Kathy Schroeder: Sharks, Sharks, and More Sharks! September 23, 2019

NOAA Teacher at Sea

Kathy Schroeder

Aboard NOAA Ship Oregon II

September 15-October 2, 2019


Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: 9/23/19

Weather Data from the Bridge (at beginning of log)

Latitude: 28.07
Longitude: 93.27.45
Temperature: 84°F
Wind Speeds: ESE 13 mph
large swells


Science and Technology Log

9/21/19-We left Galveston, TX late in the afternoon once the backup parts arrived.  After a few changes because of boat traffic near us, were able to get to station 1 around 21:00 (9:00 pm).  We baited the 100 hooks with Atlantic Mackerel.   Minutes later the computers were up and running logging information as the high flyer and the 100 hooks on 1 mile of 4mm 1000# test monofilament line were placed in the Gulf of Mexico for 60 minutes.  My job on this station was to enter the information from each hook into the computer when it was released and also when it was brought onboard.   When the hook is brought onboard they would let me know the status:  fish on hook, whole bait, damaged bait, or no bait.  Our first night was a huge success.  We had a total of 28 catches on our one deployed longline.                                                                                                                                       

Kathy and red snapper
NOAA TAS Kathy Schroeder with a red snapper caught on the Oregon II

We caught 1 bull shark (Carcharhinus leucas), 2 tiger sharks (Galeocerdo cuvier), 14 sharp nose sharks (Rhizoprionodon terraenovae), 2 black tip sharks (Carcharhinus limbatus), 7 black nose sharks (Carcharhinus acronotus), and 2 red snappers (Lutjanus campechanus).  There were also 3 shark suckers (remoras) that came along for the ride. 

sandbar shark
Sandbar shark – no tag. Oregon II

I was lucky to be asked by the Chief Scientist Kristin to tag the large tiger shark that was in the cradle.  It took me about 3 tries but it eventually went in right at the bottom of his dorsal fin.  He was on hook #79 and was 2300mm total length.  What a great way to start our first day of fishing.  After a nice warm, but “rolling” shower I made it to bed around 1:00 am.  The boat was really rocking and I could hear things rolling around in cabinets.  I think I finally fell asleep around 3:00.

9/22- The night shift works from midnight to noon doing exactly what we do during the day.  They were able to complete two stations last night.  They caught some tilefish (Lopholatilus chamaeleonticeps) and a couple sandbar sharks (Carcharhinus plumbeus).  My shift consists of Kristin, Christian, Taniya, and Ryan: we begin our daily shifts at noon and end around midnight.  The ship arrived at our next location right at noon so the night shift had already prepared our baits for us.  We didn’t have a lot on this station but we did get a Gulf smooth hound shark (Mustelus sinusmexicanus), 2 king snake eels (Ophichthus rex), and a red snapper that weighed 7.2 kg (15.87 lbs).  We completed a second station around 4:00 pm where our best catch was a sandbar shark.  Due to the swells, we couldn’t use the crane for the shark basket so Kristin tried to tag her from the starboard side of the ship. 

We were able to complete a third station tonight at 8:45 pm.  My job this time was in charge of data recording.  When a “fish  is on,” the following is written down: hook number, mortality status, genus and species, precaudal measurement, fork measurement, and total length measurement, weight, sex, stage, samples taken, and tag number/comments.  We had total of 13 Mustelus sinusmexicanus; common name Gulf smooth-hound shark.  The females are ovoviviparous, meaning the embryos feed solely on the yolk but still develop inside the mother, before being born.  The sharks caught tonight ranged in length from 765mm to 1291mm.  There were 10 females and 3 male, and all of the males were of mature status.  We took a small tissue sample from all but two of the sharks, which are used for genetic testing.  Three of the larger sharks were tagged with rototags.  (Those are the orange tags you see in the picture of the dorsal fin below).

measuring a shark
Taking the three measurements
king snake eel
King snake eel caught on a longline.


Personal Log

I spend most of my downtime between stations in the science dry lab.  I have my laptop to work on my blog and there are 5 computers and a TV with Direct TV. We were watching Top Gun as we were waiting for our first station.  I tried to watch the finale of Big Brother Sunday night but it was on just as we had to leave to pull in our longline.  So I still don’t know who won. 🙂 I slept good last night until something started beeping in my room around 4:00 am.  It finally stopped around 6:30.  They went and checked out my desk/safe where the sound was coming from and there was nothing.  Guess I’m hearing things 🙂 

Shout out! – Today’s shout out goes to the Sturgeon Family – Ben and Dillon I hope you are enjoying all the pictures – love Aunt Kathy

Kristin Hennessy-McDonald: Flotsam and Jetsam, September 23, 2018

NOAA Teacher at Sea

Kristin Hennessy-McDonald

Aboard NOAA Ship Oregon II

September 15 – 30, 2018

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: September 23, 2018

 

Weather Data from the Bridge

Latitude: 3006.07N

Longitude: 08741.32W

Sea Wave Height: 1m

Wind Speed: 8.64 knots

Wind Direction: 199.7

Visibility: 7 nautical miles

Air Temperature: 27.6

Sky: 95% cloud cover

 

Science and Technology Log

Over the past few days, we’ve fished a mix of station depths, so I’ve gotten to see a number of new species as we’ve moved out into deeper waters.

At a C station, which is a station at depths between 183 and 366 meters, we caught a Mako Shark (Isurus oxyrinchus).  This catch was so unexpected that a number of crew members ventured out to the well deck to snap a picture.  She was a beautiful juvenile between 1-2 years old.

Kristin and Mako Shark
Our current NOAA Teacher at Sea, Kristin Hennessy-McDonald is all smiles when grabbing this quick picture before releasing the female Mako shark. [Photo Credit: Ensign Chelsea Parrish, NOAA]

juvenile female mako shark
Juvenile Female Mako Shark

I also saw my first kingsnake eel, a long eel with a set of very sharp teeth.  On a later station, we caught a juvenile that we were able to bring on deck and examine.  We also caught a Warsaw grouper (Hyporthodus nigritus), which had parasites on its gills and in its fins.  Gregg Lawrence, a member of the night shift on loan from Texas Parks and Wildlife Coastal Fisheries unit, and I removed the otoliths and took samples of the parasites.

Warsaw Grouper
Measuring the Warsaw Grouper [Photo Credit: Gregg Lawrence]
 

 

image3
Dissecting a Warsaw Grouper

We had one catch that brought in 20 Red Snappers.  Red Snappers are brought on deck, and a number of samples are taken from each one of them for ongoing assessment of the Red Snapper population.  In addition to the otoliths, which allow the scientists to determine the age of the fish, we also take samples of the gonads, the muscle, the fins, and the stomach.  These allow the scientists to perform reproductive and genetic tests and determine what the snappers ate.  While 4 members of the science team onboard collected samples, Caroline Collatos, the volunteer on the day shift, and I insured that the samples were properly packaged and tagged.  Everyone working together allowed the process to run smoothly.

On the latest B station, which was about 110 meters deep, we caught a number of species, some of which I had not gotten to see yet.  In addition to Gulf smoothound sharks (Mustelus sinusmexicanus), we caught a Scalloped hammerhead shark (Sphyrna lewini) and a Sandbar shark (Carcharhinus plumbeus) that we had to cradle due to their size.  The Sandbar shark was a bit feisty, but I got the chance to tag her before we released her.

Gulf smoothound shark
Gulf smoothound shark (Mustelus sinusmexicanus)

Scalloped hammerhead
Scalloped hammerhead shark (Sphyrna lewini)

Sandbar shark
Sandbar shark (Carcharhinus plumbeus)

We work in the rain.  Thankfully, they had some extra rain gear for me to put on, so that I would not get drenched while we were setting the line.  For the most part, the rainstorms have been sprinkles, but we did have one downpour while we were going toward a station.

rain gear
We work in the rain, so I was loaned some rain gear.

 

Personal Log

Between setting lines, I have been busy checking up on my studenats’ work back in Memphis.  One of the great things about having a one-to-one school is that the students are able to do their work on Microsoft Teams and turn it in for me to grade it thousands of miles away.  I have loved seeing their how they are doing, and answering questions while they are working, because I know that they are learning about the cell cycle while I am out at sea learning about sharks.

One of the things that has really surprised me over the past week is how much my hands hurt.  It was unexpected, but it makes sense, given how much of the work requires good grip strength.  From insuring that the sharks are handled properly to clipping numbers on the gangions to removing circle hooks from fish on the lines, much of the work on the science team requires much more thumb strength than I had thought about.  I know my students have commented that their hands hurt after taking notes in my class, so I thought they would get a kick out of the fact that the work on the ship has made my hands hurt.

Did You Know?

Sharks are able to sense electrical fields generated by their prey through a network of sensory organs known as ampullae of Lorenzini.  These special pores are filled with a conductive jelly composed primarily of proteins, which send the signals to nerve fibers at the base of the pore.

Quote of the Day

Remove the predators, and the whole ecosystem begins to crash like a house of cards. As the sharks disappear, the predator prey balance dramatically shifts, and the health of our oceans declines.

~Brian Skerry

Question of the Day

How many bones do sharks have in their bodies?

Stephen Kade: Shark On! August 29, 2018

NOAA Teacher at Sea

Stephen Kade

Aboard NOAA Ship Oregon II

July 23 – August 10, 2018

 

Mission: Long Line Shark/ Red Snapper survey Leg 1

Geographic Area: Southeastern U.S. coast

Date: August 29, 2018

 

Scientific Journal

Shark On!” was the shout from the first person that sees a shark hooked to the long line that was being hauled up from the floor of the ocean. I heard this phrase often during the first leg of the long line Red Snapper/ shark survey on the NOAA ship Oregon II. We began fishing in the Northwest Atlantic Ocean, off the coast of West Palm Beach, Florida. We traveled north to Cape Hatteras, North Carolina, and back south to Port Canaveral over 12 days this summer.

hauling in the long line
Oregon II scientific crew, Chief Boatswain, and skilled fishermen hauling in the long line.

During our long line deployments each day, we were able to catch, measure, tag and photograph many sharks, before returning them to the ocean quickly and safely. During these surveys, we caught the species of sharks listed below, in addition to other interesting fish from the ocean.  This blog has scientific information about each shark, and photographs taken by myself and other scientists on board the Oregon II. The following information on sharks, in addition to scientific data about hundreds of other marine wildlife can be found online at the NOAA Fisheries site: http://fisheries.noaa.gov.

Great Hammerhead Shark-  Sphyrna mokarran  Hammerhead sharks are recognized by their long, strange hammer-like heads which are called cephalofoils. Great hammerheads are the largest species of hammerheads, and can grow to a length of 20 feet. The great hammerhead can be distinguished from other hammerheads as they have a much taller dorsal fin than other hammerheads.

Great hammerhead
Great Hammerhead in cradle for data collection and return to sea.

When moving through the ocean, they swing their broad heads from side to side and this motion provides them a much wider field of vision than other sharks. It provides them an all around view of their environment as their eyes are far apart at either end of the long hammers. They have only two small blind spots, in front of the snout, and behind the cephalofoil. Their wide heads also have many tiny pores, called ampullae of Lorenzini. They can sense tiny electric currents generated by fish or other prey in distress from far distances.

 

The great hammerhead are found in tropical and temperate waters worldwide, and inhabiting coastal areas in and around the continental shelf. They usually are solitary swimmers, and they eat prey ranging from crustaceans and squid, to a variety of bony fish, smaller sharks and stingrays. The great hammerhead can bear litters of up to 55 pups every two years.

Nurse Shark- Ginglymostoma cirratum Nurse sharks are bottom dwellers. They spend their life in shallow water, near the sandy bottom, and their orangish- pinkish color and rough skin helps them camouflage them. At night they come out to hunt. Nurse sharks have short, serrated teeth that can eat through crustaceans such as crabs, urchins, shrimp, and lobsters. They also eat fish, squid, and stingrays. They have two feelers, or barbels, which hang from either side of their mouth. They use their barbels to search for prey in the sand. Their average adult size is 7.5- 9 feet in length and they weigh between 160-230 lbs. Adult females reach a larger size than the males at 7- 8.5 feet long and can weigh from 200-267 lbs.

Nurse Shark
Nurse Shark- Ginglymostoma cirratum

Nurse sharks are common in the coastal tropical waters of the Atlantic and also in the eastern Pacific Ocean. This species is locally very common in shallow waters throughout the Caribbean, south Florida to the Florida Keys. Large juveniles and adults are usually found around deeper reefs and rocky areas at depths of 10-250 feet during the daytime and migrate into shallower waters of less than 70 feet deep after dark.

