Amanda Dice: Ending Week 1 at Line 8, August 26, 2017

NOAA Teacher at Sea

Amanda Dice

Aboard Oscar Dyson

August 21 – September 2, 2017

 

Mission: Juvenile Pollock Fishery Survey

map cropped
Oscar Dyson moves across the Shelikof Straight to collect the Line 8 samples

Geographic area of cruise: Western Gulf of Alaska

Date: August 26, 2017

Weather Data: 13.2 C, cloudy with light rain

Latitude 57 36.6 N, Longitude 155 .008 N

 

 

Science and Technology Log

As part of this survey, the scientists onboard collect data from what is known as “Line 8”. This is a line of seven sampling stations, positioned only a few miles apart, near the southern opening of Shelikof Straight between Kodiak Island and the Alaskan Peninsula. Water samples are taken at different depths at each sampling station to measure several different properties of the water. This study is focused on profiling water temperature and salinity, and measuring the quantities of nutrients and phytoplankton in the water.

IMG_0988
The CTD rosette is lowered into the water using a winch – as seen from above.

To collect this data, a conductivity and temperature at depth (CTD) instrument is lowered into the water. This instrument can take water samples at different depths, by using its eleven canisters, or Niskin bottles. The water collected in the Niskin bottles will be used to determine the nutrient quantities at each station. The rosette of Niskin bottles also has sensors on it that measure phytoplankton quantities, depth, temperature, and how conductive the water is. Scientists can use the readings from conductivity and temperature meters to determine the salinity of the water.

Each Niskin bottle has a stopper at the top and the bottom. The CTD goes into the water with both ends of each Niskin bottle in the open position. The CTD is then lowered to a determined depth, depending on how deep the water is at each station. There is a depth meter on the CTD that relays its position to computers on board the ship. The survey team communicates its position to the deck crew who operate the winch to raise and lower it.

IMG_1164
Niskin bottles are lowered into the water with the stoppers at both ends open.

When the CTD is raised to the first sampling depth, the survey crew clicks a button on a monitor, which closes the stoppers on both ends of Niskin bottle #1, capturing a water sample inside. The CTD is then raised to the next sampling depth where Niskin bottle #2 is closed. This process continues until all the samples have been collected. A computer on board records the depth, conductivity and temperature of the water as the CTD changes position. A line appears across the graph of this data to show where each sample was taken. After the Niskin bottles on the CTD are filled, it is brought back onto the deck of the ship.

IMG_1173
They let me take control of closing the Niskin bottles at the sampling depths!
CTD screen cropped
I used this screen to read the data coming back from the CTD and to hit the bottle to close each Niskin bottle. The purple horizontal lines on the graph on the right indicate where each one was closed.

Water is collected through a valve near the bottom of each Niskin bottle. A sample of water from each depth is placed in a labeled jar. This study is interested in measuring the quantity of nutrients in the water samples. To do this it is important to have samples without phytoplankton in them. Special syringes with filters are used to screen out any phytoplankton in the samples.

Screen Shot 2017-08-26 at 8.28.56 PM
Syringes with special filters to screen out phytoplankton are used to collect water samples from the Niskin bottles.

The “Line 8” stations have been sampled for nutrient, plankton, and physical water properties for many years. The data from the samples we collected will be added to the larger data set maintained by the Ecosystems and Fisheries-Oceanography Coordinated Investigations (Eco-FOCI), Seattle, Washington. This NOAA Program has data on how the marine ecosystem in this area has changed over the last few decades. When data spans a long time frame, like this study does, scientists can identify trends that might be related to the seasons and to inter-annual variation in ocean conditions. The samples continue to be collected because proper nutrient levels are important to maintaining healthy phytoplankton populations, which are the basis of most marine food webs.

 

IMG_1171
Collecting water samples from a Niskin bottle.

Personal Log

As we travel from one station to the next, I have some time to talk with other members of the science team and the crew. I have really enjoyed learning about places all over the world by listening to people’s stories. Most people aboard this ship travel many times a year for their work or have lived in remote places to conduct their scientific studies. Their stories inspire me to keep exploring the planet and to always search for new things to learn!

Did you know?

Niskin bottles must be lowered into the water with both ends open to avoid getting an air bubble trapped inside of them. Pressure increases as depth under water increases. Niskin bottles are often lowered down below 150 meters, where the pressure can be intense. If an air bubble were to get trapped inside, the pressure at these depths would cause air bubble to expand so much that it might damage the Niskin bottle!

Samantha Adams: Day 6 – Testing… 1 – 2 – 3, July 29, 2017

NOAA Teacher at Sea

Samantha Adams

Aboard NOAA Ship Hi’ialakai

July 25 – August 3, 2017

Mission: Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Time-series Station deployment (WHOTS-14)

Geographic Area of Cruise: Hawaii, Pacific Ocean

Date: Saturday, 29 July 2017

Weather Data from the Bridge:

Latitude & Longitude: 22o 45’N, 157o 56’W. Ship speed: 1.3 knots. Air temperature: 27.8oC. Sea temperature: 27.0oC. Humidity: 72%.Wind speed: 14 knots. Wind direction: 107 degrees. Sky cover: Few.

Science and Technology Log:

The most difficult part of Thursday’s buoy deployment was making sure the anchor was dropped on target. Throughout the day, shifting winds and currents kept pushing the ship away from the anchor’s target location. There was constant communication between the ship’s crew and the science team, correcting for this, but while everyone thought we were close when the anchor was dropped, nobody knew for sure until the anchor’s actual location had been surveyed.

blog.4.Day6.image1
Triangulation of the WHOTS-14 buoy’s anchor location. Look at how close the ‘Anchor at Depth’ location is to the ‘Target’ location — only 177.7 meters apart! Also notice that all three circles intersect at one point, meaning that the triangulated location of the anchor is quite accurate.

To survey the anchor site, the ship “pinged” (sent a signal to) the acoustic releases on the buoy’s mooring line from three separate locations around the area where the anchor was dropped. This determines the distance from the ship to the anchor — or, more accurately, the distance from the ship to the acoustic releases. When all three distances are plotted (see the map above), the exact location of the buoy’s anchor can be determined. Success! The buoy’s anchor is 177.7 meters away from the target location — closer to the intended target than any other WHOTS deployment has gotten.


After deployment on Thursday, and all day Friday, the Hi’ialakai stayed “on station” about a quarter of a nautical mile downwind of the WHOTS-14 buoy, in order to verify that the instruments on the buoy were making accurate measurements. Because both meteorological and oceanographic measurements are being made, the buoy’s data must be verified by two different methods.

Weather data from the buoy (air temperature, relative humidity, wind speed, etc.) is verified using measurements from the Hi’ialakai’s own weather station and a separate set of instruments from NOAA’s Environmental Sciences Research Laboratory. This process is relatively simple, only requiring a few quick mouse clicks (to download the data), a flashdrive (to transfer the data), and a “please” and “thank you”.

blog.4.Day6.image2
July 28, 2017, 5:58PM HAST. Preparing the rosette for a CDT cast. Notice that the grey sampling bottles are open. If you look closely, you can see clear plastic “wire” running from the top of the sampling bottles to the center of the rosette. The wires are fastened on hooks which, when triggered by the computer in the lab, flip up, releasing the wire and closing the sampling bottle.

Salinity, temperature and depth measurements (from the MicroCats on the mooring line), on the other hand, are much more difficult to verify. In order to get the necessary “in situ” oceanographic data (from measurements made close to the buoy), the water must be sampled directly. This is done buy doing something called a CTD cast — in this case, a specific type called a yo-yo. 

The contraption in the picture to the left is called a rosette. It consists of a PCV pipe frame, several grey sampling bottles around the outside of the frame, and multiple sets of instruments in the center (one primary and one backup) for each measurement being made.

blog.4.Day6.image3
July 28, 2017, 6:21PM HAST. On station at WHOTS-14, about halfway through a CDT cast (which typically take an hour). The cable that raises and lowers the rosette is running through the pulley in the upper right hand corner of the photo. The buoy is just visible in the distance, under the yellow arm.

The rosette is hooked to a stainless steel cable, hoisted over the side of the ship, and lowered into the water. Cable is cast (run out) until the rosette reaches a certain depth — which can be anything, really, depending on what measurements need to be made. For most of the verification measurements, this depth has been 250 meters. Then, the rosette is hauled up to the surface. And lowered back down. And raised up to the surface. And lowered back down. It’s easy to see why it’s called a yo-yo! (CDT casts that go deeper — thousands of meters instead of hundreds — only go down and up once.)

For the verification process, the rosette is raised and lowered five times, with the instruments continuously measuring temperature, salinity and depth. On the final trip back to the surface, the sampling bottles are closed remotely, one at a time, at specific depths, by a computer in the ship’s lab. (The sampling depths are determined during the cast, by identifying points of interest in the data. Typically, water is sampled at the lowest point of the cast and five meters below the surface, as well as where the salinity and oxygen content of the water is at its lowest.) Then, the rosette is hauled back on board, and water from the sampling bottles is emptied into smaller glass bottles, to be taken back to shore and more closely analyzed.

On this research cruise, the yo-yos are being done by scientists and student researchers from the University of Hawaii, who routinely work at the ALOHA site (where the WHOTS buoys are anchored). The yoyos are done at regular intervals throughout the day, with the first cast beginning at about 6AM HAST and the final one wrapping up at about midnight.

blog.4.Day6.image4
July 29, 2017, 9:43AM HAST. On station at WHOTS-13. One CDT cast has already been completed; another is scheduled to begin in about 15 minutes.

After the final yo-yo was complete at the WHOTS-14 buoy early Saturday morning, the Hi’ialakai traveled to the WHOTS-13 buoy. Today and tomorrow (Sunday), more in situ meteorological and oceanographic verification measurements will be made at the WHOTS-13 site. All of this — the meteorological measurements, the yo-yos, the days rocking back and forth on the ocean swell — must happen in order to make sure that the data being recorded is consistent from one buoy to the next. If this is the case, then it’s a good bet that any trends or changes in the data are real — caused by the environmental conditions — rather than differences in the instruments themselves.

Personal Log:

blog.4.Day6.image5
The Hi’ialakai’s dry lab. Everyone is wearing either a sweatshirt or a jacket… are we sure this is Hawaii?

Most of the science team’s time is divided between the Hi’ialakai’s deck and the labs (there are two; one wet, and one dry).  The wet lab contains stainless steel sinks, countertops, and an industrial freezer; on research cruises that focus on marine biology, samples can be stored there. Since the only samples being collected on this cruise are water, which don’t need to be frozen, the freezer was turned off before we left port, and turned into additional storage space.  The dry lab (shown in the picture above) is essentially open office space, in use nearly 24 hours a day. The labs, like most living areas on the ship, are quite well air conditioned. It may be hot and humid outside, but inside, hoodies and hot coffee are both at a premium!

Did You Know?

The acronym “CTD” stands for conductivity, temperature and depth. But the MicroCats on the buoy mooring lines and the CTD casts are supposed to measure salinity, temperature and depth… so where does conductivity come in? It turns out that the salinity of the water can’t be measured directly — but conductivity of the water can.

When salt is dissolved into water, it breaks into ions, which have positive and negative charges. In order to determine salinity, an instrument measuring conductivity will pass a small electrical current between two electrodes (conductors), and the voltage on either side of the electrodes is measured. Ions facilitate the flow of the electrical current through the water. Therefore conductivity, with the temperature of the water taken into account, can be used to determine the salinity.

Leah Johnson: Physical and Chemical Properties of Ocean Water (There’s More Here Than Just Fish!) , July 26, 2015

NOAA Teacher at Sea
Leah Johnson
Aboard NOAA Ship Pisces
July 21 – August 3, 2015

Mission: Southeast Fishery – Independent Survey
Geographical Area of Cruise: Atlantic Ocean, Southeastern U.S. Coast
Date: Sunday, July 26, 2015

Weather Data from the Bridge:
Time 12:38 PM
Latitude 34.24389
Longitude -76.6625
Water Temperature 23.75 °C
Salinity –No Data-
Air Temperature 28.6 °C
Relative Humidity 68 %
Wind Speed 12.6 knots
Wind Direction 67.01 degrees
Air Pressure 1014.8 mbar

Science and Technology Log:
The primary purpose of this cruise is to survey reef fish. Our main task is to collect data pertaining to presence and number of fish species, species length frequency, and sample materials for fish age and growth. However, other types of measurements are being made as well. For example, the CTD is an instrument that measures different properties of ocean water with depth. It is deployed every time the fish traps are dropped.

CTD instrument

The CTD sits on the starboard side of the deck of NOAA Ship Pisces.

The acronym “CTD” stand for conductivity, temperature, and depth. The instruments that measure these properties are affixed to a metal cylinder called a rosette. A range of sensors can be attached depending on what needs to be measured. Additionally, containers can be attached to the frame in order to collect sea water samples at different depths. When the ship reaches the designated coordinates, the survey technician calls to the deckhands and instructs them to use the winch to lower the CTD to a designated depth, and then haul it back up.

Deckhands assist with lowering the CTD

Deckhands assist with lowering the CTD.

Below you can see a graph of the data collected earlier in the week:

CTD Data

CTD Data

The y-axis represents depth in meters. The CTD actually measures water pressure, which is then converted to depth. Pressure and depth are directly related: as depth increases, pressure increases.

There are several different properties represented on the x-axes, shown in different colors:

light green = oxygen (mg/l)
orange = conductivity (S/m)
dark green = temperature (°C)
purple = salinity (PSU, or ppt)

What do these measurements mean? As depth increases, temperature decreases. Sunlight warms the sea surface, and wind and ocean currents distribute this heat energy throughout the upper waters. Beneath this mixed layer, temperature decreases steadily with depth. In deeper water (not at this location), this rate of change decreases and the temperature of deep ocean water is nearly a constant 3 °C. Salinity refers to the concentration of dissolved salts in the water. Average ocean salinity is 35 ppt (parts per thousand), though this varies by a few parts per thousand near the surface. Increased precipitation, runoff, or melting of sea ice can decrease salinity, and evaporation and ice formation can increase salinity. Conductivity (measured in Siemens per meter) is a measure of how much current can travel through the water, and this is affected by both salinity and temperature. Finally, fish and other marine organisms require dissolved oxygen to breathe. By measuring the amount of oxygen at different levels in the water column, we can determine how much sea life can be supported in a given area. Dissolved oxygen in the ocean comes from mixing at the surface, and is also produced by photosynthetic organisms. As temperature and salinity increase, dissolved oxygen levels decrease. Additionally, temperature and salinity data can be used to determine the water density, or the mass of water per unit volume. Different fish can tolerate certain ranges of all of these chemical and physical parameters.

With respect to the fish survey, this information is important because we can monitor the conditions of the water near the ocean floor where the traps are located. For scientists who are interested in characterizing reef fish habitat, this data is a critical component of their research.

There are other ways in which this data can be used. The depth profiles of each of the chemical and physical properties at a given site can be compared to other local sites in order to identify any spatial anomalies. This is of great interest for seafloor mapping and ocean exploration cruises. For example, a change in conductivity and temperature at a site in the middle of the ocean could indicate the presence of a hydrothermal vent. Or, a decrease in salinity in a region along a coastline could indicate freshwater runoff.

Additionally, as measurements are made at similar locations over a period of time, temporal changes may be observed. This could reveal seasonal changes, or a long-term trend. Because we are observing an increase in average global temperatures and experiencing global climate change, it is critical to collect data that can be used to assess changing ocean conditions.

Personal Log:
“Will you be eating a lot of fish on the ship?” I heard this question a lot before I left for this cruise. I wondered myself. It seemed reasonable that fish would be prepared for meals because, well, we will be living at sea! On the other hand, I wondered if everyone on board would be sick to death of fish because we would be looking at them all day. As it turns out, fish is prepared for nearly every meal; however, there is often another meat option, as well as a variety of other non-meat dishes. Now we know!

ship mess

Ship mess

Did You Know?
There are many fish that make a grunting sound. When we have tubs full of tomtates in the wet lab, it sounds like a bunch of miniature pigs making snorting noises!

tomtates and nurse shark

Still from video of tomtates near a trap. A nurse shark can be seen in the background.

Theresa Paulsen: Where There is a Will, There is a Way! April 1, 2015

NOAA Teacher at Sea
Theresa Paulsen
Aboard NOAA Ship Okeanos Explorer
March 16-April 3rd

Mission: Caribbean Exploration (Mapping)
Geographical Area of Cruise: Puerto Rico Trench
Date: April 1, 2015

Weather Data from the Bridge:  Partly Cloudy, 26˚C, waves 1-3ft, swells 3-6ft.

Science and Technology Log:

Dr. Wilford (Bill) Schmidt has demonstrated the saying, “Where there is a will, there is a way,” throughout this  entire cruise.  He knew this voyage would put his new free vehicle design to the test and he came prepared to modify this, tweak that, collaborate with the crew, confer with his university team, test, and repeat.  He is an engineer and that is the name of the game.

