Lynn Kurth: It’s Shark Week! July 31, 2014

NOAA Teacher at Sea
Lynn M. Kurth
Aboard NOAA Ship Oregon II
July 25 – August 9, 2014

Mission: Shark/Red Snapper Longline Survey
Geographical area of cruise:  Gulf of Mexico and Atlantic
Date:  July 31, 2014

Lat: 30 11.454 N
Long: 80 49.66 W

Weather Data from the Bridge:
Wind: 17 knots
Barometric Pressure:  1014.93 mb
Temperature:  29.9 Degrees Celsius

Science and Technology Log:
It would be easy for me to focus only on the sharks that I’ve  encountered but there is so much more science and natural phenomena to share with you!  I have spent as much time on the bow of the boat as I can in between working on my blogs and my work shift.  There’s no denying it, I LOVE THE BOW OF THE BOAT!!!  When standing in the bow it feels as if you’re flying over the water and the view is splendid.

BOW

My Perch!

From my prized bird’s eye view from the bow I’ve noticed countless areas of water with yellowish clumps of seaweed.  This particular seaweed is called sargassum which is a type of macroalgae found in tropical waters.  Sargassum has tiny chambers which hold air and allow it to float on or near the water’s surface in order to gather light for photosynthesis.  Sargassum can be considered to be a nuisance because it frequently washes up on beaches and smells as it decomposes.  And, in some areas it can become so thick that it reduces the amount of light that other plant species need to grow and thrive. However, the floating clumps of sargassum provide a great habitat for young fish because it offers them food and shelter.

IMG_2826

Sargassum as seen from “my perch”

IMG_2906[1]

Sargassum (notice the small air bladders that it uses to stay afloat)

We have hauled in a variety of sharks and fish over the past few days.  One of the more interesting species was the remora/sharksucker.  The sharksucker attaches itself to rays, sharks, ships, dolphins and sea turtles by latching on with its suction cup like dorsal fin.  When we brought a sharksucker on board the ship it continued to attach itself to the deck of the boat and would even latch on to our arm when we gave it the chance.

IMG_2944[1]

The shark sucker attaches to my arm immediately!

The largest species of sharks that we have hauled in are Sandbar sharks which are one of the largest coastal sharks in the world.  Sandbar sharks have much larger fins compared to their body size which made them attractive to fisherman for sale in the shark fin trade.  Therefore, this species has more protection than some of the other coastal shark species because they have been over harvested in the past due to their large fins.

Thankfully finning is now banned in US waters, however despite the ban sandbar sharks have continued protection due to the fact that like many other species of sharks they are not able to quickly replace numbers lost to high fishing pressure.  Conservationists remain concerned about the future of the Sandbar shark because of this ongoing threat and the fact that they reproduce very few young.

IMG_2928[1]

The first Sandbar shark that I was able to tag

Did you Know?

Sargassum is used in/as:

  • fertilizer for crops
  • food for people
  • medicines
  • insect repellant

Personal Log:
I continue to learn a lot each day and can’t wait to see what the next day of this great adventure brings!  The folks who I’m working with have such interesting tales to share and have been very helpful as I learn the ropes here on the Oregon II.  One of the friendly folks who I’ve been working with is a second year student at the University of Tampa named Kevin Travis.  Kevin volunteered for the survey after a family friend working for NOAA (National Oceanic and Atmospheric Administration) recommended him as a volunteer.  Kevin enjoys his time on the boat because he values meeting new people and knows how beneficial it is to have a broad range of experiences.

 

IMG_2798

Kevin Travis

Carol Schnaiter, Our Second Day at Sea, June 8, 2014

NOAA Teacher at Sea

Carol Schnaiter

Aboard NOAA Ship Oregon II

June 6 – 21, 2014

Mission: SEAMAP Summer Groundfish Survey Gulf of Mexico

June 8, 2014

Science and Technology Log

The Oregon II set sail on June 6th and will reach the first station sometime Monday, June 9th, in the evening.

While on the way there the scientists and crew are preparing the equipment and testing everything to make sure it is ready to use when we arrive. One item tested was the CTD (Conductivity, Temperature, Depth) item. The white round frame protects the delicate, expensive piece of gear that you can see at the bottom of the frame. It allows the equipment to safely travel down without hitting the side of the ship nor the bottom of the ocean. Near the top you see the water sampling tubes.

 

Test run of equipment for titrations

Kim and Andre prepare the CTD.

These tubes are opened up and when they enter the water they are triggered to close and collect water from the depth that the science team has predetermined.

The deck crew uses a crane to help lift it over the side of the ship and then it drops down and collects water. This was a test to make sure everything was working and the CTD was dropped down and collected water in three tubes.

When it came back on deck, Kim Johnson, the Lead Scientist, took three containers of water from one tube. In the lab she used the Winkler Test, to determine the concentration of dissolved oxygen in the water samples. This is called doing titrations and they will be conducted once a day or more often if something goes wrong.

Can you think of why scientists would need to test this? They are trying to determine the level of oxygen in the water to see if it is high or low. If it is low or not there at all, scientist call it a “Dead Zone” because everything needs oxygen to live.

Kim Johnson took the three samples to the lab and added chemicals to test the water. It took some time to conduct the test, but Kim explained everything to Robin Gropp (he is an intern on the ship) and to me.

The results that were done by hand were compared to the results collected by the computer and they matched! The oxygen level in the first test were good. This means the equipment will be ready to use!