 

Juveniles up to 6 feet are generally found around shallow coral reefs, grass flats or mangrove islands in shallow water. They often lie in groups of forty on the ocean floor or under rock ledges. Nurse sharks show a preference for a certain resting site, and will repeatedly go back to to the same caves for shelter or rest after leaving the area to feed.

Tiger Shark- Galeocerdo cuvier  Adult Tiger sharks average between 10 -14 feet in length and weigh up to 1,400 lbs. The largest sharks can grow to 20 feet and weigh nearly 2,000 lbs. They mature between 5 and 10 years, and their life span is 30 years or more. Tiger sharks are named for the brown stripes and patches they have on their sides when they are young. As they get older, they stripes eventually fade away.

 

They will eat almost anything they come across, and have been referred to as the “garbage cans of the sea”. Their habitat ranges from shallow coastal waters when they are young, to deep waters over 1,500 feet deep. They swim in shallow waters to hunt lobster, squid, fish, sea turtles, birds, and smaller sharks.

tiger shark
10.5 foot Tiger shark caught and returned by NOAA ship Oregon II. photo by Will Tilley

They migrate with the seasons to follow prey and to give birth to young. They swim in cool waters in the summer, and in fall and winter they migrate to warm tropical waters. Their young grow in eggs inside the mother’s body and after 13 months the sharks hatch. The mother gives birth to a litter of 10 – 80 pups. Their current status is currently Near Threatened.

 

Stephen Kade
TAS 2018 Stephen Kade returning sharpnose shark to ocean.

Sharpnose Shark- Rhizoprionodon terraenovae Atlantic sharpnose sharks are small for sharks and have a streamlined body, and get their name from their long, pointy snout. They are several different shades of gray and have a white underside.  Atlantic sharpnose sharks can grow to up to 32 inches in length. Atlantic sharpnose sharks have been observed to live up to 18 years. Females mature at around 2 years old in the Atlantic when they reach approximately 24 inches in length. Atlantic sharpnose sharks are commonly found in the western Atlantic from New Brunswick, Canada, right through the Gulf of Mexico. They are commonly caught in U.S. coastal waters from Virginia around to Texas.

Sharpnose shark
Sharpnose shark

Atlantic sharpnose sharks eat small fish, including menhaden, eels, silversides, wrasses, jacks, toadfish, and filefish. The lower and upper jaws of an Atlantic sharpnose shark have 24 or 25 rows of triangular teeth. Atlantic sharpnose sharks mate annually between mid-May and mid-July in inshore waters, and after mating, they migrate offshore to deeper waters.  They also eat worms, shrimp, crabs, and mollusks.

 

Sandbar Shark- Carcharhinus plumbeus.  The most distinctive feature of this stocky, grey shark is its huge pectoral fins, and long dorsal fin that increases its stability while swimming. Females can grow between 6 – 8.5 feet, and males grow up to 6ft. Its body color can vary from a blue to a light brown grey with a pale white underside. The sandbar shark lives in coastal waters, living in water that is 20 to 200 feet deep. Rarely is its large dorsal fin seen above the water’s surface, as the sandbars prefer to remain near the bottom. It commonly lives in harbors, lagoons, muddy and sandy bays, and river mouths, but never moves into freshwater. The sandbar shark lives in warm and tropical waters in various parts of the world including in the Western Atlantic, from Massachusetts down to southern Brazil.

Sandbar shark
Sandbar shark tagged, measured, weighed and ready to go back after photo.

The sandbar shark spends the majority of its time near the ocean floor, where it looks continuously for prey, such as small fish, mollusks, and various crustaceans. Their main diet consists largely of fish. Sandbar sharks give birth to between 1 and 14 pups in each litter. The size of the litter depends on the size of the mother, with large females giving birth to larger litters. Pregnancy is estimated to last between 8- 12 months. Females move near shore to shallow nursery areas to give birth. The females leave coastal areas after giving birth, while the young remain in the nursery grounds until winter, when they move into warmer and deeper water.

 

 

Fun Fact- Remoras, or shark suckers, live in tropical oceans around the world. They have a rigid oval- shaped sucker pad on top of their head that it uses to attach itself to sharks and rays. It is symbiotic relationship where both animals gain something from their temporary union. Remoras mouths are at the top front of the body so while attached to a shark’s body, they do their host a favor by nibbling off skin parasites. They can also eat scraps of leftover food the shark leaves behind while they also enjoy a free ride. The shark gains a day at the spa for a body scrub, and can rid itself of parasites in a way it couldn’t have before!

Personal Journal

It was certainly an unforgettable experience being able to work with the scientific and fishing team for this shark survey. The opportunity to see and handle these sharks up close for two weeks has informed me of so many interesting things about these wonderful and vital members of the ocean.  I can now take this information and share it first hand with students in my classroom, and members of my community. I also want to work to bring a positive awareness to these vital members of the ocean food web so they can thrive well into the future. As an artist, this trip has been invaluable for me, as now I’ve seen the how colorful and varied sharks are and other various anatomy details you just can’t see in books or television. This new awareness will help to make my future paintings more accurate than before.

Anne Krauss: All at Sea (But Learning Quickly), August 14, 2018

NOAA Teacher at Sea

Anne Krauss

Aboard NOAA Ship Oregon II

August 12 – August 25, 2018

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Western North Atlantic Ocean/Gulf of Mexico

Date: August 14, 2018

Weather Data from the Bridge

Conditions at 0030

Latitude: 25° 22.6’ N

Longitude: 84° 03.6’ W

Barometric Pressure: 1017.4 mb

Air Temperature: 28.8° C

Wind Speed: 9.1 knots

 

Science and Technology Log

For the first few days, we steamed, or traveled, to our first station. Each station is a research location where several activities will take place:

  1. Preparing and setting out the longline gear.
  2. Letting the line soak (fish on the bottom) for one hour while other tasks are performed.
  3. Deploying a CTD (Conductivity Temperature Salinity) to collect samples and information about the water.
  4. Hauling back the longline gear.
  5. Recording data from the longline set and haulback.
  6. Collecting measurements and samples from anything caught on the longline.
  7. Depending on what is caught: attaching tags and releasing the animal back into the water (sharks) or collecting requested samples for further study (bony fish).

This is a very simplified summary of the various activities, and I’ll explore some of the steps in further detail in other posts.

During these operations and in between tasks, scientists and crew are very busy. As I watched and participated, the highly organized, well-coordinated flurry of activity on deck was an incredible demonstration of verbs (action words): clean, rinse, prepare, gather, tie, hook, set, haul, calibrate, operate, hoist, deploy, retrieve, cut, measure, weigh, tag, count, record, release, communicate

Last night, I witnessed and participated in my first longline station. I baited 100 hooks with mackerel. I recorded set and haulback data on the computer as the gear was deployed (set) and hauled back in (haulback). I attached 100 numbered tags to the longline gangions (attached to the hooks). I recorded measurements and other data about SHARKS!

We caught, measured, sampled, tagged, and released four sharks last night: a silky, smooth-hound, sandbar, and tiger shark! I’ve never seen any of these species, or types, in person. Seeing the first shark burst onto the deck was a moment I’ll remember for the rest of my life!

A sandbar shark being measured with a measuring tape in a rope sling.
A sandbar shark being measured on the cradle or sling used for measuring larger, heavier sharks.

Sometimes, we didn’t catch any fish, but we did bring up a small piece of coral, brittle sea stars, and a crinoid. All three are marine animals, so I was excited to see them in person.

In between stations, there was some downtime to prepare for the next one. One of my favorite moments was watching the GoPro camera footage from the CTD. A camera is attached to the device as it sinks down through the depths to the bottom and back up to the surface again. The camera allowed me to visually ‘dive along’ as it collected water samples and data about the water temperature, salinity, pressure, and other information. Even though I watch ocean documentaries frequently and am used to seeing underwater footage on a screen, this was extremely exciting because the intriguing ecosystem on the screen was just below my feet!

Personal Log

Perhaps it is sea lore and superstition, but so far, the journey has been peppered with fortuitous omens. One of my ocean-loving former students and her Disney-bound family just happened to be on my flight to Orlando. Yes, it’s a small world after all. Her work samples were featured in our published case study, reminding me of the importance and impact of ocean literacy education. Very early the next morning, NASA’s promising Parker Solar Probe thunderously left the Sunshine State, hurtling toward the sun. New York’s state motto: Excelsior. Later that morning, a rainbow appeared shortly before the Oregon II left Port Canaveral. Although an old weather proverb states: “rainbow in the morning gives you fair warning,” we’ve had very pleasant weather, and I chose to interpret it as a reassuring sign. Sailing on the Oregon II as a Teacher at Sea is certainly my pot of gold at the end of the rainbow.

 

According to seafaring superstition, women on board, whistling, and bananas are supposed to be bad luck on a boat. On the Oregon II, folks do not seem to put much stock into these old beliefs since I’ve encountered all three aboard the ship and still feel very lucky to be here.

A fruit basket and a bunch of bananas
The rest of the fruit seems to think that bananas are bad luck…the crew doesn’t!

In another small-world coincidence, two of the volunteers on the Second Leg of the Shark/Red Snapper Longline Survey recently graduated from SUNY Potsdam, my undergrad alma mater. What drew us from the North Country of New York to Southern waters? A collective love of sharks.

These small-world coincidences seemed indicate that I was on the right path. Out on the ocean, however, the watery world seems anything but small. The blue vastness and unseen depths fill me with excitement and curiosity, and I cannot wait to learn more. For the next two weeks, the Oregon II will be my floating classroom. Instead of teaching, I am here to learn.

As a fourth generation teacher, education is in my blood. One great-grandmother taught in a one-room schoolhouse in 1894. My other great-grandmother was also a teacher and a Potsdam alumna (Class of 1892). As we traverse the Atlantic Ocean, I wonder what my academic ancestors would think of their great-granddaughter following in their footsteps…whilst studying sharks and snapper at sea. Salt water equally runs through my veins.

 

This slideshow requires JavaScript.

As we steamed, or traveled, to our first station (research location), I wondered about the unfamiliar waters and equipment around me. Before I could indulge my questions about marine life, however, I first needed to focus on the mundane: daily life at sea. In many ways, I was reminded of the first day at a new school. It was junior high all over again, minus the braces and bad bangs. At first, those long-forgotten new school worries resurfaced: What if I get lost? Where is my locker (or, in this case, my stateroom)? What if I forget my schedule? What if I have to sit by myself at lunch? To combat these thoughts, I draw upon a variety of previous travel and life experiences: studying abroad, backpacking, camping, meeting new friends, volunteering, working with a marine science colleague, and sailing on other vessels. Combined, those experiences provided me with the skills to successfully navigate this one.

The Atlantic Ocean and a high flyer buoy
The Atlantic Ocean and a high flyer buoy

I’ve spent the first few days getting acquainted with the layout, personnel, safety rules, and routines of the Oregon II. My students wondered about some of the same aspects of life at sea.

Where do I sleep on the ship?

The staterooms remind me of a floating college dorm, only much quieter. I’m sharing a small stateroom with Kristin Hannan, a scientist. We are on opposite work shifts, so one of us is sleeping while the other is working. I am assigned to the day shift (noon to midnight) while she is assigned to the night shift (midnight to noon). Inside the stateroom, we have berths (similar to bunk beds), a sink, and large metal storage cabinets that are used like a closet or dresser. Space is limited on the ship, so it must be used efficiently and sometimes creatively.

A view of water, a pier, and a pulley
The view as we leave Port Canaveral.

Do you know anyone else on the ship?

No, but I’m meeting lots of new people. They have been welcoming, offering interesting information and helpful reminders and pointers. Those first-day-of-school jitters are fading quickly. I didn’t get lost, but I got a bit turned around at first, trying to figure out which deck I needed for the galley (like the ship’s cafeteria), where we eat our meals. And I only had to eat lunch by myself once. On the first day at sea, I made a PB & J sandwich. Eating that, I felt like a kid again (only without my lunchbox), but it was nice to be at a point in my life where I’m confident enough to be all by myself and feel a bit out of place. That’s how you learn and grow. Everything is new to me right now, but with time, it’ll start to make sense. Pretty soon, the equipment and unfamiliar routines will start to feel more familiar. Hopefully, the sharks will like me.

Did You Know?

