Terry Maxwell: Time is Not On Our Side, June 14, 2017

NOAA Teacher at Sea

Terry Maxwell

Aboard R/V Hugh R. Sharp

June 6–21, 2017

Mission: Sea Scallop Survey
Geographic Area of Cruise: Northeast Atlantic Ocean
Date: June 14, 2017

Weather Data from the Bridge
Latitude: 41 31.54 N
Longitude: 70 40.49 W
Wind Speed 10 Knots (11.5 mph)
Air Temp 20.2 C (68.4 Fahrenheit)

Science and Technology Log

Contrary to the popular Rolling Stones song “Time is on my Side,” time is not on our side while we are taking survey of the scallop population in the Northeast Atlantic Ocean. This survey has been meticulously planned for months leading up to the actually event. There is no time budgeted to sit at a dredge station longer than you have to.

track
The Nobeltec Cruise Track for the 2nd and 3rd legs of the 2017 Scallop Survey.  You can see this survey has covered 1000’s of nautical miles, and stopped at over 100 dredge stations.

For seven days our noon to midnight science crew has been working at a blistering pace to dredge the ocean floor or take pictures with the underwater camera, HabCam.  We are on a tight schedule, and in a twelve hour period we are able to work through 10 dredge stations.  There has been little down time, and because some of the dredge stations are so close together, there is no time to be unproductive while we are at a station.  Because of this, there are often stations where we simply are not able to individually count all the organisms we collect.  There are many situations where our crew must use the method of subsampling.

For you in the Midwest, imagine you wanted to know how many dandelions were in your yard.  Now if you are anything like me, you have way too many to count.  If you went to count them all individually, it would literally take you all day if not more.  It is just not time efficient to do such a thing.  But if we took a population sample of some random areas in the yard, we could come up with an answer of how many dandelions were in the yard, and get a very close answer to actually counting them individually.

A similar example I can give you is with a recent dredge catch that was full of sand dollars.  In one of our massive dredge catches composed of about 99.5% sand dollars, I completed an estimate sand dollars in a similar manner.  I filled 2 liter pail full of sand dollars.  My count for that pail was 188 sand dollars per 2 liters.  In this catch we had 46 baskets each with a volume of 46 liters.  So at 94 sand dollars per liter with there being 2,116 liters total, you can estimate there are about 198,904 sand dollars in that dredge catch.

sand dollars
A dredge catch that was almost 100% sand dollars.  These sand dollars are dripping with a green algae and cover our buckets and wet gear in a green coating.

We are faced with similar tasks while sorting through the dredge.  When we face those situations, we turn to the method of sampling, and we take a representative sample of our catch.  At most stations we are taking count of sea stars, crabs, waved whelks, all fish, and scallops.  When we collect the dredge, most of the time it would not be time efficient to totally count up all the sea stars, so we turn to subsampling.

Here’s how subsampling works.  Once we have sorted our dredge catch into various pails, we count up our specimens.  For sea stars however we always take a subsample.  To do that our watch-chief takes a scoop full of whatever is in our discard pails, and she does this randomly.  She puts the random sample in a 4.5 liter pail.  From here, she can begin to estimate the number of sea stars in our dredge catch.  For example, if she goes through the 4.5 liter pail and finds six sea stars, and she knows there are four 46 liter pails of discard from the dredge, with a little math work she can figure out how many stars are in the dredge.  If there are four 46 liter pails of discard, then there is a total of 186 liters of discard.  She knows from her random sample that there are 6 sea stars per 4.5 liters which would come out to 1.3 sea stars per liter.  By multiplying that number by 186, you can determine that an expanded estimate for the sea stars in the dredge collection would be 242 sea stars.

Bucket
An example of our discard baskets from our dredge catches.  This catch was sea star heavy, and this shows it would have taken too much time to count each sea star individually.  Since many sea stars are predators of scallops, a count needs to be recorded.