Sargassum seaweed

Photo I took from the ship

In the Gulf of Mexico there is a lot of floating seaweed called Sargassum. To learn more about this, go to the attached url. In short, this seaweed is brown and floats on top of the water. It has been used as a herb in some areas. It is interesting to see the brown seaweed floating by the ship.  http://oceanservice.noaa.gov/facts/sargassosea.html

Do you notice how blue the water is? What makes the water look so blue? According to the NOAA Ocean Facts:

  • “The ocean is blue because water absorbs colors in the red part of the light spectrum. Like a filter, this leaves behind colors in the blue part of the light spectrum for us to see.
  • The ocean may also take on green, red, or other hues as light bounces off of floating sediments and particles in the water.
  • Most of the ocean, however, is completely dark. Hardly any light penetrates deeper than 200 meters (656 feet), and no light penetrates deeper than 1,000 meters (3,280 feet ).”

Pretty neat to see how light and color work together!

Personal Log

The water went from murky brown when we left Mississippi due to the boat activity and the rivers that drain down into the Gulf, to this blue that is hard to describe. I am trying to absorb everything that the scientist are discussing and hoping that when we start working everything will make more sense to me! There is so much to learn!

Today we had safety drills; a fire drill (yes, we practice fire drills even on the ship, you can’t call 911 at sea after all) and abandon ship drill. During the abandon ship drill everyone had to bring long pants, long-sleeve shirt, hat, life preserver and immersion suit. Here is a picture of me in my immersion suit. This suit will float and keep me warm if we need to leave the ship.

Wearing my immersion suit!

Wearing my immersion suit! Photo taken by Kim Johnson

Today the ships’ divers went into the water to check the hulll of the ship and the water temperature was 82 degrees. It would have been refreshing to be in the water, but this is a working ship and safety comes first!

The food onboard the ship is delicious and I am sure I will need to walk many steps after this trip. The cooks offer two or three choices at every meal and the snack area is open 24 hours…not a good thing for me!

While on deck I saw my first flying fish today. I thought it was a bird flying close to the water, but it was not! Amazing how far they can fly over the water.

When I look out from the front of the ship, I see water, water, and more water. There are a few oil rigs in the distance and once in a while a ship passes by, but mostly beautiful blue water!

Last night I saw my first sea sunset and since I will be working the midnight to noon shift starting soon, it maybe the last sunset…but I will get to see some AWESOME sunrises!

2014-06-07 Sunset!

Glad I had my camera with me!

Enjoy the sunset!

Mrs. Carol Schnaiter

Spencer Cody: A Floating City of Life, June 6, 2014

NOAA Teacher at Sea

Spencer Cody

Aboard NOAA Ship Pisces

May 27 – June 11, 2014

Geographical Area of Cruise:  Gulf of Mexico
Mission:  SEAMAP Reef Fish Survey
Date:  June 6, 2014
 

Observational Data:

Latitude:  28˚ 18.164 N
Longitude:  92˚ 26.145 W
Air Temp: 27.7˚C (81.9˚F)
Water Temp: 25.5˚C (77.9˚F)
Ocean Depth:  86.1 m (282 ft.)
Relative Humidity:  76%
Wind Speed:  3.9 kts (4.5 mph)
Barometer:  1,011.5 hPa (1,011.5 mbar)

Science and Technology Log:

Sargassum

The floating mats of Sargassum stay afloat due to a series of small air bladders. The floating brown algae provides habitat for a diverse assortment of sea life.

It has been the subject of many ocean myths and legends:  ships becoming trapped in mats of thick, unrelenting seaweed.  Of course, such stories are not true, but the giant mats of seaweed that inspired such fear in sailors hundreds of years ago are very real and are an important component of the Gulf of Mexico’s ecosystem.  The Carthaginians and later the Romans first described a portion of the Atlantic covered in seaweed.  By the 15th century, the Portuguese had named the area the Sargasso Sea after the sargaco rock rose that grew in their water wells back home, which appeared to be similar to the seaweed that grew on the surface of the water in stagnant parts of the Atlantic.  From this comes the genus name Sargassum or as it is commonly referred to along the Gulf coast as gulfweed.

In the Gulf of Mexico, Sargassum can form large mats acres in size.  These large mats of brown algae provide a floating micro-ecosystem in the Gulf.  Sargassum is a food source for many marine organisms.  The mats also serve as a nursery for fish and invertebrate eggs and developing young.  The thick mats provide structure and cover in an ocean environment that may be lacking in the necessary cover to support the development of their young and to keep them hid from potential predators.  Within the mats many types of marine herbivores can be found.  The presence of various herbivores draws in fish to feed on those organisms grazing on the Sargassum.  In fact, some organisms have evolved to look like Sargassum for protection.  One good example of this is a type of frogfish called the sargassum fish.  The sargassum fish can appear to be brown, yellow, or olive depending on whatever color they need to be in order to blend in with the mat of algae.

 

P1020355

Hardhat, life jacket, and work gloves are needed during operations on the weather deck. This is a picture of me placing a float on one of our bandit reel lines.  Credit Kevin Rademacher for the photo.

Personal Log: 

Safety is always a key concern when going on a survey aboard a research vessel such as the Pisces.  This is especially true when a ship is moving and lifting the sensors and equipment to facilitate the science the Pisces is carrying out.  Whenever we are launching or retrieving either the CTD or camera array, protective gear including a hardhat and a life jacket are required.  Whenever we are using a bandit reel, the same equipment is needed as well.  Losing someone overboard is a constant concern.  That is why these precautions are taken whenever operations are occurring on a weather deck and is why we have drills for a man overboard situation to recover someone as fast as possible.

fire hose

Water hoses along with other fire suppression equipment are tested during one of our mandatory fire drills.

