOAA Museum Specialist

In addition to interacting with the scientific team while completing dredge tow sorting & HabCam V4 operation, I plan on developing an understanding of the operation of the vessel itself through the engineering team. The engineers operate behind the scenes and provide an invaluable resource, the full functioning of the vessel itself. I am extremely interested in how, specifically, the vessel navigates through the seas, how waste and water are managed, and the logistics that are behind the planning of this tremendous voyage.

Engineering Team & HabCam V4
Engineering Team & HabCam V4

The weather has been improving and I feel that the best has yet to come. I cannot wait.

-Mr. V

Did You Know?

The HabCam V4 takes up to 10 images per second, which are stitched together to create a mosaic image, allowing for the visualization of a larger area than a single image could offer.

HabCam V4 Mosaic (image Courtesy of Dvora Hart)
HabCam V4 Mosaic (image Courtesy of Dvora Hart)

Eric Velarde: ¡Preparando Para el Viaje! (Preparing for the Trip!) June 10, 2013

NOAA Teacher at Sea
Eric Velarde
Aboard R/V Hugh R. Sharp
Wednesday, June 13, 2013 – Tuesday, June 24, 2013

Mission: Sea Scallop Survey
Geographical Area: Cape May – Cape Hatteras
Date: June 10, 2013

Personal Log

Mr. Velarde & Rudy (the family poodle)
Mr. Velarde & Rudy (the family poodle)

¡Hola! I am Mr. Eric Velarde, 9th-12th grade Honors Earth/Environmental Science, Honors Biology, and Physical Science teacher at The Early/Middle College at Bennett in Greensboro, NC. I have had the distinct honor of experiencing my first 3 years of teaching at a truly wonderful, unique learning community. The Early/Middle College at Bennett is located on the historic campus of Bennett College and serves as a nurturing learning environment for aspiring, young women. Our students are engaged in their learning through academic scholarship, leadership & character development, and service to others.

I am intensely excited about sharing this research experience with my students, colleagues, and the general public. It is my plan to create several interactive, engaging, and personalized learning modules from the experience that educators can easily access and adapt for their students. These learning modules will focus on utilizing NOAA’s research, 21st century technology, and collaborative learning strategies to leverage the participation of historically underrepresented groups in the atmospheric & ocean science fields in America. In addition, I plan to use my experience with photography to help unveil the details behind ocean science research careers to provide students with an in-depth experience of what it feels like to be a scientist at sea.

R/V Hugh R. Sharp
R/V Hugh R. Sharp (Image Courtesy of NOAA)

I will be aboard the R/V Hugh R. Sharp from June 13th-25th to assist the Ecosystems Survey Branch of the Northeast Fisheries Science Center in a survey of the Atlantic Sea Scallop (Placopecten magellanicus) to determine distribution and abundance in the mid-Atlantic. Biological analysis will occur through ocean-floor dredging, sorting & categorization of specimens, and Hab-Cam photography. Data collected will be used to assess the abundance of the population, health of the population, and the sustainability status of the fishery.

The Grand Canyon in Summer 2009
The Grand Canyon in Summer 2009

Growing up in Phoenix, Arizona has instilled in me a deep, sincere love of Geology & Geography which I still hold today. Upon moving to Greensboro, NC I began to shift my interests towards Agriculture through involvement with the National FFA Organization. My undergraduate career consisted of juggling the study of Biology, Women’s Studies, and Photography at The University of North Carolina at Chapel Hill. As my 2010 graduation neared, I enrolled in the UNC-Baccalaureate Education in Science & Teaching (UNC-BEST) program to prepare for lateral entry licensure as a high school science teacher. Upon graduation I promptly earned employment with Guilford County Schools with my current school, where I worked for 2 years before earning my licensure with Guilford County Schools Alternative Certification Track (GCS-ACT). I am now a licensed educator and I plan on spending the rest of my life in education.

Sisters in Science & LSAMP Scholar Collaborative Lab
Sisters in Science & LSAMP Scholar Collaborative Lab

Working with our higher-education partner, Bennett College, has afforded me a significant amount of working time and space to facilitate character development within the Science, Technology, Engineering, and Mathematics (STEM) fields with the Sisters in Science (SIS) mentorship program. Select Early/Middle college students who express interest in STEM are paired with a Bennett College Louis Stokes Alliances for Minority Participation (LSAMP) scholar to help foster their interest in STEM. Students perform laboratory experiments, participate in service learning initiatives, travel to scientific conferences, and attend scientific lectures with their mentors. SIS has now expanded to include Brothers & Sisters in Science (BSIS) for Middle School students, and continues to reap the benefits of funding from the Anne L. & George H. Clapp Charitable and Educational Trust Foundation.

Nowadays I find myself constantly reassessing how I’ve facilitated a culture of lifelong learning, college & career readiness, and scientific curiosity in my students. Through professional development with North Carolina New SchoolsNational Youth Leadership Council, and the numerous opportunities provided by my school administrative team I have been able to begin to focus on character development, a growing passion of mine.

It is clear that this will be a significantly enriching experience both for myself and for students. More opportunities like the Teacher at Sea program are needed to help leverage teacher understanding of the size and scope of the field of science if we are to continue to advance our education, technology, and ultimately, our humanity into the far reaches of the Universe.

All the best,

-Mr. V

Sherie Gee: Preparing for Life at Sea, May 30, 2013

NOAA Teacher at Sea
Sherie Gee
Aboard R/V Hugh R. Sharp
June 26 – July 7, 2013

Mission:  Sea Scallop Survey
Geographical area of cruise:  Northwest Atlantic Ocean
Date:  May 30, 2013

Personal Log:

Hello, my name is Sherie Gee and I live in the big Lone Star State of Texas. I teach AP Environmental Science and Aquatic Science at John Paul Stevens High School in San Antonio, home of the Alamo and the Spurs. I have been teaching for 31 years and I am still thirsty for new knowledge and experiences to share with the students which is one of the reasons I am so excited to be a NOAA Teacher at Sea. I will get to be a “scientist” for two weeks collecting specimens, data, and using scientific equipment and technology that I plan to incorporate into the classroom.

I am also excited to be on this spectacular voyage because I feel very passionate about the ocean and all of its inhabitants. The ocean is a free-access resource which means it belongs to everyone on Earth so it needs to be taken care of. Overfishing, overharvesting and ocean pollution are global issues that I feel strongly about and feel that there has to be new ocean ethics. Teachers are in the best position to bring about ocean awareness to the students and the public. I feel very fortunate to be given this opportunity by NOAA to be part of an ocean conservation program. One of my favorite quotes is from Rachel Carson: “The more clearly we can focus our attention on the wonders and realities of the universe, the less taste we shall have for destruction.” I truly believe this because in order for people to care for our Earth and environment and not destroy it, they have to understand it and appreciate it first.

For two weeks I will be collecting the Atlantic sea scallop to determine the distribution and abundance of these animals. This survey is conducted in order to assess these scallop populations in certain areas of the Atlantic Ocean and determine if they have been overharvested and need to be closed to commercial fishermen for a period of time. I am very relieved to know that there are such programs around the world that focus on ocean fisheries and sustainability. I will be describing this survey of the Atlantic sea scallop in greater detail in my blogs.

Atlantic Sea Scallop
Atlantic Sea Scallop
Courtesy of http://www.fishwatch.gov/seafood_profiles/species/scallop/species_pages/atlantic_sea_scallop.htm

This will definitely be an exciting ocean experience for me. I live three hours away from the nearest ocean (The Gulf of Mexico) and have always managed to venture to an ocean each year. Every year I take my students to the Gulf of Mexico on the University of Texas research vessel (The Katy) to conduct plankton tows, water chemistry, mud grabs and bottom trawls.  I love to see the students get so excited every time they bring up the otter trawl and watch the various fish and invertebrates spill out of the nets.

UT Marine Science Research Vessel, The Katy
UT Marine Science Research Vessel, The Katy
Student sorting through the otter trawl on the Katy
Student sorting through the otter trawl on the Katy

I know I will be just like the kids when they bring up the trawls from dredging. People who know me say I am a “fish freak”. Fish are my favorite animals because of their high biodiversity and unique adaptations that they possess. I am a scuba diver and so I get to see all kinds of fish and other marine life in their natural habitat. I am always looking for new fish that I haven’t seen before. The top two items on my “Bucket List” are to cage dive with the great white shark (my favorite fish) and to swim with the whale shark. I recently swam with whale sharks in the Sea of Cortez and would like to do that again in the Caribbean with adult whale sharks.

Juvenile 15 foot whale shark in the Sea of Cortez Photo by Britt Coleman
Juvenile 15 foot whale shark in the Sea of Cortez

Needless to say, I can’t wait to start sorting through all of the various ocean dwellers and discover all the many species of fish and invertebrates that I have never seen before. I hope you will share my enthusiasm and follow me through this magnificent journey through the North Atlantic Ocean and witness the menagerie of marine life while aboard the Research Vessel Hugh /R. Sharp.

R/V Hugh R. Sharp
R/V Hugh R. Sharp

http://www.ceoe.udel.edu/marine/rvSharp.shtml

Sherie Gee holding an Olive Ridley hatchling at the Tortugueros Las Playitas A.C. in Todos Santos, Mexico Photo by Britt Coleman
Sherie Gee holding an Olive Ridley hatchling at the Tortugueros Las Playitas A.C. in Todos Santos, Mexico
Photo by Britt Coleman

Alicia Gillean: Introduction, April 29, 2012

NOAA Teacher at Sea
Alicia Gillean
Soon to be aboard R/V Hugh R. Sharp
June 27 — July 8, 2012

Mission:  Sea Scallop Survey
Geographical area of cruise: Northwest Atlantic Ocean
Date: Sunday, April 29, 2012

Personal Log

Alicia Gillean
Alicia Gillean, 2012 NOAA Teacher at Sea

Hello from Oklahoma!  My name is Alicia Gillean and I am ecstatic that I was selected as a 2012 NOAA (National Oceanic and Atmospheric Association) Teacher at Sea!  I am passionate about adventure, lifelong learning, and the ocean.  I can’t wait to merge these three passions together for twelve days at sea this summer and to share my learning with all of my students and coworkers back in Oklahoma. I will be blogging about my adventure and learning while aboard the ship and you are invited to follow my journey and get involved by asking questions and posting comments. I’ll start by telling you a little bit about myself, then I’ll fill you in on the details of my Teacher at Sea adventure.

A Bit About Me

When I’m not pursuing adventure on the high seas, I am the school librarian (also known as a library media specialist) at Jenks West Intermediate School, a school of about 600 5th and 6th graders in the Jenks Public Schools District, near Tulsa, Oklahoma.  I might be a bit biased, but I believe that I have the best job in the school and that I work with some of the finest teachers and students in the world.

You are probably wondering, “How did a librarian from Oklahoma become part of an ocean research cruise?”  I’m glad you asked.  It just so happens that this blog entry answers that very question.

I’ll admit it; I was born and raised a landlubber. There just aren’t many opportunities to visit the ocean when you grow up in the Midwest.  Rumor has it that I touched the ocean once when I was about 3, but I didn’t touch it again until I was 21. More on that later.

My passion for the ocean began in high school when I took a Marine Biology class where my mind was blown by the diversity and beauty of life in the sea and the complex network of factors that impact the health of an ocean environment.  I took Marine Biology 2 and 3 the following years where I set up and maintained aquariums in elementary schools and taught ocean-related lessons for elementary students.

Aquarium newspaper photo
Alicia showing a shark jaw to a three year old at the Oklahoma Aquarium

I started to become a little obsessed with marine life, went to college to become a teacher, and did a happy dance when I learned that an aquarium was going to open in Jenks, Oklahoma.  I landed a job as a summer intern in the education department of the Oklahoma Aquarium and was overjoyed to be a part of the team that opened it in 2003.  When I graduated from college, the aquarium hired me as an education specialist, where I worked with learners of all ages to promote our mission of “conservation through education” through classes, camps, fishing clinics, sleepovers, animal interactions, crafts… the list goes on and on. 

In 2006, I became a 6th grade teacher in Jenks Public Schools, then I earned my Masters degree and became the school librarian in 2010.  I love to work with all the kiddos in my school as they learn to develop as thinkers, scientists, and citizens who have the power to impact the world.  They are just the kind of advocates that the environment needs and I want to help prepare them for this important role any way possible.  My experiences as a Teacher at Sea will certainly help!