The Gulf of Mexico is home to approximately 200 orcas (scientific name: Orcinus orca, also known as killer whales).

Recommended Reading 

As an introduction to biographies in grades 4 and up, I recommend Women and the Sea and Ruth! written and illustrated by Richard J. King, with additional text by Elysa R. Engelman. Ruth and her stuffed shark explore a maritime history museum, learning about the important roles women have held at sea. Inspired by female sea captains, explorers, and naturalists, Ruth imagines herself in the photographs and paintings, part of an actual exhibit in the Mystic Seaport Museum in Mystic, Connecticut. For more information about the intrepid women featured in the book, brief biographical information is provided at the end. Ruth would no doubt be impressed with the seafaring women (and men) aboard NOAA Ship Oregon II.

A children's book about women at sea
Women and the Sea and Ruth! written and illustrated by Richard J. King, with additional text by Elysa R. Engelman; published by Mystic Seaport (2004)

Denise Harrington: A Shark A Day, September 29, 2016

NOAA Teacher at Sea

Denise Harrington

Aboard NOAA Ship Oregon II

September 16-30, 2016

Mission: Longline Survey

Geographic Area: Gulf of Mexico

Date: Thursday, September 29, 2016

Science Log

The cruise is coming to a close. Looking back at my three experiences with NOAA, hydrography (mapping the ocean), fisheries lab work, or shark and snapper surveys,  I couldn’t decide which was my favorite.  Like the facets of a diamond, each experience gave me another perspective on our one world ocean.

Just like different geographic locations and work, each shark species give me a lens through which I can appreciate the mysteries of the ocean.  Every day, I held, measured, kissed, or released a different species of shark. In the Gulf of Mexico, there are 44 shark species frequently caught.  Fortunately, I saw quite a few, and will share some, in the order in which I met them.

Our first night fishing, we caught many Atlantic sharpnose sharks (Rhizoprionodon terraenovae).  They are named for their long flat snout and sharp nose. It seemed whenever we caught one, a bunch more followed. They were abundant and kept us busy.

p1080163
Paul Felts, Fisheries Biologist, records measurements while Kevin Rademacher, Fisheries Biologist, wrestles and measures the shark. Matt Ellis, NOAA Science Writer, took amazing pictures throughout the cruise.

Day two, we caught a deep water Cuban dogfish (Squalus cubensis).  

 

p1090143
The Cuban dogfish’s huge iridescent eyes were entrancing.

On September 2o, we almost caught a bull shark (Carcharhinus leucas).  We brought the cradle down, but the shark thrashed its way off, refusing to be studied. The bull shark, along with the tiger shark, are “one of the top three sharks implicated in unprovoked fatal attacks around the world.”

Within a couple days of catching the Cuban dogfish, we caught another shark with iridescent eyes. It turns out this similar looking shark was not a Cuban dogfish, but a rare roughskin spiny dogfish (Cirrhigaleus asper).  

p1080318
Dr. Trey Driggers, Field Party Chief, and prolific shark researcher, surprised us all when he reported this was the first roughskin spiny dogfish he had ever caught!

The beautifully mottled, sleek, immature tiger shark (Galeocerdo cuvier) caught on September 23 had remarkable skin patterns that apparently fade as the shark ages. Adult sharks can get as large as 18 feet and 2,000 pounds.  Along with the bull shark, it is one of the top three species implicated in unprovoked, fatal attacks worldwide.

September 24 we caught a fascinating scalloped hammerhead (Sphyrna lewini).  The flat extended head of this hammerhead is wavy, giving it the “scalloped” part of its name.  Its populations in the Gulf have drastically decreased since 1981, making it a species of concern.

 

img_0430
Here, Kevin measures one of several scalloped hammerhead sharks we caught on Leg IV of the survey.

We also caught a silky shark (Carcharhinus falciformis). Like other Carcharhinus sharks, the silky shark has a sharp “Carchar,” nose “hinus” (Greek derivation), but also has a silky appearance due to its closely spaced dermal denticles.

img_2294
I instantly felt the silky was the most beautiful shark I’d seen. Photo: Matt Ellis/NOAA Fisheries

 

We  saw two of the three smoothhound species present in the Gulf.  On September 25, we caught a Gulf smoothhound, (Mustelus sinusmexicanus), a species named less than 20 years ago. Much is left to learn about the ecology and biology of this recently discovered shark.

img_2575
Getting ready to weigh the gulf smoothhound, Kevin Rademacher, Fisheries Biologist, stops for a photo.                                                      Photo: Matt Ellis/NOAA Fisheries

Then, I watched the night crew catch, measure and tag a dusky shark (Carcharhinus obscurus).

OLYMPUS DIGITAL CAMERA
Photo: NOAA Fisheries

On September 26, we caught a sandbar shark (Carcharhinus plumbeus).  Despite its size,  the sandbar shark poses little threat to man.

img_2889
The sandbar shark’s large fin to body ratio and size make them a prime target for commercial fisheries. Photo: Matt Ellis/NOAA Fisheries

Due to over-fishing, sandbar shark populations are said to have dropped by as much as 2/3 between the 1970’s and the 1990’s. They are now making a comeback, whether it be from fishing regulations, or the decreased populations of larger sharks feeding on juvenile sandbar sharks.

img_3128
This sandbar shark attacked a blacknose shark that had taken our bait. Photo: Matt Ellis/NOAA Fisheries

We tagged many sharks during my two weeks on the Oregon II.  If you never catch one of those sharks again, the tag doesn’t mean anything.  But this week, we also caught a previously tagged sandbar shark!  Recapturing a wild marine animal is phenomenal.  You can learn about its migration patterns, statistically estimate population sizes, and learn much more. The many years of NOAA’s work with this species in particular demonstrates that thoughtful, long term management of a species works.

 

On September 27, we almost caught a nurse shark (Ginglymostoma cirratum). The barbels coming from its mouth reminded me of a catfish or exotic man with a mustache.

Today, September 29, was our last day of fishing, a bittersweet day for me.  That nurse shark that got away, or more likely, another one like it, came up in our cradle.

Every day we caught sharks, including a few other species not mentioned here.  Only once our line came back without a fish.  The diverse characteristics and adaptations that allow each of these species to survive in a challenging marine environment inspire biologists as they try to categorize and understand the species they research.   While catching so many different species of sharks gives me hope, many members of the crew reminisce about times gone by when fish were more abundant than they are now.

Personal Log

I am the kind of person who always struggles to return from an adventure.  I have learned so much, I don’t want to leave.  Yet I know my class at South Prairie is waiting patiently for my return. I hope to share these many marine species  with my class so that we all may view every moment with curiosity and amazement.

 

 

 

 

Barney Peterson: What Are We Catching? August 28, 2016

NOAA Teacher at Sea

Barney Peterson

Aboard NOAA Ship Oregon II

August 13 – 28, 2016

Mission: Long Line Survey

Geographic Area: Gulf of Mexico

Date: Sunday, August 28, 2016

Weather Data is not available for this post because I am writing from the Biloxi/Gulfport Airport.

WHAT ARE WE CATCHING?

This is a long-line survey.  That means we go to an assigned GPS point, deploy hi-flyer buoys, add weights to hold the line down, add 100 baited hooks, leave it in place for an hour, and retrieve everything.

mackerel-bait-fish
Mackerel is used to bait the hooks.

As the equipment is pulled in we identify, measure and record everything we catch.  Sometimes, like in the case of a really large, feisty shark that struggles enough to straighten or break a hook or the lines, we try to identify and record the one that got away.  We tag each shark so that it can be identified if it is ever caught again.  We tally each hook as it is deployed and retrieved, and the computer records a GPS position for each retrieval so scientists can form a picture of how the catch was distributed along the section we were fishing.  The target catch for this particular survey was listed as sharks and red snapper.  The reality is that we caught a much wider variety of marine life.

We list our catch in two categories: Bony fish, and Sharks.  The major difference is in the skeletons.  Bony fish have just that: a skeleton made of hard bone like a salmon or halibut.  Sharks, on the other hand, have a cartilaginous skeleton, rigid fins, and 5 to 7 gill openings on each side.  Sharks have multiple rows of sharp teeth arranged around both upper and lower jaws.  Since they have no bones, those teeth are embedded in the gums and are easily dislodged.  This is not a problem because they are easily replaced as well.  There are other wonderful differences that separate sharks from bony fish.

Bony Fish we caught:

The most common of the bony fish that we caught were Red Groupers (Epinephelus morio), distinguished by of their brownish to red-orange color, large eyes and very large mouths.  Their dorsal fins, especially, have pointed spikes.

chrissy-with-enormous-grouper
Chrissy holding an enormous grouper

We also caught Black Sea Bass (Centropristus striata) which resemble the groupers in that they also have large mouths and prominent eyes.

sea-bass
Black Sea Bass

A third fish that resembles these two is the Speckled Hind (Epinephelus drummondhayi).  It has a broad body, large mouth and undershot jaw giving the face a different look.  Yes, we did catch several Red Snapper (Lutjanus campechanus), although not as many as I expected.  Snappers are a brighter color than the Red Groupers, and have a more triangular shaped head, large mouth and prominent canine teeth.

red-snapper
Red Snapper

The most exciting bony fish we caught was barracuda (Sphyraena barracuda).  We caught several of these and each time I was impressed with their sleek shape and very sharp teeth!

barracuda
TAS Barney Peterson with a barracuda

Most of the bony fish we caught were in fairly deep water.

 

Sharks:

We were fortunate to catch a variety of sharks ranging from fairly small to impressively big!

The most commonly caught were Sandbar Sharks (Carcharhinus plumbeus): large, dark-gray to brown on top and white on the bottom.

sandbar-shark
Sandbar Shark

Unless you really know your sharks, it is difficult for the amateur to distinguish between some of the various types.  Experts look at color, nose shape, fin shape and placement, and distinguishing characteristics like the hammer-shaped head of the Great Hammerhead (Sphyrna mokarran) and Scalloped Hammerhead (Sphyrna lewini) sharks that were caught on this trip.

great-hammerhead
Great Hammerhead Shark

The beautifully patterned coloring of the Tiger Shark (Galeocerdo cuvier) is fairly easy to recognize and so is the yellowish cast to the sides of the Lemon Shark (Negaprion brevirostris).

Other sharks we caught were Black-nose (Carcharhinus acrontus), Atlantic Sharp-nosed (Rhizoprionodon terraenovae), Nurse Shark (Ginglymostoma cirratum), Blacktip (Carcharhinus limbatus) and Bull Sharks (Carcharhinus leucus).

Several of the sharks we caught were large, very close to 3 meters long, very heavy and very strong!  Small sharks and bony fish were brought aboard on the hooks to be measured against a scaled board on the deck then weighed by holding them up on a spring scale before tagging and releasing them.  Any shark larger than about 1.5 meters was usually heavy and strong enough that it was guided into a net cradle that was lifted by crane to deck level where it could be measured, weighed and tagged with the least possibility of harm to either the shark or the crew members.  Large powerful sharks do not feel the force of gravity when in the water, but once out of it, the power of their weight works against them so getting them back into the water quickly is important.  Large powerful sharks are also pretty upset about being caught and use their strength to thrash around trying to escape.  The power in a swat from a shark tail or the abrasion from their rough skin can be painful and unpleasant for those handling them.

PERSONAL LOG

The Night Sky

I am standing alone on the well deck; my head is buzzing with the melodies of the Eagles and England Dan.  A warm breeze brushes over me as I tune out the hum of the ship’s engines and focus on the rhythm of the bow waves rushing past below me.  It is dark! Dark enough and clear enough that I can see stars above me from horizon to horizon: the soft cloudy glow of the Milky Way, the distinctive patterns of familiar favorites like the Big Dipper and the Little Dipper with its signature bright point, the North Star.  Cassiopeia appears as a huge “W” and even the tiny cluster of the “Seven Sisters” is distinct in the black bowl of the night sky over the Gulf of Mexico.  The longer I look the more stars I see.

This is one of the first really cloudless nights of this cruise so far.  Mike Conway, a member of the deck crew came looking for me to be sure I didn’t miss out on an opportunity to witness this amazingly beautiful show.  As I first exited the dry lab and stumbled toward the bow all I could pick out were three faint stars in the bowl of the Big Dipper.  The longer I looked, the more my eyes grew accustomed to the dark, and the more spectacular the show became.  Soon there were too many stars for me to pick out any but the most familiar constellations.