As with any building, fire is a serious threat.  On a ship fire is a threat that endangers everyone onboard.  Everyone is given an assignment list on their bunk card.  Each bunk card lists the person’s individual emergency billet assignments for a fire, abandon ship, and a man overboard.  During a fire everyone may end up becoming a part of the fire suppression crew.  People need to report to there assigned stations.  During a drill a mock fire is assessed and contained, and fire suppression equipment is tested out.  The Pisces is designed to contain fire wherever possible by having heavy fireproof doors throughout the ship making it more difficult for fire to spread to other decks.

If an emergency requires the ship to be abandoned, people are required to report to specific life raft stations with life jackets, a survival suit, and other items in order to leave the ship behind.  Life jackets and survival suits are found in our staterooms and throughout the ship.  This is an act of last resort once every attempt to save the ship has been made.  The Pisces is specifically designed to prevent water from entering cabins and corridors by using water tight doors.  This is designed to either prevent taking on water or at least slow the process down enough to abandon ship.

102_0046

Survival suits are both water tight and thermally insulated keeping a person who needs to abandon ship dry and warm. A flotation device is wrapped around the neck, which inflates, keeping the floating person upright in the water.  Credit Adam Pollack for the photo.

Other general precautions must be observed onboard.  Passengers and crew are not allowed to run while onboard for several reasons.  The watertight doors come up from the floor by nearly a foot in addition to many other obstacles.  Places like any of the weather decks or the wet lab where we process fish specimens are often wet and slippery.  Perhaps the most obvious reason one should be careful moving around onboard is the movement of the ship itself.  Large waves and swells can send the ship into an unpredictable motion.  This makes even walking or standing difficult at times and is certainly disorienting.  The Pisces has several features to accommodate this problem.  Handle bars and railings are found throughout the ship in order to stabilize yourself during swells.  Having a handle bar in the shower may seem rather over the top, but when your morning shower starts to resemble a theme park ride that you may have been on before, then you will start to understand why that feature is there.  Cabinet and drawers are self-locking; otherwise, they would constantly slide in and out, which is why we had to tape down many of the drawers in the dry lab that do not have this feature.  When you are on a moving ship, everything takes a little longer to do than on land.  It is just something you have to get used to.

Did You Know?

Even water temperatures as high as 80˚F can be a hypothermia risk if exposed to it for long periods of time.  Water conducts heat away from your body 25 times faster than air of the same temperature.

David Murk: Sun Sets on This Story, May 20, 2014

NOAA Teacher at Sea
Dave Murk
Aboard NOAA Ship Okeanos Explorer
May 7 – 22, 2014.

 

Taken by LTJG Begun

Taken by LTJG Begun

 

Mission: EX 14-03 – Exploration, East Coast Mapping

Geographical Area of Cruise: Atlantic Ocean, U.S. East Coast

Weather Data from the Bridge – Tuesday, May 20

We are at: 36⁰N, 074⁰W

Weather: Few clouds

Visibility: 10 miles

Wind : 12 Knots from 270⁰ (use your 360⁰ compass)

Temperature: Water is 15⁰ Celsius, as is the air.

Our present location can also be found at: (http://shiptracker.noaa.gov/).

Science and Technology :

“We’ll start the first plankton tow around 1:30 or 2,” said Chris Taylor (NOAA Fisheries scientist). Note to selfmake sure I have sunscreen… Then Chris added – “a.m. not p.m.” – new note to self- forget sunscreen, instead buy travel mug at ship store.”   Ever since our plankton tow net was damaged in Florida, Chris has been on his computer and conferring w/ his office, the CO and Derek Sowers, the Expedition Coordinator on how to get another net. Thanks to a lot of people’s flexibility, a net was found. So, like taking an early morning run to 7-11 for a gallon of milk, we took a run into Cape Canaveral and met a charter boat with net and frame.

After searching for samples on the west side of the Gulf Stream, we are now crossing it and going fishing on the east side of this “river” that moves more water per second than all the world’s rivers combined.  (http://oceanservice.noaa.gov/facts/gulfstreamspeed.html )

There are many different ways to do plankton tows, each for a different purpose. An underwater sled is hauled behind the boat called a “Continuous Plankton Recorder” that is like a conveyor belt and does what the name implies. Our method was to use a frame about the size of a hockey net (GO BLACKHAWKS!)  attached to a fine screen net. The tapered net was about 18 feet (6 meters) long and was towed off the side of the ship. The trick is to have the net rise and fall at the surface and down to 60 feet below the surface. Tyler Sheff (Chief Boatswain) found every available weight to attach to the frame and cable that held the net. After a few trials and adding about 200 pounds to the net it worked like a charm.

Picture taken by LTJG Begun

Picture taken by LTJG Begun

By 4 a.m. we were pulling in our first haul. Amongst the Sargassum plants were FISH! Chris and I meticulously washed the net with salt water and then he separated out all the plankton (phytoplankton are the plants and zoo plankton are microscopic animals). He then put each tow’s sample in alcohol for preservation to send to the lab for genetic analysis to see if some of the many fish larvae and eggs were indeed Atlantic Bluefin Tuna.

Going Fishin'!

Going Fishin’!

 

Taken by LTJG Begun

Taken by LTJG Begun

ChrisTaylor washing sargassum

 

Juvenile (and very healthy) pufferfish amongst plankton.

Did you know?