1.  The first deployment looked great. The vehicle reached 1000m.  The magnetometer and 3-axis accelerometer worked great.  All systems were a go.  A water sampling device was used as a dummy payload.

FV Dummy Test
The free vehicle with a water sampling device as a dummy payload.

 

Test Data
Data from the Test Deployment

 

Crossing fingers for more success.

2.  The next step was to attach a CTD (a probe that measures Conductivity, Temperature, Depth).  The deployment and retrieval process again went smoothly, this time to 2126m, but there was a problem retrieving the log file from the bottom sphere and one of the anchor burn wires did not burn.

 

FV with CTD
The free vehicle with CTD attached.

Collaboration required with folks on shore and the electronics technicians on this ship.  Tweak this, fix that.

Troubleshooting
Dave Blessing, Electronics Tech, and Bill Schmidt troubleshooting.

Bill opened the spheres to change the batteries for the satellite transponder.

Open Sphere
One of the opened spheres
Keeping a log
Zamara Fuentes keeping a log of all of the adjustments and parameters
Repressurizing the sphere
Rolf Vieten pressurizing the sphere

All systems were a go again.

3.  The crew deployed the free vehicle with the CTD to 4679 m.  It took a little longer to find and retrieve the vehicle.

FV Retrieval
Retrieval of the free vehicle

The data files indicated that the galvanic releases released the anchor prematurely, at about 100 meters from the bottom.  Both spheres worked during the mission.  Data files were retrieved from each.  During inspection water was found in the bottom sphere.  Spalling of the glass (flaking) was seen on the inside.  The leak is assumed to have taken place as the surface under low pressure conditions, otherwise the damage would have been worse.  The electronics were in good shape but the bottom sphere had to be retired.

Oh no!  Is that the end?  Not when you have great minds on board!

This is where engineering in the ocean environment gets tricky.  Bill can’t just head back to the university and make the necessary repairs.  Instead he needs to make use of the very valuable ship time by pinch-hitting.  Bill recalculated the buoyant force on the vehicle with only one sphere.  It might just work!

Tweak this, lighten that, new attachments there. Ready for a float test!

Single sphere float test
The single sphere float test was a success!

Will the single sphere allow it to ascend from the bottom fast enough for us to deploy and retrieve it during our mission?  That question required further testing.  So the crew planned to lower it into the water a short distance with the winch and allow it to float back up.  The weather would not allow it.  The seas were too rough to allow the ship to stay in one place during the vehicle test without dragging the free vehicle thereby negating the results of the test.

Operations team meeting
Operations team meeting

Plan B?  The operations team hatched a plan to tie the free vehicle to buoys on a long rope.  That allowed the vehicle to sink and be recovered easily if it rose too slowly. First a buoyancy test had to be done to make sure the buoys wouldn’t sink with the vehicle.

Buoy Float Test
Buoy float test

The vehicle rose in less than 10 minutes so the team was back on track!  With a few extras like flags for better visibility, the vehicle was ready to dive!

Preparing for the big dive to 8000+ meters!
Preparing for the big dive to 8000+ meters!

4.  The deployment into the trench went smoothly.  The crew had that routine down pat.  After 10 hours it was time for the retrieval.  Everyone gathered at the bridge to try to spot it.

FV lookout
On the lookout for the free vehicle.
Port side lookouts
Port side lookouts
Free Vehicle Returns
The free vehicle returns from the deep!

It successfully collected data down to the bottom at 8379m, a possible record for a free vehicle!

Successful Dive
Bill content with a successful dive

The CTD data was processed and looked great during the descent.

FV CTD data
Free vehicle CTD data from the Puerto Rico Trench

Inspection of the data log showed that while the vehicle was ascending from the bottom, something was triggering a mission cancel order – 28 times!  This bug required more testing and mission simulating before another deployment in the trench.  Just after 8pm, Bill announced his equipment was ready to go for a 6 am deployment the next day.

5.  The next day, the retrieval took a bit longer due to choppier sea conditions.

The crew bringing the free vehicle aboard.
The crew bringing the free vehicle aboard.

Again the vehicle logs showed “cancel mission” messages during the ascent.  It is confounding Bill and his team back home, because during mission simulations the mission goes to completion without a problem.

In all the voyage has been very constructive for Bill’s engineering team.   They successfully deployed the vehicle to the bottom of the Puerto Rico Trench known to be the deepest part of the Atlantic Ocean.  That is something to celebrate!  They have learned a great deal about what types of modifications they should make to improve the retrieval process.

This was a great first test of the free vehicle design.  The next time out at sea will come soon enough and Bill’s team will be ready!

Personal Log

As the voyage comes to an end and we travel nearer to shore, I am filled with mixed emotions.  I will miss the ocean, the feeling of being a part of an exploration expedition, and these people.  I am also very happy to be going home to my family and my students.  I am looking forward to sharing what I have learned.  I will be looking for partnerships to help get students involved in reseach on our inland sea, Lake Superior.  If you have any suggestions, please leave a comment below!

Exciting moments?  Seeing these creatures!

Whale
Small whale swimming next to the vessel.
Dolphin
A dolphin playing in our wake. Photo credit: Jossue Millan

Other great moments include driving the ship and making video fly-bys of the ocean floor with the bathymetry and backscatter data.  Very awesome!  The videos will be coming soon so stay tuned!

Did you know?

Do you remember the flying fish I wondered about a few blogs ago?  I have never seen them before.  At first I thought I was seeing things.  I thought I saw a very large dragonfly dive into the water.  Then I saw more.  – schools of them jumping away from the boat all at once.  In a blink of an eye they were gone.

A flying fish.  Image courtesy of “Bermuda: Search for Deep Water Caves 2009 Exploration,”  NOAA Ocean Explorer

According to Wikipedia, there are 64 species of flying fish!  They fly out of the water to evade predators.  That’s a pretty cool adaptation!  You can learn more here.

Question of the Day:

Theresa Paulsen: How Low Can You Go? March 29, 2015

NOAA Teacher at Sea
Theresa Paulsen
Aboard NOAA Ship Okeanos Explorer
March 16-April 3rd

Mission: Caribbean Exploration (Mapping)
Geographical Area of Cruise: Puerto Rico Trench
Date: March 29, 2015

Weather Data from the Bridge:  Partly Cloudy, 26.7˚C, waves 1-3ft, swells 2-4ft.

Science and Technology Log:

We launched and recovered a CTD earlier this week.

A CTD (Conductivity, Temperature and Depth probe) is used to study the characteristics of ocean water masses, as well as to insure data quality and accuracy from XBTs (Expendible Bathythermograph). In a previous blog, I discussed how the XBT is used to measure the temperature of the water to a depth of about 760 meters. That coupled with the conductivity sensors on the vessel are used to calculate salinity and pressure to derive a measure of the velocity of sound through water, an important factor when collecting sonar data.

An XBT can be launched while the vessel is underway without pausing the sonar, but it doesn’t collect data all the way to the bottom of the water column.

Launching an XBT
Trying my hand at launching an XBT

A CTD can go all the way to the bottom, depending on the depth of the ocean, the length of the tether cable, and the pressure rating of the frame and equipment making up the CTD.  The titanium frame and equipment making up the CTD currently aboard the Okeanos can be lowered to 6500 meters.   It is very large and requires the vessel to stay put during the entire process since it is tethered to the ship.

Since a CTD collects all three factors involved in the computation of speed of sound in water (salinity, temperature, and depth) and is therefore more accurate than an XBT which only collects temperature, it is used at least annually to provide comparison data for the XBT measurements. This is the reason our scientists used it on this cruise.  Additionally, scientists on board a vessel may want to deploy a CTD more often if water masses are expected to change, or if they are interested in studying other features of the water column such as particulates, gaseous seeps, dissolved oxygen or oxygen reduction potential, or if they want to collect water samples at different depths.

The CTD
Survey Tech, Scott Allen and the CTD.

In the above photo the small red arrow is pointing to the water sample tubes, the large blue arrow to the CTD, and the large red arrow to the altimeter which senses when the probe is within 200 meters from the bottom allowing winch operators to slow the descent to avoid damaging equipment.  Scott Allen is the Survey Tech on board.  His job is to maintain and calibrate the CTD.  He helps launch and recover the CTD and then operates the software to collect and process the data.

CTD Data
Our first CTD launch data.

The CTD software plots the temperature (green), sound velocity (pink), conductivity (yellow), and the salinity (blue) on the x-axes against depth on the y-axis.  You can see locations on the graph where the values for temperature and salinity shift in a significant way with changes in depth.  These shifts can indicate a boundary between different water masses.  The upward spikes in the data are likely caused by some error in the equipment connections.

Let’s conduct an experiment!

Have you ever wondered what would happen to a styrofoam cup if you lowered into the water 2100 meters? The folks here tell me you get some pretty interesting results, so we had to give it a try.

Problem:  Determine the effect of extreme pressure on a styrofoam cups.

Background:  Styrofoam, properly called expanded polystyrene foam, is made by infusing air into polystyrene (a synthetic polymer) using blowing agents. Learn more here.

Hypothesis:  What is your hypothesis?  What do you think will happen to the air pockets if we send the cups to the depths of the ocean?

Procedure:

1.  Decorate your cups, leaving one as a control for comparison after submersion.

Styrofoam Cups
Decorating 12 oz styrofoam cups
Cup Decorations
More cup designs

The Before Picture

2.  Place the cups in a mesh dive bag and attach to a CTD.

Cups ready
Our cups are ready to dive!

3. Lower the CTD to 2100 meters

Launching the CTD
Launching the CTD

4.  Raise the CTD and examine the cups.

Raising the CTD
Raising the cups and CTD

Analysis:

So how much pressure was exerted on the cups at 2100 meters?  We can use this formula to calculate it:

P = pgh

Pressure in a fluid = (density of water) x (acceleration due to gravity) x (height of the fluid above the object).

If the density of seawater is 1027 kg/cubic meter, the acceleration due to gravity is 9.8 m/s/s and the depth is 2100 meters, what is the pressure?

You should get 21 million Pascals (Newtons/square meters) or 21,000 kPa.  If 1 kPa = 0.145 psi, how many pounds of pressure per square inch are exerted on each cup?   About 3000 pounds per square inch.  That’s about the weight of a compact car over each square inch!  For comparison, at sea level the atmospheric pressure is 14.7 psi.

So what happened to our cups under all that pressure?  Check it out!

Cups after dive
Our cups after a dive to 2100m. They are tiny!
Shrunken cups
More shrunken cups.
Shrunken cups
Showing off my shrunken cups.

Conclusion:

Was your hypothesis supported or refuted?  What happened to the air trapped in the styrofoam?

Air extraction is the reason that Dr. Wilford Schmidt uses iron rebar rather than cement to provide the anchor for his free vehicles.  The cement crumbles as the air pockets give way and air is squeezed out.  Cement is not as flexible as the polystyrene.

Free Vehicle
The free vehicle with rebar anchor

What other materials might change under pressure?  If you don’t have access to the deep ocean or a CTD, you could always try a pressure cooker – but be safe!

Personal Log:

I am inspired by all the people working on this vessel.  They are so adventurous and have seen so much.  I wondered what inspired them to do what they do.  Here are some of their answers:

Mapping Intern, Kristin Mello:  Took a class in scuba diving and realized she loved it and wanted to learn more.  Her dive instructor encouraged her to do an internship as a research diver and she has been studying the ocean ever since.

Free Vehicle Tech, Zamara Fuentes:  Built a model of a volcano in school became very interested in geology.  Now she studies tsunami impacts on the Caribbean islands.

NOAA Corps Officer, Nick Pawlenko:  Had never really spent much time on boats as a kid, but was inspired by Clive Cussler novels to explore the ocean.

Expedition Coordinator, Meme Lobecker: Her love of the oceans made her want to put her geography skills and interest in data collection to work in the ocean environment.

Engineer, Chris Taylor:  Wanted to put his love of engineering to work for good pay.  “There is never a dull moment,” he says.

Mapping Watch Lead, Melody Ovard:  Just likes being near the ocean.  “It’s a proximity thing.  I am curious about what goes on in it,” she says.

Free Vehicle Scientist, Bill Schmidt:  Loved surfing and was interested to learn what caused the changes in the surfing conditions day-to-day.  Then he read Willard Bascom’s book, Waves and Beaches, and was hooked.

NOAA Corps Officer, Bryan Pestone:  Swimming competitively and lifeguarding on the beach led him to a degree in marine biology.

Mapping Intern, Jossue Millan:  An astrobiology poster caught his eye in his physics class, which peaked his interest in life in extreme environments.  He enjoys the interdisciplinary sciences.

Teacher at Sea, Theresa Paulsen:  I am inspired by the wonder in a kid’s eye or on a proud parent’s face and by the beauty that surrounds us from the depths of the oceans to the expanses of space.  Life is amazing – and far too short to waste, so we have to make the most of it while we can.

Sunset Image
Thanks for the inspiring conversation everyone!

What inspires you?  Post a comment and let me know!

Did You Know?

For every 10 meters you go below the surface, pressure increases by one atmosphere (14.7 psi).  Scuba instructors typically don’t recommend diving deeper than 40m to decrease the risk of decompression sickness, known as “the bends,” or equipment failures that could lead to drowning.

Question of the Day:

The deepest successful dive in the Guiness Book of World Records is currently 332.35 meters (1090ft)!  Yikes!  Read about it here.

Theresa Paulsen: Intriguing Deployments, March 19, 2015

NOAA Teacher at Sea
Theresa Paulsen
Aboard NOAA Ship Okeanos Explorer
March 16-April 3rd

Mission: Caribbean Exploration (Mapping)
Geographical Area of Cruise: Puerto Rico Trench
Date: March 19, 2015

Weather Data from the Bridge:  Partly Cloudy, 26.7˚C, waves 1-3ft, swells 2-4ft.

Science and Technology Log:

This morning at breakfast Commanding Officer Mark Wetzler, or CO, explained that we would be deploying instruments today.  The first one was a glider for the Navy. The Slocum electric glider is like a tiny, unmanned submarine built like a non-explosive torpedo with small wings. It has the ability to be remote-controlled for weeks to months at sea operating 24 hours a day even in the worst weather.  They can be programmed to travel back and forth, dive, and rise periodically to communicate data back to the mainland and accept new missions.  These autonomous underwater vehicles (AUVs) can collect many different types of data such as temperature, conductivity, or audio recordings, depending on the sensors attached. Gliders like this one can help detect tsunamis or other changes in the ocean.

Our vessel also records data 24 hours a day but is limited in its duration at sea by the needs of the people and fuel onboard.  Have you wondered how we can stay out at sea for nearly 3 weeks at a time without hitting the grocery store or service station?  I’ll explain more about that in a future blog.

Navy Glider
Close-up of Navy glider
Deploying the Navy Glider
Navy Glider Deployment
Navy Glider at Sea
Navy Glider at Sea

 

The next deployment was a test run of a “free vehicle.”  Dr. Wilford “Bill” Schmidt, and his assistants, Rolf-Martin Vieten and Zamara Fuentes from the University of Puerto Rico, Mayguez (UPRM) are testing the design of vehicles that can be deployed from a vessel like the Okeanos Explorer or a smaller ship.  These vehicles are inexpensive to make, easy to deploy, and do not need to be tethered to the ship.  They can be programmed to dive to the deepest parts of the ocean, or whatever depth desired, in order to take samples or record data.  Once the vehicle has completed data collection or sampling, it releases its anchor and rises the surface where it is retrieved.  Meanwhile the deployment vessel can continue other operations such as mapping.  Time is not wasted on a research vessel!  On this cruise they will use the device to sample the conductivity, temperature and depth of the water column.  This will help them learn more about the interaction between different water masses in the Puerto Rico Trench.

 

Bill's Team
Wilford “Bill” Schmidt, Zamara Fuentes, and Rolf-Martin Vieten with the Free Vehicle

Water masses in the trench are of particular interest to Bill, a professor of physical oceanography, because they could hold a key to understanding the flow of different ocean currents.  He explained that water masses form at the surface at a particular temperature and with a certain salinity corresponding to the surface conditions at the time.  Temperature and salinity are conservative properties, meaning they don’t change as the water mass moves.   So as a water mass formed in Antarctica sinks and moves toward the deepest parts of the ocean due to its density, its cold temperature and salinity don’t vary significantly. So temperature and salinity can serve as fingerprints of water masses.  Therefore as he measures these factors through the entire water column in the trench, we would expect to see the values change as we move from the North Atlantic Deep Water to the Antarctic Bottom Water.  The image below shows a generalized representation of the typical flow pattern of large water masses.

Ocean Circulation
The ocean circulation system. Image courtesy of NASA.