Let’s go back to my actual experiences with the ocean for a moment.  After graduating from college and marrying my high school sweetheart David, I hightailed it to an ocean as fast as possible.  We honeymooned in Hawaii where we snorkeled, explored tidepools, went on a whale watch, and temporarily filled the ocean-shaped void in my heart.

Alicia in ocean
Alicia on a Maui Beach

I’ve been back to the ocean several times and each time I am reminded of the delicate balance that must be maintained for the fascinating world under the waves to survive and thrive.  It is critical we protect the oceans and that people realize that their actions impact the oceans.  Even in the landlocked state of Oklahoma, our actions matter.

So, that’s why a school librarian from Oklahoma will spend the summer of 2012 on a ship in the Atlantic Ocean, counting sea scallops.  I can hardly wait for the adventure to begin!  Enough about me, let’s talk about the research cruise now.

Science and Technology Log

I’ll be participating in a sea scallop survey in the Atlantic Ocean, along the northeast coast of the United States, from Delaware to Massachusetts.  My adventure at sea will begin June 27, 2012 and end July 8, 2012.

What is a sea scallop?

A sea scallop is an animal that is in the same category as clams, oysters, and mussels. One way that sea scallops are different from other animals with two shells (bivalves) is that a sea scallop can move itself through the water by opening and closing its shells quickly.  How do you think this adaptation might help the sea scallop?  Watch these videos to see a sea scallop in action:

 

Importance of  Sea Scallops/Sea Scallop Survey

People like to eat scallops, so fishermen drag heavy-duty nets along the ocean floor (called dredging) to collect and sell them.  Most of them are harvested in the Atlantic Ocean along the northeastern coast of the United States. The United States sea scallop fishery is very important for the economy.

Sea Scallop Habitats
Map of sea scallop habitats from NOAA’s fishwatch.gov

The problem is that sometimes people can harvest too many scallops and the sea scallops can’t reproduce quickly enough before they are harvested again.  Eventually, this could lead to the depletion of the sea scallop population, which would be bad news for the ocean and for people.

This is where the NOAA Sea Scallop Survey comes in.  Every year, NOAA sends scientists out in a ship to count the number of Atlantic sea scallops (Placopecten magellanicus) in various parts of their habitat.  The sea scallops live in groups called beds on the ocean floor 100-300 feet deep, so scientists can’t just peer into the ocean and count them.  Instead, they have to dredge, just like the fisherman, to collect samples of scallops in numerous places.  The scientists record data about the number, size, and weight of sea scallops and other animals. Based on the data collected, decisions are made about what areas are okay for people to harvest scallops in and what areas need a break from harvesting for a while.  I’m considered a scientist on this cruise, so I’ll get to participate in this for 12 hours a day.  I hear it is messy, smelly, tiring, and fascinating.  Sounds like my type of adventure!  I think most good science is messy, don’t you?

The Ship

I’ll be sailing on the research vessel Hugh R Sharp. You can take a virtual tour of the ship here.  It was built in 2006, is 146 feet long (a little bit shorter than the width of a football field), and is used for lots of different scientific research expeditions. When I’m out at sea, you can see where I am on the journey and track the ship here.

RV Hugh R. Sharp
R/V Hugh R. Sharp; photo from NOAA Eastern Surveys Branch

What I hope to Learn

I’m very interested to experience what daily life is like on an ocean research vessel, how scientists use inquiry, data-collection, math, and other skills that we teach our students in a real-world setting.  Of course, I’m also hoping to see some fascinating ocean critters and get my hands dirty doing the work of a real scientist.

I’d love for you to join me on this adventure by following this blog and leaving your thoughts and questions in the comment section at the bottom of each blog entry.  Let’s make this a learning experience that we will all remember!

Channa Comer: The End of the Journey, May 21, 2011

NOAA Teacher at Sea
Channa Comer

On Board Research Vessel Hugh R. Sharp
May 11 — 22, 2011


Mission: Sea Scallop Survey Leg 1

Geographical area of cruise: North Atlantic
Date: Saturday, May 21, 2011

Final Log
This will be my final log of the cruise. Unlike previous posts, it will not be separated into a science and a personal log. For my final post, I’ve integrated the two because what I’ve

The Last Tow
The Last Tow

gained from the trip is both scientific and personal. In addition to all that I’ve learned about what happens on a Sea Scallop Survey, the FSCS, scallops in general, and many of the other creatures that live on the North Atlantic Ocean floor, I will be taking home new questions to answer and new avenues to explore.

This was my first experience with marine biology and I couldn’t have had a better one. Rather than reading about the ocean in a textbook, I was able to experience it, in all its grandeur, wonder, beauty, diversity, and unpleasantness (sea sickness, green sand dollar slime, sea squirts, sea mouse). I also couldn’t have asked for better hosts that all the people at NOAA who helped to make this trip possible –everyone in the Teacher at Sea program who helped before the trip and everyone here on the boat.

With the many, many, many tows and baskets and baskets of sand dollars, I’ve developed a fascination with them and many questions to answer when I get home. While I’ve learned a bit about them here on the ship, there is still so much to learn about them. Why are they in such abundance in certain areas? How can you tell the difference between a male and a female? How exactly do they reproduce? What is there function in the deep sea food web? What is their life span? Why the green slime? If their anus and mouth is in the same place, how what mechanism exists to turn one function off when the other is active? If any of you know the answers to these questions, feel free to share.

I owe a special debt of gratitude to Vic, the chief scientist who was always willing to share whatever he knows (and he knows a lot), answer all of my many questions, always went out of his way that I had everything that I needed to fulfill my Teacher at Sea obligations, and made me feel like part of the “family.” I am also extremely thankful to all the other members of my watch (and Chief Jakub) for being such an amazing group to work with. We worked together for 12 hours each day for 11 days and NEVER HAD A FIGHT! Everyone always made a conscious effort to be kind, courteous and helpful. Definitely a great lesson to take back with me. One of the most special things about this experience has been the opportunity to get to know the people on board, to learn about their varied backgrounds and how they ended up where they are.
Through my participation in the Teacher at Sea program, I’ve also learned a greater appreciation for the food that I eat. There is so much that happens before food gets to my plate that I usually take for granted. In the case of scallops, the Sea Scallop Survey is just one part of a very complex picture that includes fishermen who make a living for themselves and provide jobs and opportunities for others, all of the organisms who share the ocean with scallops that are affected by scallop fishing, the ocean ecosystem, and the consumers who buy and eat scallops. In reflecting on this, I’m reminded of a series of articles that I read recently about integrating Native American science (viewing science from a holistic perspective with consideration of how our choices affect ecological balance) with western science. While our immediate needs and wants cannot be minimized, as a society, we could definitely benefit a broader, more long-term view of how our choices affect us over the long term, especially as we are faced with diminishing resources and an ever-expanding population.

Thanks to all of you who followed my adventure by reading the blog. And thank you for your comments, both on the blog and via email.

Until the next adventure…………

Jeff Lawrence, June 19, 2009

NOAA Teacher at Sea
Jeff Lawrence
Onboard Research Vessel Hugh R. Sharp
June 8-19, 2009 

Mission: Sea scallop survey
Geographical area of cruise: North Atlantic
Date: June 19, 2009

Weather Data from the Bridge In port at Woods Hole, Mass. 
W winds 5-10 KTs, cloudy overcast skies Light rain, 2-3 foot waves Air Temp. 66˚F

Jakub Kircun watches as a beautiful sunset unfolds.
Jakub Kircun watches as a beautiful sunset unfolds.

Science and Technology Log 

The Research Vessel Hugh R. Sharp finally made it into port this morning at the National Marine Fisheries Service in Woods Hole on the Cape Cod coast of Massachusetts.  Although this cruise was not terribly long it is great to be back on land.  Scallop surveying is tedious work that is ongoing on a research vessel 24/7. The people onboard were great to work with and it is always a pleasure to get to know other people, especially those who share a passion for ocean research and science. Few people realize the great effort and sacrifices that people in the oceanography field have to give up to go out to sea to complete research that will help give a better understanding to three-fourths of the planet’s surface.  They must leave home and loved ones for many days to get the science needed for a more complete understanding of the Earth’s oceans.

lawrence_log6The noon to midnight shift includes myself, the Chief Scientist onboard, Stacy Rowe, watch chief Jakub Kircum, Shad Mahlum, Francine Stroman, and Joe Gatuzzi.  We are responsible for sorting each station on our watch, measuring and weighing the samples into the computer.  These people are very good at what they do and quite dedicated to performing the task with professionalism, courtesy, and a great deal of enthusiasm.  It is clear to see that each person has a passion for ocean sciences especially the fisheries division. The NOAA fisheries division carefully surveys and provides data to those that make regulations about which places will be left open for commercial fishing and those which will be closed until the population is adequate to handle the pressures of the commercial fishing industry. I have observed many different species of marine animals, some of which I did not even know ever existed.  Below is a photo of me and the other TAS Duane Sanders putting on our survival at sea suits in case of emergency.  These suits are designed to keep someone afloat and alive in cold water and are required on all boats where colder waters exist.

The Goosefish, also called Monkfish, is a ferocious predator below the surface and above!
The Goosefish, also called Monkfish, is a ferocious predator below the surface and above!

Personal Log 

The fish with a bad attitude award has to go to the goosefish. This ferocious predator lies in wait at the bottom of the ocean floor for prey. On the topside of its mouth is an antenna that dangles an alluring catch for small fish and other ocean critters.  When the prey gets close enough the goosefish emerges from its muddy camouflage and devours its prey. I made the error of mistaking it for a skate that was in a bucket. I was not paying close enough attention as I grabbed what I thought was the skate from a bucket, the goosefish quickly bit down. Blood oozed out of my thumb as the teeth penetrated clean through a pair of rubber gloves. I pay closer attention when sticking my hand in buckets now.  There are many creatures in the sea that are harmless, but one should take heed to all the creatures that can inflict bodily damage to humans. 

Spiny Dogfish caught in the dredge
Spiny Dogfish caught in the dredge

Questions of the Day 
Name four species you my find at the bottom on the Atlantic:
What is another common name for the goosefish?
What is the species name (Scientific name) for the goosefish?
What are the scientific names for starfish and scallops?

Duane Sanders, June 16, 2009

NOAA Teacher at Sea
Duane Sanders
Onboard Research Vessel Hugh R. Sharp
June 8-19, 2009 

Mission: Sea Scallop Survey
Geographical Area: New England Coast
Date: June 16, 2009

Weather Data from the Bridge 
Wind: Speed 10 KTS, Direction  50 degrees
Barometer: 1024 millibars
Air temperature: 13 0C
Seas: 3-5 ft.

Science and Technology Log 

A sorting table full of sand dollars!
A sorting table full of sand dollars!

Why is it that we find huge numbers of sand dollars at so many stations?  There have been some stations where our dredge was completely filled with sand dollars.  The sorting table was so full that there was no clear space in which to work. This has piqued my curiosity as a biologist. Some questions come to mind.  Are there any natural predators of sand dollars? What is it about sand dollars that allow them to out-compete other organisms that might otherwise be found at these locations?  What do sand dollars eat? How can there be enough food at a given location to support these huge populations? I talked with Stacy Rowe, the chief scientist for this cruise, and she was not aware of any research being done to answer these questions.  Stacy did know that a species of fish known as the Ocean Pout eats on sand dollars.  I am looking forward to seeing results of some research on these organisms.  Maybe one of my students will follow up.  Who knows?

Duane Sanders with Keiichi Uchida: A fellow scalloper!
Duane Sanders with Keiichi Uchida: A fellow scalloper!

Many different scientists use data taken during this survey.  NOAA staffers come to the ship with a list of types of organisms or samples that have been requested by researchers.  For example we have been setting aside a few scallops from certain stations for special handling.  The gender of each scallop is determined and then they are measured and weighed.  Next, the meat from each scallop is carefully removed and weighed.  The shells are carefully cleaned and set aside to give the scientist who made the request along with all of the measurement data.

I have made a new friend, Keiichi Uchida, of a visiting researcher from Japan. He is doing research that involves tracking the movements of the conger eel, Conger oceanicus, using GIS systems.  Keiichi is here to learn more about how NOAA does surveys like the one we are on now. He is also looking at data similar to his and trying to correlate the different data sets.