We also use this method when we have a large catch of scallops.  When we have an overly large scallop catch on the dredge, we are not able to count and measure every single scallop from the catch.  In these cases we use a representative amount.  In one case we caught 24 baskets of scallops, each basket able to hold 46 liters.  If we were to measure all of those scallops we would be at that station far too long to move onto the next dredge.  When we caught enough scallops to fill 24 baskets, we used 3 baskets of scallops as a representative amount.  All of the scallops in the 3 baskets were measured for their shell height.  We would then take a mean average from these scallops to represent the 21 other baskets.  We are also able to estimate the number of scallops in the 24 baskets the same way I estimated the number of sand dollars in a dredge catch.

scallop baskets
A large catch of scallops from one of our dredge stations.  In this case a representative sample of shell heights was taken.

 

Representative samples and population estimations through sampling are valuable tools that scientists use to collect a lot of data in a more efficient amount of time.  From this data, mathematical models and predictions are developed.  By implementing these methods, we are able to get more data from more locations.

Personal Log

It has been 9 days since I arrived in Woods Hole, Massachusetts to be a part of this journey.  As I shared in my last blog, it is hard to be away from home, but many of the people here are gone more than 100 days per year.  There is one thing that makes that time away easier….eating!  Here on the Hugh R. Sharp, I would imagine I’ve put on some extra pounds.  Most days I feel like a cow grazing.  There are so many snacks on board, that it is so easy just to walk by the galley and grab a mini candy bar, chips, pop, or ice cream.  I have discovered there is no better candy bar than a Baby Ruth.  On top of the snacks and sweets, the cook, Paul, cooks up some mean dinners.   Though I miss my wife’s home cooking, Paul’s cooking is a good substitute.

paul and candy
Lots of candy and snacks and some good dinners is probably leading to some extra poundage!  There are two drawers always full of candy, and a freezer always full of ice cream.  Pictured on the left is the ship’s cook, Paul.

Outside of eating, there is not much recreational time on the ship.  I do try to get up a couple hours before our shift begins to just enjoy being out on the ocean.  I haven’t been able to make myself get up yet for sunrise at 5:05 AM.  After working a twelve hour shift sorting dredge catches, there’s not much you want to do but sleep.  Sleeping on the boat has been good.  Probably some of the deepest sleep I’ve had since our kids were born.  I’ve gotten used to the motion of the boat, the sound of waves hitting the bow, and the boat stabilizers which sound like a giant snoring.  I’m a sleep walker, so that was a concern coming in that I would find myself on deck, sleep walking.  But I’m sleeping so sound, I don’t think it’s possible.  However I did warn my roommates to stop me if they saw me up in the middle of the night.
Part B of the survey has started, and with that most of my crew got off the ship, and I will have a new crew starting today.  It was a great group of people to work with.

crew
Part A of the survey the day crew from left to right: Crew chief Nicole, myself, Dylan, Sue, and Nancy.  Then the night crew of Lauren, John, Jill, Han, and crew chief Mike.

 

Did You Know?

Living in Illinois, there are not many times where knowing your parts of a ship come in handy.  However, as I have been living on the Hugh R. Sharp for over a week now I have picked up some terms.  I did not know many of these coming on, so this is a “Did you know?” moment for me.

Front of the ship: bow
Back of the ship: stern
Moving to the front of the ship: forward
Moving to the back of the ship: aft

bow
The left of this picture is port, and the right is starboard.  It took me awhile to figure out what our turn would be like if we were making a turn to starboard.

If you were on the bow, your left would be the: port
If you were on the bow, your right would be the: starboard
Fathom: 6 feet
A heading of zero: North, a heading of 90: East, a heading of 180: South, a heading of 270: West
Heading to a location quickly: steam
Kitchen (where I constantly graze in between dredge stations): galley
Location of the ship’s navigational equipment is: bridge
Bathrooms: the head

Not much use for these terms in the Midwest!