Bill’s work is supported by NOAA and the National Science Foundation. The NOAA Office of Exploration and Research recently provided him with an award to produce 5 free vehicles with his university team.  The fact that Bill’s vehicles are able to travel untethered into the hadal zone at a very low cost makes them uniquely valuable to researchers.  Data from the hadal zone is virtually non-existant because only enormous vessels would be able to support winches that could handle the 10,000+ meters of cable that would be required for the tethered vehicles currently used.  Since the average depth of the ocean is only 4000m, there is not a large enough demand to make manufacturing such large winches economically feasible.

Also, Bill’s free vehicles are small and can be deployed on very short notice, allowing them to capture data as major events occur. The vehicles can carry interchangeable payloads that could be used in all scientific disciplines. A biologist could request water or bottom substrate samples to examine life forms in the hadal zone that may not exist elsewhere.  A geologist might also like to sample the bottom substrate or might wish to record seismic activity at the bottom of the trench to better understand plate interactions.  A chemist interested in oceanography could examine the water for trace elements or compounds that were emitted into the air at one point in time, such as chloroflourocarbons (CFCs) that were once used but are now illegal in the US due to their impact on the ozone layer, or tritium (H-3) remnants from nuclear bombs used in WWII. This could provide us with an estimate of how long ago the water mass was at the surface and help us determine the rate of flow into the trench.  The research possibilities are endless.

FV Test
The first free vehicle test of the voyage

Initial tests looked good. During our 19 day voyage, Bill’s team and the crew will deploy the vehicle up to 11 more times with up to 6 locations strategically placed in the Puerto Rico Trench.

Personal Log:

Are you interested to know what the accommodations are like aboard the Okeanos?  They are comfortable enough for a work boat.  Take a look for yourself!

Porthole
The porthole in my room.

 

My Bed
My Bed

I love the curtain around my bottom bunk.  It reminds me of the forts my brothers and sisters and I built as kids.  I have slept like a baby ever since arriving.  The rocking of the boat is very calming.

There are a couple of nice spots to relax and chat, and write in my blog.  Here are the library and the lounge.

Library
Chris Taylor and Nick Pawlenko in the library
Lounge
The Lounge

I am surprised that I really haven’t been seasick. Motion sickness medication really helps. If you really get sick, there is a medical officer on board and sick bay.

The Sick Bay
The Sick Bay

I showed you the galley in the last post.  We eat in the Mess Hall.  The Chief Steward puts tennis balls on the bottom of the chairs to avoid scratching the finish on the floor.  Good thinking!

The Mess Hall
The Mess Deck

And when I have eaten too much, there is the fitness room!  There is a scale in the fitness room, but when you stand on it, the action of the boat rocking causes the scale to oscillate by 30-40 pounds.  It is a great demonstration of the difference between mass and weight!

Fitness Room
The Fitness Room

The best place to hang out is outside, of course, where you can possibly see a spouting whale or swimming dolphin.  I have seen both on this trip already but I need to be quicker with the camera!  Maybe next time!!

View from the bow
The view from the bow of the ship

Question of the Day:

Carol Glor: Awe Shucks! The Mission Continues, July 9, 2014

NOAA Teacher at Sea

Carol Glor

Aboard R/V Hugh R. Sharp

July 5 – 14, 2014

Mission: Sea Scallop Survey, Third Leg

Geographical area of cruise: Northwest Atlantic Ocean

Date: July 9, 2014

Weather data from the bridge: Wind 204* 15 knots, Seas 4-6-10-12 ft. mixed directions, Visibility – overcast

Science and Technology Log:

Today we began dredging for scallops. The ship follows a predetermined path and the dredge is lowered to the ocean floor at specific locations along the path. These locations are chosen by the Scallop Assessment Biologist at NOAA because they are an accurate representation of the scallop population in the Northwest Atlantic Ocean. The area that we are focused on is known as Georges Bank. It is a broad, shallow submarine plateau forming the seaward boundary of the Gulf of Maine. The average depth is between 30 and 75 meters deep. It is home to an assortment of marine life including the Atlantic Sea Scallop. Several computers are employed to record all of the data that is pertinent to each dredge event. These include: ocean depth, air temperature, salinity, barometer, air speed, wind direction, fluorometer, and wind direction. The lab is in constant communication with both the bridge and the engineer who operates the winch system. Depending upon the ocean depth at the dredge station location, a specific amount of dredging cable (called line) to which the dredge net is attached, is released in order to create the best angle for the dredging operation.

 

map of Georges Bank
3D map of Georges Bank at the Woods Hole Aquarium.
map
Map of dredge stations.
offloading the dredge
The dredge is offloaded onto the sorting table.

After 15 minutes the dredge is hauled up to the surface and the net is emptied out onto the sorting table. All members of the science team are poised and ready to sort the catch. Each sorter is outfitted with foul weather gear. This consists of rubberized jacket, coveralls and rubber boots. Also required is a life vest, heavy duty gloves, and a hard hat (if the winch is in use). Several baskets and buckets are arranged around the sorting table. One is reserved for scallops, one for assorted fish and skate, one for crabs and whelk, and the last is for items that are not part of the study. This is known as trash.

When everyone has completed their preliminary sorting, it is time to count and sort each species that was collected. Trash is also accounted for. Each basket that is returned to the ocean is counted and data is recorded. The sorting and trash data is entered into the computer system inside the wet lab (also known as the van). At the three stations inside the van, a measuring tray is utilized to quickly measure and record the length of certain fish, scallops and skate. The first large scallop from each dredge event is photographed as a representation of that event. All large scallops are then weighed and shucked and the scallop is sexed (recorded as a male or female). The sex organ is weighed as well as the meat. The shells of the large scallops are cleaned, labeled, and placed into a muslin bag in order to be further analyzed at a NOAA laboratory back on shore. At the conclusion of the dredge event and sorting process, the lab is cleaned and prepped for the next event.

During our first watch, our team completed seven dredge events. Each event can take more than an hour from start to finish. Our catches included a variety of marine species: scallops, sand dollars, ocean pout, windowpane flounder, yellowtail flounder, four spot flounder, and gulfstream flounder, silver and red hake, quahogs, barn-door and winter skate, haddock, sand lance, cancer and hermit crab, sea mouse, sea sponge, fawn cusk eel, wave whelk, and monkfish (goosefish).

Sorting
Sorting the dredge.
skate
Carol measures a skate inside the lab
Baby Scallops
Baby Scallops to be counted, weighed, and measured.

 

Personal Log:

As an inexperienced sailor and scientist, the NOAA staff all worked hard to train me to complete many of the tasks required during our watch. Scientific method and protocol was followed to a “T”. It was an awesome and intense responsibility to fly the HabCam, annotate images recorded by the HabCam, monitor environmental data, set up the dredging event on the computer system, and record the sample data. Throughout the scheduled watch we witnessed whales spouting and breaching, and porpoise antics. During our down time we enjoyed the company of each other as well as the delicious meals prepared by Chef Paul.

Life at sea can be challenging. The weather is checked often in order to adjust the dredging route. High waves can make a dredge event difficult. They can also be a safety issue out on deck. For this reason, each person is required to wear a life vest and boots. Anyone on deck during a dredge drop or haul back is also required to wear a hard hat.

After a long, hard day, sleep is usually the best thing that you can do for yourself. The cabin area is quiet at all times because everyone is on a different shift. I am in a 4-person cabin but my roommates are all on the opposite shift. The rocking of the ship, and background engine noise makes it easy to fall asleep for long periods of time.

Did you know?

Scallops can be male or female. The simplest way to determine the sex is to open the scallop shell and examine the gonad. Female scallops have a pink gonad and males are cream-colored.

male and female scallops
Female scallop is on the left and a male scallop is on the right.

Photo Gallery

sea stars
An assortment of Sea Stars
Fin back whale
Fin Back Whale sighting
dolphins
Dolphins at play
Ocean Pout
Ocean Pout – eats sand dollars

Answer to last poll:

The R/V Hugh R. Sharp has at least 88 computer monitors on board. An equal number are part of the navigational  and monitoring systems as well as the scientific research components.

Valerie Bogan: First Days at Sea, June 9, 2012

NOAA Teacher at Sea
Valerie Bogan
Aboard NOAA ship Oregon II
June 7 – 20, 2012

Mission: Southeast Fisheries Science Center Summer Groundfish (SEAMAP) Survey
Geographical area of cruise: Gulf of Mexico
Date: Saturday, June 9, 2012

Weather Data from the bridge:  Sea temperature 27.5 degrees celsius, Air temperature 24.2 degrees celsius, calm seas with thunderstorms in the area.

Science and Technology Log

As I mentioned in the previous entry the Oregon II is conducting a groundfish survey.  During this research cruise we are studying many aspects of the Gulf’s ecosystem.  We start by collecting general information about the water chemistry.  To do this we use a piece of equipment called a CTD which stands for Conductivity/temperature/depth.  This piece of equipment collects information on the temperature, salinity, fluorescence and turbidity.

CTD
This is the instrument used to measure salinity, called a CTD.

I am going to briefly explain what each of these readings are and why they are important to the scientific community.  Everyone knows what temperature is but you may not be aware of its importance to the health of our planet.  The phrases global warming and climate change have become very popular in the last few years. By collecting temperature data in the same spot year after year scientists can determine if the oceans really are getting warmer.

sea surface temperature map
Map of the surface temperatures around the world. The highest temperatures are found in the red areas the lowest temperatures are found in the blue areas. (photo courtesy of bprc.osu.edu)

The oceans contain salt water which  is the most important difference between oceans and lakes.  The measurement of the amount of salt in an ocean is called salinity.  And the amount of salt in an ocean can reflect the workings of the water cycle.  If there is an excessive amount of evaporation due to high temperatures, the ocean will become more salty due to the fact that there is more salt in less water.  On the other hand  if there is a lot of rain or melt waters from glaciers and mountains then the water will become less salty because now the same amount of salt is dissolved in more water.

salt
The amount of salt in the water determines the salinity.

Fluorescence is the measurement of light which is connected to the photosynthesis rate of algae.  The health of the algae has a direct connection to the amount of carbon dioxide that can be absorbed by the ocean.  Algae produces its own food just like a tree so if the algae is healthy,  more carbon dioxide will be necessary  to carry out photosynthesis  and then ocean can absorb more natural and man-made carbon dioxide.   These readings can also tell us how well the oceans are responding to climate change.

algae
These algae make their own food through the process of photosynthesis.(photo courtesy of swr.nmfs.noaa.gov

Turbidity is the measure of water clarity.  If the turbidity is high it means that light isn’t getting through to the organisms below which in turn means that the algae and seaweed can’t get the light they need to make their own food.  High turbidity can also cause the water temperature to go up due to the excessive amount of silt and particles floating and absorbing energy from the sun.  High turbidity can also cause small animals on the bottom  of the ocean to be buried alive as the particles settle out the water column.

muddy Mississippi river
This is an example of the silt and particulate matter which is flowing into the ocean everyday.(photo courtesy of http://www.motherjones.com)

Personal log

Greetings from the Gulf of Mexico.  I have now been onboard  the Oregon II for one complete day and am slowly but surely becoming accustomed to the layout of the ship.  It has all the comforts of home even if they have different names and  look different from the parts of your home.  The place I sleep and keep my belongings in  is called a stateroom.  It is a small space but honestly the only thing I use it for is sleeping .  One other difference from your room at home is that the cabinets have latches which keep them closed even when the ship is rolling with the waves.  Given the fact that large waves may come up at any time it is important that all personal belonging are securely stored so that they don’t become flying projectiles which can hurt someone.

stateroom
This is where I am bunking for the voyage.

cabinets

The ship also contains restrooms but they are called the heads.   Fresh water is an important resource on the ship as we only brought so much with us so the toilets are flushed using  seawater which is very easy to come by out here on the gulf.  There are also a couple of showers something which is very important given the fact that our work has the ability to make us very dirty and nobody wants to be stuck on a boat with a bunch of dirty stinky people.

shower
This is where we clean off all the dirt that accumulates during sampling runs.

Safety is very important on ship so we have drills to practice what to do in case of emergency, just like the drills we do at Maple Crest middle school.  Today we had a fire drill during which the scientists were to muster (that means to report) in the lounge and stay out-of-the-way of the crew members who are actually trained to put out a fire if one should occur on the ship.  Following that we had an abandoned ship drill during which we had to put on long pants and shirts and a survival suit.  The purpose of all this clothing is to keep you protected from the elements if you have to float in the water for an extended time while waiting on a rescue ship to come

Survival suit
This is the suit you must wear during abandon ship drills.

Sue Oltman: Salinity and Seamount Sleuths, May 24, 2012

NOAA Teacher at Sea
Sue Oltman
Aboard R/V Melville
May 22 – June 6, 2012

Mission: STRATUS Mooring Maintenance
Geographical Area: Southeastern Pacific Ocean, off the coast of Chile and Ecuador
Date: May 24, 2012

Weather Data from the Bridge:
Air temperature: 18.3 C / 64.9 F
Humidity: 70.3%
Precipitation: 0
Barometric pressure: 1011 mB
Wind speed: 2.3 NNW
Sea temperature: 19.16 C

Personal Log

The weather has been terrific – clear, in the 60’s with a little wind, nice sailing with the current helping us along. We are in the trade winds region. The view from the bridge (Captain’s pilot house) is excellent.  Everyone is terrific and very patient in showing us the ropes. There’s plenty of time to get to know people.  I’m getting to practice my Spanish a bit with our 2 students from the University of Concepcion (Chile) and two more Spanish speakers, from Chile and Ecuador. The two others on watch with me are Seb Bigorre (WHOI) and Ursula Cifuentes, a grad student from Chile, so we speak some Spanish during the watches. Life on a ship is different, but some of the comforts of home are here, too. Thank goodness there is a laundry, otherwise I would have had to bring 3 weeks worth of clothes! The food has really been fantastic!

Mark serving up some great food
Mark is one of our friendly cooks who keeps everyone on the ship happy!
Mess deck
The mess deck is where we eat our meals, grab a snack, or sit to read or chat at off times.

The dinner tonight is carne asada (fajitas) and you can smell it cooking. Bob and Mark, our cooks, have also served us white bean chili, salads, cheeseburger sliders, roasted chicken, fish, pork roast and vegetables, seasoned hash browns, bacon and eggs, all kinds of fresh fruit, not to mention the desserts like blueberry cobbler and cinnamon rolls. 

With all this great food, I was thankful to find that the crew makes places on the ship to work out! Some do “laps” by walking the ship a few dozen times around. There is an exercise room with weights and bikes and more equipment can be found in other places around the ship.

Science and Technology Log

The Woods Hole UOP (Upper Ocean Processes group) and rest of the team is now in a rhythm of deploying probes and gathering data. Like super sleuths, we are tracking a cold, relatively fresh water mass which originates inValparaiso and moves northwest. This water mass lies under the warm, salty surface layer.  At 50 meters depth, there is a clear distinction in the water masses since we began deploying the UCTDs. Just like a detective matches fingerprints, we have a “fingerprint” of the cold, fresh water.  A seasonal thermocline has been identified! Nan Galbraith, a programmer from WHOI, is processing all of the numerical data into useful images.  The surface water layer (graph) has a temperature about 20º C and salinity > 35 ppt (parts per thousand). At 50 meters depth, the temperature abruptly drops to 17º C and falls to 7.5º C at 400 m which is the bottom depth we are testing; similarly the salinity drops to 34.1 ppt. Although we are traveling through water about 4,000 m deep, we are interested in tracking this water mass. I’m still having trouble remembering approximate Celsius to Fahrenheit conversions: here’s a link to help.

http://www.wbuf.noaa.gov/tempfc.htm

However, another factor has come into play which we must consider. We are nearing a tectonically active area – the Nazca Ridge, a fracture zone. There are many seamounts, some of which have not been previously mapped. Whoever is on watch must look at the ever-changing multi-beam sonar display to look for seamounts – we don’t want the instrument to slam into an underwater volcanic mountain! The closer we get to the Nazca Ridge, the higher the likelihood of seamounts.

Seamounts
We constantly monitor the multi beam sonar display for bathymetry and sea floor features. The red or yellow circular areas are seamounts.

All in all, we will cover about 2,268 miles until we reach the Galapagos, so the multibeam sonar is a critical piece of navigation equipment.

On the watches, as we deploy the UCTD probe, which looks like a 2 foot long bullet, weighing about 10 lbs., and good teamwork is the hallmark of a successful launch and recovery. Sometimes we are working in the dark with only the ship’s lights and a flashlight. I have learned how to make a splice in the line – the cord is only about 1 mm in diameter! This line and any splice must be strong enough to hold onto a 10 pound instrument being dragged though 400 m of water at 12 knots. Picture 3 people at 4 a.m. on a moving ship, using tiny instruments to sew a splice in a 1mm line, all while the line is attached to the winch. Like a surgical team, we are all focused and know what tool the splicer needs next. Sometimes quick thinking and a problem solving mindset is needed. There was a foam “bumper” that we had been attaching to the line to cover the probe when it got close to the boat. The probe is expensive and this was protection from it slamming into the steel fantail. When it was lost in the water, the team on watch used a nearby mop to protect the probe while reeling it in. On the next watch, Seb figured out a different solution.