Personal Log 

In many ways I am going to miss living and working with people who are interested in the same branch of science as me.  I have had fun talking about all of the things I have observed and the kinds of work being done by this branch of NOAA. There is one thing about this trip that causes me some real sadness.  I have not seen a whale. Two whales have been spotted, but I have always been at the wrong place to see them.  I hope my luck changes before we dock at Woods Hole.

Duane Sanders, June 15, 2009

NOAA Teacher at Sea
Duane Sanders
Onboard Research Vessel Hugh R. Sharp
June 8-19, 2009 

Mission: Sea Scallop Survey
Geographical Area: New England Coast
Date: June 15, 2009

Weather Data from the Bridge 
Wind: Speed 6.8 KTS, Direction 65.7 degrees
Barometer: 018 millibars
Air temperature: 11.33 0C
Seas: 2-3 ft.

Dumping a dredge on the sorting table.
Dumping a dredge on the sorting table.

Science and Technology Log 

We had to change out the dredge during my last watch.  Actually, I watched while the crew did the dangerous work. We have been working in an area with a rocky bottom and the rocks caused substantial damage to the netting in the dredge. Fortunately, we are carrying four dredges plus spare netting. The crew put a new dredge into operation right away so that we didn’t lose too much time.  Geoff, our watch chief, directed the installation of the new mesh into the first dredge.

The scallop dredges we use are eight feet wide. Commercial dredges are sixteen feet wide. The basic design is the same for each.  The mouth of the dredge is a welded steel rectangular frame, with the height about one foot.  The bottom of this rectangle is a heavy steel bar, called the cutting bar. This breaks loose organisms from the bottom.  A steel plate, called the pressure plate, is welded at an angle across the top of the rectangle.  This plate creates a downward swirl of water that directs the organisms into the mouth of the netting. The bag attached to the dredge is made of a net of steel rings. A mesh liner is mounted inside the bag for scientific use. This helps to trap other organisms that make up bottom-dwelling communities.  This gives scientists a more complete picture for the survey.  Commercial dredges do not use a liner and the rings of the bag are larger.  This allows smaller size scallops and other organisms to pass through the bag and remain to help sustain a healthy scallop population.

The business end of a scallop dredge
The business end of a scallop dredge

We have been ‘shadowed’ by another ship, the Kathy Marie for part of the time we have been working.  She is carrying a device known as the “HabCam”, short for Habitat Camera.  This is an underwater camera system that is towed just over the bottom. It makes a photographic record of still images of the bottom taken at a rate of three per second. The HabCam accumulates data at about three terabytes per day. The Kathy Marie runs over the same area dredged by the Sharp after we move on to the next station. Images from these runs provide scientists with an index of dredge efficiency at capturing the bottom dwellers.  Once enough image data has been collected to make useful correlations to dredge data, it might be possible to reduce the number of physical dredge samples taken and use the HabCam to record the community ‘in situ’, that is, in position without disturbance.

Personal Log 

I said in an earlier log entry that fish are not my favorite type of organism.  Because of this bias, I had been avoiding helping with the fish sorting and identification.  After thinking about this for a bit, I decided that I needed to embrace my bias against fish and try to learn something as well as help my colleagues.  Besides, how could I face my students without at least making an effort?  So, I am trying to learn how to identify these critters.  So far, I am pretty good with goosefish, red hake, longhorn sculpin and some of the flounder species.

I wonder how long it will take me to adjust to walking on dry land after being at sea for eleven days. I guess I’ll find out soon enough.  I have been trying to read some before going to sleep, but I find that I can do a few pages at best.  Hard work, sea air and the rocking motion of our ship make powerful sleep inducers.

Jeff Lawrence, June 14, 2009

NOAA Teacher at Sea
Jeff Lawrence
Onboard Research Vessel Hugh R. Sharp
June 8-19, 2009 

Mission: Sea scallop survey
Geographical area of cruise: North Atlantic
Date: June 14, 2009

Weather Data from the Bridge 
East winds 3 KTs
1015mb pressure
Seas 2-4ft
Partly cloudy early, clearing sunny skies late afternoon

Science and Technology Log 

The bridge of a ship is a very busy place where all activities that are occurring on the ship being managed from this location.  When any equipment is going overboard it is the responsibility of the captain or first mate to ensure that it is done safely and correctly.  The ship must follow a predetermined route for each stations sampling and be kept on tract by precise navigating from the bridge. Whenever anything goes overboard the bridge has to be notified, it is important for the bridge to know everything that is in the water to avoid the boat from being fouled up by miscellaneous line in the water.  This could be dangerous and costly for the ship and crew.

Left: The bridge of the ship; Right: Crewmembers on the bridge discussing the cruise operational procedures
Left: The bridge of the ship; Right: Crewmembers on the bridge discussing the cruise operational procedures

Captain Bill Byam has been very helpful to me and my fellow teacher at sea making sure we have the availability of the crew and ship to write our journal entries and then submit them online to NOAA. The ship’s crew is also responsible for deployments and retrieving of all instruments put overboard the ship. Along with the dredge and occasional CTD is deployed to get a profile of the water column and collect water samples at varying depths.  The water samples can be used for a variety of things, such as water filtering to see what microscopic critters may be present, chemical analysis, as well as conductivity or salinity of the water.  The CTD is standard instruments used on most science research vessels.  The crew on the Sharp are very proficient, professional, and hard working as they also help with assisting the scientist with some of the work on deck.

Personal Log 

Shad and Stacy repair the net on one of the dredges
Shad and Stacy repair the net on one of the dredges

The cruise has gone very smoothly with lots of scientific data have been collected for future analysis. I have worked closely on the deck with members of the noon to midnight shift for almost two weeks.  In that time we have collected many samples of scallops, crabs, starfish, sand dollars, sea urchins, many varieties of fish, and even occasional pieces of trash left from man’s misuse of the ocean.  I hope to be able to take the knowledge gleaned from this experience and the scientist onboard the ship and give my students back in Oklahoma a better understanding of our oceans and how their health impacts everyone around world even those in land-locked Oklahoma.  It has been my goal to better inform my 5th-8th grade students, my college students who are training to become teachers, and the general lay member how all of us impact the health of the oceans and how important the oceans are to us all in maintaining a homeostatic balance with the Earth’s biosphere and atmosphere.   We all have much to gain with a healthy ocean system and much more to lose if we are not adequate in our stewardship of our oceans.

I would like to give a special thanks to Chief Scientist Stacy Rowe for allowing me to participate in all aspects of the cruise and collecting samples.  The team I am with are very cordial and extremely helpful in answering all my questions.  They made me feel a part of the team and not an outsider. It was great to work with a group of people who are so dedicated.  When one team member finished a task they simply moved to help another team member until the whole catch was sorted, measured, and weighed.  It is good to work with people who are equally vested in their work. No one person stood and watched as others worked, each did an equal share of the work and made sure the task was completed in a timely and organized fashion.  This made the long hours of the shift seem shorter and the days went by much quicker.  It is always good to be a part of a good team.  Thanks to the crew aboard the Sharp, and the scientist that made this trip a profitable one, not only for me but also for my students back in Oklahoma.  Thank you Bill Byam, captain aboard the Sharp and all of his dedicated crew.  The ship’s crew, were hospitable host and I really enjoyed meeting you all.  Thanks to NOAA for allowing a previous teacher at sea another opportunity to learn more about the oceans and have another lifetime memory to share with others. 

Questions of the Day 
What instrument does a ship use today to navigate in precise lines? (hint cars use it also to find their way around town)

Who is Hugh R. Sharp? (ship is named after him)

Jeff Lawrence, June 13, 2009

NOAA Teacher at Sea
Jeff Lawrence
Onboard Research Vessel Hugh R. Sharp
June 8-19, 2009 

Mission: Sea scallop survey
Geographical area of cruise: North Atlantic
Date: June 13, 2009

Weather Data from the Bridge 
East winds 3 KTs
Temperature: 13˚C
Seas 3-4ft
1015 mb of pressure

Magnetic measuring board
Magnetic measuring board

Science and Technology Log 

There is a lot of sophisticated equipment aboard a science research vessel of today. Shad who is one of the scientists aboard the ship explained to me how they used to do scallop surveys on older ships just a few years ago. Then they would catch scallops using the dredge net that was then hauled onboard and dumped on the deck.  The scientist would then get on their hands and knees and sort through the pile for scallops or whatever they were looking for. The pile would have to be scoured twice to ensure everything was accounted for. There was a lot of shoveling and moving of the pile as things were being sorted. The work was long, dirty, and backbreaking.

Today the Sharp has a sorting table onboard which makes the job much easier and gives the ship and crew the availability of adding more stations to the survey and getting much more work done than in past seasons. Below is a photo of a magnetic measuring board.  The scallop or fish are placed on the board and a magnetic wand is put at the end of the sample where an accurate measurement is made and placed into the computer showing the size of the sample.  This process is much faster than measuring and recording by hand.  They are also weighed in large baskets to determine average weight of the catch.

Personal Log 

Scallops opening in the warm sun!
Scallops opening in the warm sun!

Some days have been very long at times yet fruitful.  A week has passed and we have collected thousands of scallops, hundreds of thousands of starfish, and many other species of bottom dwelling fishes and animals.  I have observed many varieties and species of animals that I have never seen before except on TV or in a textbook.  This hands-on experience will leave an indelible picture in my mind for many years of what research life is like onboard a research vessel. There are many dedicated scientist and crewmembers in NOAA fisheries that are insuring the viability of certain species so that commercial fishing does not over fish areas of our oceans.

These scientists do valuable research in the labs around the United States but also go out on research vessels and get their hands dirty, work extremely hard, and commit a large part of the personal lives to preservation of species in our oceans so that future generations can enjoy the wide diversity that our oceans provide for us today.  NOAA has scientist working all around the oceans of the United States as well as other parts of the world to give science a better understanding of the vital role each species has in its environment and how that species overpopulation or disappearance could impact the immediate area, larger habitat of the ocean, and the world as a whole. I feel more at ease knowing that there are dedicated people in the world ensuring not only the interest of humans but are also advocating for all species.  The diversity on earth is better understood every year giving scientist and the general public a better understanding of each species role on the world stage of life.

Question of the Day 
What does the term Keystone species mean?

Duane Sanders, June 12, 2009

NOAA Teacher at Sea
Duane Sanders
Onboard Research Vessel Hugh R. Sharp
June 8-19, 2009 

Mission: Sea Scallop Survey
Geographical Area: New England Coast
Date: June 12, 2009

Weather Data from the Bridge 
Wind: Speed 15.4 KTS, Direction 171.8 degrees
Barometer: 1008 millibars
Air temperature: 16.56 0C
Seas: 3-5 ft.

Science and Technology Log 

It is the end of my watch and I am ready for a break.
It is the end of my watch and I am ready for a break.

The routine of dredging for scallops 24 hours a day continues.  Since the goal of this survey is to get a good understanding of the entire ecosystem where scallops might live, we take samples from areas closed to commercial scalloping as well as from open areas. Every catch is a little different in the numbers and types of organisms we find.  There is a huge difference in scallop counts between areas that have been open for a time and those areas that have been closed. I can understand clearly the importance of checking this ecosystem on a regular basis. Open areas can become overfished and need time to recoup their losses and should be closed for a period of time.

In terms of dollar value the scallop industry is the most valuable fishery in New England. It would be decimated from overfishing without proper management based on sound, scientifically obtained data.

Personal Log 

I have adapted to standing watch at night and sleeping during the day. This experience has helped me to more fully appreciate the finer things in life: sunrise, good food and sleep. Also, I am proud to report that, thanks to some of my fellow ‘watchmates’ I am now ‘BlueTooth competent.’ They showed me how to use Bluetooth on my computer while we were winding down after our watch.

Jeff Lawrence, June 11, 2009

NOAA Teacher at Sea
Jeff Lawrence
Onboard Research Vessel Hugh R. Sharp
June 8-19, 2009 

Mission: Sea scallop survey
Geographical area of cruise: North Atlantic
Date: June 11, 2009

Weather Data from the Bridge 
NE winds 15-20KT
Seas 4-8ft, cold front moving off land
Temperature at Sea 68˚F
Foggy with low visibility, light rain periodically

Science and Technology Log 

The crew is busy collecting scallops.  Occasionally between tows, the crew shuck scallops to eat onboard, this is allowable in open areas.  A meal of freshly shucked scallops will be enjoyed by those onboard the ship.  Shucking scallops is a skill that can be learned over several days.  A long curved skinny knife is inserted between the shells and part of the scallop is cut away from the shell.  With a little skill one more quick cut of the knife and all the inside parts of the scallop are whisked away leaving behind a cylinder shaped piece of white meat that is the part of the scallop enjoyed by people around the world.

