John Bilotta, Super Highways of Currents and Super Specimens from the Deep: Days 5 & 6 in the South Atlantic MPAs, June 23, 2014

NOAA Teacher at Sea

John Bilotta

Aboard NOAA ship Nancy Foster

June 17 – 27, 2014

 

Mission: South Atlantic Marine Protected Area Survey

Geographical area of cruise: South Atlantic

Date: June 23, 2014

Weather:

Saturday: Sunny, some clouds,  27 degrees Celsius.  6.0 knot wind from the southwest.  1-2m seas.

Sunday:  Cloudy with morning rain clearing to mostly sunny in the afternoon.  27 degrees Celsius. 13 knot wind from the west. 2-4m seas.

 ** Note: Upon request, note that if you click on any picture it should open full screen so you can the detail much better!

Science and Technology Log

Science Part I.  The superhighway under the surface: sea currents

Until today, most everything including the weather and sea conditions were in our favor.  On the surface it just looks like waves (ok well big waves) but underneath is a superhighway.  On Sunday morning the currents throughout the water column were very strong.  The result was the ROV and its power and fiber optic umbilical cord never reached a true vertical axis.  Even with a 300lbs down-weight and five thrusters the ROV could not get to our desired depth of about 60m.  The current grabbed its hold onto the thin cable and stretched it diagonally far under the ship – a dangerous situation with the propellers.  The skill of ROV pilots Lance and Jason and the crew on the bridge navigated the challenging situation and we eventually retrieved the ROV back to the deck.  I presume if I were back home on Goose Lake in Minnesota, I certainly would have ended up with the anchor rope wrapped around the props in a similar situation.  So, where is the current coming from and how do we measure it aboard the Nancy Foster?

The Gulf Stream.  Note the direction of the current and consider that on Sunday morning we were due east of North Carolina.

The Gulf Stream. Note the direction of the current and consider that on Sunday morning we were due east of North Carolina.

Answer: The Gulf Stream is an intense, warm ocean current in the western North Atlantic Ocean and it moves up the coast from Florida to North Carolina where it then heads east.  You don’t have to be directly in the Gulf Stream to be affected by its force; eddies spin off of it and at times, water will return in the opposite direction on either side of it.  Visit NOAA Education for more on ocean currents.

Answer: Aboard the Nancy Foster, we have a Teledyne ADCP – Acoustic Doppler Current Profiler.  The ADCP measures direction, speed, and depths of the currents between the ship and the ocean floor.  It’s not just one measurement of each; currents may be moving in different directions, at different depths, at different speeds.  This can make a ROV dive challenging.

For example, at 4pm on Sunday near the Snowy Grouper MPA site off the coast of North Carolina, from 0-70 meters in depth the current was coming from the north and at about 2 knots. At 70 meters to the sea floor bottom it was coming from the south at over 2 knots.  Almost completely opposite.

Hydrphone

Hydrophone

Another indication of the strong currents today was the force against the hydrophone. Hydrophones detect acoustic signals in the ocean.  We are using a hydrophone mounted on the side of the Nancy Foster to communicate the location of the ROV to the ship.  The hydrophone has to be lowered and secured to the ship before each dive.  It ended up in my blog today because the current was so strong, three of us could not swing and pull the hydrophone to a vertical position in the water column.  It was a good indicator the currents were much stronger than the past few days.

 

Science Part II.  Discoveries of Dives in the Deep

Snowy Grouper – one primary species we are on the hunt for this mission

Snowy Grouper are one of the species requiring management due to low and threatened stock levels within the federal 200-mile limit of the Atlantic off the coasts of North Carolina, South Carolina, Georgia and east Florida to Key West.  The MPAs help conserve and manage these species.  We were excited to have a few visit the camera lens the past two days.

Pair of Snowy Groupers photographed during one of our dives on Friday, June 20.  Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Pair of Snowy Groupers photographed during one of our dives on Friday, June 20. Sizes are approximately 30-50cm (12-20″).Photo credit: NOAA/UNCW. Mohawk ROV June 2014.

Snowy Grouper photographed during one of our dives on Friday, June 20.   Size is approximately 40-50cm (16-20").  Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Snowy Grouper photographed during one of our dives on Friday, June 20. Size is approximately 40-50cm (16-20″). Photo credit: NOAA/UNCW. Mohawk ROV June 2014.

Snowy Grouper and a Roughtongue Bass photographed during one of our dives on Friday, June 20.   Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Snowy Grouper and a Roughtongue Bass photographed during one of our dives on Friday, June 20. Photo credit: NOAA/UNCW. Mohawk ROV June 2014.

 

Scorpianfish (scorpaenidea)

Scorpianfish (scorpaenidea) photographed during one of dives on Saturday, June 21.  Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Scorpionfish (Scorpaenidea) photographed during one of dives on Saturday, June 21. Photo credit: NOAA/UNCW. Mohawk ROV June 2014.

Eel

Eel photographed during one of our dives on Saturday, June 21.  Saw many of these peeking out of their homes in crevices.  We  were lucky to capture this one in its entirety. Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Eel photographed during one of our dives on Saturday, June 21. Saw many of these peeking out of their homes in crevices. We were lucky to capture this one in its entirety. Photo credit: NOAA/UNCW. Mohawk ROV June 2014.