 

Bryan Hirschman, August 10, 2009

NOAA Teacher at Sea
Bryan Hirschman
Onboard NOAA Ship Miller Freeman (tracker)
August 1 – 17, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area: North Pacific Ocean; Newport, OR to Port Angeles, WA
Date: August 10, 2009

Weather Data from the Bridge (0800) 
Visibility: 4 nautical miles
Wind: 14 knots
Wave Height: 2 ft
Wave Swell:  5-6 ft
Ocean temperature: 14.40C
Air Temperature: 16.00C

Science and Technology Log 

Image of plankton taken with VPR
Image of plankton taken with VPR

Today, John Pohl, one of the fish biologists showed me the VPR (video plankton recorder). The camera is attached to the CTD (Conductivity, Temperature, and Depth), which is operated by Steve Pierce, a physical oceanographer, and Phil White, chief survey technician, who work the night shift. The CTD is a large apparatus which has room for many additional sensors and attachments. The CTD onboard the Miller Freeman has a dissolved oxygen sensor in addition to the VPR.

Image of plankton taken with VPR
Image of plankton taken with VPR

Each night Steve sends the CTD down to the seafloor (about 7 times) to collect data. He is most interested in determining the differing densities of water at different depths (depth is based on pressure, which the CTD measures). He then calculates the densities using conductivity and temperature. By measuring conductivity (how easily electric currents pass through the water sample being tested), Steve can get a measurement of that water sample’s salinity.  Density of water is then calculated from measurements of salinity, and temperature. An equation is used which relates the measurements so that density can be found if these other two values are known. Steve records all the data each night, and will use this information to study currents and their movements.

The VPR is a camera which records video as well as still pictures as it descends to the sea floor. The data are recorded, then uploaded to an external hard drive. The file is very large, as it takes about ten minutes to transfer all the data. The pictures and video will be used by biologists (not on board presently) to identify and determine the percentage of plankton (plankton consist of any drifting organisms) floating throughout the water column. Each time before we set out the fish nets, two people go to the bridge to look for marine mammals. If any are present the nets won’t be put into the water. A few tows have been cancelled due to the presence of marine mammals. This is a great step in keeping them safe. It is always special when I see dolphins or whales.

Here I am holding a sleeper shark.
Here I am holding a sleeper shark.

The only fish tow of the day (no marine mammals present) consisted of mainly Humboldt Squid and some Pacific Hake. Today we used a load cell to get a total mass; this is a device which hooks up to the net and crane. The load cell gives a mass of the entire haul. The majority of the load was released back into the water while a smaller sample was retained. The weights of the Hake and squid were then determined using bins and a balance. The scientists can use the subsample data to determine the data for the entire load.  Bycatch, defined as living creatures that are caught unintentionally by fishing gear, are occasionally found in the net. Today a rougheye rockfish was caught, and yesterday a sleeper shark were accidently caught. The scientists do a very good job of limiting bycatch using their acoustic data.

Personal Log 

A rougheye rockfish – what a pretty fish
A rougheye rockfish – what a pretty fish

I am enjoying the long hours of work, and have gotten into quite a rhythm. I also enjoy spending time with the hardworking and intelligent staff here on board. We work together as a team, and everyone enjoys their jobs. NOAA has chosen a great group of officers who set a very positive tone and make the ship a great workplace. I would love to take a sabbatical from teaching and work on a NOAA ship. I’m having a lot of fun and learning a bunch. I will take back a lot of positive experience to share with my students, family, and friends.

I have also learned to appreciate the smells of a load of fish. As we move the fish from the holding cell, to small baskets for weighing we are constantly splashed in the arms, face, mouth, eyes, etc. I find it pretty amusing every time I get splashed, or even better, when I splash John, Melanie, or Jake. It never grows old. The hardest portion of my day is determining what movie to watch while running on the treadmill (I finally mastered the art of the treadmill on a rocking boat and can leave the elliptical trainer alone). The boat has close to 800 movies to choose from.

Animals Seen Today 
Pacific White-Sided Dolphins, Rougheye rockfish, Humboldt Squid, Pacific Hake, Albatross, Sheerwaters, and Murres.

Poem of the Day 
Squid ink, squid ink!
O! How you make me stink!
You stain my face, you stain my clothes;
I must wash you off with a fire hose!

You make me scratch, you make me itch,
You even turn Melanie into a wicked witch!
(which is a horribly difficult thing to do—
She’s as gentle as a lamb in a petting zoo!)

Why not John, allergic to your ink!
Torment HIM with your venomous stink!
But no–not ME! All I want are Hake.
So torment instead “almost” graduate Jake!