TAS Duane Sanders (left) is busy sorting scallops while others shuck the scallops (right).
TAS Duane Sanders (left) is busy sorting scallops while others shuck the scallops (right).

Some dredges produced scallops exclusively, while others produce very few scallops and lots of starfishes or sand dollars.  Scientists are trying to understand the dynamics between the starfish and scallop populations as well as other species.  Getting rid or over fishing one species can have a profound effect on other species especially if that species is considered a keystone species in that particular environment.

The R/V Hugh R. Sharp (Lewes, Delaware)
The R/V Hugh R. Sharp (Lewes, Delaware)

Personal Log 

The Research Vessel Hugh R. Sharp is one of the newer ships in the fleet of research vessels along the Atlantic coast. The ship is 146 feet long with state of the art equipment onboard to help it complete missions vital to ocean research.  It cost about $14,000 dollars a day to keep the ship doing research while at sea. The ship is very versatile and has completed a varied amount of differing research cruises along the east coast of the United States.  I am amazed at how quiet the ship is when running. I have been on two other research vessels, and they were much louder when underway.  The Sharp has diesel engines that run electric motors making it run much quieter and smoother than other research ships. The ship will also turn on a dime usually it takes quite of bit of time and space to turn a ship around. This is not true on the Sharp it will turn very quickly due the bow thrusters onboard the ship. The ship may be smaller than many research vessels, however it is versatile and efficient when conducting research along the Atlantic coast.

The crew which are captained by Bill Byam are well trained and prepared for the task required of them to make sure the science is completed in a timely manner and efficiently for the scientist aboard. I have found working with the crew to be an enjoyable experience.  The food onboard is superb, Paul is a great cook and prepares unique dishes for every meal and is also an avid fellow soccer fan.

Question of the Day 
What and how do scallops eat to survive?

Name two predators of scallops. 

Duane Sanders, June 10, 2009

NOAA Teacher at Sea
Duane Sanders
Onboard Research Vessel Hugh R. Sharp
June 8-19, 2009 

Mission: Sea Scallop Survey
Geographical Area: New England Coast
Date: June 10, 2009

Weather Data from the Bridge 
Wind: Speed 19.4 KTS, Direction 86.8 degrees
Barometer: 1013 millibars
Air temperature:  14.2 0C
Seas: 2-3 feet

I’m having fun at the sorting table.
I’m having fun at the sorting table.

Science and Technology Log 

The primary mission of this cruise is to complete the second leg of a three-leg survey of scallop populations along the New England Coast. Other information about the scallop ecosystem is also collected. Scientists evaluate the status of the scallop fishery use data gathered from the survey.  Decisions about which areas to allow commercial scalloping and which areas to close to commercial use are based on these surveys. These science-based management decisions help to promote long-term stability of the scallop industry.

Members of the day watch working at measuring stations.
Members of the day watch working at measuring stations.

After two complete watches, I think I understand the procedure. Stations to be sampled are determined by a stratified random sampling procedure. Computers, following certain parameters set by NOAA staff, determine which area is to be sampled. It is important to be consistent so that each station from each of the three legs of the cruise can be reliably compared other data from this survey as well as from other years.  Once the captain puts the ship on station, an eight-foot wide dredge is lowered to the bottom and dragged for 15 minutes.  The captain keeps the ships speed to a constant 3.8 knots.  When the dredge is hauled in, its contents are dumped on a large steel sorting table that is bolted onto the to deck. The science team on watch sorts through the contents of the catch and separates all scallops into one basket, all fish into a different bucket and all the rest of the haul into another basket.

We then determine the total weight of the scallops and measure the length of each one. Thankfully we use a computerized system for determining the lengths which automatically record them.  All of the fish are sorted by species, and then weighed by species.  The length of each fish is recorded using the same system as for the scallops. The total volume of the remaining haul is estimated with each basket being equivalent to 46 liters. The general contents of the basket are characterized by types of shells found, types of substrate material and other organisms present.

Personal Log 

A sea mouse (Aphrodite aculeate)
A sea mouse (Aphrodite aculeate)

I have been assigned to the night watch. This means we work from midnight to noon. Although I am doing better today, it has been difficult to adjust to sleeping during the day. I am sure that I will continue to adapt. As long as Paul, our cook, keeps preparing his delicious meals I will survive quite nicely!

I have really enjoyed seeing the variety of organisms that come up in the dredge.  My favorites are the invertebrates. Some examples include different species of starfish, other mollusks beside scallops, and sea mice.  A sea mouse is actually a marine worm in the group known as polychaetes. These strange looking creatures grow long, thin scales that looks like fur. Their bodies have the general shape of a mouse with no tail.  There are also many fish species, which I am learning about, but they do not interest me as much as the other organisms.

Jeff Lawrence, June 9, 2009

NOAA Teacher at Sea
Jeff Lawrence
Onboard Research Vessel Hugh R. Sharp
June 8-19, 2009 

Mission: Sea scallop survey
Geographical area of cruise: North Atlantic
Date: June 9, 2009

Weather Data from the Bridge 
S winds 5-10KT
Seas 1-2ft
Barometric pressure 1029mb
Air Temperature 78˚F
Visibility clear
Cold front moving offshore towards us later today, rain expected.

The contents of the dredge are emptied onto the sorting table.
The contents of the dredge are emptied onto the sorting table.

Science and Technology Log 

The sorting table is full of activity as soon as the dredge is pulled aboard the ship. After the crew secure all lines and dump the load the volunteers and scientist begin to sort through the biological that has been brought up from the bottom or the Atlantic Ocean.  Each dredge can bring a varied amount of sea life on the ship.  We are always looking for scallop, yet every third dredge we also sort for crabs. All fish are also sorted and counted.

After all the sorting is done the fish, scallops, and crabs are weighed and measured for length. They are then logged into the onboard computer for analysis of results for each catch.  We are trawling along closed areas for scallops. These areas have been closed for commercial fishing to ensure that the population has time to recover in that area. Scallop surveys are carried out by the R/V Hugh R. Sharp, in three phases during the summer.  Duane and I are on the second leg, which encompasses the area to the east of Delaware, areas around Long Island, and the area around Martha’s Vineyard south of Cape Cod, Massachusetts.

Personal Log 

You may find some interesting creatures during sorting.
You may find some interesting creatures during sorting.

The work aboard the ship can be very long and laborious. The days are long, as each member of the cruise will do a 12-hour shift.  My shift is from noon to midnight.  The conditions can vary greatly during a shift. During the day the sun may be out with light winds and it gets very warm with all the wet weather gear that is worn during sorting. It is necessary to leave the gear on between dredges, since they occur so often. As soon as the sun goes down the temperatures can drop very rapidly.  It is important to keep a hooded sweatshirt and other warm weather gear nearby for the changing conditions.  All gear must be taken with you when you leave your cabin so that the other shift can sleep uninterrupted.  The days are long, with the goal of all who are onboard to get the science completed in a timely fashion.  Keeping a ship stored with goods and running is very expensive so the goal is to get as much science completed in the allotted time as possible.

Question of the Day 
What other bottom dwelling species in the Atlantic are under protection from over-fishing?

Animals Seen Today 
Scallops, eels, crabs, starfish, clams, silver dollars, urchins, goose fish, and many varieties of bottom dwelling fish.

Duane Sanders, June 8, 2009

NOAA Teacher at Sea
Duane Sanders
Onboard Research Vessel Hugh R. Sharp
June 8-19, 2009 

Mission: Sea Scallop Survey
Geographical Area: New England Coast
Date: June 8, 2009

Weather Data from the Bridge 
Wind: Speed 16.1 KTS, Direction 50.5 degrees
Barometer:  1014 millibars
Air temperature: 16.8 0C Seas: 1-3 ft.

Science and Technology Log 

The Hugh R. Sharp at dock in Delaware
The Hugh R. Sharp at dock in Delaware

I have been assigned to participate in the annual scallop survey in the New England fisheries area. Our ship, the Hugh R. Sharp, is two years old and designed specifically for ocean research. The Sharp is owned by the University of Delaware and is under contract with NOAA for the scallop survey. It has laboratories, a workshop and specialized equipment for handling large or bulky devices. There is a continuous data stream gathered by the ship’s instruments and posted on monitors on the bridge and in the lab. This includes some parameters related to ocean chemistry as well as the usual weather data. There are several other high-tech sensing systems to assist in a variety of research projects. The ship’s flexible design allows for the science team to install computers, servers and ancillary equipment specific to the research project at hand.  Also, modular labs outfitted for specific purposes can be secured to the fantail (rear deck) of the ship.

My favorite piece of technology is the diesel electric drive system.  Diesel generators produce electricity that supply power to the drive motors all other electrical needs on the ship.  Propulsion is provided by thrusters, which are capable of rotating in any direction as needed.  There are two thrusters in the stern and one in the bow.  These three acting together can keep the Sharp within six feet of a specified location.  The ship’s engineer can monitor all systems from his station on the bridge. This system is very quiet and vibration is kept to a minimum.  That means we can sleep much better than with a conventional diesel engine drive. All in all, this vessel seems to me to be an ocean scientist’s dream come true.  It is designed for high-tech applications and configurations that change as the need arises.

Here I am practicing donning my emergency immersion suit.
Here I am practicing donning my emergency immersion suit.

Personal Log 

Today is our first day at sea. We spent the morning hours getting acquainted with each other and learning about safety, emergency procedures and shipboard etiquette. For example, the science team was divided into two watches, midnight to noon and noon to midnight.  The rule is that people coming on watch need to take everything they want to use during watch hours with them. This allows those coming off watch to get some undisturbed rest.  Living in close quarters requires everyone to be considerate and cooperative. We all rely on each other to do their part to help make the cruise a safe and successful one.  While there is always room for some fun, everybody takes their responsibilities quite seriously.  Life and limb often depend on this careful approach to our work. 

Jeff Lawrence, June 8, 2009

NOAA Teacher at Sea
Jeff Lawrence
Onboard Research Vessel Hugh R. Sharp
June 8-19, 2009 

Mission: Sea scallop survey
Geographical area of cruise: North Atlantic
Date: June 8, 2009

Weather Data from the Bridge 
SW winds: 5-10KT
Seas: 1-2ft
Barometric pressure: 1035 mb
Air Temperature: 75˚F
Visibility: clear

Science and Technology Log 

The Research Vessel Hugh R. Sharp set sail this morning around 9AM from Lewes, DE.  There are 11 members of the scientific crew and volunteers, including two TAS participants: myself (Jeff Lawrence) from Oklahoma and Duane Sanders from Ohio.  We spent the morning introducing ourselves and watching safety videos in case of emergency on the ship.  A ship can be an exciting yet dangerous place to work.  There is no ambulance or fire department to call in case of a fire or other emergency. Each member aboard the ship is responsible for not only their own safety, but that of their shipmates also.  Above is a photo of Duane and I as we don the safety immersion suits also known as the “Gumby” suit.

Screen shot 2013-03-24 at 11.19.00 PM
TAS Jeff Lawrence and TAS Duane Sanders don their immersion suits during a safety drill.

The suits can be difficult to don but everyone onboard is expected to know how to put the suit on effectively in case of an emergency at sea that may require us to abandon ship.  The waters off the northeast coast of the U.S. can still be quite cold even in early summer and hypothermia can set in a matter of minutes.

Bridge of R/V Hugh R. Sharp
Bridge of R/V Hugh R. Sharp

Personal Log 

The Research Vessel Hugh R. Sharp has set sail for a station about 60 miles due east of Lewes, Delaware. I have been on two other research vessels with the Sharp being the smallest.  It is a newer ship and while quarters are quite close they are well maintained and comfortable.  The day started out with sunny skies and warm winds. The further out to sea we traverse the cooler the temperature feels as the wind blows across the cooler water.  We have just run into a fog bank and there is little to see at the present time.

Skies have cleared off and it is a beautiful day out in the Atlantic.  We are sailing to the first station and the crew aboard is getting everything ready for the first tow. There is a lot to do on the ship even when sailing between stations. The crew has to make sure there are not structural, hardware, or software problems before we arrive at the first station. As mentioned earlier I also onboard with another Teacher at Sea participant, his name is Duane Sanders and he teaches at a school near Cincinnati, Ohio.  Today has been a great start to the trip with the excellent weather and smooth sailing conditions.