First – find the differences in these two pictures :

George S. Blake - courtesy of Wikipedia

George S. Blake – courtesy of Wikipedia

Okeanos Explorer -photo courtesy of NOAA

Okeanos Explorer -photo courtesy of NOAA

 

We have spent a large amount of time on the Stetson Mesa on the Blake Plateau. Why the name “Blake Plateau”?  Short answer is that it is named after a ship that was named after a man.  The ships above both were ships designed to explore.  The urge to explore and answer questions brought about from those explorations is timeless. NOAA’s origins were during President Thomas Jefferson’s administration. This branch of the country’s uniformed service will continue to evolve. America’s 21st century premier exploration ship, the Okeanos Explorer, is following in the footsteps of the 19th century’s premier exploratory ship – the George S. Blake. That ship was named after the man who saved the Constitution. (and you thought it was Nicholas Cage)   But that’s a story for another time and can be found at:

http://www.history.noaa.gov/ships/blake.html

and :

George S. Blake’s claim to fame

And one loose end – speaking of finding the differences in photos- and kudos to TAS Denise Harrington & Kalina’s dad for finding the difference in my second blog’s mystery photo challenge of the fact that because of rough seas, the rails on the tables in the mess can be raised to prevent food from sliding to the floor.

 

Personal Log 

Everyone’s nose has turned toward home. Some of the crew have been out to sea since February and the missing and euphoria for terra firma and the lap of family is thick.   The same for me with Mollie, Sophie, Izzie and Owen, I miss them tremendously. I’m so anxious to see the best fifth graders ever and my other friends and family. We really don’t need a quote to send it home but Frank Herbert’s words hit the nail on the head.

“There is no real ending. It’s just the place where you stop the story.”

The Okeanos Explorer will get a facelift in North Kingston and head out in August.

I’ll come back for 3 glorious days with my class, forever changed by the privilege of getting a view into other people’s lives.

Saying thank you for this experience is a must.

  • I have to thank NOAA for selecting me for this opportunity. So many others more deserving, but I’m glad someone was asleep at the bridge last winter and allowed me to sneak in.
  • Expedition leader- Derek Sowers for his constant humor and patience at having to rewrite my drafts so as not to incur costly and lengthy litigation and Chris Taylor for not getting mad that I bungled the salinity #’s.
  • Commander Ramos and his Officers Pralgo, Rose, Begun, and Pawlenko for their tolerance with the interns and me constantly seeking permission to enter the bridge. They also shared with me a wealth of knowledge and career opportunities in NOAA for my students.  Gracias to the other crew- TR, Pedro, and James and Head and Second Engineers Vinnie and Nancy, and Chief Boatswain Tyler for their willingess to answer questions and give me time and not complain when i was standing in exactly the wrong spot.
  • The mapping interns, Danielle, Kalina, and Sam for their appetite for hilarity, work and meals.
  • To Vanessa and Jackie for always being quick to laugh or answer my questions.
  • To my mom and sister for taking care of business and Lil’ Sebastian.
  • To Mrs. Steinman, Mrs. York, Mrs. Helminski, Dr. Scarpino, Char, Diane and my students for allowing me this time away.
  • And most of all to Mollie, Sophie, Izzie , Owen and Jacqui for going full sail during the windiest month of the year.

I miss my class

 

Emilisa Saunders: Sargassum City, May 25, 2013

NOAA Teacher at Sea
Emilisa Saunders
Aboard NOAA Ship Oregon II
May 14 2013 – May 30, 2013

Mission: SEAMAP Spring Plankton Survey
Geographical Area of Cruise: Gulf of Mexico
Date: Saturday, May 25 2013

Weather Data from the Bridge: Wind speed 15.7 knots; Surface water temperature 25.40 degrees Celsius; Air temperature 26.3 degrees Celsius; Relative humidity 85%; Barometric pressure 1017.3 mb

Holding the line

Holding the line as the MOCNESS goes in.

Science and Technology Log:

For the last couple of days, as the ship moves toward Texas, we’ve encountered lots of sargassum.  Sargassum is a type of macroalgae, or seaweed.  Some types of sargassum are benthic; as you remember, this means they live and grow on the bottom of the ocean.  Out here on the Oregon II, we’re seeing  planktonic  sargassum – the drifting kind – and lots of it.  This sargassum drifts around the surface of the Gulf, thanks to the tiny, air-filled float pods all throughout its leaves.  When pieces of sargassum meet up, they become entangled and start to drift together.  Before long, vast blankets or mats of sargassum form.  We’ve seen some impressive mats in the past few days, some almost as long as the ship itself!

Sargassum

Blanket of sargassum

Sargassum

Sargassum City

These mats create a bit of a challenge when it comes to dropping the nets.  The Bongo Net and the Subsurface Neuston stay below the surface, so typically they don’t catch much sargassum, unless some slips in just as the nets enter or leave the water.  However, the regular Neuston net stays on the surface for the duration of the drop.  This is a perfect opportunity for sargassum to slide right in.  Ideally, we want this net submerged for 10 minutes, but when the sargassum is thick, we have to cut this down to five.  Even then, we’ve had as much as 30 gallons of sargassum show up in one drop.

Handful of sargassum

You can find so much life in one handful of sargassum

When we get sargassum, we have to spray it off with sea water and sort through it to collect any plankton that are tangled in the leaves.  This is quite a bit of work when we get a lot of sargassum, but I have come to really enjoy it because of the amazing little creatures that we find.  A piece of sargassum can be like a little city, teeming with life, with a large variety of species.  Many of these are big enough that you can easily see them with the naked eye.  These sargassum communities contain everything that their residents need to survive, including a food web and plenty of shelter.  It’s also a great lesson in adaptation.  The animals that live in sargassum blend in so well that we have to look very carefully to find them.  Most of them are either transparent, or they exactly match the color of the seaweed, and there are tons of nooks and crannies for hiding.