Why does it smell like diapers in here?

Back in the lab a different bit of problem solving with the scientific method is going on! Often when buoys are recovered, they are fouled — covered with barnacles and all kinds of organisms, fishing line, etc. that get caught in them. Jeff Lord – mechanical whiz – has hypothesized that applying a better “anti-fouling” substance can keep these from affixing themselves to the equipment. He has liberally applied Desitin, a zinc oxide ointment, to the instruments. This is the same treatment for diaper rash on babies’ bottoms!  So therefore, the odor in the lab reminds us of diapers. It will be a year before we know if Jeff’s hypothesis is correct, because after the STRATUS 12 buoy is moored, it will be a year before it is recovered.  What do you think will happen?

Some of the science party was given a tour of the ships technical equipment behind the scenes. Bud Hale explained not only all of the monitors and ship terminology, but took us down into the equipment rooms where we encountered a gravimeter (measures gravity variations), modern gyros with optics and GPS (measures pitch, roll and heave).

Bud Hale
Bud is an expert on all things technical on the ship. He is more than happy to tell you how any of it works!

Tomorrow, we hope to see the desalination plant on the ship which gives us our fresh drinking water.

UCTD files
After each deployment of a UCTD, data is uploaded into the computer. I’m starting to get the hang of it!

Wes Struble: Analysis of Water Samples, March 4, 2012

NOAA Teacher at Sea
Wes Struble
Aboard NOAA Ship Ronald H. Brown
February 15 – March 5, 2012

Mission: Western Boundary Time Series
Geographical Area: Sub-Tropical Atlantic, off the Coast of the Bahamas
Date: March 4, 2012

Weather Data from the Bridge

Position:30 deg 37 min North Latitude & 79 deg 29 min West Longitude
Windspeed: 30 knots
Wind Direction: North
Air Temperature: 14.1 deg C / 57.4 deg F
Water Temperature: 25.6 deg C / 78.4 deg F
Atm Pressure: 1007.2 mb
Water Depth:740 meters / 2428 feet
Cloud Cover: 85%
Cloud Type: Cumulonimbus and Stratus

Science/Technology Log:

In the previous log I described a CTD cast in detail from start to finish. Now that the CTD platform is on the deck of the Ron Brown the actual sampling process can begin. The CTD has a number of Niskin bottles holding a little more than 10 liters of water each. Water samples from each bottle must be collected and analyzed for various parameters which could include: Salinity, Oxygen content, Inorganic carbon, and others. On this cruise most of the CTD casts were sampled for both salinity and dissolved oxygen.

The first step in measuring salinity involves a careful rinsing of the sample bottles. After a standard three rinses, the bottle is filled and the depth from which the water was sampled is recorded for each bottle.

As a beautiful western Atlantic sunset falls on the Ron Brown another night of CTD's begins
I prepare a water sample for dissolved oxygen analysis after a CTD Cast at 2:00 am
The dissolved oxygen analysis lab station in one of the science labs on the Ron Brown

The full sample bottles are then either taken to the dissolved oxygen lab station or the Salinity lab station for analysis.

A close-up of the amperometric titration apparatus for analysis of dissolved oxygen in one of the science labs on the Ron Brown. A solution of Manganese Chloride and a combination of Sodium Hydroxide/Sodium Iodide is added to the water sample to sequester the oxygen and then when the temperature is stable the solution is amperometrically titrated with thiosulfate.
The Ron Brown off the starboard stern from the workboat
The "climate airlock" leading to the salinity analysis lab. The airlock helps keep the water samples under constant temperature and humidity conditions.
The two Autosals in the Salinity lab. These are precision instruments for measuring the salinity of seawater
A east-west cross-section across the eastern Atlantic Ocean. The eastern US coast is at left. The diagram illustrates north (reds)-south (blues) movement of the Antilles and Deep Western Boundary Current. Vertical scale in meters horizontal scale in 100,000 meter units (100 kilometers)

Dave Grant: The Straits of Florida, March 3, 2012

NOAA Teacher at Sea
Dave Grant
Aboard NOAA Ship Ronald H. Brown
February 15 – March 5, 2012

Mission: Western Boundary Time Series
Geographical Area: Sub-Tropical Atlantic, off the Coast of the Bahamas
Date: March 3, 2012

Weather Data from the Bridge

Position:30 deg 37 min North Latitude & 79 deg 29 min West Longitude
Windspeed: 30 knots
Wind Direction: North
Air Temperature: 14.1 deg C / 57.4 deg F
Water Temperature: 25.6 deg C / 78.4 deg F
Atm Pressure: 1007.2 mb
Water Depth:740 meters / 2428 feet
Cloud Cover: 85%
Cloud Type: Cumulonimbus and Stratus

Science/Technology Log:

Entering the  Gulf Stream and Straits of Florida

“There is in the world no other such majestic flow of waters.
Its current is more rapid than the Mississippi or the Amazon.
Its waters, as far out from the Gulf as the Carolina coasts, are of an indigo blue.
They are so distinctly marked that their line of junction with the common sea-water
may be traced by the eye.”

Matthew Maury – The Physical Geography of the Sea

 While our cruise could hardly be called leisurely, most sampling has been spread out between sites, sometimes involving day-long periods on station while the CTD and moorings are recovered from great depths (5,000 meters). However, Chief Scientist Dr. Baringer regularly reminds us that west of the Bahamas in the Gulf Stream transect, our stations are in much shallower water (≤800 meters) and close together (The Florida Straits are only about 50 miles wide), so we should anticipate increased activity on deck and in the lab. In addition to the hydrology measurements, we will deploy a specialized net to sample those minute creatures that live at the surface film of the water – the neuston.

The Neuston net is deployed for a 10-minute tow.
The Neuston net is deployed for a 10-minute tow.

Now that we have crossed the Bahama Banks and are on-station, the routine is, as expected, very condensed, and there is little time to rest. What I did not anticipate was the great flow of the Gulf Stream and the challenge to the crew to keep the Brown on our East-West transect line as the current forces us north.  Additionally, as Wordsworth wrote, “with ships the sea was sprinkled far and wide”  and  we had to avoid many other craft, including another research ship sampling in the same area.

Ben Franklin is famous for having produced the first chart of this great Western Boundary Current, but naval officer Matthew Maury – America’s Scientist of the Sea – and author of what is recognized as the first oceanography text, best described it.  Remarkably, in The Physical Geography of the Sea, first published in 1855, he anticipates the significance of this major climate study project and summarizes it in a short and often-quoted paragraph:

“There is a river in the ocean. In the severest of droughts it never fails,
and in the mightiest floods it never overflows.
Its banks and its bottom are of cold water, while its current is of warm.
The Gulf of Mexico is its fountain, and its mouth is the Arctic seas.
It is the Gulf Stream.”

 

Gulf Stream water

CTD data from the Straits of Florida
1. Note that temperature (Red) decreases steadily with depth from about 26-degrees C at the surface,
to less than 10-degrees C at 700 meters. (Most of the ocean’s waters are cool where not warmed by sunlight).
2. Dissolved Oxygen (Green) varies considerably from a maximum at the surface, with a sharp decline at about 100 meters, and a more gradual decline to about 700 meters. (Phytoplankton in surface water produce excess oxygen through photosynthesis during daylight hours. At night and below about 100 meters, respiration predominates and organisms reduce the level of dissolved oxygen.)
3. Salinity (Blue) is related to atmospheric processes (Precipitation and Evaporation) and also varies according to depth, being saltiest at about 150 meters.

***************************
“Ron Brown: Phone Home!”

At Midnight, just within sight of the beam of the Jupiter Inlet Lighthouse (And to the relief of the home-sick sailors on board – “Finally –  after  more than two weeks, we are within the range of cell phone towers!”) we began our studies of the Straits of Florida and the Gulf Stream. Nine stations in rapid order – standing-by for a CTD cast, and then turning into the current to set the neuston net for a ten-minute tow.

The purpose of the net is to sample creatures that live on or visit the interface between air and water, so the mouth of the net is only half submerged. Neuston comes from the Greek for swimming and in warm waters a variety of invertebrates and even some young mesopelagic fishes rise within a few centimeters of the surface at night to filter phytoplankton and bacteria, and feed upon other zooplankton and even drowned terrestrial insects that have been blown out to sea.

On the upper side of this water/atmosphere interface, a smaller variety of floating invertebrates, notably Physalia  and Velella (Portuguese man-of-war and By-the-wind-sailor) use gas-filled buoyancy chambers or surface tension to ride the winds and currents. This much smaller group of seafarers is further classified by oceanographers as Pleuston.

Prior to this cruise, my experience with such a sampling device was limited – Years ago, spending miserable nights sailing in choppy seas off of Sandy Hook, NJ searching  for fishes eggs and larva rising to the surface after dark; and later, much more enjoyable times studying water striders – peculiar insects that spend their lives utilizing surface tension to skate along the surface of Cape Cod ponds.

Our CTD and net casts are complicated by rising winds and chop, but some great samples were retrieved. Once the net is recovered, we rinse it down with the seawater hose, collect everything from the bottle at the cod end, rinse off and separate the great mass of weed (Sargassum) and pickle the neuston in bottles of alcohol for analysis back at the lab.

Midnight shift: Recovering the net by moonlight.
Midnight shift: Recovering the net by moonlight.
Midnight shift: Recovering the net by moonlight.
Midnight shift: Recovering the net by moonlight.

Since much of the zooplankton community rises closer to the surface at night where phytoplankton is more concentrated and the chances of being preyed upon are slimmer, there are some noticeable differences in the samples taken then and during daylight hours. Unavoidably, both samples contain great quantities of Sargassum but the weed-colored carapaces of the different crustaceans are a clue to which specimens are from the Sargassum community and which are not.

Gulfweed Shrimp - Latreutes
Gulfweed Shrimp – Latreutes

We hit the jackpot early; snaring a variety of invertebrates and fishes, including the extraordinarily well-camouflaged Sargassum fish – a piscatorial phenomenon I’ve hoped to see ever since I was a kid reading William Beebe’s classic The Arcturus Adventure. What a tenuous existence for such a vulnerable and weak swimmer, hugging the Sargassum as it is dashed about in the waves. Even with its weed-like disguise and ability to blend in with the plants, it must lead a challenging life.

A unique member of the otherwise bottom-dwelling frogfishes, the Histrio histrio has smooth skin, and spends its life hitch-hiking along in the gulf-weed forest. Like other members of the family Antennariidae, it is an ambush predator, luring other creatures to their doom by angling with its fleshy fins.

The Sargassum fish (Histrio)
The Sargassum fish (Histrio)
Needlefish and Sargassum fish
Needlefish and Sargassum fish

Another highlight for me is the water striders we found in several samples. These “true bugs” (Hemiptera) are remarkable for several reasons. Most varieties of these “pond-skaters” (Or Jesus Bugs if you are from Texas) are found on calm freshwater lakes and streams, but a few members of this family (Gerridae) are the only true marine insects – representing a tentative Arthropod reinvasion of the sea after their splendid foray onto land hundreds of millions of years ago.

Two great finds: Sygnathus pelagicus– A Sargassum pipefish – a cousin of the sea horse. Halobates – the water strider. An example of the Pleuston community.
Two great finds:
Sygnathus pelagicus– A Sargassum pipefish – a cousin of the sea horse.
Halobates – the water strider. An example of the Pleuston community.

Using surface tension to their advantage, they “skate” along by flicking their middle and hind legs, and can even “communicate” with each other by vibrating the surface of the water with the hair-like setae on their feet. On lakes their prey is other insects like mosquito larvae, confined to the surface. How they manage to find food and communicate at the surface of the raging sea is a mystery, but whatever the means, they are adept at it, and we recovered them in half of the samples.

The ocean's insect: The  remarkable water stride
The ocean’s insect: The remarkable water stride

The scientists who provided the net are generally more interested in ichthyoplankton to monitor fish eggs and larvae to predict population trends, and monitor impacts like oil spills; so this is why samples are preserved to return to the lab in Miami.

Before packing up things after our marathon sampling spree I was able to examine our catch and observed a few things:
1. I am the “High-Hook” on the cruise – catching far more fishes (albeit tiny ones) than the rest of the crew with their fishing poles. (Needlefish, sargassum fish, pipe fish, filefish and several larval species)
2. Depending on the time of day the samples were taken, there is a marked difference in the quantity and composition of organisms that have separated from the Sargassum and settled in the sample jars – (Noticeably more at night than during daylight hours).
3. There appears to be a greater variety of sea grasses present (Turtle grass, etc.) on the eastern (Bahamas side) of the Straits. We observed one seabean – drift seeds and fruits (or disseminules) from terrestrial plants.
4. Plastic bits are present in all samples – particularly plastic ties (Table 1.)

Settled organisms in sample jars.
Settled organisms in sample jars.

Sargassum fauna: Portunid crab – with eggs on her belly.
(Portunus was a Roman god – Protector of harbors and gates,
who supposedly also invented navigation)

Belly view of a Caridean shrimp
Belly view of a Caridean shrimp
A tiny fish egg ready to hatch!
A tiny fish egg ready to hatch!
A larval fish begins its perilous journey in the Gulf Stream.
A larval fish begins its perilous journey in the Gulf Stream.
Site/Local time

Notable Contents*

Biomass Site Depth
8 Day 17:48 Weed, Grasses(3 spp) 3.0 mm 79˚12’ 485 m
7 Day 16:10 Grasses(4 spp) 2.0 mm 79˚17’ 616 m
6 Day 14:30 Grasses(2 spp) Fish eggs and larva Trace 79˚22’ 708 m
5 Day 12:45 Water striders, Grass (1 spp) Trace 79˚30’ 759 m
4 Day 10:13 Crustacean larva, shrimp (large), 7.0 mm 79˚36’ 646 m
3 Dawn 07:53 Crustacean larva, shrimp (large), water striders Trace 79˚41’ 543 m
2 Night 05:10 Crustacean larva, shrimp (small), Pipefish, water striders 7.0 mm 79˚46’ 388 m
1 Night 02:48 Crustacean larva, shrimp, needlefish, Sargassum fish, Herring(?), Portunid crabs, shrimp (large), Copepods 13 mm 79˚51’ 264 m
0 Night 00:37 Crustacean larva, shrimp, Copepods 25 mm 79˚56’ 148 m

*Plastic bits and Sargassum weed and its endemic epibionts are present in all samples.

Table 1.   Contents in sample jars.

There is a marked difference in the quantity and composition of organisms collected at night (Left).
There is a marked difference in the quantity and composition of organisms collected at night (Left).
There is a marked difference in the quantity and composition of organisms collected at night (Left) and during the day (Right).
There is a marked difference in the quantity and composition of organisms collected during the day (Right).

With sampling completed we steer north to ride the Gulf Stream towards the Brown’s home-port,  and turn away from the bright lights of Florida …

“Where the spent lights quiver and gleam;
Where the salt weed sways in the stream;
Where the sea-beasts rang’d all around
Feed in the ooze of their pasture ground:”

Matthew Arnold

"Red sky at morning...sailor take warning!"
“Red sky at morning…sailor take warning!”

Homeward bound:

A storm battering the Midwest will impede our progress back north to Charleston and threatens to bring us the only foul weather of the cruise. Note the location of the cold front over the Florida Straits.

“Now the great winds shoreward blow;
Now the salt tides seaward flow;
Now the wild white horses play,
Champ and chafe and toss the spray.”
Matthew Arnold

As the sailors say: "The sheep are grazing." A gale is brewing and kicking up whitecaps as we sail north to Charleston.
As the sailors say: “The sheep are grazing.”
A gale is brewing and kicking up whitecaps as we sail north to Charleston.

Elizabeth Bullock: Introduction, December 8, 2011

NOAA Teacher at Sea
Elizabeth Bullock
Aboard R/V Walton Smith
December 11-15, 2011

Introduction

Hello! My name is Elizabeth (Liz) Bullock and I work for the NOAA Teacher at Sea Program (TAS).  Before I worked at NOAA (the National Oceanic and Atmospheric Administration)  I was in graduate school at Clark University in Worcester, MA studying Environmental Science and Policy.  As my final project, I created an environmental curriculum for the Global Youth Leadership Institute (GYLI).  Through this experience, I realized how much I love both science and educating others about the importance of the natural world.

I have been invited to take part in a research cruise on the R/V Walton Smith.  I will be participating in the Bimonthly Regional Survey / South Florida Program Cruise.  The researchers on this survey are  from NOAA’s Atlantic Oceanography and Meteorological Laboratory (AOML) which is located in Miami, FL.

What will we be studying?  The scientists on this survey are very interested in knowing about the strength and health of the ecosystem.  They can judge how strong it is by looking at various indicators such as water clarity, salinity, and temperature.  They can also record information about the phytoplankton and zooplankton that live in the water.