Questions of the Day 
What is a Sea Scallop and are there differing varieties or species?

Name three other ships that do research for NOAA.

Elise Olivieri, May 19, 2009

NOAA Teacher at Sea
Elise Olivieri
Onboard Research Vessel Hugh R. Sharp 
May 9 – 20, 2009 

Mission: Sea Scallop Survey
Geographical area of cruise: Northwest Atlantic
Date: May 19, 2009

Weather Data from the Bridge 
Air Temperature: 10.78 Degrees Celsius
Barometric Pressure: 1030 mb
Humidity: 71 %

Still sorting!
Still sorting!

Science and Technology Log 

Taking part in the 2009 Sea Scallop Survey has been an experience of a lifetime.  I learned how to identify many different species of fish, to use the FSCS computer system, and the many sampling techniques that are involved in fisheries research. I met some incredible people that inspire me to continue volunteering whenever I can for the sake of scientific research.  I am very familiar now with many jobs and careers that one can have working for NOAA. My students will be very excited to see all the photographs and data that were collected on this survey. I have planed numerous activities where my students will use the data collected in the sea scallop survey which will help prepare them for the New York Schools Regents Examination. Some research scientists that I have met have promised to come and speak to my classes and educate my students on the many careers that NOAA offers. My roommate Lollie Garay and I had such a remarkable time on the Hugh R. Sharp. Although we worked different shifts, we had a few hours each day to discuss some lesson plan ideas and share pictures with each other.

The watch team: (in order from left to right) Gary Pearson, Cristina Bascunan, Vic Nordahl, me, and A. J. Ward.
The watch team: (left to right) Gary Pearson, Cristina Bascunan, Vic Nordahl, me, and A. J. Ward.

I really enjoyed working with the night watch.  My Watch Chief Geoff Shook really knows how to manage a team.  He is full of information, patient, and extremely helpful.  Cristina, Geoff, Steve, Glynn, A.J., and I really worked well together.  The Chief Scientist Vic Nordahl is an amazing guy.  He can multitask like no other person I have ever seen.  He works on several different tasks at once while checking the data, and even making a little time for Lollie and me too!  Kevin McIntosh is another incredible scientist.  He and Vic are very busy running the Sea Scallop Survey but he also has made himself very available to Lollie and me whenever we have any questions. Kevin is always there to help with data and explain how different instruments work as well.

I really feel privileged to have had the opportunity to work with such a great group of people.  I will never forget it!  I have taken so much away from this trip, and my students will appreciate all the new knowledge I will continue to share with them.  I am very excited to be returning home tomorrow morning.  We are expecting a 10-hour steam tonight and hopefully we will arrive in Lewes, Delaware around 6:00 AM. The last thing we have to do tonight is clean our stateroom and the labs.  This is easy work compared with all the tows we are accustom to sorting and measuring. 

Lollie Garay, May 19, 2009

NOAA Teacher at Sea
Lollie Garay
Onboard Research Vessel Hugh R. Sharp
May 9-20, 2009 

Mission: Sea scallop survey
Geographical Area: North Atlantic
Date: May 19, 2009

Day Shift Crew (left-ft): Larry Brady, Shayla Williams, Vic Nordahl, Gary Pearson, Shad Mahlum, Lollie Garay
Day Shift Crew (left-ft): Larry Brady, Shayla Williams, Vic Nordahl, Gary Pearson, Shad Mahlum, Lollie Garay

Weather Data from the Bridge 
Temp: 12.72˚C
True wind: 1.7 KT
Seas: 2-3 Ft.

Science and Technology Log 

Our day began on Station 170 with calm seas, clear skies and warm sunshine. We completed the last sampling tow late in the afternoon and began the final clean-up. All the equipment and gear was washed down and packed. We are now headed back to Lewes, Delaware where our voyage began.

Mary Moore waits on the dredge to come in.
Mary Moore waits on the dredge to come in.

It’s hard to believe 12 days have gone by already. It has been amazing journey and I have learned so much. The men and women whose work takes them to the seas are to be commended. It is hard work with long hours in all kinds of weather. But in all of science team and crew I sense the pride and the commitment each has for their work. I am going home with stories and images to share with my classroom, friends and family with a first-hand perspective. And I leave my crew with profound gratitude for all they have taught me.

Personal Log 

I spent some time last night talking with the youngest member of the ship’s crew, Mary Moore. Mary comes from four generations of commercial fishermen. She admitted that she decided early on she did not want to follow her parents’ footsteps .But after looking at other career choices she came full circle and does indeed work at sea. Mary earned a Hundred Ton License which allows her to drive vessels up to 100 tons. She went to school in Florida for Seaman Training where she learned Basic fire-fighting, First Aid/CPR, Survival at Sea, and Personal Responsibility. When I asked her what she liked most about her job or the sea she said, “Just being out at sea–it feels like home.” Watching the last rays of sunlight dancing on the smooth, rolling sea, I can understand what she means. In twelve days I found a personal sense of accomplishment and a love of the sea as well.

Lollie
Lollie

Elise Olivieri, May 18, 2009

NOAA Teacher at Sea
Elise Olivieri
Onboard Research Vessel Hugh R. Sharp 
May 9 – 20, 2009 

Mission: Sea Scallop Survey
Geographical area of cruise: Northwest Atlantic
Date: May 18, 2009

Weather Data from the Bridge 
Air Temperature: 10.44 Degrees Celsius
Barometric Pressure: 1020 mb
Humidity: 62 %

Scallops and sea stars
Scallops and sea stars

Science and Technology Log 

Today was a great day. It was a little cooler than usual but many tasks were accomplished.  I am now able to identify almost every species of fish that comes up in the dredge. I know how to run events and my night watch team works together in harmony.  Everything ran so smoothly today, and I believe it is all due to the fact that we get along so well. I have become good friends with everyone on my watch and some day crew as well.  Relationships are important when you’re living with all different people in close quarters.

I had a chance to talk with Steve Ellis today. He is a port agent for NOAA Fisheries North East Regional Office. He works with management plans and is a Fisheries Reporting Specialist.  Port agents like Steve are stationed where major commercial activity is located.  He works under the fisheries statistics office and monitors commercial fisheries landing in order to supply data for proper fisheries management.  Steve tracks fishery events and maintains reporting requirements that operate in U.S. waters. This helps the government get quota for different species of fish along with their age and growth. This also becomes a part of our Gross National Product.  Steve also helps interpret regulations and provides a link between fishermen and managers. 

Glenn Rountree (left) and I sorting the animals in our buckets
Glenn Rountree (left) and I sorting the animals in our buckets

I also got a chance to sit and talk with Glynn Rountree. He is a volunteer on this NOAA Sea Scallop Survey and he has been volunteering on many cruises since graduate school. So far he has been a volunteer on at least 50 cruises for the Environmental Protection Agency and NOAA. Glynn has a Master’s Degree in Oceanography and is very helpful in answering almost any question you have about various animals and fish. Glynn worked in research administration for 8 years, and now has a job with environmental regulation of home building.  It is important to understand that you do not have to be a scientist to work in a science field.  There are so many significant issues that will affect us directly that it is very important we stay educated on issues like global warming, climate change, and endangered species. We need more college students studying these issues not business administration.

Animals Seen Today 

Windowpane Flounder, Fluke, Sea Cucumber, Gulf Stream Flounder, and Fourspot Flounder. 

Lollie Garay, May 18, 2009

NOAA Teacher at Sea
Lollie Garay
Onboard Research Vessel Hugh R. Sharp
May 9-20, 2009 

The camera is attached to the dredge
The camera is attached to the dredge

Mission: Sea scallop survey
Geographical Area: North Atlantic
Date: May 18, 2009

Weather Data from the Bridge 
Scattered showers, thunderstorms
Temp: 9.28˚ C
True wind: 13.4 KT

Science and Technology Log 

Today a video camera was attached to the dredge.  Using the camera they are able to see when the dredge is actually on the ground to determine the amount of bottom contact.  It is important to verify sensors like these anytime you work in science. The inclinometer records angle changes that we can interpret into a time on bottom which can be used to calculate a tow distance or bottom contact. This is compared to the tow distance calculated from the GPS recorded by FSCS.   Unfortunately, the inclinometer angle change is not abrupt enough to determine the start time, so the camera is used to determine the amount of time before we start recording tow distance with FSCS.

Looking for crabs in a pile of Starfish is harder than you think!
Looking for crabs in a pile of Starfish is harder than you think!

We have two days of sampling left and then we begin to clean and pack. The first dredge today brought up so many sand dollars that they had to shovel some away before they could even secure the dredge! By late afternoon we were back into starfish; in all the dredges the scallop count was comparatively small.

Personal Log 

Around 4PM the skies cleared and we had sunshine again! It was a welcome sight after days of fog, cloud cover, and cold. That, along with calmer seas, made for a great day. Sitting on deck in the warmth of the Sun watching the wave action, I reflect all the different moods of the sea I have seen. I also think about all the wondrous animals I have seen; and wonder about how much more life there is that we didn’t see.

Lollie and a heap of Sand dollars!
Lollie and a heap of sand dollars!

Elise Olivieri, May 17, 2009

NOAA Teacher at Sea
Elise Olivieri
Onboard Research Vessel Hugh R. Sharp 
May 9 – 20, 2009 

Mission: Sea Scallop Survey
Geographical area of cruise: Northwest Atlantic
Date: May 17, 2009

Weather Data from the Bridge 
Air Temperature: 13.61 Degrees Celsius
Barometric Pressure: 1012 mb
Humidity: 97 %

Here you can see the many different sizes of sea scallops.
Here you can see the many different sizes of sea scallops.

Science and Technology Log 

So Far the sea scallop survey has collected 76,170 sea scallops which can also be expressed as 9,251 kilograms.  This is a tremendous amount of scallops and the survey is not even a third of the way complete.  At stations where crabs and starfish were sampled we have collected 8,678 cancer crabs and 279,768 starfish (Asterias) so far. Without a reliable database like FSCS it would be impossible to keep up with such a large amount of information.

Today I got a chance to talk with Shad Mahlum.  He is a seagoing technician for NOAA and was born and raised in Montana. He has experience working with freshwater surveys.  In the past years he has studied how beaver dams influence native and non-native species of freshwater fish.  Shad also spent some time looking at various cattle grazing strategies and how they affect food chains. Shad loves working on the open ocean and the physical process of sea scallop surveys.  Shad hopes to work with freshwater and saltwater projects in the future.

Here I am holding a scallop and a Red Hake.
Here I am holding a scallop and a Red Hake.

As I was gazing out into the deep blue sea a very large animal caught my eye.  I was so excited to see another Finback Whale.  They are the second largest animal on earth after the Blue Whale.  They are known to grow to more than 85 feet. Finbacks are indifferent to boats. They neither approach them nor avoid them.  Finback Whales dive to depths of at least 755 feet. They can grow anywhere from 30-80 tons. Finbacks eat Krill, fish and squid and their population numbers are approximately 100,000 or more.  The only threats Finbacks have are polluted waters.  It is incredible to see such a large animal breaching out of the water.  I will never forget it.

Animals Seen Today 

Wrymouth Squid, Eelgrass Slug, Razor Clam, Lobsters, Green Sea Urchin, Macoma clam, Sea Stars (Asterias), Horseshoe Crab, Fourbeard Rockling, Palmate Sponge, Hermit Crab, Black Clam, Golden Star, Tunicate, Winter Flounder, Surf Clam, Yellowtail Flounder, and Sea Mouse. 

Lollie Garay, May 17, 2009

NOAA Teacher at Sea
Lollie Garay
Onboard Research Vessel Hugh R. Sharp
May 9-20, 2009 

Mission: Sea scallop survey
Geographical Area: North Atlantic
Date: May 17, 2009

It was great to see the Sun again after all the fog!
It was great to see the Sun again after all the fog!

Weather Date from the Bridge 
Showers/scattered thunderstorms
Temp: 12.2˚C
Winds: 11.1KT
Seas: 5-8 ft

Science and Technology Log 

We have completed 138 stations and are halfway through today’s shift. Our transit today will take us to the closest we’ve been to the coast. Having said that, we are still about 40 miles offshore. The weather today has been better than we expected. Seas are still choppy, and the air is very cool.