Here are just a few of the delightful little animals that we’ve found in the sargassum:

Sargassum fish:  These little guys are pretty amazing.  They look fairly harmless, but they are actually ambush predators.  They have two small foot-like fins on their undersides, which they use to move around and perch in one place in the seaweed.  When a smaller animal comes close, the sargassum fish open their mouths wide and suck the unsuspecting prey in, just like a vacuum cleaner.  They’ll even eat other, smaller sargassum fish!  Some of them even have a piece of flesh called an esca that dangles from their head, which they use as a lure to attract prey.

Sargassum fish

A large sargassum fish from a Neuston net. See the little pectoral fin “feet?”

Small sargassum fish

This is the typical size for the sargassum fish that we’ve found (about one inch).

Sargassum swimming crabs:  These tiny crabs are capable of walking on land, but they are also excellent swimmers, thanks to their paddle-shaped back legs.  They are also ambush predators; they stalk smaller sargassum dwellers and give their prey a nasty jab to catch and kill them.

Sargassum swimming crab

Sargassum swimming crab. See its paddle-shaped hind feet?

Sargassum nudibranch:  Nudibranchs are a type of mollusk that have a shell in their juvenile stage, but lose the shell as they mature.  Sargassum nudibranchs are so well camouflaged that we sometimes feel their soft bodies in the sargassum before we see them.  They stay mainly in the sargassum, but if they happen to get washed out, they can flex their bodies back and forth to swim back to the seaweed.  It’s really quite amazing to watch!

Sargassum nudibranch

A little sargassum nudibranch. Looks like a blob here, but they are very graceful swimmers!

Challenge Yourself:  Hey there, Nature Exchange traders!  Can you think of an animal that blends into its environment in the Mojave Desert?  What about a creature that is an ambush predator?  Draw a picture or write down some facts and bring it in to the Nature Exchange for bonus points.  Be sure to tell them that Emmi sent you!

Personal Log:

Yesterday, I saw some evidence of the impact that we have on our oceans.  While sorting through some sargassum, I found a plastic ribbon with a balloon fragment attached wrapped around a piece of sargassum.  We were hundreds of miles from shore when I found it.  It was sad for me to see a piece of human trash tangled around this little sargassum community.  I know it’s still pretty common for people to organize balloon releases to honor a special person or occasion, but I wonder if there might be another way to do so.  Maybe instead of a balloon release, we can plant some trees, release ladybugs in a garden, organize a clean-up day at a local trail or park, etc.  All of these things could impact the environment in a positive way.  Just something to think about.

Trash in the Sargassum

A piece of balloon and ribbon tangled up in the sargassum.

Now that I have adjusted to working the midnight to noon shift on the Oregon II, I am finding that I really enjoy it.  In the past few days as we’ve approached a full moon, I’ve had the pleasure of seeing the moon reflect on the water, making it look like liquid mercury.  For the first several days of this cruise, the sky was so dark that we could only see as far as the ship’s lights would allow, and maybe the distant lights from an oil rig or two.  It was the darkest dark I’ve ever seen.  Now, the moon lights up the sky enough that we can actually see the horizon.  Then, a few hours into the shift, we get to watch the sun rise, which is spectacular every time.  I’ve taken so many pictures of the sunrise, I can’t choose a favorite!

Sunrise

Sunrise on the Gulf of Mexico

We’re in the last few days of the survey, and we’ve taken the turn back east now.  Until next time, be sure to track the Oregon II here: NOAA Ship Tracker

Emilisa Saunders: We Do Science Here! May 21, 2013

NOAA Teacher at Sea
Emilisa Saunders
Aboard NOAA Ship Oregon II
May 14, 2013 to May 30, 2013

Mission: SEAMAP Spring Plankton Survey
Geographical Area of Cruise: Gulf of Mexico
Date: Tuesday, May 21, 2013

Weather Data: Wind speed: 19.02 knots; Surface water temp.: 24.7 degrees C; Air temp: 25.7 degrees C: Relative humidity: 91%; Barometric pressure: 1007.4 mb.

Science and Technology Log:

Plankton jar

A nice jar of plankton from an early morning tow.

Getting just one small jar of plankton back to the lab on shore requires a lot of work. First comes all of the net-dropping work I described in the last post, which is a team effort from everyone on board, just to bring the samples onto the ship. From there, we have to take several more steps in order to preserve the sample.

Step 1: After the nets are brought back onto the bow of the ship, we hose them down very thoroughly using a seawater hose, in order to wash any clinging plankton down into the cod end.

Here I am, hosing down the Bongo nets. Photo by Alonzo Hamilton

Here I am, hosing down the Bongo nets. Photo by Alonzo Hamilton

Then we detach the cod end and bring it to the stern of the ship, where a prep station is set up. The prep table is stocked with funnels, sieves, seawater hoses and jars, and the chemicals that we need to preserve the plankton that we collect – formalin and ethyl alcohol.

Prep station

Prep Station

Step 2: We carefully pour the specimen through the fine-mesh sieve to catch the plankton and drain out the water. It’s amazing to see what’s in the sample. This, of course, includes lots of tiny plankton; all together, they look kind of like sludge, until you look very closely to see the individual creatures. Lots of the fish larvae have tiny, bright blue eyes. (On a funny note, my breakfast granola has started to look like plankton after a week of collecting!)