But once again, though our dinner hour,
Because of you I must shower!

So I beg you, O squid, to hear my plea:
In the future, stay away from me!
Does that sound good?
Do we have a deal?
If not, well then—you’re my next meal.

Answers to Last Question 
Ribbon Barracudina, Pacific Hatchetfish, Baby Humboldt Squid

Bryan Hirschman, August 6, 2009

NOAA Teacher at Sea
Bryan Hirschman
Onboard NOAA Ship Miller Freeman (tracker)
August 1 – 17, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area: North Pacific Ocean; Newport, OR to Port Angeles, WA
Date: August 6, 2009

Weather Data from Bridge (0800) 
Visibility: 6 nautical miles
Wind: light
Wave Height: <1
Wave Swell: 2-3 ft
Ocean temperature: 15.90C
Air Temperature: 15.50C

Science and Technology Log 

John and Melanie sexing and measuring the fish
Melanie sexing and measuring the fish

Today the day started with a fish tow at 8:00 am. The acoustic scientists, Steve, Larry, and Chu, predicted the fish would be mostly myctophids, and wanted to be certain. The fisherman sent the net out and about an hour later the net was brought back. As predicted the net was filled with mostly myctophids. This is an important step in being able to determine the fish type and numbers using acoustic data only. Scientists will then be able to acoustically count fish populations for most schooling fish (Pollock, Pacific Hake, anchovies, and mackerel to name a few), with out using nets. After the nets are brought in the fish biologists (and me) get to work. We separate all the organisms into their own piles. We then count and weigh them, and log this into a computer using their scientific names. It’s amazing how Melanie and John (the fish biologists) can identify and recall the Latin names of these organisms.

Question: Do we just fish in random locations?

Answer: No, the acoustic scientists choose to fish in locations that appear to be different from previous fishing locations. The parameters which make them different are depth, color intensity, or pattern of the markings on their computer screens. The scientists get real-time acoustic pictures as the boat travels along on a pre-determined path (called a transect).  The more they can relate the graphs on the computer screens to the actual catch in the nets the less fishing which needs to be done.

Here is an acoustic image (2 frequencies) as seen on the scientist’s screen. The bottom wavy line is the seafloor, and the colored sections above are organisms located in the water column.
Here is an acoustic image (2 frequencies) as seen on the scientist’s screen. The bottom wavy line is the seafloor, and the colored sections above are organisms located in the water column.
Here is the second tow consisting of Pacific Hake and Humboldt Squid.
Here is the second tow consisting of Pacific Hake and Humboldt Squid.

The second fish tow of the day produced Pacific Hake and Humboldt Squid. We weighed all the squid first (then quickly returned to the ocean), and 10 were randomly selected for a stomach dissection. The stomachs contained pieces of squid, Pacific Hake, and other unidentifiable fish. Another purpose of this cruise is to determine the effects of the squid on the Hake, and by looking at the stomachs the scientists will be able to determine the relationship between the squid and hake.  The third tow of the day involved an open net with a camera. The camera could record for an hour. The scientists then view the footage to estimate the size and quantity of the hake passing through the net. This is another method the scientists are using to verify their acoustic data.

Here I am holding the delightful meal of tuna.
Here I am holding the delightful meal of tuna.

I also had the chance to launch an XBT (Expendable Bathythermograph). This device is launched at the back of the boat. The sensor is released into the water and is attached by a tiny copper wire. As the sensor travels down the water column it sends the depth and temperature data to the bridge. This data is saved and used by physical oceanographers to better understand temperature profiles found in the ocean.

Personal Log 

Today was a great day. The seas were calm, I slept well last night, and the food was great. I even got to exercise for 1.5 hours. The exercise room has a television hooked up to watch movies, and it made using the elliptical trainer and stationary bike much more enjoyable. I also had a great time working with the fish biologists. We were throwing and catching squid like the professionals who work at Pike Place Market in Seattle.  Best of all was dinner, freshly caught tuna, which I got to filet.