As a child I spent many summer nighttime hours on a blanket in our yard as my father patiently guided my eyes toward constellation after constellation, telling me the myths that explained each one. Many years have passed since then.  I have gotten busy seeing other sights and hearing other stories.  I had not thought about those long ago summer nights for many years.  Tonight, looking up in wonder, I felt very close to Pop again and to those great times we shared.

 

Kathleen Gibson, Hammerheads on the Line, August 4, 2015

NOAA Teacher at Sea
Kathleen Gibson
Aboard NOAA Ship Oregon II
July 25 – August 8, 2015

Mission: Shark Longline Survey
Geographic Area of the Cruise: Atlantic Ocean off the Florida and Carolina Coast
Date:  Aug 4, 2015

Coordinates:
LAT   3323.870N
LONG    07736.658 W

Great Hammerhead Photo Credit: Ian Davenport
Great Hammerhead (Photo Credit: Ian Davenport)

Weather Data from the Bridge:
Wind speed (knots): 28
Sea Temp (deg C): 29.2
Air Temp (deg C):  24.2

Early this morning the night shift caught and cradled a great hammerhead shark (Sphyrna mokarran). This is a first for this cruise leg. I’m sure that just saying “Hammerhead” conjures an image of a shark with an unusual head projection (cephalofoil), but did you know that there are at least 8 distinct Hammerhead species?  Thus far in the cruise we have caught 4 scalloped hammerheads (Sphyrna lewini), one of which I was fortunate to tag.

Science and Technology Log

All eight species of hammerhead sharks have cephalofoils with differences noted in shape, size, and eye placement, to name a few. Research indicates that this structure acts as a hydrofoil or rudder, increasing the shark’s agility. In addition, the structure contains a high concentration of specialized electro sensory organs (Ampullae of Lorenzini) that help the shark detect electric signals of other organisms nearby.  The eye placement at each end of the cephalofoil allows hammerhead sharks to have essentially a panoramic view with only a slight movement of their head – quite handy when hunting or avoiding other predators.

 

Comparison of Scalloped and Great Hammerhead Sharks

Comparison of Scalloped and Great Hammerhead Sharks
Image Credit: NOAA Fisheries Shark Species

Great hammerhead sharks are highly migratory. They are found worldwide in tropical latitudes, and at various depths. There are no  geographically Distinct Population Segments (DPS) identified. The great hammerhead, as its name implies, is the largest of the group and average size estimates of mature individuals varies between 10-14 ft in length with a weight approximately 500 lb.; the largest recorded was 20 ft in length. The one we caught was ll ft. in length.

Great Hammerhead Photo Credit: Ian Davenport
Great Hammerhead
Photo Credit: Ian Davenport


Great Hammerhead
Great Hammerhead

As with most shark species, the numbers declined rapidly between 1975 and 1995 due to the fin fishing industry and focused sport fishing often fueled by fear and misinformation. One has to wonder what the average length was before that time.

Scalloped Hammerhead sharks are the most common hammerhead species. Their habitat overlaps that of the great hammerhead, though they are more often found in slightly shallower waters. In contrast to the great hammerhead, scalloped hammerheads are only semi-migratory, and scientists have identified Distinct Population Segments around the world.  This is important information when evaluating population size and determining which groups, if any, need regulatory protection.

Weighing a small Scalloped Hammerhead Photo Credit: Ken Wilkinson
Weighing a small scalloped hammerhead
Photo Credit: Ken Wilkinson

 

Scalloped Hammerhead on deck. Photo: Erica Nuss
Scalloped hammerhead on deck
Photo: Ian Davenport

The average life expectancy for both species is approximately 30 years.  Males tend to become sexually mature before females, at smaller weights; females mature between 7-10 years (sources vary). In my last log I discussed shark reproduction – Oviparous vs. Viviparous. (egg laying vs. live birth).  All hammerheads are viviparous placental sharks but reproductive patterns do differ. Great hammerheads bear young every two years, typically having 20-40 pups. A great hammerhead recently caught by a fisherman in Florida was found to be pregnant with 33 pups. Scalloped have slightly fewer pups in each brood, but can reproduce more frequently.

 

Career Spotlight – NOAA Corps

Setting and retrieving the Longline requires coordination between Deck Operations and the Bridge.  Up until now I’ve highlighted those on deck. Let’s learn a bit about two NOAA officers on the Bridge.

The NOAA Corps is one of the 7 Uniformed Services of the United States and all members are officers. The Corps’ charge is to support the scientific mission of NOAA, operating and navigating NOAA ships and airplanes.  Applicants for the Corps must have earned Bachelor’s degree and many have graduate degrees.  A science degree is not required but a significant number of science units must have been completed.  It’s not unusual for Corps recruits to have done post-baccalaureate studies to complete the required science coursework.  New recruits go through Basic Officer’s Training at the Coast Guard Academy in New London, Connecticut.

Lt. Lecia Salerno – Executive Officer (XO) – NOAA 

Lt. Lecia Salerno at the Helm
Lt. Lecia Salerno at the  helm or the Oregon II during Longline retrieval.

Lt. Salerno is a 10-year veteran of the NOAA Corps and has significant experience with ship operations.  She was recently assigned to the Oregon II as the XO. This is Lecia’s first assignment as an XO and she reports directly to Captain Dave Nelson. In addition to her Bridge responsibilities, she manages personnel issues, ship accounts and expenditures. During these first few weeks on her new ship, Lt. Salerno is on watch for split shifts – day and night – and is quickly becoming familiar with the nuances of the Oregon II.  This ship is the oldest (and much loved) ship in NOAA’s fleet, having been built in 1964, which can make it a challenge to pilot. It’s no small task to maneuver a 170-foot vessel up to a small highflyer and a float, and continue moving the ship along the Longline throughout retrieval.

Lecia has a strong academic background in science  and in the liberal arts and initially considered joining another branch of the military after college.  Her  assignments with  NOAA incorporate her varied interests and expertise, which she feels makes her job that much more rewarding.

Lt. Laura Dwyer on the Bridge of the Oregon II
Lt. Laura Dwyer on the Bridge of the Oregon II

Lt. Laura Dwyer- Junior Officer – NOAA Corps

Laura has always had a love for the ocean, but did not initially look in that direction for a career.  She first earned a degree in International Business from James Madison University.  Her interest in marine life took her back to the sea and she spent a number of years as a scuba diving instructor in the U.S. and Australia.  Laura returned to the U.S.  to take additional biology coursework.  During that time she more fully investigated the NOAA Corps, applied and was accepted.

Laura has been on the Oregon II for 1.5 years and loves her work.  When she is on shift she independently handles the ship during all operations and also acts as Navigator.  What she loves about the Corps is that the work merges science and technology, and there are many opportunities for her to grow professionally. In December Laura will be assigned to a shore duty unit that is developing Unmanned Underwater Vehicles (UUV).

Personal Log

Measuring a Sharpnose Photo: Kristin Hannan
Notice the white spots on the dorsal side of this atlantic sharpnose, characteristic of this species.
Photo: Kristin Hannan

It’s amazing to think that just over a week ago I held my first live shark.  We caught over  30 sharks at our first station and our inexperience showed.  At first even the small ones looked like all teeth and tail, and those teeth are not only sharp but carry some pretty nasty bacteria. It took all of us (new volunteers) forever to get the hooks out quickly without causing significant trauma to the shark–or ourselves.  A tail smack from this small-but-mighty tiger shark pictured below left me with a wedge-shaped bruise for a week!

Immature Male Tiger Shark. He's cute but he taught me a lesson with his tail.
Immature Male Tiger Shark.
He’s cute but he taught me a lesson with his tail.

Since then we have caught hundreds of sharks.  We’ve caught so many Atlantic Sharpnose that on occasion it seems mundane.  Then I catch myself and realize how amazing it is to be doing what I’m doing– holding a wild animal in my hands, freeing it from the circle hook (finally!), looking at the detailed pattern of its skin, and feeling it’s rough texture, measuring it and releasing it back into the sea.

Sandbar Shark on the Line
A beautiful sandbar shark on the line.

I’m pleased to be able to say that my day shift team has become much more confident and efficient.  Our mid-day haul yesterday numbered over 40 sharks, including a few large sharks that were cradled, and it went really smoothly.

Weighing in. Hook out - No Problem! Photo: Jim Nienow
An Atlantic Sharpnose weighing in at 2.1 kg.
Photo: Kristin Hannan

 

Out it Comes - No Problem Photo: Ian Davenport
Taking a closer look at an Atlantic Sharpnose shark.
Photo: Ian Davenport

At this point I’ve had a chance to work at most of the volunteer stations including baiting hooks, throwing off the high-flyer marker, numbering, gangions, throwing bait, data entry,  tagging shark, removing hooks, and measuring/ weighing.  A highlight of last night was getting to throw out the hook to pull in the high-flyer marker at the start of retrieval.  I’m not known for having the best throwing arm but it all worked out!

Ready to Throw Photo: Kristin Hannan
Ready to Throw
Photo: Kristin Hannan

Got it! Photo: Kristin Hannan
Right on Target!
Photo: Kristin Hannan

 

Question of the Day:  What is this?

Can you identify these?
Can you identify these?

NOAA SHARK FACTS: Bite off More that you can chew

For more on hammerheads: click

For my incoming  Marine Science students — Investigate two other hammerhead species. How are they distinguished from great hammerheads?

 

Chris Sanborn: Last Day Shark Tagging, July 17, 2015

NOAA Teacher at Sea
Christopher Sanborn
Aboard SRV C.E Stillwell
July 13 – 17, 2015

Mission: Cooperative Atlantic States Shark Pupping and Nursery (COASTSPAN) survey
Geographical area of cruise: Delaware Bay
Date: July 17, 2015

Weather

Day 3 weather was Hazardous with gusts up to 20 knots.  Travel in the small C.E Stillwell not advisable.

Day 4 was beautiful and started out with light to variable winds with 0-1 ft seas and ended with 5-10 knots winds with 2-3 ft seas.

Science and Technology Log

Day 3 we attempted our usual 6:00 a.m. departure but after entering the bay it was obvious the working conditions attempting to tag sharks in our small boat would be almost impossible.  We monitored the weather for a possible late morning departure but the weather only increased.  We set ourselves to remarking the intervals on the mainlines as the markings were very faint and difficult at times to see where to set the gangion.

Ben Church and Matt Pezzullo remarking the thousands of feet of line.
Ben Church and Matt Pezzullo remarking the thousands of feet of line.

 

Day 4 We were on the water and had our first line (set) in the water before 7:00 a.m. The conditions were great and we started right outside of Lewes, DE.  In the morning we did 3-50 hook sets and 1-25 hook set in what is called deep hole which is on the Delaware side of the main shipping channel that runs through Delaware Bay.

One of the numerous large ships heading up Delaware Bay
One of the numerous large ships heading up Delaware Bay

As you can see by the picture numerous large ships enter the mouth of the bay and head up.

While we were pulling the line on the deep hole set this large Sand Tiger came to the surface after a lot of hard work by Matt.

 

Same shark we pulled out of deep hole.
Same shark we pulled out of deep hole.

At the end of the day we were able to complete a total of 8 sets.  After finishing deep hole we spent the afternoon on the New Jersey side of the bay just off Cape May.  As can be seen by the July 2015 stations Day 4 was spent at the mouth of the bay.  On the Delaware side we did JY10, JY27, JY28 and Deep Hole.  All JY sets are 50 hook sets while all others are the larger hooks with 25 per main line.

 

 

July 2015 Stations.  Delaware Bay
July 2015 Stations. Delaware Bay

During the afternoon we did JY26, JY18, EX06 followed by JY19.  The order may seem odd looking at the map but sets are planned to ensure that they are retrieved in the correct time frame.  JY18 was just off Sunset Beach in Cape May New Jersey.

Day 1 sets: JY24, JY20, JY22, BG02, SB01, SB02

Day 2 sets: JY07, JY01, JY11, JY13, EX04, ST05, EX07

Day 4 sets: JY10, JY28, JY27, Deep Hole, JY26, Jy19, JY18, EX06

Map of Delaware Bay
Map of Delaware Bay

The following video is from day 1 but gives an idea of how hard it can be to tail rope the sharks.

Once a shark is tail roped and the gangion is cleated to the front of the boat we can collect the biological data and tag the shark.

IMG_0361[1]

The following video is long but if you watch to the end you will see what happens when a hook comes out while a shark is still tail roped.