Plankton in a sieve

Plankton in a sieve

Getting to see what makes it into each sample is kind of like a treasure hunt.  Sometimes bigger organisms like fish, sea jellies, eel larvae, pyrosomes and snails end up in the sample. Quite frequently there is sargassum, which is a type of floating seaweed that does a great job of hiding small creatures. Take a look at the pictures at the end of the post to see some of these!

Step 3: Next, the sample goes into a jar. We use seawater from a hose to push the sample to one side of the sieve, and let the water drain out. Then, we put a funnel in a clean, dry jar and use a squeeze bottle of ethyl alcohol to wash the sample into the jar through the funnel. We top the jar off with ethyl alcohol, which draws the moisture out of the bodies of the plankton so that they don’t decompose or rot in the jar. The sample from the left bongo – just this sample and no other – is preserved in a mixture of formalin and seawater because it goes through different testing than the other samples do once back on shore. We top all of the bottles with a lid and label them: R for Right Bongo, L for Left Bongo, RN for Regular Neuston, and SN for Subsurface Neuston.

plankton

Plankton Ready to go in the Jar

Step 4: After the jars are filled, Alonzo and I bring them back to the wet lab, where Glenn attaches labels to the tops of the jars, and puts a matching label inside of each jar as well. The label inside the jar is there in case the label on the lid falls off one day.  These labels provide detailed information about where and when the sample was collected, and from which net.

Plankton jar label

A label on the jar gives detailed information about the plankton inside

Step 5: After 24 hours, it’s time to do transfers. Transfers involve emptying the samples from the jars through a sieve again, and putting them back into the jars with fresh ethyl alcohol. We do this because the alcohol draws water out of the bodies of the plankton, so the alcohol becomes watered-down in the first 24 hours and is not as effective. Adding fresh alcohol keeps the sample from going bad before it can be studied. Once the transfers are done, we draw a line through the label to show that the sample is well-preserved and ready to be boxed up and brought back to the lab!

Jars of Plankton

Boxes full of plankton samples ready to be brought back to shore

Personal Log:

I have the great fortune of working with some intelligent, knowledgeable and friendly scientists here on the Oregon II.  Jana is my bunkmate and one of the scientists; she pointed out to me that just about every animal you can imagine that lives in the ocean started off as plankton. As a result, while the scientists who work with plankton do each have a specialty or specific type of plankton that they focus on, at the same time, they have to know a little bit about many types of organisms and the basics of all of their life cycle stages. In a way I can relate to this as a Naturalist; I need to have a bit of knowledge about many plants, animals, minerals and fossils from the Mojave Desert and beyond, because chances are, my smart and curious Nature Exchange traders will eventually bring them all in for me to see and identify!

Team Plankton

The science team, from left to right: Andy, Alonzo, Glenn, me, Jana and Brittany.  Photo by Brian Adornado

I want to take a few moments to introduce all of the members of the science team. I thought I’d have fun with it and use my own version of the Pivot questionnaire:

Meet Alonzo Hamilton

Alonzo Hamilton

Alonzo Hamilton, scientist, testing water samples in the Wet Lab.

Alonzo is a Research Fisheries Biologist; he has been working with NOAA since 1984.  Alonzo earned an Associate’s degree in Science, a Bachelor’s degree in biology, and a Master’s degree in Biology with an emphasis in Marine Science.  Alonzo was born in Los Angeles and grew up in Mississippi.

What is your favorite word? Data

What is your least favorite word? No or can’t.  There’s always a solution; you just have to keep trying until you find it.

What excites you about doing science? Discovery

What do you dislike about doing science? The financial side of it.

What is your favorite plankton? Tripod fish plankton

What sound or noise on the ship do you love? The main engines

What sound or noise do you hate? The alarm bells

What profession other than your own would you like to attempt? An electrician.  There are some neat jobs in that field.

What profession would you not like to do? Lawyer.  There’s a risk of becoming too jaded.

If you could talk to any marine creature, which one would it be, and what would you ask it? A coelacanth.  What is your life history?  What’s a typical day of feeding like?  Is there a hierarchy of fish, and what is it?  What determines who gets to eat first?

********************

Meet Glenn Zapfe

Zapfe

Glenn Zapfe, scientist, contemplating the plankton samples.

Glenn is a Research Fisheries Biologist; he worked with NOAA as a contractor for 8 years before being hired on as a Federal employee three years ago.  Glenn earned a Bachelor’s degree in Marine Life, and a Master’s degree in Coastal Science.  He grew up in the Chicago area.

What is your favorite word? Quirky

What is your least favorite word? Nostalgia

What excites you about doing science? Going to sea and seeing organisms in their natural environment.

What do you dislike about doing science? Statistics.  They can sometimes be manipulated to fit individual needs.

What is your favorite plankton? Amphipods

What sound or noise on the ship do you love? The hum of the engine

What sound or noise do you hate? The emergency alarm bells

What profession other than your own would you like to attempt? Glenn grew up wanting to be a cartoonist – but he can’t draw.

What profession would you not like to do? Lawyer

If you could talk to any marine creature, which one would it be, and what would you ask it? A cuttlefish, to ask about how they are able to change the color of their skin.