Animals Seen Today 
Dolphin, Mola-mola, Albatross, Sheerwaters, Slender Barracudia, Ribbon Barracudina, Blackbelly Dragonfish, Pacific Hake, Lanternfish (myctophids), Salps, Sunrise Jellyfish, Purple Cone Jellyfish, Wheel Jellyfish, Humboldt Squid, Black-eyed Squid, Pacific Hatchetfish, and Spiny Dogfish shark.

Question of the Day : Can you identify the animals in the photo?
Question of the Day : Can you identify the animals in the photo?

Answer to the last question: Lancetfish

Bryan Hirschman, August 4, 2009

NOAA Teacher at Sea
Bryan Hirschman
Onboard NOAA Ship Miller Freeman (tracker)
August 1 – 17, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area: North Pacific Ocean; Newport, OR to Port Angeles, WA
Date: August 4, 2009

hirschman_log1Weather Data from the Bridge (0800) 
Visibility: 10 miles
Wind: 2 knots
Wave Height: <1 ft
Wave Swell: 3 ft
Ocean temperature: 15.50C
Air Temperature: 15.50C

Science and Technology Log 

Here I am holding a Pacific Hake.
Here I am holding a Pacific Hake.

We will be conducting several types of oceanographic sampling during our cruise: 2-3 Pacific hake tows per day (weather permitting), an open net tow where fish are viewed through a camera, XBTs: Expendable Bathythermograph (take temperatures at various depths), HABS: Harmful Algal Bloom Sampling, CTD: Conductivity, Temperature, and Density (also at various depths), and a Multiple Opening Plankton Net (collects living organisms at various depths). We will also release a Surface Drifter: floats with currents and sends information about currents via satellite.

The tows, XBTs and HABS are done from 7:00 am to 9:00 pm, while the CTD and plankton net are used during nighttime hours. By working in daytime and nighttime shifts the scientists are maximizing the boat’s usage. I was fortunate enough to help with the plankton net last night. Five samples were collected while I observed. Each sample was labeled and preserved for later use in a laboratory. Observed were amphipods, copepods, shrimp, and crab larvae.

Can you identify the animal I’m holding?
Can you identify the animal I’m holding?

Our first Pacific hake tow came at approximately 8:00 am. The acoustic scientists use four transducers that are attached to the bottom of the boat.  Each transducer sends out pulses of sound at a different frequency toward the bottom of the sea floor. The sound pulse then travels back to the boat and is recorded onto graphs. Fish and other biological organisms also reflect sound pulses. Each type of fish gives off a different signal depending on its size, shape, and orientation. The fish are then identified on a computer using acoustic analysis software. The strength of the sonar signal helps determine the biomass and number of fish. When the chief scientist see an interesting aggregation of fish to tow on, he calls the bridge (the brains of the boat–this is where the boat is controlled) and reports the latitude and longitude of where he wishes to fish. The ship then turns about and the deck hands work to lower the tow net and prepare to collect fish at the depth the scientists observed the fish.

Here, I’ve got a Humboldt Squid.
Here, I’ve got a Humboldt Squid.

After the fish are collected, the Pacific hake are weighed and counted.  A sub-sample of about 300 Pacific hake is sexed and lengthed. Another sub-sample of about 50 Pacific hake is weighed, sexed, and lengthed; sexual maturity is determined by observation of the gonads, and ear bones are removed – this will enable scientists to determine the age of the fish.  About 10 Pacific hake have their stomach contents sampled as well. All this information is collected and used by Fishery Biologists to determine the population dynamics of the overall Pacific hake stock. The acoustic scientists also save all their data in an acoustic library. This will help scientists to analyze the Pacific hake biomass (population) while minimizing how many live specimens they need to collect. In total we completed three tows today. That’s a lot of Pacific hake to measure, weigh, and sex.

Personal Log 

The ship is loud. Sleep was hard to come by last night. Living in quiet Vermont has made me a light sleeper. I need to work on adjusting to the constant noise. The food and staff are great. Everyone takes pride in their ship and the work which is done on the ship.

Question of the Day 
Can you identify the beast in the picture to the picture?

Animals Seen Today 
Pacific Hake, Humboldt Squid, Myctophids, Breaching Whale (too far away to identify; most likely a Humpback)