Question for students: Why do you think it is important to learn about the phytoplankton and zooplankton?  What can they tell us about the ecosystem?  Please leave a reply with your answers below by clicking on “Comments.”

Here is a map of the route the R/V Walton Smith will be taking.

Research Map
The R/V Walton Smith will be leaving Miami, FL and traveling around the Florida Keys into the Gulf of Mexico.

I am so excited and I hope you will follow along with me on this journey of a lifetime!

Caitlin Fine: Introduction, July 26, 2011

NOAA Teacher at Sea
Caitlin Fine
Onboard University of Miami Ship R/V Walton Smith
August 2 – 6, 2011

Mission: South Florida Bimonthly Regional Survey
Geographical Area: South Florida
Date: July 26, 2011

Personal Log

Hola! My name is Caitlin Fine and I teach science at Escuela Key (Francis Scott Key School), a dual-language immersion elementary school in Arlington, VA. I am a Virginia native and my heart is constantly torn between the lively activities of the Washington, D.C. area and the peaceful beauty of the Shenandoah Valley. I left Virginia for college and graduate school, but returned 4 years ago to begin my teaching career for Arlington County Public Schools.

Caitlin Fine
On top of Aspen Mountain during a recent trip to Colorado

Although I majored in Political Science and Spanish Literature and I have graduate degrees in Spanish Literature and Multicultural Education, I have always been interested in science. During college, I worked on an organic farm in Andalucia, Spain that practiced permaculture (this is a way of using the land that is sustainable so that the soil does not use-up all of its nutrients). I also traveled around the Southern Cone of South America (Chile, Argentina, Peru, Bolivia, Brazil) studying the geology of the region. As you can see, I have some experience with farming and the mountains. But I have never really spent an extended time at sea — I have never slept on a boat or studied the marine ecosystems up close and personal over a period of time. I hope that I am not seasick!

My interest in science mixed with my love of cooking has created a current obsession — the health of our national and global food and water supplies. Did you know that every time we take medicine or use pesticides on our plants, a small amount of it enters the water supply and some of it ends up in the rivers and oceans nearby where fish and water plants are trying to live?

The science program at Key is a bit different from traditional elementary schools in that there are three science teachers who teach all 630 students. For the past two years, I have taught the Kindergarteners, the 2nd graders and half of the 5th graders. Key kids are amazing scientists — they are full of questions about how the world works and they are not afraid to get busy trying to figure things out on their own through hands-on inquiry and cooperative learning. I cannot wait to return to Key with new knowledge of oceanography, ocean-related careers and ways to monitor the health of the ocean to share with my students and colleagues!

I am so excited to be a Teacher at Sea for the National Oceanic and Atmospheric Administration‘s 2011 Field Season! Teacher at Sea is a program that provides allows Kindergarten through college-level teachers to live and work alongside scientists on research and survey ships. The goal of the program is to help teachers understand our ocean planet, environmental literacy, and maritime work so that they can return to the classroom and share information with their students about what it is like to be a real scientist who studies the ocean.

I will be on a 5-day cruise on the R/V Walton Smith in south Florida.

R/V Walton Smith
This is the R/V Walton Smith

From what I understand, we will be taking measurements across the south Florida coastal marine ecosystem (the southwest Florida shelf, Biscayne and Florida Bays, and the Florida Keys reef tract). The program is important because the research has helped scientists keep an eye on the sensitive marine habitats, especially when the ecosystem has had to deal with extreme events, such as hurricanes, harmful algal blooms or potential oil spill contaminants. We will test the circulation, salinity, water quality and biology of the ecosystem.

Drainage Basin
The currents might move some of the Mississippi River water toward south Florida

During this cruise, I have been told that we might be able to measure Mississippi River water because it might enter our survey track.

Scientists are also going to be trying out new optical measurement tools! It sounds as though I will have a lot to report back to you about!

Please leave me a comment or any questions you have about the cruise.

Please take a moment to take my poll:

Heather Haberman: Gulf Water Health, July 12, 2011 (post #4)

  • NOAA Teacher at Sea
    Heather Haberman

    Onboard NOAA Ship Oregon II
    July 5 — 17, 2011

Mission:  Groundfish Survey
Geographical Location:  Northern Gulf of Mexico
Date:  Tuesday, July 11, 2011

Weather Data from  NOAA Ship Tracker
Air Temperature: 29.5 C   (85.1 F)
Water Temperature: 29.8 C  (85.6 F)
Relative Humidity: 76%
Wind Speed: 2.09 knots

Preface:  Scroll down the page if you would like to read my blog in chronological order.  If you have any questions leave them for me at the end of the post.

Question of the Day:  Are you seeing any oil rigs on your trip?

Answer:   There are so many oil rigs out here in the Gulf of Mexico that I can’t recall a time when I couldn’t see one.  Some are small and some are enormous.  I never realized that there were so many different engineering designs for oil rigs.  At night they are all lit up and it looks like a city in the sea out here.  All of the bright lights do pose some problems for migrating birds especially during bad weather when the are attracted to the lights.  The birds will often circle the lights to exhaustion or hit the structure so hard that it kills them.

Science and Technology Log

Topic of the Day:  How do researchers determine the health of the Gulf waters?

Science and Technology log:

You wake up in the morning and you don’t feel well.  What do you do?  Some people may stick a thermometer in their mouth to see if they have a fever.  Body temperature is a good indicator of illness or infection.  If you still don’t feel well after a few days you could visit a doctor who may check your eyes, ears, throat, blood pressure, etc.   Doctors can often figure out what’s making you sick by using certain tools and running tests.  Researchers do the same thing with the ocean.  In order to see how “healthy” the ocean is, measurements need to be taken.  Can you tell which trawl was from healthy water and which was from “sick” water?

0.5 kg (1.1 lbs) is all we got from this 30 minute trawl
Over 500 kg (1,100 lbs) of fish were collected in this 30 minute trawl.

Why aren’t we seeing a lot of marine life in certain parts of the Gulf of Mexico?  You don’t have to be a doctor to answer this question, but you do have to have some scientific tools to diagnose the problem.

On the Oregon II, a device called a CTD is used to take measurements such as conductivity (salinity), temperature, chlorophyll concentration, and dissolved oxygen (DO).  These water quality measurements let researches know what’s happening in the water just like a doctor would look at your test results to gage your health status.  Sometimes a doctor may need to do a second test just to confirm the results.  NOAA’s fisheries biologists do the same thing with their water quality assessments.  Winkler titrations and a hand-held Hack Dissolved Oxygen meter are used to confirm the dissolved oxygen readings from the CTD.  Scientists need to make sure the data they collect is accurate and the more tests they perform the better their data will be.

This large piece of equipment is a CTD sensor. The top portion of the machine contains three gray vertical cylinders which are used to collect water samples. Under the machine are sensors that test the water quality while it is submerged. Here I am washing out the sensors once it was brought back on board from a test.
When comparing data from this device to our trawl samples, it’s obvious that water with low levels of dissolved oxygen can not support much life.

Dissolved Oxygen: Marine animals need oxygen to survive just like land animals do.  The main difference is that most marine animals have gills which are able to diffuse oxygen molecules from the water directly into their blood.  Diffusion is the process of a molecule moving from an area of high concentration to low concentration.

Have you ever sprayed air freshener and noticed how the smell moves from where you sprayed it (high concentration) throughout the entire room (low concentration) until the smell is equally distributed throughout the room (equilibrium)?  That’s how diffusion works.

It’s very important to understand that the amount of dissolved oxygen MUST be higher in the water then inside of the animal’s body or diffusion of oxygen into the blood won’t take place.  This means the animals will either have to move or die.  This is what’s happening in the “Dead Zone” in the Gulf of Mexico.

The reason levels of oxygen are so low in the Gulf of Mexico are due in part to human actions.  The overuse of fertilizers that are high in nitrates and phosphates are one of the major problems.  When it rains or floods, these extra nutrients wash off of our lawns and into storm drains which then drain into the rivers.  Most of the Mississippi watershed consists of agricultural land in the breadbasket of the Midwest where a lot of fertilization takes place during the spring and summer months. All of the nutrients from the rivers in the Mississippi watershed eventually empty out into the Gulf of Mexico.

Mississippi Watershed: The area of land that drains into the Mississippi River and out into the Gulf of Mexico.

These nutrients help the aquatic plants grow, just as they helped our lawns and crops grow.  Now you may be thinking “In the last blog you talked about how important aquatic plants are when it comes to oxygen production.”  Indeed they do make oxygen, but as all of these plants die and sink to the bottom of the sea, bacteria feed on (decompose) their remains and use up the available oxygen in the process.  More oxygen is consumed by these aerobic bacteria than was made by the plants which is why oxygen levels can get so low.

Hypoxia is the term used when dissolved oxygen is below 2 mg/l or 2 parts per million.  That means for every one million molecules, only two of them are oxygen molecules.  Most marine life try to avoid water that’s this low in oxygen because they will become stressed or die.  The hypoxic zone in the Gulf occurs in one of the most important commercial fishery zones in the United States during the spring and summer months.  Why during the spring and summer?  There are a couple of answers to this question.  One is because of the fertilizer runoff which I mentioned earlier.  The other has to do with water temperature.

As water temperature increases, it naturally looses it's ability to hold gas molecules like oxygen. Cooler water naturally holds more oxygen. Source: Koi Club of San Diego
This is a map of the data we have been collecting during the Groundfish Survey. Our data gets sent in everyday and the maps are updated weekly. Check back at http://www.ncddc.noaa.gov/hypoxia/products/ for a complete map of Bottom Dissolved Oxygen after July 17th 2011.

When the data collection is complete you will notice that the “dead zone” is larger than the state of New Jersey.  It is bigger this year than in previous years due to the flooding that’s occurred in the Great Plains and Midwest this spring and summer.

Salinity (salt level):  This measurement is extremely important to the fish that live in the ocean because each species has an optimal salinity level that it requires.  Remember osmosis?  Osmosis is how cells move water in or out depending upon their environment.  If a fish ends up in an environment that’s too saline (salty), the water will begin to leave the cells of the fish through osmosis and they could “dehydrate”.  If they are in water that’s too fresh, then their cells will start to fill with water and they could “bloat”.  All of this cellular work is done by the body in order to maintain homeostasis.  Homeostasis refers to the ability of a living thing to keep its body in balance with the ever-changing environment in which it lives.

Salinity also affects the levels of dissolved oxygen in the water.  The saltier the water, the lower the oxygen levels will be.  It also creates a problem with waters ability to “mix”.

Notice how the heavier salt water settles to the bottom of the sea. The red dots represent the amount of dissolved oxygen during a hypoxia event. Notice that due to a lack of water mixing, the concentration of oxygen is much lower in the saltier bottom layer of water.

Chlorophyll Concentrations:  As the last blog mentioned, chlorophyll is a green pigment that phytoplankton and other aquatic plants have.  By calculating the concentration of chlorophyll in an a region, researchers can determine how productive the area may be for fishing.  Remember that zooplankton eat phytoplankton and bigger fish eat zooplankton, which are then eaten by bigger fish. A good general rule of thumb is that if the water is clear and blue then there won’t be as much living in it as green cloudy (turbid) water. Areas of hypoxia can also be predicted if the levels of chlorophyll get too high.

Now that you know some of the basics about ocean health, try to do your part.

*   If you must use fertilizer, do so sparingly.

*  Purchase soaps and detergents that are labeled phosphate free.

*  Be sure to make sustainable choices when purchasing seafood (visit Seafood Watch)

Personal Log

Today I found out why fishermen do not like dolphins.  A pod of dolphins were following us on a trawl and when we brought up the catch there were holes in the net.  We had to dump the sample back into the sea and try again after the holes were patched.  We went back to do a second trawl in the same area and the dolphins did the same thing.  We decided to try to “outrun” the dolphins on our way to the next station.

The reason we can’t collect data on the trawls with net holes is because we won’t get an accurate representation of the actual number of species living in that area.  In science it’s very important to make sure we collect good data.

A pod of dolphins following our ship.

Kathleen Brown: Sea Science, June 11, 2011

NOAA Teacher at Sea
Kathleen Brown
Aboard R/V Hugh R. Sharp
June 7 – 18, 2011

Mission: Sea Scallop Survey
Geographical area of cruise: North Atlantic
Date: June 11, 2011

June 11, 2011

Weather Data from the Bridge
Time: 12:50 PM
Winds 12.9 KTs
Air Temperature: 11.94 C
Latitude 41 05.84N
Longitude 067 25.88 W

Science and Technology Log

Lowering the CTD
Lowering the CTD

Every third station along the journey, the crew takes a CTD reading. CTD stands for conductivity, temperature, and depth. Using a submersible set of probes, the characteristics of the ocean water are measured at set intervals, from the surface to the sea bottom, and then again from the sea bottom to the surface. Wynn, the marine technician, takes the time to explain to me that on this cruise the equipment is set to measure temperature, salinity, oxygen and phosphorescence. The probe is extremely heavy and must be lowered with a winch. The capability of the equipment is quite sophisticated and can take a water sample at any depth. A canister can be programmed to shut quickly, capturing approximately ten liters of water. The timing of the data collection process depends upon the depth of the water, but today it takes about five minutes. The data is collected for the NOAA team back on land.

Our journey will circle the outer edges of George’s Bank. We are on the eastern leg of the trip, somewhere between 80 and 100 miles from land. As far as the eye can see, it is ocean. Once in a while, we can see a fishing vessel off in the distance and we have seen dolphins and sunfish swimming near the ship. This afternoon I heard Mary, the First Mate, announce over the radio that she spotted a whale. I ran up to the bridge to see if I could get a look, but I was too late!

I have been eager to learn the stories of the scientists and crew, and to find out what has drawn them to the work at sea. The backgrounds of the people on the ship are varied, and they are both men and women of all ages. One person reports, “ I knew that I wanted to be a marine biologist since fifth grade.” Another says, “I grew up around boats.” Yet another speaks about wanting a hands-on career that could last a lifetime. There are several students on this leg of the cruise. I have learned there are many paths to the career at sea: experience in the military, technical school, college and university, and hands on experience over the years It seems that if you are attracted to the sea, you have a place on a scientific research vessel.

Personal Log
Toward the end of the day, the boat starts to roll a bit more than it has. We have been informed that the wave heights tomorrow may increase to 5 to 8 feet. Taking a shower while the boat rocks from side to side is challenging. I grip my flip flops to the floor of the shower and hang on!

Question of the Day
What do you think the level of salt in the water can tell scientists?

Margaret Stephens, May 28, 2011

NOAA Teacher at Sea: Margaret Stephens
NOAA Ship: Pisces
Mission: Fisheries, bathymetric data collection for habitat mapping
Geographical Area of Cruise: SE United States continental shelf waters from Cape Hatteras, NC to St. Lucie Inlet, FL
Date:  May 28, 2011 (Last day!)

NOAA Ship Pisces. Photo credit: Richard Hall
NOAA Ship Pisces. Photo credit: Richard Hall

Weather Data from the Bridge
As of 06:43, 28 May
Latitude 30.15
Longitude 80.87
Speed 7.60 knots
Course 285.00
Wind Speed 10.77 knots
Wind Direction 143.91 º
Surface Water Temperature 25.53 ºC
Surface Water Salinity 36.38 PSU
Air Temperature 24.70 ºC
Relative Humidity 92.00 %
Barometric Pressure 1011.10 millibars
Water Depth 30.17 m
Skies: clear

r at Sea Margaret Stephens and Scientist David Hoke in Pisces attire.
NOAA Teacher at Sea Margaret Stephens and Scientist David Hoke in Pisces attire.

Science and Technology Log

These scientists are not only smart, but they are neat and clean, too! After completing final mapping and fish sampling on the second-to-last day, we spent the remainder of the time cleaning the wet (fish) lab, packing all the instruments and equipment, and carefully labeling each item for transport. We hosed down all surfaces and used non-toxic cleaners to leave the stainless steel lab tables and instruments gleaming, ready for the next research project. The Pisces, like other NOAA fisheries ships, is designed as a mobile lab platform that each research team adapts to conform to its particular needs. The lab facilities, major instruments and heavy equipment are permanent, but since research teams have different objectives and protocols, they bring aboard their own science personnel, specialized equipment, and consumable supplies. The primary mission of NOAA’s fisheries survey vessels, like Pisces, is to conduct scientific studies, so the ship’s officers and crew adjust and coordinate their operations to meet the requirements of each research project. The ship’s Operations Officer and the Chief Scientist communicate regularly, well before the project begins and throughout the time at sea, to facilitate planning and smooth conduct of the mission.