We also had the opportunity to encounter a few rays.  The following video is of a large Spiny Butterfly Ray we caught

Personal Log:

The shark tagging experience was extremely physically taxing but very rewarding. I had the opportunity to gain hands on experience in an exciting research project that will allow me to bring knowledge and excitement back to my classroom.  My time working on this survey brought me a memorable experience that I will never forget.

I would personally like to thank the other scientists on the survey Nathan Keith, Ben Church and the Chief Scientist on the cruise Matt Pezzulo for sharing their expertise and knowledge on shark morphology and identification. These individuals were always willing to explain any part of the process or answer any questions I had. They took the time to teach me every part of the process early on so that I could become a contributing member from the start.  This type of analysis on sharks takes grit and hard work and I appreciate the opportunity I was given through the Teacher at Sea Program.

Lynn Kurth: Chomp Chomp! August 4, 2014

NOAA Teacher at Sea
Lynn M. Kurth
Aboard NOAA Ship Oregon II
July 25 – August 9, 2014

Mission: Shark/Red Snapper Longline Survey
Geographical area of cruise:  Gulf of Mexico and Atlantic
Date:  August 4, 2014

Lat: 33 54.763 N
Long:  076 24.967 W

Weather Data from the Bridge:
Wind: 16 knots
Barometric Pressure:  1017.74 mb
Temperature:  29.9 Degrees Celsius

Science and Technology Log:

 

 

IMG_2927[1]
Mouth of a sandbar shark. Notice the rows of teeth and don’t worry about the wound from the hook because the hook is carefully removed and the shark heals quickly.
Much to my surprise a sandbar shark will have around 35,000 teeth over the course of its lifetime! Similar to other species of sharks, a sandbar shark’s teeth are found in rows which are shed and replaced as needed.  The teeth are not used to chew but rather to rip food into chunks that the shark can swallow. The shape of a shark’s teeth depends on the species of shark they belong to and what that particular species eats.  For example, a tiger shark has razor sharp piercing teeth it uses to rip apart the flesh of its prey and a zebra shark has hefty flat teeth because it eats shellfish.

IMG_2929[1]
Great care is taken to remove the hook before the sandbar shark is released. By clipping the barb off, the hook will slide right out. And, if a tooth happens to get damaged it will be quickly be replaced when a new row of teeth moves forward.
 

Did you Know?

  • When sharks are born they have complete sets of teeth
  • It was recently discovered that shark teeth contain fluoride
  • Human teeth and shark teeth are equally as hard
  • Shark teeth are not attached to gums on a root like our teeth

IMG_3010[1]
Lynn Kurth getting ready to measure a silky shark before it is released.
 

Personal Log:

Through the years I have found that when I am doing something I love I usually meet people who I respect and find intriguing.  I love being part of science at sea aboard the Oregon II and I’m not surprised that I have met several people who are passionate about issues that I find interesting.  One such person is Katelyn Cucinotta, a member of my work shift, who has a passion for the proper care of the marine environment and what she aspires to do in the future to make that happen.  Within minutes of meeting Katelyn she began educating me about the decline of several shark species and the difficulties marine life faces with the amount of man-made debris in our oceans.  Katelyn co-founded an organization called PropheSEA in order to share information about the issues our oceans and marine species are currently facing.

 

IMG_3031[1]
Katelyn Cucinotta
IMG_3032[1]
Science at sea with Katelyn Cucinotta!

Lynn Kurth: It’s Shark Week! July 31, 2014

NOAA Teacher at Sea
Lynn M. Kurth
Aboard NOAA Ship Oregon II
July 25 – August 9, 2014

Mission: Shark/Red Snapper Longline Survey
Geographical area of cruise:  Gulf of Mexico and Atlantic
Date:  July 31, 2014

Lat: 30 11.454 N
Long: 80 49.66 W

Weather Data from the Bridge:
Wind: 17 knots
Barometric Pressure:  1014.93 mb
Temperature:  29.9 Degrees Celsius

Science and Technology Log:
It would be easy for me to focus only on the sharks that I’ve  encountered but there is so much more science and natural phenomena to share with you!  I have spent as much time on the bow of the boat as I can in between working on my blogs and my work shift.  There’s no denying it, I LOVE THE BOW OF THE BOAT!!!  When standing in the bow it feels as if you’re flying over the water and the view is splendid.

BOW
My Perch!

From my prized bird’s eye view from the bow I’ve noticed countless areas of water with yellowish clumps of seaweed.  This particular seaweed is called sargassum which is a type of macroalgae found in tropical waters.  Sargassum has tiny chambers which hold air and allow it to float on or near the water’s surface in order to gather light for photosynthesis.  Sargassum can be considered to be a nuisance because it frequently washes up on beaches and smells as it decomposes.  And, in some areas it can become so thick that it reduces the amount of light that other plant species need to grow and thrive. However, the floating clumps of sargassum provide a great habitat for young fish because it offers them food and shelter.

IMG_2826
Sargassum as seen from “my perch”

IMG_2906[1]
Sargassum (notice the small air bladders that it uses to stay afloat)
We have hauled in a variety of sharks and fish over the past few days.  One of the more interesting species was the remora/sharksucker.  The sharksucker attaches itself to rays, sharks, ships, dolphins and sea turtles by latching on with its suction cup like dorsal fin.  When we brought a sharksucker on board the ship it continued to attach itself to the deck of the boat and would even latch on to our arm when we gave it the chance.

IMG_2944[1]
The shark sucker attaches to my arm immediately!
The largest species of sharks that we have hauled in are Sandbar sharks which are one of the largest coastal sharks in the world.  Sandbar sharks have much larger fins compared to their body size which made them attractive to fisherman for sale in the shark fin trade.  Therefore, this species has more protection than some of the other coastal shark species because they have been over harvested in the past due to their large fins.

Thankfully finning is now banned in US waters, however despite the ban sandbar sharks have continued protection due to the fact that like many other species of sharks they are not able to quickly replace numbers lost to high fishing pressure.  Conservationists remain concerned about the future of the Sandbar shark because of this ongoing threat and the fact that they reproduce very few young.

IMG_2928[1]
The first Sandbar shark that I was able to tag
Did you Know?

Sargassum is used in/as:

  • fertilizer for crops
  • food for people
  • medicines
  • insect repellant

Personal Log:
I continue to learn a lot each day and can’t wait to see what the next day of this great adventure brings!  The folks who I’m working with have such interesting tales to share and have been very helpful as I learn the ropes here on the Oregon II.  One of the friendly folks who I’ve been working with is a second year student at the University of Tampa named Kevin Travis.  Kevin volunteered for the survey after a family friend working for NOAA (National Oceanic and Atmospheric Administration) recommended him as a volunteer.  Kevin enjoys his time on the boat because he values meeting new people and knows how beneficial it is to have a broad range of experiences.

 

IMG_2798
Kevin Travis

Julie Karre: Heading Back to Land… August 5-6, 2013

NOAA Teacher at Sea
Julie Karre
Aboard NOAA Ship Oregon II
July 26 – August 8, 2013  

Mission: Shark and Red snapper Longline Survey
Geographical Range of Cruise: Atlantic
Date: Monday August 5 – Tuesday August 6, 2013

Weather Data from the Bridge
Monday – NE WINDS 10 TO 15 KNOTS
SEAS 2 TO 3 FEET
DOMINANT PERIOD 6 SECONDS

Tuesday – E WINDS 10 TO 15 KNOTS
SEAS 3 TO 4 FEET

Science and Technology Log

Meet the Scientists

Meet some of my favorite people in the world. Without these people my experience would have lacked the learning and laughter that made it such a joy.

Kristin Hannan

Field Party Chief Kristin Hannan has the pleasure of working with her favorite shark species, the Tiger Shark. And those little babies are cute!
Field Party Chief Kristin Hannan has the pleasure of working with her favorite shark species, the Tiger Shark. And those little babies are cute!

Kristin was the Field Party Chief for the first and second legs of the Longline survey. She was also my watch leader, which meant she was by my side in support every step of the way. And as I progressed as a shark handler, she was there with a high five every time. I hit the jackpot landing on a ship with Kristin. She is now off to visit Harry Potter World (I’m so jealous I can hardly stand it) before rejoining the the survey when it leaves Mayport. This is Kristin’s fifth year doing the Longline Survey. The first time she did it, she was a volunteer just like us. I wish Kristin the best of luck in all she does and hope to call her a friend for years to come.
Amy Schmitt

Research Biologist for NOAA Amy Schmitt gives a big smooch to a baby Tiger Shark.
Research Biologist for NOAA Amy Schmitt gives a big smooch to a baby Tiger Shark.

Amy is a research biologist out of the Pascagoula-based fisheries lab. She has been with NOAA for two years, but has been working in research biology for most of her career. She is a native of Colorado and shares my blond hair and fair complexion. We could usually be found together cooling off in the dry lab as often as possible. It was also Amy who coined one of my nicknames on the cruise – Data Girl. According to the science team, the Teachers at Sea make excellent data recorders. I can’t imagine why 🙂

Amy and I work together to process an adolescent Tiger Shark. Amy and I often worked together and truly enjoyed our time together.
Amy and I work together to process an adolescent Tiger Shark. Amy and I often worked together and truly enjoyed our time together.

Lisa Jones

NOAA scientist and Field Party Chief for the second leg of Longline Lisa Jones handles an Atlantic Sharpnose on the first haul of the night shift.
NOAA scientist and Field Party Chief for the third and fourth legs of Longline, Lisa Jones handles an Atlantic Sharpnose on the first haul of the night shift.

Lisa has been doing the Longline survey for 16 years now. She is a wealth of information about sharks, living aboard a ship, and marine life. She is also a passionate dog lover, which many of the volunteers shared with her. Lisa will be taking over the duties of Field Party Chief for the third and fourth legs of the survey. She will be aboard the Oregon II for all four legs of the survey this year. That’s a lot of boat rocking!
Mike Hendon

NOAA Research Biologist Mike Hendon works to quickly process a Sandbar Shark.
NOAA Research Biologist Mike Hendon works to quickly process a Sandbar Shark.

Mike is a research biologist out of the Pascagoula-based fisheries lab. He’s a seasoned veteran of the Longline survey and was a great mentor for those of us new to the shark-handling community. Mike also has two adorable kids and two cute dogs waiting for him at home. He was part of the science team for the first leg of the survey. He can sometimes be found wearing mismatched socks.

Mike and Volunteer Claudia Friess work on Atlantic Sharpnose.
Mike and Volunteer Claudia Friess work on Atlantic Sharpnose.

Personal Log

My final days are winding down and I am caught (no pun intended) off guard by how much I am going to miss this. There is such a peacefulness that comes from the rocking of a boat, especially if you don’t get seasick. And working alongside people who share a passionate nature – we may not all be passionate about the same things, but we are all passionate – is such a reinvigorating experience. These two weeks gave me an opportunity to talk about my environmental science integration in my classroom with people who care very much about environmental science. It was so inspiring to have them care about what I was doing in my classroom. It gives me another reason to trust the importance of what I’m doing as well as more people I want to make proud.

Fun list time! Things you get used to living on a ship:

  1. Noise. There is so much happening on a ship, from the engine to the cradle pulling up a shark. It’s all loud. But you get used to it.
  2. Sneaking into your stateroom as silently as possible so you don’t wake up your AWESOME roommate Rachel.

    NOAA Corps Officer ENS Rachel Pryor steering the Oregon II during a morning haul back.
    NOAA Corps Officer ENS Rachel Pryor steering the Oregon II during a morning haul back.
  3. Waiting. There’s a lot of waiting time on a survey like this. You find ways to make that time meaningful.

    The night shift waiting in anticipation as Lead Fisherman Chris Nichols begins to bring in the line.
    The night shift waiting in anticipation as Lead Fisherman Chris Nichols begins to bring in the line.
  4. Rocking. Duh.
  5. Taking high steps through doorways. The doors that separate the interior and exterior of the ship are water tight, so they don’t go all the way to the floor. You can only bash your shins in so many times before it becomes second nature.
  6. Sharks. I said in a previous post that this survey has been eye opening and it’s worth sharing again. I don’t have a marine science background and I had fallen victim to the media portrayals of sharks. I had no idea that there were sharks as small as the Sharpnose that can be handled by such an amateur like myself.

    This is what it feels like when you successfully (and quickly) unhook a shark! VICTORY! Volunteer Kevin Travis is victorious.
    This is what it feels like when you successfully (and quickly) unhook a shark! VICTORY! Volunteer Kevin Travis is victorious.
  7. Sunsets. Words cannot describe the colors that make their way to you when there’s uninterrupted skyline. Oh I will definitely miss those sunsets.