*************************

Meet Jana Herrmann

Jana Herrmann

Jana Hermann, scientist and volunteer, aboard the Oregon II

Jana is a Fisheries Technician with the Gulf Coast Research Lab, and is on this cruise as a volunteer.  She has worked with the Gulf Coast Research Lab since February 2013, but worked within the local Marine Sciences field for 8 years before that.   Jana earned a Bachelor’s degree in Marine Biology and Environmental biology, and will be starting graduate school in the fall of 2013.  Jana grew up in Tennessee.

What is your favorite word? Pandemonium

What is your least favorite word? Anything derogatory

What excites you about doing science? Just when you think you have it all figured out, something new comes up.

What do you dislike about doing science? Dealing with bureaucracy and having to jump through hoops to get the work done.

What is your favorite plankton? Janthina

What sound or noise on the ship do you love? This is Jana’s first cruise on the Oregon II, so she doesn’t have a favorite noise yet.

What sound or noise do you hate? Any noises that keep her from sleeping.

What profession other than your own would you like to attempt? A baker or pastry chef.

What profession would you not like to do? Any mundane office job with no creative outlet.

If you could talk to any marine creature, which one would it be, and what would you ask it? She would ask a blue whale if it is sad about the state of the environment, and she would ask it if mermaids are real.

 ******************

Meet Brittany Palm

Brittany Palm

Brittany Palm, scientist, aboard the Oregon II

Brittany is a Research Fisheries Biologist; she has worked with NOAA for 4 years.  Brittany earned a Bachelor’s degree in Marine Biology, and is currently working on her Master’s degree in Marine Science.  Brittany grew up on Long Island.

What is your favorite word? Midnattsol – the Norwegian word for “midnight sun”

What is your least favorite word? Editing.  That’s not a fun word to hear when you hand in drafts of your thesis!

What excites you about doing science?  Constantly learning.  All of the fields of science, from chemistry to physics to biology, are interwoven.  You have to know a little bit about all of them.

What do you dislike about doing science?  Also, constantly learning!  Every time you think you know something, a new paper comes out.

What is your favorite plankton? Glaucus

What sound or noise on the ship do you love?  The ship’s sound signal, which is a deep, booming horn that ships use to communicate with each other.

What sound or noise do you hate? When she’s trying to sleep in rough seas and something in one of the drawers is rolling back and forth.  She has to get up and go through all of the drawers and cabinets to try to find it and make it stop!

What profession other than your own would you like to attempt? Opening a dance studio.  Brittany competed on dance teams throughout high school and college.

What profession would you not like to do? Anything in the health field, because she empathizes more with animals than people.

If you could talk to any marine creature, which one would it be, and what would you ask it?  The Croaker fish.  Brittany is studying Croaker diets and has dissected over a thousand stomachs.  She would like to be able to just ask them what they eat!

*********************

Meet Andy Millett

Andy Millett

Andy Millett, scientist, in the Dry Lab of the Oregon II.

Andy is a Research Fisheries Biologist, and is the Field Party Chief for this cruise.  He has worked with NOAA for 3 years.  He has a bachelor’s degree in Marine Biology and a Master’s degree in Marine Science.  Andy grew up in Massachusetts.

What is your favorite word? Parallel

What is your least favorite word? Silly

What excites you about doing science?  When all of the data comes together and tells you a story.

What do you dislike about doing science?  Having to be so organized and meticulous, since he is typically pretty disorganized.

What is your favorite plankton? Pelagia

What sound or noise on the ship do you love?  Spinning the flowmeters on the nets.  It sounds like a card in the spokes of a bicycle.

What sound or noise do you hate?  Alarms of any kind, whether they are emergency alarms or alarm clocks.

What profession other than your own would you like to attempt? Video game designer

What profession would you not like to do? Anything in retail or customer service

If you could talk to any marine creature, which one would it be, and what would you ask it?  A giant squid, because we don’t know much about them.  Andy would ask what it eats, where it lives, and other basic questions about its life.

******************

Challenge Yourself:  Hey, Nature Exchange traders!  The scientists shared their favorite plankton types; all of them are truly fascinating in their own way.  Research one of these animals and write down a few facts.  Or, pick your favorite Mojave Desert animal and write about that.  Bring your research into the Nature Exchange for bonus points.  Tell them Emmi sent you!

Don’t forget to track the Oregon II here: NOAA Ship Tracker

Animals We’ve Seen (and one plant):

Bristletooth Conger Eel Larva

Bristletooth Conger Eel Larva.  See its tiny little face on the left?

Sargassum

Sargassum is a floating seaweed that often ends up in our Neuston nets. We record its volume and throw it back.

Sea Jelly

Sea jelly

Sargassum fish

Sargassum fish – they hide in the sargassum!

Porpita jelly

Porpita jelly

Myctophid

Myctophids are shiny silver and black, and quite pretty!

Flying fish

A juvenile flying fish. I’ve seen some adults gliding through the air as well!

Filefish

Alonzo holding a juvenile filefish

Bhavna Rawal: Net Tow, Dive, Buoy Maintenance and Data Collection, August 8, 2012

NOAA Teacher at sea
Bhavna Rawal
On Board the R/V Walton Smith
Aug 6 – 10, 2012

Mission: Bimonthly Regional Survey, South Florida
Geographic area: Gulf of Mexico
Date: August 8, 2012

.
Weather Data from the Bridge:
Station: 21.5
Time: 1.43 GMT
Longitude: 21 23 933
Latitude: 24 29 057
Wind direction: East of South east
Wind speed: 18 knots
Sea wave height: 2-3 ft
Clouds: partial

Science and Technology Log:

Yesterday, I learned about the CTD and the vast ocean life. Today I learned about a new testing called net tow, and how it is necessary to do, and how it is done.