Gag grouper (top, Mycteroperca microlepis) and red snapper (Lutjanus campechanus) specimens, labeled for further study Photo credit: David Berrane
Gag grouper (top, Mycteroperca microlepis) and red snapper (Lutjanus campechanus) specimens, labeled for further study Photo credit: David Berrane

“Wet” (fish) lab aboard Pisces, cleaned and ready for next research team
“Wet” (fish) lab aboard Pisces, cleaned and ready for next research team

We made up for the two days’ delay in our initial departure (caused by mechanical troubles and re-routing to stay clear of the Endeavor space shuttle launch, described in the May 18 log), thanks to nearly ideal sea conditions and the sheer hard work of the ship’s and science crews. The painstaking work enabled the science team to fine tune their seafloor mapping equipment and protocols, set traps, and accumulate data on fish populations in this important commercial fishing area off the southeastern coast of the United States. The acoustics team toiled every night to conduct survey mapping and produce three dimensional images of the sea floor. They met before sunrise each morning with Chief Scientist Nate Bacheler to plan the daytime fish survey routes, and the fish lab team collected two to three sets of six traps every day. The videographers worked long hours, backing up data and adjusting the camera arrays so that excellent footage was obtained.  In all, we obtained ten days’ worth of samples, brought in a substantial number of target species, red snapper and grouper, recorded hours of underwater video, and collected tissue and otolith samples for follow-up analysis back at the labs on land.

Models

Scientists and engineers often use models to help visualize, represent, or test phenomena they are studying. Models are especially helpful when it is too risky, logistically difficult, or expensive to conduct extensive work under “live” or real-time conditions.

Divers exploring hardbottom habitat Photo Credit: Douglas E. Kesling, UNCWilmington, CIOERT
Divers exploring hardbottom habitat Photo Credit: Douglas E. Kesling, UNCWilmington, CIOERT

As described in previous logs, this fisheries work aboard Pisces involves surveying and trapping fish to analyze population changes among commercially valuable species, principally red snapper and grouper, which tend to aggregate in particular types of hardbottom habitats.  Hardbottom, in contrast to sandy, flat areas, consists of rocky ledges, coral, or artificial reef structures, all hard substrates. By locating hardbottom areas on the sea floor, scientists can focus their trapping efforts in places most likely to yield samples of the target fish species, thus conserving valuable time and resources. So, part of the challenge is finding efficient ways to locate hardbottom. That’s where models can be helpful.

The scientific models rely on information known about the relationships between marine biodiversity and habitat types, because the varieties and distribution of marine life found in an area are related to the type of physical features present. Not surprisingly, this kind of connection often holds true in terrestrial (land) environments, too. For example, since water-conserving succulents and cacti are generally found in dry, desert areas, aerial or satellite images of land masses showing dry environments can serve as proxies to identify areas where those types of plants would be prevalent. In contrast, one would expect to find very different types of plant and animal life in wetter areas with richer soils.

Recovering ROV aboard Pisces Photo source: http://www.moc.noaa.gov/pc/visitor/photos‐a.html
Recovering ROV aboard Pisces Photo source: http://www.moc.noaa.gov/pc/visitor/photos‐a.html

Traditional methods used to map hardbottom and identify fish habitat include direct sampling by towing underwater video cameras, sonar, aerial photography, satellite imaging, using remotely operating vehicles (ROV’s), or even setting many traps in extensive areas. While they have some advantages, all those methods are labor and time-intensive and expensive, and are therefore impractical for mapping extensive areas.

This Pisces team has made use of a computer and statistical model developed by other scientists that incorporates information from previous mapping (bathymetry) work to predict where hardbottom habitat is likely to be found. The Pisces scientists have employed the “Dunn” model to predict potential hardbottom areas likely to attract fish populations, and then they have conducted more detailed mapping of the areas highlighted by the model. (That has been the principal job of the overnight acoustics team.) Using those more refined maps, the day work has involved trapping and recording video to determine if fish are, indeed, found in the locations predicted. By testing the model repeatedly, scientists can refine it further. To the extent that the model proves accurate, it can guide future work, making use of known physical characteristics of the sea floor to identify more areas where fish aggregate, and helping scientists study large areas and develop improved methods for conservation and management of marine resources.

Deploying CTD. Photo credit: David Hoke
Deploying CTD. Photo credit: David Hoke
Deploying CTD. Photo credit: David Hoke
Deploying CTD. Photo credit: David Hoke

Conductivity, Temperature and Depth (CTD) Measurements

Another aspect of the data collection aboard Pisces involves measuring key physical properties of seawater, including temperature and salinity (saltiness, or concentration of salts) at various depths using a Conductivity, Temperature and Depth (CTD)  device.

Salinity and temperature affect how sound travels in water; therefore, CTD data can be used to help calibrate the sonar equipment used to map the sea floor. In other instances, the data are used to help scientists study changes in sea conditions that may affect climate. Increases in sea surface temperatures, for example, can speed evaporation, moisture and heat transfer to the atmosphere, feeding or intensifying storm systems such as hurricanes and cyclones.

Pisces shipboard CTD, containing a set of probes attached to a cylindrical housing, is lowered from the side deck to a specified depth. A remote controller closes the water collection bottles at the desired place in the water column to extract samples, and the CTD takes the physical measurements in real time.

Fresh Catch

Of all the many species collected, only the red snapper and grouper specimens were kept for further study; most of the other fish were released after they were weighed and measured. A small quantity was set aside for Chief Steward Jesse Stiggens to prepare for the all the ship’s occupants to enjoy, but the bulk of the catch was saved for charitable purposes. The fish (“wet” lab) team worked well into overtime hours each night to fillet the catch and package it for donation. They cut, wrapped, labeled and fresh froze each fillet as carefully as any gourmet fish vendor would. Once we disembarked on the last day, Scientist Warren Mitchell, who had made all the arrangements, delivered over one hundred pounds of fresh frozen fish to a local food bank, Second Harvest of Northern Florida. It was heartening to know that local people would benefit from this high-quality, tasty protein.

Careers at Sea

Crewmen Joe Flora and Vic Pinones
Crewmen Joe Flora and Vic Pinones

Many crew members gave generously of their time to share with me their experiences as mariners and how they embarked upon and developed their careers. I found out about many, many career paths for women and men who are drawn to the special life at sea. Ship’s officers, deck crew, mechanics, electricians, computer systems specialists, chefs and scientists are among the many possibilities.

Chief Steward Jesse Stiggens worked as a cook in the U.S. Navy and as a chef in private restaurants before starting work with NOAA. He truly loves cooking, managing all the inventory, storage and food preparation in order to meet the needs and preferences of nearly forty people, three meals a day, every day. He even cooks for family and friends during his “off” time!

First Engineer Brett Jones
First Engineer Brett Jones

Electronics specialist Bob Carter, also a Navy veteran, is responsible for the operations and security of all the computer-based equipment on board. He designed and set up the ship’s network and continually expands his skills and certifications by taking online courses. He relishes the challenges, responsibilities and autonomy that come along with protecting the integrity of the computer systems aboard ship.

First Engineer Brent Jones has worked for many years in the commercial and government sectors, maintaining engines, refrigeration, water and waste management, and environmental control systems. He gave me a guided tour of the innards of Pisces, including four huge engines, heating and air conditioning units, thrusters and rudders, hoists and lifts, fresh water condenser and ionizers, trash incinerator, and fire and safety equipment. The engineering department is responsible for making sure everything operates safely, all day and night, every day. Brent and the other engineers are constantly learning, updating and sharpening their skills by taking specialized courses throughout their careers.

Chief Boatswain James Walker
Chief Boatswain James Walker

Chief Boatswain James Walker is responsible for safe, efficient operations on deck, including training and supervising all members of the deck crew. He entered NOAA after a career in the U.S. Navy.  The Chief Boatswain must be diplomatic, gentle but firm, and a good communicator and people manager. He coordinates safe deck operations with the ship’s officers, crew, and scientific party and guests.

NOAA officers are a special breed. To enter the NOAA Commissioned Officer Corps, applicants must have completed a bachelor’s degree with extensive coursework in mathematics or sciences. They need not have experience at sea, although many do. They undergo an intensive officers’ training program at a marine academy before beginning shipboard work as junior officers, where they train under more experienced officers to learn ship’s systems and operations, protocols, navigation, safety, personnel management, budgeting and administrative details. After years of hard work and satisfactory performance, NOAA officers may advance through the ranks and eventually take command of a ship.

Operations Officer, Lt. Tracy Hamburger
Operations Officer, Lt. Tracy Hamburger
Junior Officer Michael Doig
Junior Officer Michael Doig

All the officers and crew aboard Pisces seem to truly enjoy the challenges, variety of experiences and camaraderie of life at sea. They are dedicated to NOAA’s mission and take pride in the scientific and ship operations work. To be successful and satisfied with this life, one needs an understanding family and friends, as crew can be away at sea up to 260 days a year, for two to four weeks at a time. There are few personal expenses while at sea, since room and board are provided, so prudent mariners can accumulate savings. There are sacrifices, as long periods away can mean missing important events at home. But there are some benefits: As one crewman told me, every visit home is like another honeymoon!

Personal Log

One size fits all?
One size fits all?

Navy Showers

I had expected that life aboard Pisces would include marine toilets and salt water showers with limited fresh water just for rinsing off.  I was surprised to find regular water-conserving flush toilets and fresh water showers. Still, the supply of fresh water is limited, as all of it is produced from a condensation system using heat from the engines. During our ship orientation and safety session on the first day, Operations Officer Tracy Hamburger and Officer Mike Doig cautioned us to conserve water.  They explained (but did not demonstrate!) a “Navy” shower, which involves turning the water on just long enough to get wet, off while soaping up, and on again for a quick rinse. It is quite efficient – more of us should adopt the practice on land. Who really needs twenty minute showers with fully potable water, especially when more than one billion people on our “water planet” lack safe drinking water and basic sanitation?

One size fits all?
One size fits all?

“Abandon Ship!”

One size fits all?
One size fits all?

The drill I had anticipated since the first pre-departure NOAA Teacher at Sea instructions arrived in my inbox finally happened. I had just emerged from a refreshing “Navy” shower at the end of a fishy day when the ship’s horn blasted, signaling “Abandon ship!” We’d have to don survival suits immediately to be ready to float on our own in the sea for an indefinite time. Fortunately, I had finished dressing seconds before the alarm sounded. I grabbed the survival suit, strategically positioned for ready access near my bunk, and walked briskly (never run aboard ship!) to the muster station on the side deck. There, all the ship’s occupants jostled for space enough on deck to flatten out the stiff, rubbery garment and attempt to put it on.  That’s much easier said than done; it was not a graceful picture. “One size fits all”, I learned, is a figment of some manufacturer’s imagination. My petite five foot four frame was engulfed, lost in the suit, while the burly six- foot-five crewman alongside me struggled to squeeze himself into the same sized suit. The outfit, affectionately known as a Gumby, is truly designed for survival, though, as neoprene gaskets seal wrists, leaving body parts covered, with only a small part of one’s face exposed. The suit serves as a flotation device, and features a flashing light, sound alarm, and other warning instruments to facilitate locating those unfortunate enough to be floating at sea.

Thankfully, this was only a test run on deck. We were spared the indignity of going overboard to test our true survival skills. I took advantage of the opportunity to try a few jumping jacks and pushups while encased in my Gumby.

Fish bet ‐‐ Rigged results? Photo credit: Jen Weaver
Fish bet ‐‐ Rigged results? Photo credit: Jen Weaver

Bets Are On!

These scientists are fun-loving and slightly superstitious, if not downright mischievous. On the last day, Chief Scientist Nate Bacheler announced a contest: whoever came closest to predicting the number of fish caught in the last set of traps would win a Pisces t-shirt that Nate promised to purchase with his personal funds. In true scientific fashion, the predictions were carefully noted and posted for all to see.  As each trap was hauled in, Nate recorded the tallies on the white board in the dry lab. Ever the optimist, basing my estimate on previous days’ tallies, I predicted a whopping number: 239.

I should have been more astute and paid more attention to the fact that the day’s survey was planned for a region that featured less desirable habitats for fish than previous days. Nate, of course, having set the route, knew much more about the conditions than the rest of us did. His prediction: a measly 47 fish. Sure enough, the total tally was 38, and the winner was………Nate!   Our loud protests that the contest was fixed were to no avail. He declared himself the winner. Next time, we’ll know enough to demand that the Chief Scientist remove himself from the contest.

 

Chief Scientist Nate Bacheler and red snapper, Lutjanus campechanus Photo credit: David Hoke
Chief Scientist Nate Bacheler and red snapper, Lutjanus campechanus Photo credit: David Hoke

 

Crewman Kirk Perry with Mahi‐mahi
Crewman Kirk Perry with Mahi‐mahi

Catching Mahi-mahi

Once the day’s deck work was over, a fish call came over the ship’s public address system. Kirk Perry, one of the avid fishermen among the crew, attached a line baited with squid from the stern guard rail and let it troll along unattended, since a fishing pole was unnecessary. Before long, someone else noticed that the line had hooked a fish. It turned out to be a beautiful mahi-mahi, with sleek, streamlined, iridescent scales in an array of rainbow colors, and quite a fighter. I learned that the mahi quickly lose their color once they are removed from the water, and turn to a pale gray-white once lifeless. If only I were a painter, I would have stopped everything to try to capture the lovely colors on canvas.

Goodbyes

We entered Mayport under early morning light. An official port pilot is required to come aboard to guide all ships into port, so the port pilot joined Commander Jeremy Adams and the rest of the officer on the bridge as we made our way through busy Mayport, home of a United States Naval base. Unfortunately, the pier space reserved for Pisces was occupied by a British naval vessel that had encountered mechanical problems and was held up for repairs, so she could not be moved. That created a logistical challenge for us, as it meant that Pisces had to tie up alongside a larger United States naval ship whose deck was higher than ours.  Once again, the crew and scientists showed their true colors, as they braved the hot Florida sun, trekking most of the gear and luggage by hand over two gangplanks, across the Navy ship, onto the pier, and loading it into the waiting vehicles.

The delay gave me a chance to say farewell and thank the crew and science team for their patience and kindness during my entire time at sea.

These eleven days sailed by. The Pisces crew had only a short breather of a day and a half before heading out with a new group of scientists for another research project. To sea again….NOAA’s work continues.

All aboard!

A big “Thank you!” to all the scientists and crew who made my time aboard Pisces so educational and memorable!

 

Science team. Photo credit: NOAA Officer Michael Doig
Science team. Photo credit: NOAA Officer Michael Doig

Links & Resources

http://www.marinecareers.net/links_degrees.php

Literature cited:

Dunn, D, Halpin, P (2009) Rugosity-based regional modeling of hard-bottom habitat. Marine Ecology Progress Series 377:1-11

Safety! I hope I never have to use that fire axe!
Safety! I hope I never have to use that fire axe!
Sky view from Pisces. Photo credit: David Hoke
Sky view from Pisces. Photo credit: David Hoke
View from Pisces: United States Navy’s Littoral Combat Ship
View from Pisces: United States Navy’s Littoral Combat Ship
Engineers Abe Goldberg and Bob Carroll
Engineers Abe Goldberg and Bob Carroll
Loading gear with crane & hoist
Loading gear with crane & hoist
Loading gear with crane & hoist
Loading gear with crane & hoist
Commander Jeremy Adams looks out from Pisces’ bridge Photo credit: Richard Hall
Commander Jeremy Adams looks out from Pisces’ bridge Photo credit: Richard Hall

Obed Fulcar, July 24, 2010

NOAA Teacher at Sea Obed Fulcar
NOAA Ship Oscar Dyson
July 27, 2010 – August 8, 2010

Mission:Summer Pollock survey III
Geograpical Area:Bering Sea, Alaska
Date: July 24, 2010