Captain Jimmy Warrington
Captain Jimmy Warrington

Working out on deck requires us to bundle up. The fog has lifted after cutting visibility down to 100 ft yesterday! The captain said that he had three different computers going at the same time to insure safe navigation. This led to a conversation about how technology has changed on ships. Captain Warrington said in the old days all they used were 2 radars, a stopwatch, and “dead reckoning” where they lay out a line of travel (their course) on paper. As you can see from my past conversations about the science night crewmembers, people come from all walks of life to work in NOAA’s Fisheries Service. I have not written about the science day crew because the other Teacher At Sea, Elise Olivieri is working with them. Check out her logs to see what’s happening on her shift! And what about the ship’s crew?

First Mate Chris Bogan
First Mate Chris Bogan

We have Vessel Master James Warrington (the Captain). He has been with the University of Delaware for 25 years, and a Captain for 18 years. He started out as an engineer and decided he would like it better on the bridge! He has to go through re-certification periodically to maintain his license. I asked him what his most interesting assignment of all time was and he said it was working at the Bermuda Biological Station. Chris Bogan has been a Vessel Master since 1983 and is the First Mate on this cruise. He told me that 90% of his family had been sea captains, on both sides of his family!

Cook Paul Gomez
Cook Paul Gomez

One of the most important crewmembers on board is Paul Gomez, the cook! Paul is originally from Ecuador. His family lives in New York, but Paul, his wife and children live in Delaware. Paul has worked with the University of Delaware for 5 years and stays out at sea most of the year. He has been out at sea for 165 days already this year. Paul says he really enjoys his work because of all the people he meets.  You can ask anyone on this cruise and they will tell you that he is a fabulous chef! And he is always smiling.

Personal Log 

Lollie in Foul Weather Gear
Lollie in Foul Weather Gear

We had a lot of smiles this evening. We are within satellite range that has brought our cell phones back to life, at least for awhile. We are just off the coast of Manhattan, so everyone got busy with a call home. We also got a glimpse of city lights off in the distance. As I was getting into my foul weather gear again tonight, I started thinking about how many times this has happened this week. We have averaged 9 stations per day on our shift and have been working for 9 days so far, which means that I have put on this gear 81 times. This may sound trivial to you, but it’s one of those little details that help you laugh as you near the end of another long 12 hour shift!

New animals Seen Today 

An interesting little crab (Parchment worm Polyonyx) that makes its home in Parchment Worm tubes.

Elise Olivieri, May 16, 2009

NOAA Teacher at Sea
Elise Olivieri
Onboard Research Vessel Hugh R. Sharp 
May 9 – 20, 2009 

Mission: Sea Scallop Survey
Geographical area of cruise: Northwest Atlantic
Date: May 16, 2009

Weather Data from the Bridge 
Air Temperature: 12.33 Degrees Celsius
Barometric Pressure: 1022 mb
Humidity: 96%

Sorting through more sand dollars on a chilly, overcast day.
Sorting through more sand dollars on a chilly, overcast day.

Science and Technology Log 

Today we had some extremely large tows of sand dollars. Thirty-two baskets filled to the brim with sand dollars in one particular tow. It’s hard work when you have to sift through hundreds of thousands of sand dollars looking for little Cancer Crabs. Too bad they were not real dollars. Today I got the opportunity to sit with my Chief Scientist, Victor Nordahl. Although he is very busy he sits and talks with Lollie Garay and me daily about how we will implement all the information we are gathering into the classroom.  Today was different; I got a chance to ask Vic about his demanding daily tasks, and his career. Vic is a Fishery Biologist.  He has been working for NOAA’s NEFSC (Northeast Fisheries Science Center) for 17 years. His main job is to standardize the shellfish surveys and maintain the gear.  When he is not working on equipment like the dredge for example, he is performing a quality check on all the data that is collected.

In 2007, the NOAA Ship Albatross IV was retired, which was the vessel the sea scallop survey was always conducted on. This vessel had the old dredge which is similar to the new dredge. The new dredge has some modifications such as rollers on the goose neck to prevent digging into soft substrate. Another addition to the new dredge is the twine top which allows fish to escape easier that the old dredge. The equipment was very hard to come by for the old dredge, so this made repairs exceptionally difficult. With the new dredge there are some very fresh and innovative ideas.  Vic plans to introduce a Habitat Camera which can take many overlaid digital pictures of scallops which will have a continuous stream of real-time data.

There are many advantages to this new method.  The most important being the habitat camera would mean far less tows which is less intrusive and damaging to the habitat.  With this habitat camera it would be possible to see an absolute abundance of sea scallops due to the fact you would be able to see approximately 90% of the sea floor, and have digital images on file as well.  You would have to dredge much less to see three times more.  This new technology is very promising and some steps will be given a test run on Leg 3 of the sea scallop survey a few months from now.  I can’t wait to read all about how this new technology will improve the quality of sea scallop surveys.

Personal Log 

Smallest to largest scallop on the FSCS board.
Smallest to largest scallop on the FSCS board.

When you think about 2 weeks you do not think of it as being an extremely long amount of time. Well, when you’re on a ship for 2 weeks it can feel like a lot longer.  I must say I miss my husband Alex very much.  Regardless, I am so lucky to have the opportunity to work with scientists like Vic Nordahl and Kevin McIntosh.

During the summer I participate in a two year fellowship with Columbia University called The Summer Research Program for Science Teachers.  This is a great program where NYC science teachers are working with state-of-the-art technology along side research scientists.  We participate in and bring back to our classrooms the newest information on some groundbreaking research going on at the moment.  This program has endless advantages. The networks created are for a lifetime, and teachers in the program get the chance to collaborate ideas and share lessons and tips with each other. There are speakers, seminars, and fieldtrips that inspire science teachers to go the extra mile to interest students in research science.  Jay Dubner and Sam Silverstein run this incredible summer research program and I can’t wait to tell them all about the research I am taking part in and how the program inspired me to become a Teacher at Sea.  During the summer 2009 I will continue working with Dr. Robert Newton at Lamont Doherty Earth Observatory studying and sampling water at Piermont Marsh.

Lollie Garay, May 16, 2009

NOAA Teacher at Sea
Lollie Garay
Onboard Research Vessel Hugh R. Sharp
May 9-20, 2009 

Look at the size of the rock the dredge brought up!
Look at the size of the rock the dredge brought up!

Mission: Sea scallop survey
Geographical Area: North Atlantic
Date: May 16, 2009

Weather Data from the Bridge 
Temp: 14.11 C
True wind: 11KT
Seas: 4-6 ft

Science and Technology Log 

Our day begins with calmer seas and some sunshine, the fog lingers, draped softly over the sea. We are making good progress in the number of stations sampled. However, there is word that a storm may be approaching on Sunday. We expect to be closer to the coastline by then, so perhaps we won’t feel the full brunt of the weather system. Wave action will determine if the dredge is deployed or not.

Looking through a Windowpane fish!
Looking through a Windowpane fish!

By late afternoon through tonight the winds have picked up again. Waves are pounding the ship as we move between stations. We’ve had some interesting catches today, mostly sand dollars with few scallops. But this evening we pulled up a large boulder! Then we had a catch with no scallops at all. Another dredge brought up a Windowpane flounder also known as daylight. If you hold it up to the light, you can see right through it! Another interesting specimen is the black rectangular egg sac of a Skate. You can see the embryo of the fish inside when you hold it up to the light as well. You just never know what‘s going to come up in the net. Yesterday I was talking about the green slimy secretion from sand dollars. Today Shad was telling me about Horseshoe Crabs. Turns out they have blue blood, the result of using copper to oxidize their blood instead of oxygen like we do!

Personal Log 

Can you see the Skate embryo in the sac?
Can you see the Skate embryo in the sac?

In the few minutes that we have between stations, it‘s not unusual to hear the crew talking about their families and loved ones. Anecdotes shared accentuate the human factor in this service. Especially late in the shift, it’s fun to exchange stories about home. I’m back in my cabin ready to call it a night. As I lay in my bunk I feel the ship fighting against the waves. A funny thought occurred to me: the cabins are below the water! We’ve been sleeping “in the sea”!

New animals Seen Today 

Wrymouth fish Liparid (sea snail)

A Horseshoe Crab hurries across the sorting table.
A Horseshoe Crab hurries across the sorting table.

Elise Olivieri, May 15, 2009

NOAA Teacher at Sea
Elise Olivieri
Onboard Research Vessel Hugh R. Sharp 
May 9 – 20, 2009 

Mission: Sea Scallop Survey
Geographical area of cruise: Northwest Atlantic
Date: May 15, 2009

Weather Data from the Bridge 
Air Temperature: 14.50 Degrees Celsius
Barometric Pressure: 1026 mb
Humidity: 94%

Science and Technology Log 

What a morning we had today.  It was sand dollar heaven aboard the Hugh R. Sharp. At least 3 of our tows were filled with hundreds of thousands of sand dollars. My work on this Sea Scallop Survey is pretty regular now that I have the hang of it. The dredge goes down and scallops, cancer crabs, starfish, hermit crabs, sea sponges, sand dollars, and sea slugs come up.  We manually sort through the catch and weigh and measure the fish, and sea scallops. Every third station we count all the cancer crabs and starfish. Depending on the strata, various stations require five sea scallops to be measured for age and growth and their shells are preserved for later lab work. This work is very important for maintaining a long term study.  With FSCS all the data can be organized and used to draw conclusions about the overall health of areas along the Mid-Atlantic.

A big pile of sand dollars!
A big pile of sand dollars!

Today I got a chance to talk with Kevin McIntosh. He is on the day watch so I do not get a chance to work closely with him, but he is a great scientist.  He is a Biological Science Technician and also plays several roles along different cruises.  He is often a Chief Scientist, FSCS Administrator, and he specializes in combing over data, and auditing data.  Sometimes he serves as Watch Chief. At the moment he is working on a Scallop Imaging Machine where scallops can be photographed which would reduce the manual work load of the scientists with even better data collection resources. There would be a record of every scallop collected which means sub-sampling would be obsolete. Kevin is also working on a team which is collaborating to create FSCS 2.0 capabilities.  Some highlights of FSCS 2.0 include a GPS location where data can be automatically retrieved and stations can be programmed to display directions and sampling requests.

This would also cut the sampling time in half.  You would be able to have all the stations’ information at your fingertips.  These new improvements would also make data cleaner and easier to audit and help double check your work. Kevin works very hard.  Every time I see him he is working on something new.

Personal Log 

A beautiful sunset on the Atlantic
A beautiful sunset on the Atlantic

I really enjoy sitting and talking with the crew here on the Hugh R. Sharp. Everyone has so many great projects going on and new goals for fisheries research.  I found out today many of the crew have served time in the military. I now have even more respect for them.  Fisheries research is hard work and there is so much that goes into this research that is often ignored.  Especially the long hours of manual labor and the time needed to plan out each stations sampling routine.  Today the seas were rough again. When the boat is rolling all over the place it is very hard to walk from one place to another.  I learned a new trick today.  Always keep your knees bent in rough seas; it makes walking a lot easier. Looking at the horizon also helps one from becoming sick, at least for a little while.

 

Lollie Garay, May 15, 2009

NOAA Teacher at Sea
Lollie Garay
Onboard Research Vessel Hugh R. Sharp
May 9-20, 2009 

Mission: Sea scallop survey
Geographical Area: North Atlantic
Date: May 15, 2009

Weather Data from the Bridge 
Temperature: 13.5˚C
True wind: 4.1 KT
Seas: 3-4 ft

Science and Technology Log 

See the green secretions around the Sand dollars and the Jonah Crab?
See the green secretions around the Sand dollars and the Jonah Crab?

We’ve been at sea for seven days now and the daily sampling continues. Winds are not as strong as yesterday and we’re all glad. Skies are overcast and a thick fog surrounds us. Nothing out of the ordinary occurred today. By the time our shift ended we had completed 9 sampling stations. The majority of the dredges brought up were full of sand dollars. Lots of sand dollars mean slimy green secretions all over everything! Live sand dollars have a felt-like coating of fine spines. They shuffle through loose sand and feed on diatoms and microorganisms. Flounders and other bottom fishes feed on them. Their color is highly soluble and stains.

Lollie and Larry Brady measure special samples in the wet lab.
Lollie and Larry Brady measure special samples in the wet lab.