Invertebrates – (with much thanks to my education from Stephanie Farrington)

Stichopathes, Diodogordia, & Ircinia Campana.  Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Stichopathes, Diodogordia, & Ircinia Campana. Photo credit: NOAA/UNCW. Mohawk ROV June 2014.

Leiodermatium, Nicella, feather duster crinoids, and a Red Porgy in the far background.  Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Leiodermatium, Nicella, feather duster crinoids, and a Red Porgy in the far background. Photo credit: NOAA/UNCW. Mohawk ROV June 2014.

Science Part III.  Rugosity- 

Rugosity is sea- bottom roughness.  Probably one of the terms and skills I will remember most about this experience.  In oceanography, rugosity is determined in addition to the other characteristics I am more accustomed to:  slope, composition, and the cover type (plants, animals, invertebrates.)  It was a little challenging for me to incorporate this into my observations the first few days so thought I would share two of the stark differences.   This compliments my strong knowledge and passion for teaching earth science with Earth AdventureI cannot wait to use this content in future Earth Balloon & Earth Walk Programs!

Rugosity Comparison. Low rogosity on the left; high rogosity on the right.  The low has a flat plain where as the high has rocks, deep crevasses, slopes, and texture.  Snowy Grouper desire high rogosity.  Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Rugosity Comparison. Low rugosity on the left; high rugosity on the right. The low has a flat plain where as the high has rocks, deep crevasses, slopes, and texture. Snowy Grouper desire high rugosity. Photo credit: NOAA/UNCW. Mohawk ROV June 2014.

Science Part III.  Day Shapes

When a ship has restricted ability to move, the ship displays vertically (up to down) from the mast a black ball, diamond, and black ball.  This informs other ships and vessels in the area not to approach the Nancy Foster as we can’t move; the ROV is in the water.  While radio communication is an option, this is a marine standard that signals others to stay away.  If we were deploying the ROV at night, a series of lights communicate the same message.  On Sunday morning, we observed three recreational fishing boats probably a 1.5 kilometers from the ship.  It seemed one was moving towards us likely interested in what was happening aboard the giant Nancy Foster.

Day shapes displayed on the Nancy Foster ship mast;  black ball, diamond, and black ball.  The NF has restricted ability to move; the ROV is in the water.

Day shapes displayed on the Nancy Foster ship mast; black ball, diamond, and black ball. The NF has restricted ability to move; the ROV is in the water.

 

Career highlight:  

Lance Horn and Jason White are the two ROV pilots on board from the University of North Carolina Wilmington.

ROV pilots Lance Horn and Jason White.  On the left, Lance surveys the ocean 'shall we launch the ROV or not?' - or perhaps we is just thinking deep thoughts.  On right, Lance and Jason preparing the cable prior to dive.

ROV pilots Lance Horn and Jason White. On the left, Lance surveys the ocean ‘shall we launch the ROV or not?’ – or perhaps he is just thinking deep thoughts. On right, Lance and Jason preparing the cable prior to dive.

OLYMPUS DIGITAL CAMERA

John & Jason White at the ROV pilot control center.

Personal Log:

A week without television.  While I brought movies on my iPad and there is a lounge equipped with more than nine leather recliners, a widescreen, and amazing surround sound, I haven’t yet sat down long enough to watch anything.  I spend 12 hours a day being a shadow to the researches trying to absorb as much as I can and lending a hand in anything that can help the mission. Most of my evenings have been consumed by researching species we saw during the dives using taxonomy keys and well, just asking a lot of questions.  I go through hundreds of digital pictures from the ROV and try to make sense of the many pages of notes I make as the researchers discuss species, habitats, and characteristics during the dives. While I am using a trust book version as well as the multiple poster versions scattered on the walls in the lab, here is a great online key.

Sunday evening, crew members of the Nancy Foster invited me to join them in a game of Mexican Train – a game using Dominos.  Thanks Tim for including me!  I am going to have to purchase this for cabin weekends up north in Minnesota (when the mosquitoes get so large they will carry you away and we can no longer go out in the evenings).

When the Acoustic Doppler Current Profiler wasn’t working, we just called on King Neptune and his kite to help us gauge the wind speed, direction and the currents.  Wait, I thought he carried a scepter?

King Neptune collage

Tim Olsen, Chief Engineer – 11 years on the Nancy Foster and 30 years as Chief Engineer.

Espresso!  I really was worried about the coffee when coming aboard the Nancy Foster for 12+ days.  What would I do without my Caribou Coffee or Starbucks?  Chief Steward Lito and Second Cook Bob to the rescue with an espresso machine in the mess.  John has been very happy – and very awake.

I made it a little more progress reading The Big Thirst by Charles Fishman.

In 2009, we spent $21 billion on bottled water, more on Poland Spring, FIJI Water, Evian, Aquafina, and Dasani than we spent buying iPhones, iPods, and all the  music and apps we load on them.”  (p337)

Glossary to Enhance Your Mind

Each of my logs is going to have a list of new vocabulary to enhance your knowledge.  I am not going to post the definitions; that might be a future student assignment.

NOAA’s Coral Reef Watch has a great site of definitions at

http://coralreefwatch.noaa.gov/satellite/education/workshop/docs/workbook_definitions.pdf

  • Hydrophone
  • ADCP
  • Rugosity
  • Nautical knot