What is Net Tow? The scientist team in the ship uses a net to collect sargassum (a type of sea weed) which is towed alongside the ship at the surface of the predetermined station.

A net to collect sargassum (a type of sea weed)

A net to collect sargassum (a type of sea weed)

How did we perform the task? We dropped the net which is made of nylon mess, 335 microns which collects zooplanktons in the ocean. We left this net in the ocean for 30 minutes to float on the surface of the ocean and collects samples. During this time the ship drives in large circles. After 30 minutes, we (the science team) took the net out of the ocean. We separated sargassum species, sea weeds and other animals from the net. We washed them with water, then classified and measured the volume of it by water displacement. Once we measure the volume, we threw them back into the ocean.

Dropped the net which collects zooplanktons in the ocean

Dropped the net which collects zooplanktons in the ocean

Types of sargassum

Types of sargassum

Measured the volume of it by water displacement

Measured the volume of it by water displacement

Threw them back into the ocean

Threw them back into the ocean

Record data

Types of Sargassum and Plankton:  There are two types of sargassum; ones that float, and the other ones that attach themselves to the bottom of the ocean. There are two types of floating sargassum and many types attached to bottom of the ocean.

Also there are two types of plankton; Zooplankton and phytoplankton. As you all know phytoplankton are single celled organisms, or plants that make their own food (photosynthesis). They are the main pillar of the food chain. It can be collected in a coastal area where there is shallow and cloudy water along the coastal side. The phytoplankton net is small compared to the zooplankton and is about 64 microns (small mess).

Zooplanktons are more complex than phytoplankton, one level higher in their food chain. They are larva, fish, crabs etc. they eat the phytoplankton. The net that is made to catch zooplankton, is about 335 microns. Today, we used the net to collect zooplankton.

Why Net Tow is necessary: Net tow provides information about habitats because tons of animals live in the sargassum. It is a free floating ecosystem. Scientists are interested in the abundance of sargassum and the different kinds of animals, such as larva, fishes, crabs, etc. Many scientists are interested in the zooplankton community structures too.

Dive, Buoy and other data collection equipments: Two science team members prepared for diving; which means that they wore scuba masks, oxygen tanks and other equipment. They took a little boat out from the ship and went to the buoy station. They took the whole buoyancy and other data collection instruments with them. The two instruments were the Acoustic Doppler (ADCP) and the micro cat which was attached to the buoy. The micro cat measures salinity and temperature on profile of currents, and the ADCP measures currents of the ocean. Both instruments collect many data over the period. The reason for bringing them back, is to recover data in a Miami lab and the maintenance of the buoy.

The micro cat measures salinity and temperature on profile of currents

The micro cat measures salinity and temperature on profile of currents

Acoustic Doppler (ADCP) measures currents of the ocean

Acoustic Doppler (ADCP) measures currents of the ocean

Personal Log:

My first day on the ship was very exciting and nerve-racking at the same time. I had to take medicine to prevent me from being seasick. This medicine made me drowsy, which helped me to go to sleep throughout the night. The small bunk bed and the noise from the moving ship did not matter to me. I woke up in the morning, and got ready with my favorite ‘I love science’ t-shirt on. I took breakfast and immediately went to meet with my science team to help them out for the CTD and net tow stations. Today, I felt  like a pro compared to yesterday. It was a bit confusing during the first day, but it was very easy today.

I started helping lowering the CTD in the ocean. Now I know when to use the lines for the CTD, water sampling for different kinds of testing, how to net tow and do the sargassum classification. I even know how to record the data.

When we have a station call from the bridge, then we work as a team and perform our daily CTD, water testing or net tow. But during the free time, we play card games and talk. Today was fun and definitely action packed. Two science team members dove into the ocean and brought the buoy back. I also saw a fire drill.

Nelson (the chief scientist) took me to see TGF or called the flow through station which is attached inside the bottom of the ship. This instrument measures temperature, salinity, chlorophyll, CDOM etc. Nelson explained the importance of this machine. I was very surprised by the precise measurements of this machine. Several hours later, I went to the captain’s chamber, also called the bridge. I learned how to steer the boat, and I was very excited and more than happy to sit on the captain’s chair and steer.

Excited to sit on the captain’s chair and steer the R/V Walton Smith

We have also seen groups of dolphins chasing our ship and making a show for us. We also saw flying fishes. In the evening, around 8 o’clock after dinner, I saw the beautiful colorful sunset from the ship. I took many videos and pictures and I can’t wait to process it and see my pictures.

Saw groups of dolphins ahead of ship

Around 10 o’clock in the night, it was net tow time again. We caught about 65 moon jelly fishes in the net and measured their volumes. Nelson also deployed a drifter in the ocean.

See moon jelly fish in my hand

Today was very fun and a great learning opportunity for me, and don’t forget the dolphins, they really made my day too!

Question of the Day:
How do you measure volume of solid (sea grass)?

New Word:
Sargassum

Something to Think About:
Why scientists use different instruments such as CTD as well as TFG to measuretemperature, salinity, chlorophyll, CDOM etc?

Challenge Yourself:
Why abundance of sargassum, types of animals and data collection is important in ocean?

Did you Know?
The two instruments were the Acoustic Doppler (ADCP) and the micro cat which was attached to the buoy. The micro cat measures salinity and temperature on profile of currents, which means it measures at surface of the ocean, middle of the ocean and bottom layer of the ocean too.

Animals Seen Today:
Five groups of dolphins
Seven flying fishes
Sixty five big moon jelly fishes
Two big crabs