I’ll continue my conversations about my day shift crew. Larry Brady is a Biological Science Technician with the NOAA Fisheries Service. A former business manager with McGraw-Hill, he began volunteering with the Northeast Region Fisheries Services Sandy Hooks Lab in New Jersey. He found he really enjoyed what he did. One thing led to another and he has now been with the NOAA fisheries for 9 years. His responsibilities include maintaining the FSCS hardware and auditing data.

Dr. Shayla D. Williams is a research chemist at the Howard Marine Science Laboratory in Sandy Hook, New Jersey. She is researching fatty acid chemical tracers in two Northeast fisheries key resource species: Summer Flounders and Black Sea Bass. Fatty acids are a reflection of one’s diet.  As Dr. Williams says, “You are what you eat.” Gary Pearson is on his first survey cruise. Formerly with the Massachusetts Military Reservation, 102nd Fighter Wing division, he has been with the NOAA Fisheries Service maintenance department for three years. Gary works with just about every physical aspect of this survey, except for data entry. 

Personal Log 

Dr. Shayla Williams rakes the catch for sorting.
Dr. Shayla Williams rakes the catch for sorting.

As the night shift came on duty tonight, “Doc” A.J. told me that he had sandwiched his head between pillows to keep from rolling around and slept just fine through the tempestuous day. So, once I finally got to my bunk I thought about what he said. I only had one pillow, but I did have my life jacket. So, I tucked myself between the life jacket and the wall. He was right! I didn’t roll either and slept all through the night!

New Animals Seen Today 

Spiny Dogfish (2) Pipe fish

Gary Pearson sorts out the fish after a catch.
Gary Pearson sorts out the fish after a catch.
A Pipe Fish
A Pipe Fish

Elise Olivieri, May 14, 2009

NOAA Teacher at Sea
Elise Olivieri
Onboard Research Vessel Hugh R. Sharp 
May 9 – 20, 2009 

Mission: Sea Scallop Survey
Geographical area of cruise: Northwest Atlantic
Date: May 14, 2009

Weather Data from the Bridge 
Air Temperature: 13.39 Degrees Celsius
Barometric Pressure: 1028 mb
Humidity: 84%

Sorting the catch!
Sorting the catch!

Science and Technology Log 

Sampling the water column is a vital part of oceanographic work. Aboard the Hugh R. Sharp casts are conducted every third station using a special instrument called a CTD. CTD stands for conductivity, temperature and depth. Water samples are brought back aboard collected by a Niskin bottle two times a day.  These samples are used to calibrate the CTD. Scientific research should always be double and even triple checked to calibrate all the various instruments being used and guarantee they are functioning properly.

Today I got a chance to sit and talk with my Watch Chief, Geoff Shook.  He is extremely organized and very helpful. He ensures the data is correctly entered into the FSCS computer database and watches over the night crew. Geoff was always interested in oceanography but during his undergrad he had an opportunity to study fisheries instead.  Geoff is mainly interested in fish populations. He spends about 140 days out at sea every year.  About a week before this Sea Scallop cruise Geoff just returned from a 2 leg bottom trawl fish population survey.  Directly before that he was on a Monkfish Survey that concentrated on locations Monkfish are found along with the population index. Geoff spends his time on cruises auditing data, servicing all the gear and fixing the scallop dredges. He is the head of inspections and we can thank him for that.  Geoff organizes all the data so the ships have all the latest information. Geoff is very hardworking and patient. It takes a lot of hard work to do his job.  I commend him for his dedication to fisheries research. 

I also got a chance to sit and talk with Cristina Bascunan.  Cristina is a physical science technician. I really enjoy talking with her and look forward to working with her and Geoff every night. Cristina was a biology major in college and started volunteering on sea scallop cruises her sophomore year.  She got a job with NOAA and started working on oceanography cruises that follow Plankton. There were 40 set stations on Georges Bank where Plankton were collected and sampled.  Cristina also worked on SOOP cruises. SOOP stands for Ships of Opportunity Project. Once

a month this cruise would take a scientist along and travel to Bermuda and complete a CPR.  A CPR is a Continuous Plankton Recorder. The Plankton is sampled by a silk cloth tow that is dragged behind the boat. The silk cloth is treated with a preservative so further tests can be conducted later on. This helps create a time series where surface temperature could also be measured and mapped out.  This data collected aided in many other studies and is extremely important. Cristina works very hard and she definitely has my respect.

From left to right: Geoffrey Shook, Kevin McIntosh, and Shad Mahlum
From left to right: Geoffrey Shook, Kevin McIntosh, and Shad Mahlum

Personal Log 

Today was pretty exhausting. All these 12-hour work shifts with no days off are finally catching up to me.  I have a newfound respect for the crew of technicians and scientists that work these hours year round. Today the seas were really rough.  We had at least 6-foot waves and water crashing onto the deck. When the moon makes a circle in the sky you’re moving.  It’s very hard to work when the ground is moving below your feet.  I spent a bit of time today hanging over the ship’s railing. Can you guess what I was doing? I sure was seasick for a little while this morning, but it passes quickly which is good. Every night before I go to sleep I listen to the ship’s noises. I hear some bangs and clicks, but my favorite sound is the waves crashing into the side of the boat. I literally rock and roll until I fall asleep.  It’s about that time right now.  I can’t wait to climb up to my bunk and get some rest.

 

Lollie Garay, May 14, 2009

NOAA Teacher at Sea
Lollie Garay
Onboard Research Vessel Hugh R. Sharp
May 9-20, 2009 

Mission: Sea scallop survey
Geographical Area: North Atlantic
Date: May 14, 2009

Weather Data from the Bridge 
Temperature: 14.89C
True Wind: 18KTs
Seas: 4-6ft

Science and Technology Log 

Vic Nordahl and Shad Mahlum in the wet lab
Vic Nordahl and Shad Mahlum in the wet lab

We are at station 90 as I write, or try to write.  A front has moved in and brought wind and wave action that has us rolling. As I sit in the wet lab, the wind data on the computer jumps from 20-24 KTs. I had to write this journal entry by hand first because it was too difficult to work on the computer! However work proceeds, we just need to secure anything that can fall or roll. So how do we get on “station”? Stations are a pre-determined number of sampling stratums identified by beginning and ending Latitudes and Longitudes. Stratum is defined by depth intervals. Sampling is done in the same stratums every year, but the actual stations may not be the same.

Last night I was out on deck and saw lights dancing in the middle of the darkness. I was told they were the lights from other vessels. I asked why there were fishermen here if this was a closed area. Turns out that some commercial fishermen have special access permits that allow them to fish in pass-by zones. They can only use these permits a certain number of times for a certain number of years. I also learned that they are monitored by a satellite system that can see who is there.

A front brings fog and high seas, again!
A front brings fog and high seas, again!

I have mentioned some members of my shift crew in my logs. I would like to talk a little more about who they are, what they do and why they are here, in my remaining logs. Chief Scientist Kevin has been with the Fisheries Service since 2002. He is responsible for the overall operations on the science side. He oversees the Watch Chiefs; is responsible for data auditing and cruise track planning; and maintains communication with Woods Hole Oceanographic Institute about the progress of the survey.

Vic Nordahl is a Fishery Biologist at NOAA’s Northeast Fisheries Science Center in Woods Hole and is part of the senior staff of the group. He mentors and supervises the fisheries survey team and is out at sea two times a year with the scallop survey. He also does a triennial Surf Clam and Quahog survey. He is currently working on calibrating a time series between the NOAA Ship Albatross and the Research Vessel Hugh R. Sharp. The Albatross has been retired after 36 years of service. Shad Mahlum, our Watch Chief, is a Sea Tech with NOAA Fisheries Service. Before joining NOAA a year ago, he served 7 years in the Coast Guard. After the Coast Guard, Shad attended school in Bozeman Montana where he studied Zoology and Fresh Water fisheries.

Personal Log 

This exotic looking creature is a Chain Dogfish.
This exotic looking creature is a Chain Dogfish.

Before I had even opened my eyes, I felt the ship rolling. Winds from a front that moved in are churning up the seas which make simple things like showering a real challenge. I know that while we are towing the dredge the ship moves slower so I waited in bed until I felt us slow down. Then I jumped up and raced into the shower hoping I could make it through getting dressed before we picked up speed. I almost made it! During one of our last stations a HUGE wave crashed all the way across the stern. I was in the wet lab processing scallops when I heard and saw the action. Wish I had had my camera ready! I think we work harder during these wave events because it’s just so hard to do anything without straining those sea legs and arms to maintain your balance! Hope we have a calmer day tomorrow.

New Animals Seen Today 

Chain Dogfish 

Elise Olivieri, May 13, 2009

NOAA Teacher at Sea
Elise Olivieri
Onboard Research Vessel Hugh R. Sharp 
May 9 – 20, 2009 

Mission: Sea Scallop Survey
Geographical area of cruise: Northwest Atlantic
Date: May 13, 2009

Weather Data from the Bridge 
Air Temperature: 12.06 Degrees Celsius
Barometric Pressure: 1026 mb
Humidity: 89%

Here I am holding up a skate.
Here I am holding up a skate.

Science and Technology Log 

Sea Scallops’ number one predator is starfish.  Starfish are very strong. They pry open the shell and then push their stomach inside and devour it.  Starfish are very abundant in the Mid-Atlantic.  Many tows yield hundreds of starfish.  It would be too time consuming to count every one of them so sub-sampling is done to attain an estimate of starfish.  The entire catch is sorted but only a portion of the catch is measured.  This is a good method when there are many starfish and little substrate (trash). The substrate is then collected in buckets and volume can be determined.  The data is then entered into the FSCS computer system.  As I mentioned before FSCS is extremely advanced and is a one-ofa-kind biological data system.  Prior to 2001, Fisheries Surveys information was sent to federal prisons to be entered into a computer data base.  This took an extremely long time to process.  Inmates would get compensated as little as a penny per log sheet. This was dangerous and the data could have been destroyed or lost. Today all data is backed up on a server in three different locations to secure data entries. This long-term study about age and growth of sea scallops helps scientists see a trend in different area’s ecosystems.

I have met some intriguing scientists aboard the Hugh R. Sharp. Shayla Williams is a research chemist for NOAA.  She specializes in fatty acid analysis of Fluke.  A fatty acid analysis is like a fingerprint of what you eat. By studying fatty acid in certain types of fish she can make generalizations about the health of an area. Shayla has done research on NOAA cruises since 2006. She has sailed on the Hudson Canyon Cruise, the Fall Fish Survey, and the Spring Fish Survey to name a few.  It takes a whole crew to run a ship and the Hugh Sharp has a very sharp crew. Wynn Tucker is an Oceanographic Technician aboard the Hugh R. Sharp. She has worked for NOAA, EPA, and the Navy. She loves being out on the open water and I don’t blame her.  It is magnificent to look out and be surrounded by blue as far as the eye can see. A.J. Ward is another crewmember aboard the Sharp. He works the inclinometer which lets the scientists know of the dredge is in the right spot on the bottom of the ocean floor.

Using the FSCS to record data about a scallop.
Using the FSCS to record data about a scallop.

Personal Log 

Today was a great day! It was beautiful weather and I got a chance to talk with some of the crew members on the Sharp. I saw a whole school of dolphins less than three feet from the boat.  It was incredible!  I ran up to the bridge to get a better look and saw a couple of Finback whales as well. It is extremely hard to get pictures because they surface for a few seconds and then dive back under water.  There are many fish in this area known as the Elephant Trunk. I can’t wait for tomorrow!  Another exciting day where I have the opportunity to be working with cutting-edge technology and incredible scientists.  For now I can’t wait to get some sleep.

Animals Seen Today 

Little Skates, Goose Fish, Gulf Stream Flounder, Sand Dollars, Sea Mice, Razor Clams, Surf Clams, Hermit Crabs, Sea Sponge, Red Hake, Monk Fish, Cancer Crabs, Sea Scallops, White Back Dolphins, Finback Whales, and Starfish.

Lollie Garay, May 13, 2009

NOAA Teacher at Sea
Lollie Garay
Onboard Research Vessel Hugh R. Sharp
May 9-20, 2009 

Mission: Sea scallop survey
Geographical Area: North Atlantic
Date: May 13, 2009

Weather Data from the Bridge 
Temperature: 13.5˚ C
Wind: E-SE 8.9 KT
Seas: 3-5 Ft.