Science & Technology Log:
Thursday, July 22: After a night of swinging and swaying from the waves at high seas, I am somewhat used to it already. Today is the start of my new shift from 0400 in the morning until 4:00 pm in the afternoon, 12 hours on, 12 hours off. Since yesterday we left the continental shelf and we are heading to deeper waters. There was a scheduled trawl to be done early this morning, but the Acoustic Lab reported no fish at all on the screens. As part of the survey it is necessary to perform a CTD launch every morning at sunrise. CTD stands for Conductivity, Temperature, and Depth, explained Darin Jones, one of the young scientists in charge of the Pollock survey.
CTD
CTD
The CTD unit is made up of a series of bottles used to collect water samples at different depths, and also includes remote sensors to collect data such as sea temperature, salinity, depth, water pressure, and fluorescence. Fluorescence is the presence of Chlorophyll in the water which depends on the amount of sunlight that penetrates the ocean, indicating the presence of Phytoplankton (algae and other microscopic plants). They rely on sunlight to produce the energy that zooplankton growth is dependent upon. Zooplankton is the foundation of the Bering Sea food chain,since is made up of krill, small shrimp like crustaceans that are the primary source of food for commercial fish such as Pollock, Cod, Salmon, and pretty much any other fish in the North Pacific Ocean.
CTD
CTD
As the CTD is dropped the ship needs to stop in order lower the unit, which is attached by cables to an A-Frame crane, including one to transmit data. The CTD can only be used to depths of 600 meters, so another device called the XBT for Expendable Bathy-Thermograph (for depth and temperature) is used for depths up to 700 meters. It can also be launched manually while the ship is in motion, and data is transmitted through a thin copper wire that splits, hence the name “Expendable”. Once the CTD is hauled back onto deck, the water bottles are drained and samples taken for dissolved oxygen (DO)analysis. DO is sequestered using chemicals that react with the oxygen taking a solid form that preserves it for lab analysis.
XBT
XBT
Personal Log:
Last night I took motion sickness pills to keep me from getting seasick. After breakfast weather got really bad, with waves up to 6 feet, battering the Oscar Dyson. These conditions, combined with a heavy breakfast, made feel really dizzy, and next I know I was throwing up. My roommate, Vince Welton, who is also the ship’s tech guy, got me some very tasty saltine crackers, and medication, that help me feel better. I laid down on my bunk bed and doze off while listening to some Jazz by Michel Camilo.
While trying to rest the waves were crashing into the hull of the ship with a loud noise, while the ship kept going up and down. I was thinking about how seafarers of the past and the conditions aboard were so much different than today. Ocean going trips now are made much easier by the technology and modern amenities commonly found on board. Staterooms with bath, galleys or kitchens fully equipped with fridge, microwave oven, and entertainment rooms with flat TVs and DVD players are the norm. I kept thinking that the next 2 weeks on board the Oscar Dyson will be a lot like space travel, will all the walking up and down stairs from deck to deck, closing of hatches, and not been able to step outside the ship for a walk until reaching port.
The connection I can make about the CTD is that it reminds me a lot of the citizen science data collection and water quality monitoring I conduct with my students after school on the Harlem River, as part of “A Day in the Life of the Hudson River” a yearly event sponsored by NYSDEC (NY State Dept of environmental Conservation) and Columbia University Lamont-Doherty Laboratory. just like in the CTD we collect samples of water from the river to test for Dissolved Oxygen, Chlorophyll, PH, Salinity, Nitrates, plus soil samples from the mudflats.
When we collect the chlorophyll samples we use the same methods just as it’s done on the Oscar Dyson, squirting the water through a circular paper filter until it turns brownish. I am planning a lesson for next school year called “NOAA in the Classroom:Student CTD Activity” where using a student water sampling bottle my Environmental Science Club class will collect water from the Harlem River at different depths with the help of our wooden boat “Boca Chica” built after school. We test the samples for DO, Salinity, PH and other protocols using a LaMotte water quality test kit to monitor the health of the Harlem/Hudson River Estuary. This data will be reported to the GLOBE.gov Program website to be used by scientists and schools all over the world. My middle schoolMS319 is a GLOBE Program partner school, and also we will be reporting data from our new Wireless Weather Station. I strongly believe that students learn science by doing science!
Boca Chica
Boca Chica
“Navegando en Alta Mar”
Jueves, 22 de Julio: Hoy comence my primera guardia de las 0400 am a las 4pm. Desde que zarpamos del puerto de Dutch Harbor hacia aguas profundas me habia librado del mareo, pero finalmente me agarro.
El mal tiempo de hoy temprano, con violetas olas que golpeaban la nave de hasta 18 metros, mas un desayuno muy pesado me provocaron unas nauseas que termine en mi camarote vomitando y tirado en la cama. Despues de tomarme una medicina y de comerme unas galletitas de soda, me tome una siesta y me levante mucho mejor. El Sonar Acustico de la nave no detecto presencia de peces por lo que fui a ver el lanzamiento de un CTD o unidad de Conductividad y Profundidad Termal. El CTD contiene botellas para recoger muestras de agua y sensores para medir la temperatura y salinidad del mar hasta 600 metros.
Para medidas mas profundas de hasta 700 metros se usa una unidad manual desechable llamada XBT. Ambas unidades son usadas para obtener datos cientificos como el nivel de Oxygeno disuelto, Salinidad, Profundidad, y Florescencia (nivel de clorofila), la ultima es muy importante pues refleja la abundancia de algas microscopicas de las que depende elZooplankton. El zooplankton esta compuesto de minusculos crustaceos que son la base del ecosistema alimenticio del Estrecho de Bering, del cual dependen especies comerciales como el Bacallao, Salmon y Arenque, asi como casi toda especie de pez en el Oceano Pacifico Norte. El uso del CTD es muy parecido al trabajo que hago con mis estudiantes analizando las aguas del Rio Harlem. Estos jovenes cientificos tambien toman muestras de agua y practican analisis de campo para Oxygeno disuelto, PH, Nitratos, Salinidad e incluso pruebas de Clorofila, como parte de un evento anual llamado “Un dia en la Vida del Rio Hudson” .
En este evento organizado por el Laboratotio Lamont-Doherty de la Universidad Columbia, y el Depto de Conservacion del Estado de NY, participan escuelas a todo lo largo del Rio Hudson, recaudando datos cientificos sobre el rio. Pensamos usar a “BOCA CHICA”,un bote de madera que armamos de tarde, para una practica de CTD tomando muestras de agua del rio, analizarlas, y reportar los datos en el internet. Tambien mis estudiantes de la Escuela Intermedia Maria Teresa Mirabal Ms319, de origen dominicano en su mayoria, aprenden ciencia ambiental al tomar datos de la Estacion Metereologica ubicada en el techo de la escuela. Ellos reportan los datos via internet en la pagina web del Programa GLOBE.gov, para ser usados por cientificos y estudiantes por todo el mundo.

Kathy Schroeder, May 12, 2010

NOAA Teacher at Sea
Kathy Schroeder
Aboard NOAA Ship Oscar Dyson
May 5 – May 18, 2010

Mission: Fisheries Surveys
Geographical Area: Eastern Bering Sea
Date: May 12, 2010

5/12 Mooring Buoy

Launching a mooring buoy
Launching a mooring buoy
Today we launched another type of buoy. It is called a Mooring Buoy. Its height is 5 meters above the surface (pictured on left) and 72 meters below the surface, which ends with a concrete dome that weighs 4110 (pictured on right). You can see the mooring being towed by the ship to get it into the right position. It has a barometer (measures atmospheric pressure), an anemometer (measures wind speed) and a thermometer on the top. There are sensors at different depths that measure salinity, chlorophyll, temperature, pressure, and nitrates.The information is transmitted to satellite Pacific Marine Environmental Lab (NOAA) that monitors the surface and subsurface of the Bering Sea. This piece of equipment costs $250,000. There are two other moorings already in this location. One measures ocean currents the other measures acoustic plankton. On one it has an underwater rain gauge. Can you figure out what that means? Headed to the Pribilof Islands today. On the way some crew saw sea ice. I’ll be looking! I love reading everyone’s comments. Keep them coming!

Scott Sperber, July 16, 2009

NOAA Teacher at Sea
Scott Sperber
Onboard Research Vessel Kilo Moana
July 9-17, 2009 

Mission:Woods Hole Oceanographic Institution Hawaii Ocean Time series Station; Albert J. Plueddemann, Chief Scientist
Geographical area of cruise: Central Pacific, north of O’ahu
Date: July 16, 2009

Weather Data from the Bridge 
Temperature: 22.64 C
Humidity: 80.6%

Science and Technology Log 

I am up very early today, 0530, the last full day at sea.  I did not make a log entry yesterday it was a very busy day. The day totaled a full 12 hour hard work day for me.  The day started out a about 0545 with the initial recovery of the old buoy.  The acoustic (sound) release mechanism was triggered and the glass balls cam up to the surface with the rope attached.  The glass balls were in a large cluster once onboard and had to be untangled.

Glass balls coming onboard (left) and popped glass ball (right).
Glass balls coming onboard (left) and popped glass ball (right).

Five of the glass balls have imploded at some time and the glass that had remained had turned into a fine white powder.  After the glass balls were brought onboard and untangled and put into their boxes the chore of bringing the 5 miles of line and cable began.  I started out in the box to flake (lay the rope down) the line as it came in.  After quite a while and a lot of rope the capstan (the vertical winch) broke. It was the only break I had since we began. A break when the brake broke. LOL. The line was cut and placed on the main winch to complete the process.  This slowed the whole procedure down because once the rope was on the winch; we had to unwind it all into its storage boxes. This had to be down 2 times and it set the whole recovery procedure behind about 2 hours. If you remember the procedure of deploying the new buoy, one chain link section at a time with the sensors attached, this procedure was now reversed for the recovery.

Scott in the box (left) and Scott on deck (right).
Scott in the box (left) and Scott on deck (right).

When the sensors came up each one was taken into the lab, photographed, videoed and a narrative was taken on to the condition of the sensor including what type of marine (ocean) growth had taken place over the year. I was given the task of taking the sensors into the lab, hanging them for photographic purposes and then bring them back outside.  A dirty job but some one had to do it. This process from start to finish, recovery of the buoy to the end of documenting the condition of the sensors took 10 hours.  After this the real fun started, cleaning the sensors. Now we are talking dirty. We had to clean off all marine growth from the sensors so Jeff could then start recovering data. 

Personal Log 

Well today I was able to put on my new steel toed boots. I should have broken them in a couple of times before this; my feet ached at the end of the day, wore a hard hat all day, a safety vest, got to climb into a box with miles of rope, got to smell like an old aquarium.  All and all a great day. Sure didn’t need to ride the bike, Carly passed on it too.

Jeff and the sensors in the lab (left) and dirty sensor with goose barnacles (right).
Jeff and the sensors in the lab (left) and dirty sensor with goose barnacles (right).

All this said and done I would really like to take the time to thank all the people who made this possible. I have done many things in my professional career to broaden my professional knowledge and this has got to be one of the best experiences of all.  First and utmost I would like to thank the NOAA Organization.  Without their desire to stress the importance of Science education through increasing the knowledge base of the educators of the world this would not have been possible. Thank you to Dr. Al Plueddemann, Chief Scientist, Dr. Roger Lukas and Dr. Fernando Santiago, both of the University of Hawaii. Not only did they share their wealth of knowledge with me but guided me through the practices of this WHOTS project and confirmed in me my beliefs of the importance of long term research in science.  Thank you to the rest of the Science Party. You all put up with me and showed me how to do what you needed.  Thank you to the Captain and the crew of the R/V Kilo Moana.

The R/V Kilo Moana (left) and Dr. Plueddeman, Paul Lethaby, Sean Whelan and Dr. Roger Lukas (right).
The R/V Kilo Moana (left) and Dr. Plueddeman, Paul Lethaby, Sean Whelan and Dr. Roger Lukas (right).

What a great experience. Thank you to my principal, Robert Weinberg, at Sherman Oaks Center for Enriched Studies and to my students. Keep it up kids, it is you that make SOCES number one.  I would also like to thank my wife.  Without her encouragement and enthusiasm towards our profession, she is also a teacher, I don’t know if I would have applied.  She is my inspiration.  Thank you one and all for allowing me to participate in this career and life enriching experience.

I see skies of blue….. clouds of white Bright blessed days….dark sacred nights And I think to myself …..what a wonderful world

~ Louis Armstrong

Folks on the ship take in the beautiful Hawaiian sunset…
Folks on the ship take in the beautiful Hawaiian sunset…

Scott Sperber, July 14, 2009

NOAA Teacher at Sea
Scott Sperber
Onboard Research Vessel Kilo Moana
July 9-17, 2009 

Mission:Woods Hole Oceanographic Institution Hawaii Ocean Time series Station; Albert J. Plueddemann, Chief Scientist
Geographical area of cruise: Central Pacific, north of O’ahu
Date: July 14, 2009

Weather Data from the Bridge 
Temperature: 23.66 C
Humidity: 76.34%

R/V Kilo Moana
R/V Kilo Moana

Science and Technology Log 

Today is another slow scientific day today. So today I am doing some other type of scientific learning, some local marine biology.  Today I am learning about how to fish in the local Hawaiian Islands style.  Breeze Simmons, research associate student level 1, is showing me all of his riggings for various types of fish and fishing conditions.  He is even rigging up something for me so I might have an opportunity to try to catch something later today or tomorrow. I have learned that Mahi has eyes like humans and they can see up to the surface.  They are a very strong food source in the ocean the world record is close 86 pounds and that only took about 18 months of growth. Mahi mahi is also known as the dolphin fish, not to be confused with “Flipper” of dolphin fame, also known as Dorado.  Ahi is tuna, Ono is Wahoo. There are also Marlin and Aku, a member of the mackerel family.

Breeze setting up gear for fishing
Breeze setting up gear for fishing

I am also sharing the Pacific Ocean with Hurricane Carlos. It’s a big ocean out here and I have not felt any effect from it and we don’t plan to.  Carlos is still off the coast of Mexico now. This is so cool to be on board this ship with all these experts and to be adding to my knowledge. The meteorologists on board say that if Carlos comes close to Hawaii its strength will die out (lose its energy). The weather balloon launches are continuing on schedule every 4 hours with Tom and me taking the 0700 and 1100 launches. Tomorrow promises to be a very hectic day aboard ship.  We will be recovering the old buoy.  Everything will begin at a 0600 and continue all day.

Mahi mahi
Mahi mahi

Personal Log 

Since today is such a mellow day I have taken this opportunity to catch up on some reading, sun, listening to music and continue by bike riding.  It has now become a bit of competition between, Carly, one of the very young interns, 25 years young from the University of Hawaii, and me as to who is riding the most miles each day. Today she rode more.

The ship has an onboard DVD system where movies and such are piped into each berth (room) along with scientific information.  I was in my berth and I put on one of the channels and what did I see that someone had put on in the main lounge? It was an episode of National Geographic and who was on the episode but my good friends from UCLAs’ Marine Biology Department, Dr. Bill Hamner and his wife Peggy. Small world, Peggy wrote one of my letters of recommendation for this expedition. They are part of the reason I am so involved in Ocean Sciences.

Today’s Task 

Look up and find a picture of all the fish that were mentioned above. 

Me and Carly
Me and Carly

Scott Sperber, July 13, 2009

NOAA Teacher at Sea
Scott Sperber
Onboard Research Vessel Kilo Moana
July 9-17, 2009 

Mission:Woods Hole Oceanographic Institution Hawaii Ocean Time series Station; Albert J. Plueddemann, Chief Scientist
Geographical area of cruise: Central Pacific, north of O’ahu
Date: July 13, 2009

Weather Data from the Bridge 
Temperature: 24.13 C
Humidity: 72%

Kuhio setting up for fishing
Kuhio setting up for fishing

Science and Technology Log 

The ship moved to the location of the old buoy last night. Visually, what a difference between the two. This one is certainly not the bright yellow color of the new one launched just 3 days ago. Yesterday I mentioned that the two thermometers on the new buoy were not reading identical temperatures and that they were about 0.4 degrees difference.  After asking a few questions I came to be informed that the importance of this particular series of expeditions, WHOTS, is that it is the accuracy of this longevity study that gives it its validity.  NOAA’s value of this study is that the study is an ongoing study not one that collects data brings it back to a lab and analyzes it and that is the end of it.

Science is not a one shot deal.  This is something I have tried to stress with my students over the years.  Good science, good data, is done with multiple sampling, either longevity study or many samples over a shorter period of time.  Any data can happen once but for it to be valid it needs to be substantiated.  For a number of years now the WHOTS study has not only brought back this type of data but has been able to note the small changes in this particular environment.  It has shown how these micro changes, shown over time, have an overall affect on a macro scale. This is the credence of this study is.  The fact that small changes do over a long period of time do show an effect.  The simple fact that the ship stayed on station for 3 days to calibrate the measurements with the new buoy, and then moved to the location of the old buoy shows the effort to make sure that even the most infinitesimal piece of data is made constant and notable.

Fresh Mahi mahi
Fresh Mahi mahi

Today, at this second location, there is being made shallow casts (samplings) with the SEABIRD at depths up to 200m every 4 hours.  These depths are the same depths as those of the instruments on the buoys.  Sometimes during the course of a years study the sensors will have a tendency to drift (change) or jump in their data.  These casts, engineering calibration casts, close to the buoys standardize the CTDs again reading temperature, conductivity, dissolved oxygen and then calculating density. These calibrations of any drifts serve as a comparison over the course of the year and are used to recalibrate the data.  With the recovery of the old buoy, one year worth of data will be downloaded and the similarities of all data with past weather conditions will be analyzed.  Again the sensors that are on the buoy are; MICROCATS, acoustic Doppler current meters and vector measuring current meters.

Personal Log 

Kuhio gave a shot at fishing this morning. Because the old buoy has been in the water for a year it has become a floating reef. So far Kuhio has hooked into and rough aboard 4 Mahi mahi. YUM, fresh fish tonight. I have been told that all over the old buoy and its sensors will be organisms of all types.  Jeff has asked be if I would help scrap off the old sensors.  OH BOY. Dirty smelly job I am sure. 