    One of the last sunsets for the first leg of the Oregon II.
    One of the last sunsets for the first leg of the Oregon II.
  8. The stars. I live a life of being asleep by 10pm and up at 6 am and often times forget to look up at the stars even on the nights when I might have been able to see them. These two weeks gave me some of the darkest nights I’ve had and some of the best company in the world.

Dolphins escort the Oregon II back towards land on its final day at sea for the first leg of Longline. Photo Credit: Mike Hendon
Dolphins escort the Oregon II back towards land on its final day at sea for the first leg of Longline.
Photo Credit: Mike Hendon

Julie Karre: A Weekend with the Wind and Wild Sharks, August 2-4, 2013

NOAA Teacher at Sea
Julie Karre
Aboard NOAA Ship Oregon II
July 26 – August 8, 2013

Mission: Shark and Red snapper Longline Survey
Geographical Area of Cruise: Atlantic Ocean off the Coast of Florida
Date: Friday, August 2 – Sunday, August 4, 2013

Weather Data from the Bridge
Friday – SW WINDS 10 TO 15 KNOTS
SEAS 3 TO 5 FEET
SCATTERED SHOWERS AND THUNDERSTORMS

Saturday – SW WINDS AROUND 15 KNOTS
ISOLATED SHOWERS AND THUNDERSTORMS MAINLY AFTER MIDNIGHT
SEAS AROUND 4 FEET

Sunday – W WIND 5 TO 7 KNOTS BECOMING VARIABLE AND LESS THAN 5 KNOTS
A CHANCE OF SHOWERS AND THUNDERSTORMS MAINLY AFTER 10PM
SEAS AROUND 3 FEET

Science and Technology Log
In this log we’ll take a closer look at the sharks we’ve brought on board:

Atlantic Sharpnose Shark:

Volunteer Arjen Krigsman works on a Sharpnose on his birthday!
Volunteer Arjen Krijgsman works on a Sharpnose on his birthday!

The Atlantic Sharpnose has been the most abundant shark on our survey and will continue to be abundant for the rest of the cruise, even in the Gulf of Mexico. It is in fact one of the species that is on the Least Concern list in terms of its vulnerability. It is often a victim of by-catch and makes up 1/3 of the commercial landings of sharks in the United States. But being capable of producing offspring in abundance, the Sharpnose remains a steady species with moderate population growths. As indicated by its name the Atlantic Sharpnose is found all along the U.S. Atlantic coast and even as far as New Brunswick, Canada. When the Oregon II makes its way back into the Gulf of Mexico, it will likely continue to make an appearance on deck.

Blacknose Shark

Blacknose Shark Photo Credit: Claudia Friess from her 2009 Longline cruise on the Oregon II. Unfortunately, when we caught the Blacknose it was too dark to get a good picture.
Blacknose Shark
Photo Credit: Claudia Friess from her 2009 Longline cruise on the Oregon II.  When we caught a Blacknose on this cruise it was too dark to get a good picture.

The Blacknose Shark shares a similar body with the Sharpnose, but is marked by a (drumroll please) black mark on its nose. Unfortunately, the Blacknose doesn’t share its abundance with the Sharpnose. The Blacknose is listed as Near Threatened due to its high mortality rates in shrimp trawl nets. The Blacknose is suffering a decline in its population. The Oregon II has only seen 5-6 Blacknose during this leg of the survey.

Nurse Shark

Nurse Shark Photo Credit: Claudia Friess from her 2009 Oregon II cruise. Unfortunately, it was too dark to get quality photos from our Nurse Shark.
Nurse Shark
Photo Credit: Claudia Friess from her 2009 Oregon II cruise. Again, it was too dark to get quality photos of our Nurse Shark.

The Nurse Shark, the first big shark we cradled, is characterized by sedentary and relatively docile behavior. They are still relatively mysterious in their migratory behavior and the gene flow between populations. Recently, it has been shown in population decline in certain areas perhaps due to its vulnerability to catch, but also perhaps because of habitat alteration.

Scalloped Hammerhead

Measuring a Scalloped Hammerhead.
Measuring a Scalloped Hammerhead.

The Scalloped Hammerhead has been my favorite so far. A friend of mine characterized it as the hipster of the shark world. There is something truly magnificent about those wide-set eyes. Unfortunately, the Scalloped Hammerhead is Endangered. The Scalloped Hammerhead can be found in coastal temperate waters all around the world. In each of these regions, it is threatened by capture, mostly as by-catch in fishing gear, gillnets, and longlines. Hammerhead shark fins are also more valuable than other species because of their high fin count. The species is in decline.

Bull Shark

Bull Shark! 232 pounds!
Bull Shark! 232 pounds!

The Bull Shark is a unique shark species because it can survive in freshwater for extended periods of time. This ability has caused it to be categorized as Near Threatened because it often gets caught in fisheries, but it is not a target species the way others are. Here’s what Kristin Hannan had to say: “Bull sharks’ ability to tolerate greater salinity extremes means that it is likely to be in more productive areas like at the input of rivers.  The rivers which dump high levels of nutrients into the system spur on production, high nutrients means more phytoplankton, more phytoplankton means more small critters eating and so on up.  These areas also mean hot spots for fishing activities as productivity means more fish, more fish means more predators, more interaction with gear, more possibilities for shark mortality.”

Sandbar Shark

A Sandbar Shark coming up on the cradle.
A Sandbar Shark coming up on the cradle.

The Sandbar Shark, which we caught in abundance one night, is a widespread species in warm temperate waters. Studies have found that it is a long-lived species, but it does not reproduce quickly so it has become Vulnerable due to overfishing. The species is currently in decline. The Sandbar is considered valuable because of their fins, which are large.

Tiger Shark 

A medium sized Tiger Shark was brought on deck to be measured and tagged. Kristin Hannan stands waiting for it to stop moving.
A medium sized Tiger Shark was brought on deck to be measured and tagged. Kristin Hannan stands waiting for it to stop moving.

The Tiger Shark is commonly found world wide in tropical and warm coastal waters. Aside from the Sandbar, it is the largest shark we have caught the most of. Fortunately, it is considered a fast-growing species with the ability to reproduce abundantly. It is not considered at a high risk for extinction, but the desire for fins makes the risk of further population decline a distinct possibility.

Night Shark

This Night Shark was the only of its kind we brought up so far.
This Night Shark was the only one of its kind we’ve brought up so far.

We have only caught 1 Night Shark during our survey. It is a Vulnerable species. It is prized mostly for its fins and meats and is caught in abundance off the coast of Brazil. Studies have shown that most of the Night Sharks landed were below 50% maturity, which is 8 years for males and 10 years for females. In the United States, the Night Shark is listed as a prohibited species.

When talking to Kristin about these sharks, she shared this about their reproduction, “All sharks are considered K-selected species like humans; we are late to mature, grow slowly and reproduce relatively few young comparatively to say a bony fish that might produce thousands of babies in its lifetime (s-selected).  So when we talk about a tiger [shark] vs. a sandbar [shark] being more or less productive, it is definitely in relation to each other and not all fish. A tiger [shark] does produce more young than some other species but way less than the red grouper he goes after for dinner.  This is why all sharks are so sensitive to fishing pressures; they have a considerably longer bounce back time.”

Personal Log
It’s hard to believe that over a week has passed, but given how much we have seen and done, it makes sense.

As I get more and more comfortable handling sharks and working on the boat, I have noticed a few things. My sister-in-law Elizabeth noticed a few years ago that my family has a love for responding to each other (and often friends and acquaintances) with movie quotes. The most commonly quoted movies in our family include The Big Lebowski, The Princess Bride, Blues Brothers, To Kill A Mockingbird, and many more. I am no exception to this family trend.

So while we’re all eagerly awaiting the call that a shark is on the hook, it occurred to me that this movie-quoting affliction had not escaped this trip. When a fish or shark is caught on one of our hooks, the fishermen call out “Fish on” to notify those of us handling to come over and retrieve the animal. I realized that this was no common call in my head, though. Each time I hear the “Fish on” I hear it more in the call of “Game Ooon” from Wayne’s World. I suppose that’s a hazard of anyone growing up in the 90s. What proves I am truly a Karre though is that when I’m talking to the shark I’m handling, asking and sometimes begging it to be still so I can remove the hook quickly and reduce its harm and pain, in my head the shark is responding “Oh I’m cooperating with you” in the voice of William H. Macy from the movie Fargo.

"Fish ooonnn" - A Sharpnose comes up to join us.
“Fish ooonnn” – A Sharpnose comes up to join us.

"Oh I'm cooperating with you" says the Sharpnose that has just come aboard the Oregon II.
“Oh I’m cooperating with you” says the Sharpnose that has just come aboard the Oregon II.

Did You Know?
There are over 6000 known coral species around the world. We have brought up several pieces of coral on our clips. Kevin found a bright red piece of coral, which prompted a lesson for us about how many red corals release an irritant that will make our skin burn and sting. Fortunately, that’s not what Kevin brought up!

The sun is setting on my trip and all I can say is that it has been extraordinary.
The sun is setting on my trip and all I can say is that it has been extraordinary.

Julie Karre: Let’s Haul it Back Now, Ya’ll! July 30, 2013

 NOAA Teacher at Sea
Julie Karre
Aboard NOAA Ship Oregon II
July 26 – August 8, 2013 

Mission: Shark and Red snapper Longline Survey
Geographical Range of Cruise: Atlantic
Date: Tuesday, July 30, 2013 

Weather Data from the Bridge
SW WINDS 5 TO 10 KNOTS BECOMING SE IN THE AFTERNOON
SEAS 2 TO 3 FEET WITH A DOMINANT PERIOD 14 SECONDS
SLIGHT CHANGE OF SHOWERS AND THUNDERSTORMS

Science and Technology Log

Preparing for a haul back. Everyone wears a PFD (personal flotation device) during a haul and a helmet if the cradle is used.
Preparing for a haul back. Everyone wears a PFD (personal flotation device) during a haul and a helmet if the cradle is used.

What an incredibly fast-paced morning/end of shift for the night shift! As the day shift was getting up and wandering out to check in, the night shift was putting out their first set of the cruise. Day shift, which I’m on, put out two sets the afternoon/night before. Night shift had to skip two last night because of the current. But this haul back made up for it. The crew processed 64 sharks – Sharpnose and Blacknose – at a swift, demanding pace. It was a learning experience to see them handle it so calmly, never missing a beat.

Night shift volunteers Page Vick and Claudia Friess work together to remove a hook.
Night shift volunteers Page Vick and Claudia Friess work together to remove a hook while Ian Davenport records the data.

Night Shift Watch Leader and NOAA scientist Lisa Jones takes a Sharpnose Shark from a fisherman.
Night Shift Watch Leader and NOAA scientist Lisa Jones takes a Sharpnose Shark from a fisherman and removes its hook.

A weighed, measured, sexed shark is released to the ocean.
A weighed, measured, sexed shark is released to the ocean.

At noon it was our turn and by 2pm we were putting out the first of three hauls we would do that day. That first haul brought up 56 sharks in just over an hour’s time. I was recording the data as measurements were taken. We brought up Sharpnose Sharks and Blacknose Sharks. It has been such an eye-opening experience bringing up sharks these last two days because it is so easy to imagine sharks as being enormous and ferocious, which of course some are, but we are bringing up sharks that, for the most part, can be held up with one hand and weigh less than 4.5kg. I think it is important to remember that the images of The Great White and Bull Sharks are not necessarily representative of all sharks. That doesn’t mean that these smaller sharks are not dangerous, it just means they’re not enormous and overwhelming.

Volunteers Holly Perryman and Kevin Travis handle sharks as I record the data.
Volunteers Holly Perryman and Kevin Travis handle sharks as I record the data. Photo Credit: Claudia Friess

We had just enough time to rebait the hooks and hang out for a few minutes before we set out another set 9 miles later. That haul back was light, but did come with a Scalloped Hammerhead. When we get these large sharks (Nurse, Tiger, Hammerhead, Sandbar), it requires a large cradle attached to a crane. The cradle is lowered into the water and the shark is led on with the line attached to the hook. This requires a lot of precise coordination. The person operating the crane cannot see the shark and is then dependent on those at the opening to be clear and loud with directions. Two people hold ropes that stabilize the cradle. They have to stay in sync so that the moving shark doesn’t throw itself over a side, while another person is trying to control the shark with the line attached to the hook. It’s really incredible to watch this team of skilled fishermen and scientists work so quickly with such a large animal. Each large animal is measured, weighed, tagged, and a small tissue sample is taken. Then the cradle is lowered and it swims gracefully away.