Science and Technology Log 

“Monkey Dung”
“Monkey Dung”

The seas have been favorable to us again and we begin work under sunshine skies. We are still sampling in the Elephant Trunk area.  At this writing we are approaching station #75. We have had a variety of different catches today; in fact most dredges are different. One might be full of starfish, another full of sand or mud and crabs, and others full of scallops – every one of them is different. The biggest dredge of the day brought up about 4000 scallops!

Starfish and crab are also sorted and counted at every third station. There are primarily 3 different types of starfish in this area. Researchers do a representative sampling to estimate what types are out here. So far the biggest starfish I have seen had arms about 24 cm long (Asterias vulgaris); the smallest about .5cm. (Asterias forbesi). Starfish are natural predators to scallops. I have noticed that when the catch has lots of starfish, the numbers of scallops goes down. I asked Vic Nordahl about this and he said that it may be possible that the number of starfish suggests the results of predation, or it could simply be that this area is not good for scallops. Crabs are counted to determine numbers and distribution. The majority of crabs in this area are from the Genus Cancer: Rock crabs (Cancer irroratus) and Jonah crabs (Cancer borealis).

A Robin Fish—look at those eyes!
A Robin Fish—look at those eyes!

Sulphur sponges, or Monkey Dung, also come up in the dredges. It‘s a yellow thick sponge with pores so small that there don’t appear to be any. It smells like sulphur and looks like monkey dung! Are sponges plant or animal?  There is still some question about whether a sponge is an individual or a colony of sponges. Sponges are the most primitive of multi-cellular animals, and lack organs or systems. What we see in the dredges is only a very small sampling of the variety and numbers of species that call the sea “home”. And every organism that comes up in the dredges validates the reason for conducting fishery surveys.

Personal Log 

The 12 hours of work we put in each day goes by fairly quickly. My shift crew members lighten up the long day with their sense of humors and laughter.  But make no mistake, they take their work very seriously. I am always asking questions (as usual) and they always respond patiently. I really feel like a contributing member of this team now, not just a visitor. The night was cold on deck, so I head to my cabin with a cup of hot tea at the end of my shift. Tomorrow is a new day!

Answer to the question: What’s the difference between a Deep Sea scallop and a Bay scallop? 

Unusual eggs—what kind are they?
Unusual eggs—what kind are they?

A deep sea scallop is orange or cream colored, is a larger scallop and has a larger meat (adductor muscle).  The shell is not as concave and lacks the ridges of the bay scallop shell. They are distributed in depths from 20 meters to 150 meters.  A Bay scallop is smaller in size and has a smaller meat in proportion to the shell size. The shell is ridged and usually mottled colored in shades of red, white, brown and tan.  They tend to be distributed in depths from right at shore to 20 meters.  They occupy different habitats.

New Question of the Day 
What is the connection between false Quahogs and the Wampanoag people of Massachusetts?

Animals Seen Today 
Razor clams, Ocean Quahogs, False Quahog, Pod of Dolphins (racing around the ship again!), Cragmon shrimp, Red spiked Sea Urchin, Storm Petrels, Sheer water gulls, and Common gulls.

Elise Olivieri, May 12, 2009

NOAA Teacher at Sea
Elise Olivieri
Onboard Research Vessel Hugh R. Sharp 
May 9 – 20, 2009 

Mission: Sea Scallop Survey
Geographical area of cruise: Northwest Atlantic
Date: May 12, 2009

Weather Data from the Bridge 
Air Temperature: 11.56 Degrees Celsius
Barometric Pressure: 1019 mb
Humidity: 88%

Science and Technology Log 

The dredge
The dredge

Sea Scallops are found in western North Atlantic continental shelf waters from Newfoundland to North Carolina in waters cooler than 20 Degrees Celsius.  Commercial fishing is conducted in waters off the Gulf of Maine, on Georges Bank, and in the Mid-Atlantic offshore region.  Scallops grow rapidly during the first several years of life. Scallops increase 50-80% and quadruple their meat weight between the ages 3 to 5. Sea Scallops become sexually mature at age 2, but scallops younger than 4 contribute little to the overall egg population studies explain. Spawning occurs in late summer and early autumn. Eggs become buoyant after fertilization, and larvae remain in the water column for 4 to 8 weeks before settling to the bottom of the sea floor.

Communication between all the people on board is key to successful sea scallop tows.  Operational procedures must be put in place to ensure all parties know exactly what is expected of them and when.  The bridge has a list of all station numbers which is provided by the Chief Scientist. The bridge announces over radio “10 minutes to station” and the science team lets the bridge know if more time is needed to prepare for the tow.  Every third tow and twice per day a water sample is taken.  These samples are collected before the dredge enters the water.  One technician ensures the inclinometer has been offloaded in time before the dredge is emptied and sorted. The bridge makes sure the tow passes through the middle of the station and retains 75% of the catch. If there is a problem the bridge notifies the science team.  The science team then checks the Knudsen Depth Display to determine the designated wire out or scope that is needed for the station.  The bridge will then come up to speed of about 4 knots. At this time the bridge will announce to begin deployment of the dredge and the winch operator (dredge operator) will set the dredge over the stern.  The winch operator will stream enough cable to reach the “0” mark in the wire and then set the winch metering to zero.

The dredge is then deployed as quickly as the winches can spool which is approximately 60-65 m/sec.  When the winch man has achieved the desired scope and locked the brakes, they should observe the trawl tension.  Start tow begins once this occurs. The scientist will then start the countdown for the 15 minute tow.  The bridge sets the speed over bottom at 3.8 knots.  The scientist in the lab running the event will give several warnings; 1 minute warning, 10 second warning, and then finally haul back.  The winch operator will start hauling back at maximum allowable speed to pull the dredge off the bottom. Once the dredge is on deck, inclinometer should be offloaded, the catch is dumped, and the dredge is secured. The vessel then heads to the next station on the Chief Scientist’s list.  These standard operational procedures discourage any errors that might occur if procedures were not in place. 

After the catch is on the table it is sorted and sampled by using a FSCS computer database.  The Fisheries Scientific Computer System is a collection of integrated electronic devices used to gather and store station and biological data.  FSCS uses tough screen monitors and motion compensation scales with electronic measuring boards.  This helps reduce human error and is a very sophisticated instrument.

Personal Log 

We started out the night shift with two medium sized clean tows.  There was very little sand and clay which helps the sorting process go very quickly.  I personally counted 236 cancer crabs and over 300 sea scallops. The nature of sorting is becoming very familiar to me, and I enjoy learning new things everyday. I spoke with the Chief Scientist Vic Nordahl for a while and discussed various ways of incorporating all the data being collected into the classroom.  Vic is extremely busy but makes time to discuss and plan out activities for the Teachers at Sea to bring back to the classroom.  Lollie Garay is the other Teacher at Sea aboard the Sharp. She is a middle school teacher from Houston, Texas.  We both enjoy learning how research is collected out at sea.  There are 22 people total aboard the Research Vessel Hugh R. Sharp and everyone communicates and is friendly with one another. I really learned a lot about protocol today and now I completely understand how everything runs so smoothly.  I can’t wait to get some sleep.  Fisheries work is not easy!

Lollie Garay, May 12, 2009

NOAA Teacher at Sea
Lollie Garay
Onboard Research Vessel Hugh R. Sharp
May 9-20, 2009 

Mission: Sea scallop survey
Geographical Area: North Atlantic
Date: May 12, 2009

Weather Data from the Bridge  
High pressure ridge building late today until wed
Temperature: 12.22˚ C
True winds: 5KTS Seas: 2-4 ft.

Science and Technology Log 

Wynne readies the CTD.
Wynne readies the CTD.

As soon as our shift began today, the dredge was already on deck so we went straight to work. After several stations I noticed that the scallop and crab count was lower than yesterday. We are working in an area called Elephant Trunk. It is named this because the bathymetry of the sea floor makes it look like one. We have many stations in this Closed area, so we may see an increase in scallop numbers as the shift progresses.

Today I learned about “clappers”. Clappers are scallop shells that have no meat in them. They are sorted out from the rest and counted. I asked Vic Nordahl why they were important and he said that clappers give us an estimation of natural mortality or predation, so they need to keep count of how many are found.

Can you see the Red Hake tucked in the scallop shell?
Can you see the Red Hake tucked in the scallop shell?

Between dredges today, I spoke with Wynne Tucker. Wynne is an oceanographic tech from the University of Delaware and is in her third season on this research vessel. Wynne does a CTD cast every third station. A CTD measures conductivity, temperature, and depth. She takes samples in the water column at depths of 50-70M. Sensors on the CTD send information to a computer where the data is recorded. The CTD also records information about fluorescence, presence of particulates, and oxygen. The data gives us a visual of the water column which is then sent to NOAA (the National Oceanic and Atmospheric Administration) for analysis. When Wynne is not doing CTD casts, she is working at many different jobs Larry Brady and I processed some special samples this evening. We usually measure 5 scallops. Two of the samples had a larval or young Red Hake inside. It lives inside the scallop shell for protection from predators and is tucked on one side of it. This is not a symbiotic relationship, rather more commensalism. I continue to be amazed about the life systems in these waters!

Personal Log 

Elise Olivieri (the teacher from New York) and I have made plans to photograph each other as we work. We work different 12 hour shifts so we do not see each other except during the shift change. And as we have both learned, there is not time for picture taking once the work begins! Unfortunately, our pictures will not be included in our journals at this time, but will be added upon our return!

Look at the teeth in the Goosefish!
Look at the teeth in the Goosefish!

My day ended with two incredible sights. First, as I carried the special samples up to the storage cage, I looked out from the portside at a totally dark scene. You could not make out sky or sea- it all blended into …black! I have never seen anything quite like that before. The second occurred on the starboard side just as I was ending my shift.  Glen Rountree (NOAA Fisheries Service volunteer) told me he had seen a strange red light in the sky and after looking through his binoculars realized it was the Moon. Elise and I grabbed our cameras and went out on deck. It was beautiful! One solitary red light in the middle of black! It was a good way to end the day.

Question of the Day 
What is the difference between symbiosis and commensalism?

Animals Seen Today 
Spider Crab, Sea Squirts, Gulf Stream Flounders, and Bobtail Squid. 

Elise Olivieri, May 11, 2009

NOAA Teacher at Sea
Elise Olivieri
Onboard Research Vessel Hugh R. Sharp 
May 9 – 20, 2009 

Mission: Sea Scallop Survey
Geographical area of cruise: Northwest Atlantic
Date: May 11, 2009

Weather Data from the Bridge 
Air Temperature: 11.83 Degrees Celsius
Barometric Pressure: 1021 mb
Humidity: 83%

The dredge
The dredge

Science and Technology Log 

There were 5 tows today on my  shift. I discovered open areas have far fewer sea scallops in each tow compared to closed areas.  In the open areas each catch was mostly starfish and cancer crabs. In the closed areas there were many sea scallops and various fish collected. Five scallops from each basket collected were processed for weight, length, gonad weight, and meat weight.  The sex of each sea scallop is also identified and all data is entered into the FSCS computer system.  The sea scallop shells were labeled and stored away for further identification.  If the sea scallops rings are clear and visible, lab tests can be done to identify its exact age and health. The Nordic Pride which is a commercial vessel contacted us today. The Nordic is working its way through the areas the Hugh R. Sharp already sampled.  The Sharp will compare tows with the Nordic. The Nordic surveyed with NOAA research vessels before and is taking this opportunity to survey with NOAA again. In the next few days we expect to see the Nordic Pride a few miles away. 

Personal Log 

A scallop opened up—the bright orange thing is its gonad and indicates it’s a female (they’re white in males).
A scallop opened up—the bright orange is its gonad and indicates it’s a female (white in males).

Today I feel much more confident about the tasks at hand. I have a lot of support from the crew and the Watch Chief. I am always up for new assignments and am very confident I can complete them correctly. Around 5:30 AM I saw about 12 white-sided dolphins. It was incredible. They are curious and fast animals.  They swarmed around the Hugh Sharp for a while until they got bored with us and continued on their way. Not long after the dolphins appearance 2 Finback whales surfaced. What an incredible night. I hope to see more dolphins and whales and hopefully get a picture of them.

Animals Seen Today 

Starfish Sea Scallops, Horseshoe Crabs, Hermit crabs, Cusk-eels, White Sided Dolphin, and Finback Whale.

Sea stars and sea scallops!
Sea stars and sea scallops!