Scott Sperber, July 11-12, 2009

NOAA Teacher at Sea
Scott Sperber
Onboard Research Vessel Kilo Moana
July 9-17, 2009 

Mission:Woods Hole Oceanographic Institution Hawaii Ocean Time series Station; Albert J. Plueddemann, Chief Scientist
Geographical area of cruise: Central Pacific, north of O’ahu
Date: July 11-12, 2009

Weather Data from the Bridge 
Temperature: 24.2 C

Bringing in the SEABIRD CTD
Bringing in the SEABIRD CTD

Science and Technology Log 

Compared to yesterday today is a very slow scientific day.  After releasing the WHOTS buoy, things really calmed down.  Let me take this opportunity to tell you a bit about some of the instrumentation on the buoy itself.  The overall goal of the project is to collect data about the ocean and atmosphere over a long period of time.  These data will serve to help answer questions about such things as global warming and its impact in the tropics. On the buoy itself, pictured in a previous log, there are instruments that measure temperature, humidity, solar radiation, wind direction and speed. A GPS unit keeps track of the buoy’s location at all times. On the buoy there is also an antenna which transmits data to satellites. Each of the two buoys [explain why there are two in the ocean for this 4-day comparison period] in the water has enough slack in the lines to allow for an approximate 2-mile radius circle.

Profile of CTD on shallow casts
Profile of CTD on shallow casts

The weather balloon launching continues every four hours with teams of two or three taking each launch in shifts. Some CTD casts have been done with the small package SEABIRD CTD.  This is set over the side, lowered down by crane and yo-yoed up and down for about four hours.  During this time, data are sent directly to an onboard computer and collected by the scientists. These data include temperature and salinity. This is important information to assess changes going on in the crucial air/sea interface.

These particular locations, ones where temperature and salinity difference vary worldwide, the thermocline and halocline are dependent on variables such a currents and air temperature.  On the final assent collection bottles are closed to collect water samples for further analysis. With all of this sophisticated instrumentation onboard surface water temperature samples are still taken with the old fashioned method of lowering thermometers into the water several times to take an average reading. Some things never change. The information collected by both the oceanographic crew as well as the meteorological crew aboard is truly showing the links, the association between the interaction of the air and sky, in the crucial air/sea interface.

I found out today that the temperatures on the two thermometers on the WHOTS-6 buoy are not matching. They are off by about 0.4 degrees C; that is the level of precision necessary for this research.  The scientists are looking into which one is closest to the temperatures read on the ship before we move off to the old buoy’s location tomorrow. Apparently, this is not something that can be reconfigured so the scientists need to know which thermometer they can rely on for information. There are two of just about every instrument on the WHOTS buoys. This serves as a backup and a comparison for the same location and enables the greatest accuracy in the data.

Profile of weather balloon sonde
Profile of weather balloon sonde

Personal Log 

I’d like to share a bit more about my onboard life. I have gotten acclimated finding my way around the ship (sort of). Well, at least I don’t get lost going to the mess hall anymore.  I am in a berth on an upper bunk with Jeffrey Snyder, one of the primary researchers from the University of Hawaii. The berth is quite comfortable as berths can go since it has been years since I was in a bunk bed. Various alarm clocks go off at anytime at night so the crew can go on their watch.  There is even a ghost alarm that goes off at 01:15 that Jeff and I cannot locate.  Food is not at a shortage. It seems that every time you turn around it is time to eat, and what great food it is too.  There is fresh salad lunch and dinner, fresh fruit, at least 3 entries to choose from each mea and desserts. LA Fitness here I come. I received what I consider a gift today from Fernando Santiago, one of the principle scientists, a DVD of the procedures that are used on the Hawaii Ocean Time-series Project.

July 12, 2009 

Had some down time today after setting off another weather balloon and a great fruit and yogurt breakfast. Took a 7 mile bike ride. You may ask where in the middle of the ocean you can take a 7 mile bike ride.  They have a nice little fitness room on board.

Words of the day: Mahimahi, calibration, dissolved oxygen, interface, thermocline, conductivity, temperature, depth.

Scott Sperber, July 10, 2009

NOAA Teacher at Sea
Scott Sperber
Onboard Research Vessel Kilo Moana
July 9-17, 2009 

Mission:Woods Hole Oceanographic Institution Hawaii Ocean Time series Station; Albert J. Plueddemann, Chief Scientist
Geographical area of cruise: Central Pacific, north of O’ahu
Date: July 10, 2009

The crew readying the glass balls for deployment
The crew readying the glass balls for deployment

Weather Data from the Bridge 
Temperature:  23.83 C

Science and Technology Log 

This morning will be when the WHOTS-6 buoy will be deployed. Via the A-frame on the aft deck, the buoy will be hoisted and placed into the water. This process is done after 40m of chain and MicroCats are lowered into the water. These serve as a keel for the buoy prior to attaching the balance of the chain instruments and then thousands of feet of line which is belayed out by tension and hand over hand from many volunteers, the 80 glass balls that provide for floatation and then the massive anchor weights (air weight of 9300 lbs) to hold the whole thing down to a final depth of 4720m. Each individual section of chain with instrumentation has to me attached prior to releasing the buoy. Note the instrumentation on the top along with the large flat white “tail” to keep the buoy set with the wind.

The WHOTS-6 Buoy. Note the instrumentation on top and the wide white fin.
The WHOTS-6 Buoy. Note the instrumentation on top and the wide white fin.

Along with the oceanographic research and data collecting going on there is also atmospheric data being collected with the use of weather balloons. These helium filled balloons are to be launched every 4 hours for the entire expedition. The balloons are filled to 500 psi (pounds per square inch) of helium, the tanks of which are on board, attached to a calibrated sonde (sensing) device which reads data, temperature, air pressure and humidity and transmits the data back to the ship.  Under the careful and watchful eye of Ludovic Bariteau of CIRES and the University of Colorado, at 0730, I was able to successfully set up and launch the fourth balloon of the study. Thomas Dunn and Julie Kelly, also from the University of Hawaii research team aboard, were there to assist.

Preparing the weather balloon for launch
Preparing the weather balloon for launch

Personal Log 

I got to launch a weather balloon.  The thrills and new experiences never stop. I am very anxious to take my experiences and new knowledge back to school. I also had to practice putting on a survival suit during our safety drill. Will the fun never end?

Words of the Day: acoustics; Doppler shift; calibrate, psi

Here I am launching a weather balloon! Donning my survival suit
Here I am launching a weather balloon! Donning my survival suit
Donning my survival suit
Donning my survival suit

Scott Sperber, July 9, 2009

NOAA Teacher at Sea
Scott Sperber
Onboard Research Vessel Kilo Moana
July 9-17, 2009 

Mission:Woods Hole Oceanographic Institution Hawaii Ocean Time series Station; Albert J. Plueddemann, Chief Scientist
Geographical area of cruise: Central Pacific, north of O’ahu
Date: July 9, 2009

Weather Data from the Bridge 
Temperature: 23.9 c

The WHOTS-6 buoy getting prepared to be placed on the ship
The WHOTS-6 buoy getting prepared to be placed on the ship

Science and Technology Log 

As a first log I would like to explain a little about this project. Much of what you will be reading will be directly from correspondence I have received from NOAA themselves prior to the expedition.  The following is the cruise plan that the chief scientist, Al Plueddemann sent me before the cruise:

Overview 

The R/V Kilo Moana (KM) will participate in mooring operations associated with the WHOI Hawaii Ocean Timeseries Station (WHOTS) project. The primary intent of the WHOTS mooring is to provide long-term, high-quality air-sea changes and upper ocean temperature, salinity and velocity at a specific location in the central Pacific Ocean.

Receiving tower for the weather balloon information
Receiving tower for the weather balloon information

The first WHOTS mooring was deployed in August 2004, and the site has been continuously occupied since that time by means of annual mooring service cruises. The KM will depart from the UH Marine Center at Sand Island on 9 July 2009 to the WHOTS site. The cruise will include participants from WHOI, U. Hawaii, NOAA ESRL, U. Colorado CIRES, and possibly a NOAA Teacher at Sea (ME). The WHOTS moorings are a design utilizing wire rope, chain, nylon and polypropylene line. The surface buoy is a 2.7-meter diameter foam buoy with a watertight electronics well and aluminum instrument tower. Instruments are attached to the mooring line in the upper 150 m. An acoustic (sound) release is placed above the 9300 lb anchor, and 80 glass balls above the release provide backup flotation. 

These receive information from the sun. The temperature skimmers.
These receive information from the sun. The temperature skimmers.

Two meteorological systems will be deployed aboard the KM in addition to the ship’s standard sensors. The first system is one developed at WHOI to meet the need for more accurate meteorological observations from volunteer observing ships. The configuration on Kilo Moana will include five main components: a splash-proof housing with sensors for AT/RH (Atmospheric temperature and relative humidity), SWR (short wave radiation) and LWR (long wave radiation), a second housing with a BP (barometric[atmospheric] pressure sensor and central data logger, a rain gauge, a wind sensor, and a GPS) global positioning system) logger. Data are made available in real-time using a computer kept temporarily in the ship’s chart room.

Cruise Plan 

Staging/Destaging: Preparation of the WHOTS-6 buoy and mooring equipment will take place at the UH Marine Center during 1-6 July. Loading and staging of scientific equipment on the KM will be done on 7 July (or earlier as the situation permits). As part of the preparation, the two meteorological systems described above will be mounted on the KM. One will be mounted on the bridge mast. Others will be installed on a 30′ high tower on the port bow, and the instrumentation and computers for theses will be kept on the port (left) side of the ship There will also be an installation along the railing for a boom that will support a sea surface temperature skimmer device and mounted on the port side of the bridge.

Operations: The cruise involves four principal operations, as listed below. These operations are expected to require 9 ship days.

1. Deployment of the WHOTS-6 mooring. The buoy will be deployed through the A-frame, after which the ship will proceed slowly ahead. The remainder of the mooring will be deployed over the stern using the mooring winch, capstan, air tuggers, and crane as necessary.  Acoustic ranging from three stations will allow the mooring anchor position, to be determined by triangulation.

2. Sensor comparison period. During a period of approximately 4 days between release of WHOTS-6 and recovery of WHOTS-5, the KM will establish and hold position, with bow into the wind. During the comparison period satellite transmissions from the buoys will be monitored using equipment supplied by the scientists. A series of shallow (200 m) CTD (conductivity, temperature and depth) casts will be done at approximately 4 hr intervals using a CTD and rosette supplied by the science party.

3. Recovery of the WHOTS 5 mooring. The WHOTS-5 mooring is presently on station at another location not far from the new buoy. The WHOTS mooring release will be fired and recovering of the old buoy will begin with the glass balls (lower end) and proceed to about 50 m below the buoy while the ship moves ahead slowly. The work boat will be used tograb the glass balls and pass a leader line to the KM. The work boat will be lowered again and used to connect a line to the buoy and pass the line to the stern of the ship. The buoy will be recovered through the A-frame. Recovery operations will use the A-frame, the mooring winch, capstan, air tuggers, and crane as necessary.

4. Deep CTD casts and CTD Survey. At certain times during operations,several deep (1000 m) CTD casts will be made. The fifth WHOTS WHOI-Hawaii Ocean Timeseries Site (WHOTS) buoy was deployed from the Kilo Moana at 03:24:39 UTC June 5, 2008.

The R/V Kilo Moana will be deploying the WHOTS-6 mooring and will for a number of days be used in the comparison of real time data between the new mooring, the WHOTS-5 mooring and that of the ship.  After which the WHOTS-5 mooring will be recovered via the A-frame on the stern.

Real Time Data 

Hourly averaged meteorological data for the current deployment of the WHOI Hawaii Ocean Time Series Station are received via Service Argos four times daily. Hourly averages are also being transmitted for an engineering study using the Iridium Satellite service. Preliminary data is displayed in unedited form as time series plots, and is available for download as ASCII files.

Personal Log 

Wow. That is a lot of scientific jargon and acronyms which I will try to clear up in the next week. As for my responsibilities they will include but not be limited to:

During this expedition I will try to match the NOAA goals of which are:

Short-term Goals 

I will:

  1. Understand how NOAA oceanic and atmospheric research is linked to National Education Science Standards and Ocean Literacy Principles.
  2.  Understand the education and training paths that lead to NOAA-related careers.

Mid-term Goals 

I will:

  • Use NOAA data and resources in classroom activities. (oh boy)
  • Use NOAA-related career information in classroom activities, when mentoring students and when working with colleagues.

Why am out here in the middle of the ocean?

The vision of NOAA’s Teacher at Sea program is to be NOAA’s main provider to teachers of opportunities to participate in real-world scientific research and maritime activities.

Assembling the long line of sensors
Assembling the long line of sensors

Tasks and Responsibilities 

I will have a defined set of tasks and responsibilities before, during, and after the mission. During the mission, I will be under the ultimate command of the ship’s Commanding Officer. AYE, AYE CAPTAIN. However, I will also be considered a member of the science party, And will also be under the direction of the mission’s Chief Scientist and will be expected to take part in the tasks assigned by the Chief Scientist.

MICROCat sensor to be located at 155 meters
MICROCat sensor to be located at 155 meters

Everyone here is very accommodating of the new guy. I am going to quietly sit back and observe for a while, there is so much going on I do not want to get in the way.  From my berth window, I look directly out on the A-frame, great cautious way to observe the deployment without stepping on anyone’s toes. I am watching the crew assemble the line of MICROCat and other monitoring devices. Lengths of chain, shackles and hitches are laid over the deck in what seems like a chaotic mess but I have been assured that it will all flow out nicely when the deployment of the system begins. You can see how the MicroCATs are labeled with their respective depths.. There is also another device, the Seabird, that will be the one that bobs (yo-yo’s) up and down for daily data regarding, temperature, conductivity and depth.

Words of the day: deployment, winch, capstan, crane, acoustic, triangulation, comparison, bow, stern, A-frame 

Jillian Worssam, July 19, 2008

NOAA Teacher at Sea
Jillian Worssam
Onboard U.S. Coast Guard Vessel Healy
July 1 – 30, 2008

Mission: Bering Sea Ecosystem Survey
Geographic Region: Bering Sea, Alaska
Date: July 19, 2008

Numerous times over the past two and half weeks I have mentioned the CTD, small ones attached to moorings, there is one on the MOCNESS, there are even CTD sensors aboard the HEALY, but what does this CTD really tell the scientists?

For every sampling station the CTD needs to be prepared ahead of time so that all the equipment is functioning fully.
For every sampling station the CTD needs to be prepared ahead of time so that all the equipment is functioning fully.

As a review, let’s remember that a CTD records the Conductivity of the water that when adjusted for Temperature gives us salinity. The Depth of each sample is recorded because the ocean is not static; it is constantly moving both vertically and horizontally, and changing as it moves. When you sample with the CTD you can add a variety of accessory sensors to measure other ocean parameters: O2 salinity, temperature, pressure, fluorescence, turbidity and on our specific cruise we are also collecting data in regards to micro-zooplankton, nitrates, iron, and radon.

Each line represents a different element that the CTD is measuring.
Each line represents a different element that the CTD is measuring.

Let’s stop for a moment and talk about ocean currents. There are three ocean currents that affect the ecosystems of the Bering Sea: The Alaska Coastal Current, heavily freshwater, colder runoff that shoots through Unimak Pass; The North Pacific Gyre, warmer(relatively) water that seeps through the entire Aleutian chain, like water through a sieve. And the deep ocean conveyor belt, this one actually comes from the Mediterranean…water that has not seen the surface for a thousand years or more! This dense and cold fluid flows through Kamchatka pass, and has traveled from the north Atlantic through the Pacific to get to the Bering Sea, and is really rich in nutrients. No wonder it takes a thousand years. Anyway here we have all this water filtering into the Bering Sea, and here on the HEALY we have the CTD to give us precise data on the composition of this water.

The scientists all getting their water samples out of the 30 liter bottles.
The scientists all getting their water samples out of the 30 liter bottles.

During the actual cast of the CTD at each recorded station 24 data points are collects each second, giving an excellent representation of each specific water column. It is Scott’s job to run the CTD and let me tell you this is no easy task. The electronic equipment has to be constantly calibrated, the physical instrument array maintained, and all the collected data cataloged and stored for transmission to all the scientists both during and at the end of this cruise. None of this is an easy task. I also find Scott’s role on the vessel fascinating. Scott is an engineer who works for Scripts out of California and is hired on as outside technical support. He is not technically one of the scientific team, not technically part of the U.S. Coast Guard, and the HEALY could not technically collect most of their data with out him!

Hamming it up, Scott shows us the real science behind the CTD.
Hamming it up, Scott shows us the real science behind the CTD.

Quote of the Day: If you plan for a year, plant rice. If you plan for ten years plant trees. If you plan for 100 years, educate your children. Chinese Proverb.

FOR MY STUDENTS: What is a pycnocline?