It's Hammer time! This Scalloped Hammerhead was very exciting. Photo Credit: Claudia Friess
It’s Hammer time! This Scalloped Hammerhead was very exciting. Photo Credit: Claudia Friess

It's Hammer time! This Scalloped Hammerhead was very exciting. Photo Credit: Claudia Friess
It’s Hammer time! Chief Boatswain Tim Martin keeps a firm grip on the head of the shark. Photo Credit: Claudia Friess

A quick dinner later and then we set out what ended up being our last set around 9:30 pm. At 10:50 pm we began our haul back, which was light on Sharpnose and Blacknose. We got a few and they were small, but the real treat was hauling up 4 Sandbars. Of the 4, we brought up 2 because the other 2 got away. The Sandbar is a really beautiful shark. It has a high first dorsal fin and is one of the largest coastal sharks in the world. According to Chief Scientist Kristin Hannan, the Sandbar’s large fin makes it more desirable by fishermen harvesting fins. Having seen these large, but gorgeous, animals and how gracefully they swim makes me sad that they would be desirable for such an unsustainable practice. Fortunately, in 2008 the National Marine Fisheries Service banned all commercial landings of Sandbar Sharks. The Sandbar is currently listed as a vulnerable species due to overfishing.

Kristin Hannan measuring a Sandbar Shark in the cradle.
Kristin Hannan measuring a Sandbar Shark in the cradle.

This haul back gave me a unique perspective. In previous hauls I’d been over where the fish are measured, weighed, and data recorded. But this time I was racking hooks as they came back, which means that I was just below the window where NOAA Corps Officer ENS Rachel Pryor was driving the ship. This is ENS Pryor’s first longline survey and she said it’s the survey that has the deck and bridge the most connected. Because we’re pulling up animals from a bottom longline, the control of the ship is crucial. The driver must control the ship on station making sure it doesn’t drift over the longline and in those instances of bringing up big sharks on the cradle, he or she keeps us on the station so there isn’t too much tension on the line. Whether it’s ENS Pryor, another NOAA Corps officer, or the Captain, Master Dave Nelson, he or she is just as essential to the survey as the people handling the sharks. Truly a team effort.

The set ended right at a shift change and we were lucky to make that switch on a light haul. Most of the hooks came up empty, including emptying of our bait, so something down there enjoyed an easy free meal.

I took the opportunity to watch the stars for a while before heading to bed. I was not disappointed.

Personal Log

During those first three days of no fishing, much reading was done. I finished a book on Sunday and am waiting to start my other book since I only brought two, but others on the ship have been reading a lot during breaks. At least two people have read the entire Hunger Games Trilogy while on board. It should come as no surprise to my students that this makes me VERY happy. The seventh and eighth graders of Armistead Gardens will be returning to school in August for a Hunger Games semester. The eighth graders read the first book before we left school last year, so we are set to keep reading. The seventh graders begin the Games when we meet in August.

Ladies and Gentlemen, let the 19th Longline Games begin!
Ladies and Gentlemen, let the 19th Annual Longline Games begin! Volunteers Claudia Friess and Mike Hendon devouring the Hunger Games trilogy. Both have started and finished the series since we departed Pascagoula.

BOOK REPORT:

I finished the debut novel by Carrie Mesrobian, which is scheduled to be released this fall. I began reading on Thursday the 25th when I moved onto the ship, but I had to slow myself down because I only have one other book. So I paced it enough to give me a few more days of pleasure. And what a pleasure it is to read such a raw and real book. I read a lot of young adult fiction, mostly for pleasure and sometimes to know what my students are in. I love what young adult literature offers readers in terms of dealing with certain experiences. I have not read many young adult novels written from the male perspective, though. I know there are many, but I have not done a very good job of getting into them. I loved reading Evan. His self-loathing was so real that I was immediately on his side. I thought the sensitive subject matter was handled realistically and appropriately. Well done. Can’t wait to read it again.

An exquisite sunset at the end of a beautiful day.
An exquisite sunset at the end of a beautiful day.

Did You Know?

I learned this from a science teacher at Armistead Gardens Elem/Middle school – there are FOUR meteor showers peaking last night and tonight – Piscis, Austrinids, Aquariids, and Capricornids. Maybe some of my “shooting stars” were from these meteor showers. Thanks Ms. Palmisano for sharing your knowledge!

This is the 19th year of doing the Shark and Red Snapper Longline Survey. That’s a lot of data!

Animals Seen

Sharpnose, Rhizoprionodon terraenovae
blacknose, Carcharhinus acronotus
Sea Nettle, Chrysaora quinquecirrha
Sandbar, Carcharhinus plumbeus
Scalloped hammerhead, Sphyrna lewini

Seastar

Volunteer Kevin Travis with a starfish that came up on a clip. Photo Credit: Claudia Friess
Volunteer Kevin Travis with a starfish that came up on a clip. Photo Credit: Claudia Friess

Jennifer Goldner: Sharks 101, August 18, 2011

NOAA Teacher at Sea
Jennifer Goldner
Aboard NOAA Ship Oregon II
(NOAA Ship Tracker)
August 11 — August 24, 2011

Mission: Shark Longline Survey
Geographical Area: Southern Atlantic/Gulf of Mexico
Date: August 18, 2011

Weather Data from the Bridge
Latitude: 26.05 N
Longitude: 84.05 W
Wind Speed: 5.20 kts
Surface Water Temperature: 30.30 C
Air Temperature: 31.20 C
Relative Humidity: 67.00%

Science and Technology Log

Living in the landlocked state of Oklahoma, I am unfamiliar with sharks.  Thus today, with the help of the scientists, I’m going to give some basics of sharks that I have learned this week.  Class title:  Shark 101.  Welcome to class!

Let me start by telling you the various sharks and amount of each we have caught this week in the Gulf of Mexico. We have caught 7 nurse sharks, 2 bull sharks, 4 sandbar sharks, 73 Atlantic sharpnose sharks, 15 blacknose sharks,  5 blacktip sharks, 5 smooth dogfish, 2 silky sharks, and 4 tiger sharks.  For those of you that took the poll, as you can see the correct answer for the type of shark we have caught the most of is the Atlantic sharpnose shark.   The sharks ranged in size from about 2 kilograms (Atlantic sharpnose shark) to 100 kilograms (tiger shark). Keep in mind a kilogram is 2.24 pounds. 

In addition to the sharks caught we have also caught yellowedge, red, and snowy grouper, blueline tilefish, spinycheek scorpionfish, sea stars, and a barracuda.

From the last post you now know that we soak 100 hooks at a time. Throughout the survey we have had as little as no sharks on the line in one location and up to 25 on the line in other locations.

Me holding a spinycheek scorpion fish
Me holding a spinycheek scorpionfish

Blueline tile fish
Blueline tilefish

Drew, Scientist, holding a barracuda
Drew, Scientist, holding a barracuda

yellowedge grouper
Yellowedge grouper

When a shark is brought on board, it is measured for total length, as well as fork length (where the caudal fin separates into the upper and lower lobes).  The sex of the shark is also recorded.  A male shark has claspers, whereas a female shark does not.  The shark’s weight is recorded.  Then the shark is tagged. Lastly, the shark is injected with OTC (Oxytetracycline) which can then be used to validate the shark’s age.  It should be noted that for larger sharks these measurements are done in the cradle.  For perspective, I had Mike, fisherman, lay in the cradle to show the size of it. Also on this trip, some of the scientists tried out a new laser device.  It shoots a 10 cm beam on the shark.  This is then used as a guide to let them know the total length.  Thus, the shark can actually be measured in the water by using this technique.

Do you see the 2 laser dots on the shark?  This 10 cm increment helps scientists estimate the length of the shark.

Mike, Fisherman, in the shark cradle- It is approximately 8 feet long.
Mike, Fisherman, in the shark cradle — It is approximately 8 feet long.

Shark diagram
Shark diagram

Mark Grace, Chief Scientist, weighs a shark
Mark Grace, Chief Scientist, weighs a shark

Male shark on the left (with claspers), female shark on the right (no claspers)
Male shark on the left (with claspers), female shark on the right (no claspers)

Mark Grace, Chief Scientist, and Adam, Scientist, measure a nurse shark in the cradle
Mark Grace, Chief Scientist, and Adam, Scientist, measure a nurse shark in the cradle

Mark Grace, Chief Scientist, assists me tagging an Atlantic sharpnose shark
Mark Grace, Chief Scientist, assists me tagging an Atlantic sharpnose shark

Tim, Lead Fisherman, holds the bull shark while I tag it!
Tim, Lead Fisherman, holds the bull shark while I tag it!

Giving antibiotics to an Atlantic sharpnose shark
Injecting OTC into an Atlantic sharpnose shark

Here are some things I learned about each of the sharks we caught.

1.  Nurse shark:   The dorsal fins are equal size.  They suck their food in and crush it.  Nurse sharks are very feisty.  See the attached video of Tim, Lead Fisherman and Trey, Scientist, holding a nurse shark while measurements are being taken.

The skin of nurse sharks is rough to touch.  Incidentally, all  types of  sharks’ skin is covered in dermal denticles (modified scales) which is what gives them that rough sandpaper type feeling.  If you rub your hand across the shark one way it will feel smooth, but the opposite way will feel coarse.

Dermal denticles, courtesy of Google images
Dermal denticles, courtesy of Google images

Cliff, Fisherman, getting a nurse shark set to measure
Cliff, Fisherman, getting a nurse shark set to measure

2.  Bull shark– These are one of the most aggressive sharks.  They have a high tolerance for low salinity.

Bianca, Scientist, taking a blood sample from a bull shark
Bianca, Scientist, taking a blood sample from a bull shark

bull shark
Bull shark

sandbar shark
Sandbar shark

3. Sandbar shark– These sharks are the most sought after species in the shark industry due to the large dorsal and pectoral fins.  The fins have large ceratotrichia that are among the most favored in the shark fin market.

4.  Atlantic sharpnose shark– The main identifying characteristic of this shark is white spots.

Atlantic sharpnose shark
Atlantic sharpnose shark

5.  Blacknose shark– Like the name portrays, this shark has black on its nose.  These sharks are called “baby lemons” in commercial fish industry because they can have a yellow hue to them.

blacknose shark
Blacknose shark

Me holding a blacknose shark
Me holding a blacknose shark

6.  Blacktip shark- An interesting fact about this shark is that even though it is named “blacktip,” it does not have a black tip on the anal finThe spinner shark, however, does have a black tip on its anal fin.

Jeff and Cliff getting a blacktip shark on board
Jeff and Cliff getting a blacktip shark on board

Tagging a blacktip shark
Tagging a blacktip shark

7. Smooth dogfish– Their teeth are flat because their diet consists of crustaceans, such as crabs and shrimp.

Travis, Scientist, weighing a smooth dogfish
Travis, Scientist, weighing a smooth dogfish

8. Tiger shark– Their teeth work like a can opener.  They are known for their stripes.

A large tiger shark got tangled in our line.  Notice the 2-3 foot sharpnose shark. The tiger shark is about 5 times larger!
A large tiger shark got tangled in our line. Notice the 2-3 foot sharpnose shark at the left. The tiger shark is about 5 times larger!

Me with a tiger shark
Me with a tiger shark

Daniel, Scientist, holding a tiger shark
Daniel, Scientist, holding a tiger shark

9.  Silky shark- Their skin is very smooth like silk.

Daniel, Scientist, holding a silky shark
Daniel, Scientist, holding a silky shark

Another thing I got to see was shark pups because one of the scientists on board, Bianca Prohaska, is studying the reproductive physiology of sharks, skates, and rays.  According to Bianca, there are 3 general modes of reproduction:

1.  oviparous–  Lays egg cases with a yolk (not live birth).  This includes some sharks and all skates.

2.  aplacental viviparous – Develops internally with only the yolk.  This includes rays and some sharks.  Rays also have a milky substance in addition to the yolk.  Some sharks are also oophagous, such as the salmon shark which is when the female provides unfertilized eggs to her growing pups for extra nutrition.  Other sharks, such as the sand tiger, have interuterine cannibalism (the pups eat each other until only 1 is left).

3. placental viviparous– Develop internally initially with a small amount of yolk, then get a placental attachment.  This includes some sharks.

Yet another thing that scientists look at is the content of the shark’s stomach. They do this to study the diet of the sharks.

Skate egg case, Courtesy of Google images
Example of oviparous- Skate egg case, Courtesy of Google images

Placental viviparous
Example of placental viviparous

Dogfish embryo, courtesy of Google images
Example of aplacental viviparous- Dogfish embryo, courtesy of Google images

Contents from the stomach of a smooth dogfish (flounder and squid)
Contents from the stomach of a smooth dogfish (flounder and squid)

Personal Log

Anyone who knows me realizes that I appreciate good food when I eat it.  Okay, on NOAA Ship Oregon II, I have not found just good food, I have found GREAT cuisine!   I am quite sure I have gained a few pounds, courtesy of our wonderful chefs, Walter and Paul.  They have spoiled us all week with shrimp, steak, prime rib, grilled chicken, homemade cinnamon rolls, turkey, dressing, mashed potatoes, and gravy, and the list goes on!   Just talking about it makes me hungry!

Walter is a Chef de Cuisine.  I want to share with you two of the wonderful things, and there are many more, he has prepared for us this week.  The first is called ceviche.  On our shift we caught some grouper.  Walter used these fish to make this wonderful dish.

Grouper used to make ceviche
Grouper used to make ceviche

In addition to the grouper, the ingredients he used were lemon juice, vinegar, onions, jalapeno, kosher salt, and pepper.  He mixed all the ingredients together.  The citric acid cooks the raw fish.  It has to be fresh fish in order to make it.  Instead of lemon juice, apple juice or orange juice can be substituted.  All I know is that since I arrived on NOAA Ship Oregon II, I heard from the entire crew about how great Walter’s ceviche was and it did not disappoint!

Walter, Chef de Cuisine, with his award winning ceviche
Walter, Chef de Cuisine, with his award winning ceviche

Walter's maccaroons
Walter’s macaroons

Another thing Walter is famous for on board NOAA Ship Oregon II are his macaroons.  These are NOT like ANY macaroons you have ever tasted.  These truly melt in your mouth.  Amazingly, he only has 4 ingredients in them: egg whites, powdered sugar, almond paste, and coconut flakes.  They are divine!!

On another note, I would like to give a shout out to my 5th grade students in Jay Upper Elementary School!  (I actually have not had the chance to meet them yet because I am here as a NOAA Teacher at Sea.  I would like to thank my former student, Samantha Morrison, who is substituting for me.  She is doing an outstanding job!!)

Dolphin swimming alongside the ship
Dolphin swimming alongside the ship

Jay 5th Grade:  I cannot wait to meet you!  Thank you for your questions!  We will have lots of discussions when I return about life at sea.  Several of you asked if I have been seasick.  Fortunately, I have not.  Also, you asked if I got to scuba dive.  Only the dive crew can scuba dive.  We are not allowed to have a swim call (go swimming) either.  As you can see, there is plenty to do on board!  Also, you may have noticed that I tried to include some pictures of me tagging some sharks.  Lastly, this dolphin picture was requested by you, too.  Dolphins LOVE to play in the ship’s wake so we see them every day.

Enjoy the view!

I LOVE the scenery out here!  I thought I’d share some of it with you today.

I thought these clouds looked like dragons. What do they look like to you?
I thought these clouds looked like dragons. What do they look like to you?

The vertical development of clouds out here is amazing!
The vertical development of clouds out here is amazing!

Starboard side at sunset
Starboard side at sunset

Sunset from the stern
Sunset from the stern

Sunset in the Gulf of Mexico aboard NOAA Ship Oregon II
Sunset in the Gulf of Mexico aboard NOAA Ship Oregon II

Sunset, port side
Sunset, port side

Jennifer Goldner: Shark Week- All day, every day!, August 16, 2011

NOAA Teacher at Sea
Jennifer Goldner
Aboard NOAA Ship Oregon II
(NOAA Ship Tracker)
August 11 — August 24, 2011

Mission: Shark Longline Survey
Geographical Area: Southern Atlantic/Gulf of Mexico
Date: August 16, 2011

Weather Data from the Bridge
Latitude: 25.15 N
Longitude: 82.48 W
Wind Speed: 2.09 kts
Surface Water Temperature: 29.20 C
Air Temperature: 30.10 C
Relative Humidity: 69.00%

Science and Technology Log

If there’s one thing I’ve learned since I’ve been on this trip it is that both science and technology are crucial for doing a shark survey. Keep in mind NOAA Ship Oregon II’s mission is not to fish for sharks, rather it is to survey them. In other words, it is to find out how the sharks are doing and where they like to hang out in the ocean. Thus, the ship doesn’t ONLY go to the “shark hot spots” so to speak. Instead, there are various locations the ship stops at to perform a survey. These are called stations. The stations vary greatly in depth, temperature, dissolved oxygen, etc. It would be similar to marketers taking a survey to see what restaurants people prefer.

With that being said, there is a certain science to performing a survey of the sharks. Here is how it is done. There is much preparation before leaving port to do a survey. NOAA Ship Oregon II cannot leave port without Atlantic mackerel, and lots of it. This is the bait that is used to catch the sharks. The hook of choice is a circle hook. The fishing line is monofilament and extremely strong. These are the basic items needed, but there are numerous other tools needed such as the cradle for larger sharks, tagging tools, vials for samples, and the list goes on. Suffice it to say, once the ship leaves from port, everything has to be on board in order to have a productive survey.

Anyone who fishes knows there are numerous ways to catch a fish. So how do you catch a shark? If you’ve ever seen the movie, “The Perfect Storm,” then you have a good idea. The method used is called longlining. As the name claims, this method makes use of a long line. The line must first be prepared. In order to do this the circle hooks are baited with Atlantic mackerel. There are 100 hooks in total to put on the line. The hooks are part of a unit called a gangion. A gangion consists of a leader, a monofilament line, and a circle hook. These are placed in a barrel. There are 50 gangions with bait per barrel, for a total of 2 barrels per fishing set.

Mark, Chief Scientist, and Adam, Scientist, preparing Atlantic Mackeral for the next station
Mark, Chief Scientist, and Adam, Scientist, preparing Atlantic mackerel for the next station

Preparing the bait
Preparing the bait

Hooks are baited and ready to go!
Hooks are baited and ready to go!

Gangion bucket- Notice when the line is set the bait is given out in a clockwise direction.  When it is hauled back in, it is put in a counterclockwise direction.
Gangion bucket- Notice when the line is set the bait is given out in a clockwise direction. When it is hauled back in, it is put in a counterclockwise direction.

Incidentally, there are 2 shifts: day shift (noon until midnight) and night shift (midnight until noon). I am on the day shift. Thus there are stations being worked 24 hours a day. The bridge will announce when we are coming on another station. Also, it is posted on the dry lab door so we can all be prepared for the next station. Knowing this, the shift gets the mackerel ready by thawing it out, then cutting it up to bait the
hooks.

Once the ship is to the station, everyone gets in their places, and the OOD (Officer of the Deck) disconnects the engine. At this point the drift test begins. This takes into account both the wind and the current to determine what direction to set the line. If there is too much current, determined by the Field Party Chief and the OOD, the station is either canceled or moved closer to shore. Next the ship slowly moves forward (4 knots) and the line is fed from the ship. The line, which is 1 nautical mile, is let out at the stern (back) of the ship. The fishermen are responsible for feeding it through blocks (pulley) system. The 1st thing on the line is a high flyer. This is an orange flotation device put at the end of the line.

High flyer
High flyer

The next thing put on the line is a weight. This sinks the line to the bottom. At this point, the first of 50 baited gangions are handed to the fishermen to clip to the line, each being evenly distributed. It should be noted that each gangion has a hook number so that an accurate record can be kept. The hook numbers are taken off a line and clipped on the gangion as the bait is being fed over the deck to the fisherman. After the 50th gangion, another weight is put on the line, followed by 50 more gangions, another weight, and lastly, a high flyer. While all of this is going on, one person on the team records data on the computer which is instantly uploaded with such things as the latitude and longitude and real time of when each hook is deployed.

Longline Diagram, courtesy of Dr. Trey Driggers
Longline Diagram, courtesy of Dr. Trey Driggers

100 hook number tags
100 hook number tags

Scientists getting the gangion ready to give to Jeff, Chief Boatswain
Scientists getting the gangion ready to give to Jeff, Chief Boatswain

The night shift crew preparing the bait
The night shift crew preparing the bait

Greg, Fisherman, clipping a gangion on the line
Greg, Fisherman, clipping a gangion on the line

Chief Scientist, Mark Grace, records data
Chief Scientist, Mark Grace, records data

The longline is allowed to soak for 1 hour before it is brought back on board on the starboard (right) side of the well-deck, just aft of the bow (front). During this time the deck and buckets are cleaned up and the CTD is deployed (Conductivity Temperature Depth).

The CTD takes many measurements including temperature, salinity, turbidity, chlorophyll, depth, and dissolved oxygen. These measurements give the scientists valuable information for the habitats of the sharks. For example, any level of dissolved oxygen 2.0 mg/liter or lower is considered apoxic and causes physiological stress on an animal. Most animals live in an area between 2-7 mg/liter of dissolved oxygen. A reading of 7 would only be found in very cold water such as the Arctic.

CTD
CTD

CTD Screen
CTD Screen

Water color test
Water color test

In addition to the CTD readings, the scientists report the water color along with the current weather conditions.

After the line has soaked, the team meets at the bow to haul in the line. The fishermen unclip the gangions from the line and hand it off to a scientist who records the hook number and the condition of the bait. If a fish is caught, it is brought aboard and morphometric (total length, fork length, sex, and weight) data is collected.

Travis, Scientist, taking measurements
Travis, Scientist, taking measurements

In the event a larger fish is caught, it is placed in the cradle.What are the benefits of doing a longline survey? It gives the scientists presence/absence data from looking at what was caught and was not caught. It gets samples from the Gulf to compare with other areas.

Personal Log

Mark, Chief Scientist, taking measurements
Mark, Chief Scientist, taking measurements

One word: WOW! Let me say it backwards: WOW!!! This week is DEFINITELY making my “Top Ten Life Experiences” list!! Shark Week has absolutely nothing on this NOAA crew! It is evident they eat, sleep, and live sharks and other fish all year long. NOAA Ship Oregon II needs to have a camera follow them for a reality show called “Shark Year.” If they aren’t catching it, they are studying about it. I am amazed at the depth of knowledge of the entire crew, including each and every member on board, of the ocean. What impresses me even more is their enthusiasm and patience in teaching this teacher how it all works.

Now for your questions. . .

One of you asked about shark finning. According to the scientists and fishermen on board it is not a big problem off the coast of the United States like it is in Asia. Here it is regulated. In fact, when commercial fishermen bring in their sharks, the fins have to be attached, so that cuts down on this practice.

Another question that came up was in regards to tagging. On this ship the scientists mainly use passive tagging techniques. This requires the fish to be recaptured after it has been tagged. The tag has a phone number to call when the shark is caught as well as an identification number. Another method of tagging is active tagging, for instance satellite tags. Satellite tags are attached to animals to study migration. These are very expensive, ranging from $3,000-$5,000. They are set to pop off the animal at a predetermined time and date and transmit data to a satellite in order to plot the shark’s course. Many shark species are migratory so this type of tag is beneficial to see their migration patterns.

Also, a question was asked about how deep it needs to be to safely navigate. According to Cap, the draft for the ship is 15 feet. The ship can safely sail in 30 feet of water. That’s unbelievable for a ship of this size, huh? It makes Orgeon II a great vessel to do the shallow water surveys. Most other ships can’t go that shallow.

By the way, great job class on last blog’s poll! The correct answer was 70! You all aced the quiz!

My son, Hayden on his 1st day of 6th grade
My son, Hayden on his 1st day of 6th grade

I also have to share a picture of my son, Hayden. His 1st day of school was Monday. I can’t believe he is already in 6th grade! Hayden is a shark enthusiast and is following my blog at home with my parents. Cap has already told me he is welcome on the ship. Someday he can come study sharks, just like his Mom!

Shark Gallery Pictures

The next blog will be a lesson on specific sharks, but for now, enjoy the pictures!!

Me with a dogfish shark
Me with a smooth dogfish

Adam, Scientist, getting ready to measure a tiger shark
Adam, Scientist, getting ready to measure a tiger shark

Drew, Scientist, measuring a blacknose shark
Drew, Scientist, measuring a blacknose shark

Me touching a sandbar shark
Me touching a nurse shark